MAX6753KA43/V+T [MAXIM]

Power Supply Management Circuit, Adjustable, 1 Channel, BICMOS, PDSO8, SOT-23, 8 PIN;
MAX6753KA43/V+T
型号: MAX6753KA43/V+T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Power Supply Management Circuit, Adjustable, 1 Channel, BICMOS, PDSO8, SOT-23, 8 PIN

信息通信管理 光电二极管
文件: 总14页 (文件大小:191K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MAX6746–MAX6753  
µP Reset Circuits with Capacitor-Adjustable  
Reset/Watchdog Timeout Delay  
General Description  
Features  
The MAX6746–MAX6753 low-power microprocessor  
(µP) supervisory circuits monitor single/dual system  
supply voltages from 1.575V to 5V and provide maxi-  
mum adjustability for reset and watchdog functions.  
o Factory-Set Reset Threshold Options from 1.575V  
to 5V in ~100mV Increments  
o Adjustable Reset Threshold Options  
o Single/Dual Voltage Monitoring  
These devices assert a reset signal whenever the V  
CC  
supply voltage or RESET IN falls below its reset thresh-  
old or when manual reset is pulled low. The reset output  
o Capacitor-Adjustable Reset Timeout  
o Capacitor-Adjustable Watchdog Timeout  
o Min/Max (Windowed) Watchdog Option  
o Manual Reset Input Option  
remains asserted for the reset timeout period after V  
CC  
and RESET IN rise above the reset threshold. The reset  
function features immunity to power-supply transients.  
The MAX6746–MAX6753 have ±±2 factory-trimmed  
reset threshold voltages in approximately 100mV incre-  
ments from 1.575V to 5.0V and/or adjustable reset  
threshold voltages using external resistors.  
o Guaranteed RESET Valid for V  
o 3.7µA Supply Current  
1V  
CC  
o Push-Pull or Open-Drain RESET Output Options  
o Power-Supply Transient Immunity  
o Small 8-Pin SOT23 Packages  
The reset and watchdog delays are adjustable with  
external capacitors. The MAX6746–MAX6751 contain a  
watchdog select input that extends the watchdog time-  
out period by 1±8x. The MAX675±/MAX6753 contain a  
window watchdog timer that looks for activity outside an  
expected window of operation.  
Ordering Information  
PART  
TEMP RANGE  
-40°C to +1±5°C  
-40°C to +1±5°C  
-40°C to +1±5°C  
-40°C to +1±5°C  
-40°C to +1±5°C  
-40°C to +1±5°C  
-40°C to +1±5°C  
-40°C to +1±5°C  
-40°C to +1±5°C  
-40°C to +1±5°C  
-40°C to +1±5°C  
-40°C to +1±5°C  
-40°C to +1±5°C  
PIN-PACKAGE  
8 SOT±3  
8 SOT±3  
8 SOT±3  
8 SOT±3  
8 SOT±3  
8 SOT±3  
8 SOT±3  
8 SOT±3  
8 SOT±3  
8 SOT±3  
8 SOT±3  
8 SOT±3  
8 SOT±3  
MAX6746KA_ _-T  
MAX6746KA_ _/V+T  
MAX6747KA_ _-T  
MAX6747KA_ _/V+T  
MAX6748KA-T  
The MAX6746–MAX6753 are available with a push-pull  
or open-drain active-low RESET output. The MAX6746–  
MAX6753 are available in an 8-pin SOT±3 package and  
are fully specified over the automotive temperature  
range (-40°C to +1±5°C).  
