MAX6672_V01 [MAXIM]

PWM Output Temperature Sensors in SC70 Packages;
MAX6672_V01
型号: MAX6672_V01
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

PWM Output Temperature Sensors in SC70 Packages

文件: 总7页 (文件大小:1120K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MAX6672/MAX6673  
PWM Output Temperature Sensors  
in SC70 Packages  
General Description  
Features  
Simple Single-Wire PWM Output  
The MAX6672/MAX6673 are low-current temperature  
sensors with a single-wire output. These temperature  
sensors convert the ambient temperature into a 1.4kHz  
PWM output, which contains the temperature information  
in its duty cycle. The MAX6672 has an open-drain output  
and the MAX6673 has a push-pull output.  
Tiny SC70 Package  
Low 60µA (typ) Supply Current Consumption  
1.4kHz Nominal Frequency  
Choice of Outputs  
Open Drain (MAX6672)  
Push-Pull (MAX6673)  
The MAX6672/MAX6673 operate from 2.4V to 5.5V with a  
maximum supply current of 150µA. Both devices feature  
a single-wire output that minimizes the number of pins  
necessary to interface with a microprocessor.  
2.4V to 5.5V Supply Range  
The MAX6672/MAX6673 are available in 5-pin SC70  
packages.  
Ordering Information  
Applications  
Industrial and Process Control  
HVAC  
PIN-  
TOP  
PART  
TEMP RANGE  
PACKAGE  
MARK  
Environmental Control  
Isolated Temperature Sensing  
MAX6672AXK-T  
MAX6673AXK-T  
-40°C to +125°C 5 SC70  
-40°C to +125°C 5 SC70  
ACQ  
ACR  
Typical Application Circuit  
Pin Configuration  
TOP VIEW  
µC  
V
GPIO TO CONTROL  
SHUTDOWN  
CC  
DOUT  
1
2
3
5
4
V
CC  
*
MAX6672  
MAX6673  
0.1µF  
MAX6672  
MAX6673  
INPUT TO TIMER/  
COUNTER  
N.C.  
GND  
GND  
GND  
SC70  
* PULLUP RESISTOR REQUIRED ONLY FOR THE MAX6672.  
19-2458; Rev 1; 4/14  
MAX6672/MAX6673  
PWM Output Temperature Sensors  
in SC70 Packages  
Absolute Maximum Ratings  
Supply Voltage (V  
to GND)................................ -0.3V to +6V  
Operating Temperature Range......................... -40°C to +125°C  
Storage Temperature Range............................ -65°C to +150°C  
Junction Temperature......................................................+150°C  
SC70 Package  
Vapor Phase (60s)...................................................... +215°C  
Infrared (15s).............................................................. +220°C  
Lead Temperature (soldering, 10s) ................................ +300°C  
CC  
DOUT to GND (MAX6672)......................................-0.3V to +6V  
DOUT to GND (MAX6673)....................... -0.3V to (V + 0.3V)  
DOUT Short to GND..................................................Continuous  
ESD Protection (Human Body Model)............................ ±2000V  
CC  
Continuous Power Dissipation (T = +70°C)  
A
5-Pin SC70 (derate 2.5mW/°C above +70°C).............200mW  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these  
or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect  
device reliability.  
Electrical Characteristics  
(V  
= 2.4V to 5.5V, T = -40°C to +125°C, unless otherwise noted. Typical values specified at +25°C and V of 3.3V.) (Note 1)  
CC  
A
CC  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
-3  
TYP  
MAX UNITS  
T
T
T
T
= +25°C to +100°C  
= 0°C to +125°C  
= -20°C to +125°C  
= -40°C to -20°C  
+3  
A
A
A
A
-4  
+4  
°C  
+5  
Temperature Error  
(Note 2)  
V
= 3.3V  
CC  
-5  
±3  
Nominal t Pulse Width  
1
280  
µs  
Output Low Voltage  
Output High Voltage  
Fall Time  
V
I
I
= 3mA  
0.4  
V
V
OL  
SINK  
V
= 800µA (MAX6673)  
V
- 0.5  
OH  
SOURCE  
CC  
t
C
C
= 100pF  
14  
96  
ns  
ns  
FALL  
LOAD  
LOAD  
Rise Time  
t
= 100pF (MAX6673)  
RISE  
DOUT Open-Drain Leakage  
Current  
V
= 6V (MAX6672)  
0.1  
µA  
DOUT  
Output Capacitance  
2.5  
0.3  
60  
pF  
Power-Supply Rejection Ratio  
PSRR  
2.4V to 5.5V, T = -25°C to +125°C  
A
0.8  
100  
150  
°C/V  
2.4V to 3.6V  
3.6V to 5.5V  
Supply Current  
I
µA  
CC  
70  
Note 1: All specifications are 100% tested at T = +25°C. Specification limits over temperature (T = -40°C to +125°C) are guaranteed  
A
A
by design, not production tested.  
3
Note 2: Temperature = -200 × (0.85 - T /T ) + (425 5 T /T ) - 273. T is the low time period. T is the high time period (Figure 1).  
1
2
1
2
1
2
Maxim Integrated  
2  
www.maximintegrated.com  
MAX6672/MAX6673  
PWM Output Temperature Sensors  
in SC70 Packages  
Typical Operating Characteristics  
(V  
= 3.3V, T = +25°C, unless otherwise noted.)  
A
CC  
OUTPUT FREQUENCY  
vs. TEMPERATURE  
NORMALIZED OUTPUT FREQUENCY  
vs. SUPPLY VOLTAGE  
t AND t TIMES  
1 2  
vs. TEMPERATURE  
2.00  
600  
500  
400  
300  
200  
1.010  
1.005  
1.000  
0.995  
0.990  
1.75  
1.50  
1.25  
1.00  
T
= +125°C  
= +25°C  
A
t
t
2
T
A
T
= -40°C  
A
1
-50 -25  
0
25  
50  
75 100 125  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
-50 -25  
0
25  
50  
75 100 125  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
OUTPUT ACCURACY  
vs. TEMPERATURE  
SUPPLY CURRENT  
vs. TEMPERATURE  
SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
150  
120  
90  
60  
30  
0
4
2
100  
90  
80  
70  
60  
50  
V
= 3.3V  
CC  
V
= 5V  
CC  
0
V
= 3.3V  
CC  
-2  
-4  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
-50 -25  
0
25  
50  
75 100 125  
-50 -25  
0
25  
50  
75 100 125  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
POWER-SUPPLY REJECTION  
vs. TEMPERATURE  
POWER-SUPPLY REJECTION  
vs. FREQUENCY  
OUTPUT RISE AND FALL TIMES  
vs. CAPACITIVE LOAD  
1.0  
0.5  
0
1.0  
0.5  
0
150  
120  
90  
60  
30  
0
MAX6673 RISE TIME  
-0.5  
-1.0  
-0.5  
-1.0  
FALL TIME  
V
= 100mV  
P-P  
AC  
0.01  
0.10  
1
10  
-50 -25  
0
25  
50  
75 100 125  
0.01 0.10  
1
10  
100  
1k  
10k  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
CAPACITIVE LOAD (nF)  
Maxim Integrated  
3
www.maximintegrated.com  
MAX6672/MAX6673  
PWM Output Temperature Sensors  
in SC70 Packages  
Typical Operating Characteristics (continued)  
(V  
= 3.3V, T = +25°C, unless otherwise noted.)  
A
CC  
THERMAL RESPONSE  
IN STIRRED OIL BATH  
OUTPUT SINK CURRENT  
vs. TEMPERATURE  