MAX6749KA-T  
Applications  
MAX6750KA_ _-T  
MAX6750KA_ __/V+T  
MAX6751KA_ _-T  
MAX6751KA_ _/V+T*  
MAX6752KA_ _-T  
MAX6753KA_ _-T  
MAX6753KA_ _/V+T  
Medical Equipment  
Automotive  
Embedded Controllers  
Critical µP Monitoring  
Set-Top Boxes  
Intelligent Instruments  
Portable Equipment  
Computers  
Battery-Powered  
Computers/Controllers  
Note: “_ _” represents the two number suffix needed when  
ordering the reset threshold voltage value for the  
Pin Configurations  
MAX6746/MAX6747 and MAX6750–MAX6753. The reset  
threshold voltages are available in approximately 100mV incre-  
ments. Table ± contains the suffix and reset factory-trimmed  
voltages. All devices are available in tape-and-reel only. There  
is a ±500-piece minimum order increment for standard ver-  
sions (see Table 3). Sample stock is typically held on standard  
versions only. Nonstandard versions require a minimum order  
increment of 10,000 pieces. Contact factory for availability.  
TOP VIEW  
+
RESET IN (MR)  
SWT  
1
2
3
4
8
7
6
5
V
CC  
RESET  
WDI  
MAX6746–  
MAX6751  
SRT  
Devices are available in both leaded and lead-free packaging.  
Specify lead-free by replacing “-T” with “+T” when ordering.  
GND  
WDS  
+ Denotes a lead (Pb)-Free/RoHs-compliant package.  
T = Tape and reel  
/V denotes an automotive qualified part.  
*Future product—contact factory for availability.  
SOT23  
( ) ARE FOR MAX6746 AND MAX6747 ONLY.  
Selector Guide appears at end of data sheet.  
Typical Operating Circuit appears at end of data sheet.  
Pin Configurations continued at end of data sheet.  
For pricing, delivery, and ordering information, please contact Maxim Direct  
at 1-888-629-4642, or visit Maxim’s website at www.maximintegrated.com.  
19-±530; Rev 8; ±/14  
MAX6746–MAX6753  
µP Reset Circuits with Capacitor-Adjustable  
Reset/Watchdog Timeout Delay  
ABSOLUTE MAXIMUM RATINGS  
CC  
V
to GND...........................................................-0.3V to +6.0V  
Continuous Power Dissipation (T = +70°C)  
A
SRT, SWT, SET0, SET1, RESET IN, WDS, MR,  
WDI, to GND .......................................…-0.3V to (V  
RESET (Push-Pull) to GND......................…-0.3V to (V  
RESET (Open Drain) to GND.............................…-0.3V to +6.0V  
Input Current (All Pins) .....................................................±±0mA  
Output Current (RESET) ...................................................±±0mA  
8-Pin SOT±3 (derate 8.9mW/°C above +70°C)............714mW  
Operating Temperature Range .........................-40°C to +1±5°C  
Storage Temperature Range ............................-65°C to +150°C  
Junction Temperature......................................................+150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
Soldering Temperature (reflow) .......................................+±60°C  
+ 0.3V)  
+ 0.3V)  
CC  
CC  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
= +1.±V to +5.5V, T = T  
A
to T  
, unless otherwise specified. Typical values are at V  
= +5V and T = +±5°C.) (Note 1)  
CC A  
CC  
MIN  
MAX  
PARAMETER  
SYMBOL  
CONDITIONS  
= 0°C to +1±5°C  
MIN  
1.0  
TYP  
MAX  
5.5  
5.5  
10  
9
UNITS  
T
T
A
Supply Voltage  
V
V
CC  
= -40°C to 0°C  
1.±  
A
V
V
V
5.5V  
3.3V  
±.0V  
5
CC  
CC  
CC  