MAX6673 OUTPUT SOURCE CURRENT  
vs. TEMPERATURE  
100  
30  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
V
OL  
= 0.4V  
V
= V - 0.5V  
OH CC  
25  
20  
15  
10  
5
75  
50  
25  
V
V
= 5V  
CC  
V
V
= 5V  
CC  
= 3.3V  
CC  
= 3.3V  
CC  
TRANSITION FROM +25°C AIR  
TO +100°C STIRRED OIL BATH  
0
0
0
4
8
12  
TIME (s)  
16  
20  
-50 -25  
0
25  
50  
75 100 125  
-50 -25  
0
25  
50  
75 100 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Pin Description  
PIN  
NAME  
DOUT  
N.C.  
FUNCTION  
1
Digital Output Pin. PWM output, open-drain output (MAX6672), or push-pull output (MAX6673).  
No Connection. Not internally connected.  
2
3, 4  
5
GND  
Pin 3 and Pin 4 must be tied together and connected to ground.  
Positive Supply. Bypass with a 0.1µF capacitor to GND.  
V
CC  
The MAX6673 has a push-pull output. The rise and fall  
times of the MAX6673 output are negligible with  
respect to the period; therefore, errors caused by  
capacitive loading are minimized.  
Detailed Description  
The MAX6672/MAX6673 are low-current (60µA, typ),  
local temperature sensors ideal for interfacing with µCs  
or µPs. The MAX6672/MAX6673 convert their own  
temperature into a ratiometric PWM output. The square-  
wave output waveform time ratio contains the  
temperature information. The output is a square wave  
with a nominal frequency of 1.4kHz at +25°C. The tem-  
perature is obtained with the following formula:  
The output load capacitance should be minimized in  
MAX6672 applications because the sourcing current is  
set by the pullup resistor. If the output capacitance  
becomes too large, unequal rise and fall times distort  
the pulse width, thus delivering inaccurate readings.  
3
Temperature (°C) = -200 x (0.85 - t / t )  
1
2
Applications Information  
Pulse-Width Modulation  
Interfacing with a µC  
+ (425 x t / t ) - 273  
1
2
Where t is a fixed value and t is modulated with the  
temperature. Table 1 lists time ratio vs. temperature.  
1
2
For temperatures greater than +50°C, the temperature  
error is primarily first order and the following equation  
can be used:  
The Typical Application Circuit shows the MAX6672/  
MAX6673 interfaced with a µC. In this example, the  
MAX6672/MAX6673 convert the ambient temperature  
to a PWM waveform. The µC reads the temperature by  
Temperature (°C) = (425 x t / t ) - 273  
1
2
measuring the t and t periods in software and hard-  
1
2
ware. The only timing requirements are that the clock  
frequency used for timing measurements is stable and  
Maxim Integrated  
4  
www.maximintegrated.com  
MAX6672/MAX6673  
PWM Output Temperature Sensors  
in SC70 Packages  
Table 1. Time Ratio vs. Temperature  
t
2
t
1
TIME RATIO  
TEMPERATURE  
(t /t )  
(°C)  
1 2  
0.936  
0.878  
0.807  
0.714  
0.646  
0.602  
0.560  
125  
100  
70  
Figure 1. PWM Waveform Timing  
30  
0
Block Diagram  
-25  
-40  
5
V
CC  
high enough to provide the required measurement res-  
olution. The interface for the MAX6672 requires a pullup  
resistor.  
1
DOUT  
PWM  
MODULATOR  
TEMPERATURE  
SENSOR  
t
1
t
2
Thermal Response Time  
The time periods t (low) and t (high) are values that  
1
2
GND  
are easily read by the µP timer/counter. The temperature  
reading is then calculated using software. Since both  
periods are obtained consecutively, using the same clock,  
performing the division indicated in the above formulae  
results in a ratiometric value that is independent of the  
exact frequency.  
3, 4  
The thermal path between the plastic package and the  
die is not as good as the path through the leads, so  
the MAX6672/MAX6673, like all temperature sensors in  
plastic packages, are less sensitive to the temperature  
of the surrounding air than they are to the temperature  
of their leads. They can be successfully used to sense  
ambient temperature if the circuit board is designed to  
track the ambient temperature.  
Sensing Circuit Board and Ambient  
Temperatures  
Temperature sensor ICs such as the MAX6672/  
MAX6673 that sense their own die temperatures must  
be mounted on or close to the object whose tempera-  
ture they are intended to measure. Because there is a  
good thermal path between the SC70 package's metal  
leads and the IC die, the MAX6672/MAX6673 can  
accurately measure the temperature of the circuit  
board to which they are soldered. If the sensor is  
intended to measure the temperature of a heat-generat-  
ing component on the circuit board, it should be mount-  
ed as close as possible to that component and should  
share supply and ground traces (if they are not noisy)  
with that component where possible. This maximizes  
the heat transfer from the component to the sensor.  
As with any IC, the wiring and circuits must be kept  
insulated and dry to avoid leakage and corrosion,  
especially if the part is operated at cold temperatures  
where condensation can occur.  
The error caused by power dissipation in the MAX6672/  
MAX6673 is negligible.  
Chip Information  
PROCESS: BiCMOS  
Maxim Integrated  
5  
www.maximintegrated.com  
MAX6672/MAX6673  
PWM Output Temperature Sensors  
in SC70 Packages  
Package Information  
For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a “+”,  
“#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing  
pertains to the package regardless of RoHS status.  
PACKAGE TYPE  
PACKAGE CODE  
DOCUMENT NO.  
21-0076  
LAND PATTERN NO.  
90-0188  
5 SC70  
X5-1  
Maxim Integrated  
6  
www.maximintegrated.com  
MAX6672/MAX6673  
PWM Output Temperature Sensors  
in SC70 Packages  
Revision History  
REVISION REVISION  
PAGES  
DESCRIPTION  
NUMBER  
DATE  
10/02  
4/14  
CHANGED  
0
1
Initial release  
Removed automotive reference from Applications  
1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated’s website at www.maximintegrated.com.  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses  
are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits)  
shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
©
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  
2014 Maxim Integrated Products, Inc.  
7  