Supply Current  
I
µA  
4.±  
3.7  
CC  
8
See V  
selection table  
V
±2  
-
V
±2  
+
TH  
TH  
TH  
V
Reset Threshold  
V
T = -40°C to+1±5°C  
A
V
CC  
TH  
Hysteresis  
to Reset Delay  
V
0.8  
±0  
2
µs  
HYST  
V
falling from V + 100mV to V  
-
CC  
TH  
TH  
V
CC  
100mV at 1mV/µs  
C
C
= 1500pF  
5.69±  
7.590  
0.506  
±50  
9.487  
SRT  
SRT  
SRT  
Reset Timeout Period  
t
ms  
RP  
= 100pF  
SRT Ramp Current  
I
V
= 0 to 1.±3V; V  
= 1.6V to 5V  
±00  
300  
nA  
V
RAMP  
CC  
SRT Ramp Threshold  
V
V
= 1.6V to 5V (V  
= 1500pF  
= 100pF  
rising)  
RAMP  
1.173  
5.69±  
1.±35  
7.590  
0.506  
1.±97  
9.487  
RAMP  
CC  
C
C
C
C
C
C
SWT  
SWT  
SWT  
SWT  
SWT  
SWT  
Normal Watchdog Timeout Period  
(MAX6746–MAX6751)  
t
t
ms  
ms  
ms  
WD  
WD  
= 1500pF  
= 100pF  
7±8.6  
7±8.6  
971.5 1±14.4  
64.77  
Extended Watchdog Timeout  
(MAX6746–MAX6751)  
= 1500pF  
= 100pF  
971.5 1±14.4  
64.77  
Slow Watchdog Period  
(MAX675±/MAX6753)  
t
WD±  
WD1  
Fast Watchdog Timeout Period,  
SET Ratio = 8,  
(MAX675±/MAX6753)  
C
C
C
C
= 1500pF  
= 100pF  
= 1500pF  
= 100pF  
91.08 1±1.43 151.80  
8.09  
SWT  
SWT  
SWT  
SWT  
t
ms  
ms  
Fast Watchdog Timeout Period,  
SET Ratio = 16,  
(MAX675±/MAX6753)  
45.53  
60.71  
4.05  
75.89  
t
WD1  
±
Maxim Integrated  
MAX6746–MAX6753r  
µP Reset Circuits with Capacitor-Adjustable  
Reset/Watchdog Timeout Delay  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= +1.±V to +5.5V, T = T  
A
to T  
, unless otherwise specified. Typical values are at V  
= +5V and T = +±5°C.) (Note 1)  
CC A  
CC  
MIN  
MAX  
PARAMETER  
SYMBOL  
CONDITIONS  
= 1500pF  
MIN  
TYP  
MAX  
UNITS  
Fast Watchdog Timeout Period,  
SET Ratio = 64,  
(MAX675±/MAX6753)  
C
C
11.38  
15.18  
18.98  
SWT  
SWT  
t
ms  
WD1  
= 100pF  
1.01  
Fast Watchdog Minimum Period  
(MAX675±/MAX6753)  
±000  
ns  
SWT Ramp Current  
I
V
V
V
V
V
V
V
V
= 0 to 1.±3V, V = 1.6V to 5V  
±00  
±50  
300  
1.±97  
0.3  
nA  
V
RAMP  
SWT  
CC  
SWT Ramp Threshold  
V
= 1.6V to 5V (V  
rising)  
1.173  
1.±35  
RAMP  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
RAMP  
1.0V, I  
±.7V, I  
4.5V, I  
1.8V, I  
= 50µA  
SINK  
SINK  
SINK  
RESET Output-Voltage LOW  
Open-Drain, Push-Pull  
(Asserted)  
V
V
= 1.±mA  
= 3.±mA  
0.3  
OL  
0.4  
= ±00µA  
= 500µA  
0.8 x V  
0.8 x V  
0.8 x V  
SOURCE  
CC  
CC  
CC  
RESET Output-Voltage HIGH,  
Push-Pull (Not Asserted)  
V
V
±.±5V, I  
OH  
SOURCE  
4.5V, I  
= 800µA  
SOURCE  
RESET Output Leakage Current,  
Open Drain  
V
V
> V , reset not asserted,  
CC TH  
I
1.0  
0.8  
µA  
LKG  
= 5.5V  
RESET  
DIGITAL INPUTS (MR, SET0, SET1, WDI, WDS)  
V
IL  
V
V
4.0V  
CC  
CC  
V
±.4  
IH  
Input Logic Levels  
V
V
< 4.0V  
0.3 x V  
CC  
IL  
V
0.7 x V  
1
IH  
CC  
MR Minimum Pulse Width  
MR Glitch Rejection  
µs  
ns  
ns  
kΩ  
ns  
100  
±00  
±0  
MR to RESET Delay  
MR Pullup Resistance  
WDI Minimum Pulse Width  
RESET IN  
Pullup to V  
1±  
±8  
CC  
300  
RESET IN Threshold  
RESET IN Leakage Current  
RESET IN to RESET Delay  
V
T
= -40°C to +1±5°C  
A
1.±16  
-50  
1.±35  
1
1.±54  
+50  
V
RESET IN  
I
nA  
µs  
RESET IN  
RESET IN falling at 1mV/µs  
±0  
Note 1: Production testing done at T = +±5°C. Over temperature limits are guaranteed by design.  
A
Maxim Integrated  
3
MAX6746–MAX6753  
µP Reset Circuits with Capacitor-Adjustable  
Reset/Watchdog Timeout Delay  
Typical Operating Characteristics  
(V  
= +5V, T = +±5°C, unless otherwise noted.)  
A
CC  
SUPPLY CURRENT  
RESET TIMEOUT PERIOD vs. C  
WATCHDOG TIMEOUT PERIOD vs. C  
vs. SUPPLY VOLTAGE  
SRT  
SWT  
6
1000  
100,000  
10,000  
1000  
100  
MAX6746–MAX6751  
5
4
3
EXTENDED MODE  
100  
10  
1
NORMAL MODE  
2
1
10  
1
0
0.1  
0.1  
1
2
3
4
5
6
1000  
6
100  
1000  
10,000  
100,000  
100  
1000  
10,000  
100,000  
SUPPLY VOLTAGE (V)  
C
(pF)  
C
(pF)  
SWT  
SRT  
NORMALIZED RESET TIMEOUT PERIOD  
vs. TEMPERATURE  
NORMALIZED WATCHDOG TIMEOUT PERIOD  
vs. TEMPERATURE  
MAXIMUM TRANSIENT DURATION  
vs. RESET THRESHOLD OVERDRIVE  
1.20  
1.15  
1.10  
1.05  
1.00  
0.95  
0.90  
1.20  
1.15  
1.10  
1.05  
1.00  
0.95  
0.90  
0.85  
0.80  
175  
150  
125  
100  
75  
C
SRT  
= 100pF  
C
= 100pF  
SWT  
RESET OCCURS  
ABOVE THE CURVE  
C
= 1500pF  
SWT  
50  
C
= 1500pF  
SRT  
25  
V
= 2.92V  
800  
TH  
0
-50 -25  
0
25  
50  
75 100 125  
-50 -25  
0
25  
50  
75 100 125  
0
200  
400  
600  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
RESET THRESHOLD OVERDRIVE (mV)  
NORMALIZED RESET IN THRESHOLD VOLTAGE  
vs. TEMPERATURE  
RESET IN THRESHOLD  
vs. SUPPLY VOLTAGE  
SUPPLY CURRENT  
vs. TEMPERATURE  
1.010  
1.008  
1.006  
1.004  
1.002  
1.000  
0.998  
0.996  
0.994  
0.992  
1.240  
1.239  
1.238  
1.237  
1.236  
1.235  
6
5
4
3
V
= 5V  
CC  
V
= 5V  
CC  
V
CC  
= 1.8V  
V
= 3.3V  
CC  
2
1
0.990  
0
-50 -25  
0
25  
50  
75 100 125  
1
2
3
4
5
-50 -25  
0
25  
50  
75 100 125  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
Maxim Integrated  
4
MAX6746–MAX6753r  
µP Reset Circuits with Capacitor-Adjustable  
Reset/Watchdog Timeout Delay  
Typical Operating Characteristics (continued)  
(V  
= +5V, T = +±5°C, unless otherwise noted.)  