相关型号:

MAX6673

PWM Output Temperature Sensors in SC70 Packages
MAXIM

MAX6673AXK+T

Analog Voltage Output Sensor, 0.4V Min, 5V Max, Rectangular, Surface Mount, PLASTIC, SC-70, 5 PIN
MAXIM

MAX6673AXK-T

PWM Output Temperature Sensors in SC70 Packages
MAXIM

MAX6674

Cold-Junction-Compensated K-Thermocouple to-Digital Converter (0∑C to +128∑C)
MAXIM

MAX6674ISA

Cold-Junction-Compensated K-Thermocouple to-Digital Converter (0∑C to +128∑C)
MAXIM

MAX6674ISA+

Analog Circuit, 1 Func, BICMOS, PDSO8, 0.150 INCH, SOIC-8
MAXIM

MAX6674ISA+T

Analog Circuit, 1 Func, BICMOS, PDSO8, 0.150 INCH, SOIC-8
MAXIM

MAX6674ISA-T

Analog Circuit, 1 Func, BICMOS, PDSO8, 0.150 INCH, SOIC-8
MAXIM

MAX6675

Cold-Junction-Compensated K-Thermocoupleto-Digital Converter (0∑C to +1024∑C)
MAXIM

MAX6675EVKIT

Evaluation Kit for the MAX6674/MAX6675
MAXIM

MAX6675ISA

Cold-Junction-Compensated K-Thermocoupleto-Digital Converter (0∑C to +1024∑C)
MAXIM

MAX6675ISA+

Analog Circuit, 1 Func, BICMOS, PDSO8, 0.150 INCH, SOIC-8
MAXIM