A
CC  
RESET AND WATCHING TIMEOUT  
PERIOD vs. SUPPLY VOLTAGE  
V
TO RESET DELAY  
RESET AND WATCHDOG  
TIMEOUT PERIOD vs. SUPPLY VOLTAGE  
CC  
vs. TEMPERATURE (V FALLING)  
CC  
9.0  
8.5  
8.0  
7.5  
7.0  
6.5  
6.0  
27.0  
0.60  
0.56  
0.52  
0.48  
0.44  
0.40  
C
= C = 1500pF  
SRT  
C
= C = 100pF  
SRT  
V
FALLING AT 1mV/μs  
SWT  
SWT  
CC  
26.6  
26.2  
25.8  
25.4  
25.0  
RESET  
WATCHDOG  
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
(V)  
-50 -25  
0
25  
50  
75 100 125  
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
(V)  
V
TEMPERATURE (°C)  
V
CC  
CC  
Pin Description  
PIN  
NAME  
FUNCTION  
MAX6746  
MAX6747  
MAX6748–  
MAX6751  
MAX6752  
MAX6753  
Manual Reset Input. Pull MR low to manually reset the device. Reset  
remains asserted for the reset timeout period after MR is released.  
1
1
MR  
Reset Input. High-impedance input to the adjustable reset comparator.  
RESET IN Connect RESET IN to the center point of an external resistor-divider to  
set the threshold of the externally monitored voltage.  
1
Logic Input. SET0 selects watchdog window ratio or disables the  
watchdog timer. See Table 1.  
SET0  
Watchdog Timeout Input.  
MAX6746–MAX6751: Connect a capacitor between SWT and ground to  
set the basic watchdog timeout period (t ). Determine the period by  
WD  
the formula t  
= 5.06 x 106 x C  
with t  
in seconds and C  
in  
SWT  
WD  
SWT  
WD  
Farads. Extend the basic watchdog timeout period by using the WDS  
input. Connect SWT to ground to disable the watchdog timer function.  
±
±
±
SWT  
MAX675±/MAX6753: Connect a capacitor between SWT and ground to  
set the slow watchdog timeout period (t  
). Determine the slow  
WD±  
watchdog period by the formula: t  
= 0.65 x 109 x C  
with t  
in  
WD±  
SWT  
WD±  
seconds and C  
in Farads. The fast watchdog timeout period is set  
SWT  
by pinstrapping SET0 and SET1 (Connect SET0 high and SET1 low to  
disable the watchdog timer function.) See Table 1.  
Reset Timeout Input. Connect a capacitor from SRT to GND to select  
3
4
3
4
3
4
SRT  
the reset timeout period. Determine the period as follows: t = 5.06 x  
RP  
106 x C  
with t in seconds and C  
in Farads.  
SRT  
SRT  
RP  
GND  
Ground  
5
Maxim Integrated  
MAX6746–MAX6753  
µP Reset Circuits with Capacitor-Adjustable  
Reset/Watchdog Timeout Delay  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
MAX6746  
MAX6747  
MAX6748–  
MAX6751  
MAX6752  
MAX6753  
Watchdog Select Input. WDS selects the watchdog mode. Connect  
WDS to ground to select normal mode and the watchdog timeout  
5
5
5
WDS  
SET1  
period. Connect WDS to V  
basic timeout period by a factor of 1±8. A change in the state of WDS  
clears the watchdog timer.  
to select extended mode, multiplying the  
CC  
Logic Input. SET1 selects the watchdog window ratio or disables the  
watchdog timer. See Table 1.  
Watchdog Input.  
MAX6746–MAX6751: A falling transition must occur on WDI within the  
selected watchdog timeout period or a reset pulse occurs. The  
watchdog timer clears when a transition occurs on WDI or whenever  
RESET is asserted. Connect SWT to ground to disable the watchdog  
timer function.  
6
6
6
WDI  
MAX675±/MAX6753: WDI falling transitions within periods shorter than  
t
or longer than t  
force RESET to assert low for the reset timeout  
WD±  
WD1  
period. The watchdog timer begins to count after RESET is deasserted.  
The watchdog timer clears when a valid transition occurs on WDI or  
whenever RESET is asserted. Connect SET0 high and SET1 low to  
disable the watchdog timer function. See the Watchdog Timer section.  
Push/Pull or Open-Drain Reset Output. RESET asserts whenever V  
or  
CC  
RESET IN drops below the selected reset threshold voltage (V or  
TH  
V
, respectively) or manual reset is pulled low. RESET remains  
RESET IN  
7
8
7
8
7
8
RESET  
low for the reset timeout period after all reset conditions are deasserted,  
and then goes high. The watchdog timer triggers a reset pulse (t  
whenever a watchdog fault occurs.  
)
RP  
Supply Voltage. V  
threshold V monitor.  
is the power-supply input and the input for fixed  
CC  
V
CC  
CC  
6
Maxim Integrated  
MAX6746–MAX6753r  
µP Reset Circuits with Capacitor-Adjustable  
Reset/Watchdog Timeout Delay  
t
(MIN)  
t
(MAX)  
t
(MIN)  
t (MAX)  
WD2  
WD1  
WD1  
WD2  
GUARANTEED  
TO ASSERT  
GUARANTEED TO  
NOT ASSERT  
GUARANTEED TO  
ASSERT  
RESET  
RESET  
RESET  
*UNDETERMINED  
*UNDETERMINED  
WDI CONDITION 1  
WDI CONDITION 2  
FAST FAULT  
NORMAL OPERATION  
SLOW FAULT  
WDI CONDITION 3  
*UNDETERMINED STATES MAY OR MAY NOT GENERATE A FAULT CONDITION  
Figure 1. MAX675±/MAX6753 Detailed Watchdog Input Timing Relationship  
RESET is guaranteed to be in the correct logic state for  
greater than 1V. For applications requiring valid  
Detailed Description  
V
CC  
The MAX6746–MAX6753 assert a reset signal whenever  
reset logic when V  
is less than 1V, see the section  
CC  
the V  
supply voltage or RESET IN falls below its reset  
CC  
Ensuring a Valid RESET Output Down to V  
= 0V.  
CC  
threshold. The reset output remains asserted for the  
reset timeout period after V and RESET IN rise above  
CC  
RESET IN Threshold  
its respective reset threshold. A watchdog timer triggers  
a reset pulse whenever a watchdog fault occurs.  
The MAX6748–MAX6751 monitor the voltage on RESET IN  
using an adjustable reset threshold (V ) set with  
RESET IN  
an external resistor voltage-divider (Figure ±). Use the  
following formula to calculate the externally monitored  
The reset and watchdog delays are adjustable with  
external capacitors. The MAX6746–MAX6751 contain a  
watchdog select input that extends the watchdog time-  
out period to 1±8x.  
voltage (V  
):  
MON_TH  
V
= V  
x (R1 + R±) / R±  
MON_TH  
RESET IN  
The MAX675± and MAX6753 have a sophisticated  
watchdog timer that detects when the processor is run-  
ning outside an expected window of operation. The  
watchdog signals a fault when the input pulses arrive too  
V
MON_TH  
early (faster that the selected t  
late (slower than the selected t  
Figure 1).  
timeout period) or too  
WD±  
WD1  
timeout period) (see  
R1  
V
CC  
V
CC  
Reset Output  
RESET IN  
The reset output is typically connected to the reset input  
of a µP. A µP’s reset input starts or restarts the µP in a  
known state. The MAX6746–MAX6753 µP supervisory  
circuits provide the reset logic to prevent code-execu-  
tion errors during power-up, power-down, and  
brownout conditions (see theTypical Operating Circuit).  
RESET changes from high to low whenever the moni-  
MAX6748  
MAX6749  
MAX6750  
MAX6751  
R2  
GND  
tored voltage, RESET IN and/or V  
drop below the  
CC  
V
= 1.235 x (R1 + R2) / R2  
MON_TH  
reset threshold voltages. Once V  
and/or V  
CC  
RESET IN  
exceeds its respective reset threshold voltage(s),  
RESET remains low for the reset timeout period, then  
goes high.  
Figure ±. Calculating the Monitored Threshold Voltage  
(V  
)
MON_TH  
Maxim Integrated  
7
MAX6746–MAX6753  
µP Reset Circuits with Capacitor-Adjustable  
Reset/Watchdog Timeout Delay  
guarantee RESET IN threshold accuracy and timing  
V
MON_TH  
performance. The MAX6748 and MAX6749 can be con-  
figured to monitor V  
V
voltage by connecting V  
to  
CC  
CC  
MON_TH.  
Dual-Voltage Monitoring  
(MAX6750/MAX6751)  
R1  
V
CC  
The MAX6750 and MAX6751 contain both factory-  
trimmed threshold voltages and an adjustable reset  
threshold input, allowing the monitoring of two voltages,  
V
CC  
RESET IN  
MAX6748  
MAX6749  
MAX6750  
MAX6751  
V
and V  
(see Figure ±). RESET is asserted  
MON_TH  
when either of the voltages falls below it respective  
threshold voltages.  
CC  
R2  
GND  
Manual Reset (MAX6746/MAX6747)  
Many µP-based products require manual reset capabil-  
ity, to allow an operator or external logic circuitry to initi-  
ate a reset. The manual reset input (MR) can connect  
directly to a switch without an external pullup resistor or  
debouncing network. MR is internally pulled up to V  
CC  
and, therefore, can be left unconnected if unused.  
Figure 3. Adding an External Manual Reset Function to the  
MAX6748–MAX6751  
MR is designed to reject fast, falling transients (typically  
100ns pulses) and it must be held low for a minimum of  
1µs to assert the reset output. A 0.1µF capacitor from  
MR to ground provides additional noise immunity. After  
MR transitions from low to high, reset remains asserted  
for the duration of the reset timeout period.  
where V  
is the desired reset threshold voltage  
MON_TH  
and V is the reset input threshold (1.±35V). Resistors  
TH  
R1 and R± can have very high values to minimize cur-  
rent consumption due to low leakage currents. Set R±  
to some conveniently high value (500kΩ, for example)  
and calculate R1 based on the desired reset threshold  
voltage, using the following formula:  
A manual reset option can easily be implemented  
with the MAX6748–MAX6751 by connecting a normally  
open momentary switch in parallel with R± (Figure 3).  
When the switch is closed, the voltage on RESET IN  
goes to zero, initiating a reset. Similar to the MAX6746/  
MAX6747 manual reset, reset remains asserted while  
the voltage at RESET IN is zero and for the reset time-  
out period after the switch is opened.  
R1 = R± x (V  
/V  
- 1) (Ω)  
MON_TH RESET IN  
The MAX6748 and MAX6749 do not monitor V  
sup-  
CC  
ply voltage, therefore, V  
must be greater than 1.5V to  
CC  
V
CC  
t
t
RP  
WD  
WDI  
OV  
V
CC  
RESET  
OV  
NORMAL MODE (WDS = GND)  
Figure 4a. Watchdog Timing Diagram, WDS = GND  
8
Maxim Integrated  
MAX6746–MAX6753r  
µP Reset Circuits with Capacitor-Adjustable  
Reset/Watchdog Timeout Delay  
V
CC  
t
t
x 128  
RP  
WD  
WDI  
OV  
V
CC  
RESET  
OV  
EXTENDED MODE (WDS = V  
)
CC  
Figure 4b. Watchdog Timing Diagram, WDS = V  
CC  
Watchdog Timer  
Table 1. Min/Max Watchdog Setting  
MAX6746–MAX6751  
The watchdog’s circuit monitors the µP’s activity. It the  
µP does not toggle the watchdog input (WDI) within  
SET0  
LOW  
LOW  
HIGH  
HIGH  
SET1  
LOW  
HIGH  
LOW  
HIGH  
RATIO  
8
16  
t
(user-selected), RESET asserts for the reset time-  
WD  
out period. The internal watchdog timer is cleared by  
any event that asserts RESET, by a falling transition at  
WDI (which can detect pulses as short as 300ns) or by  
a transition at WDS. The watchdog timer remains  
cleared while reset is asserted; as soon as reset is  
released, the timer starts counting.  
Watchdog Disabled  
64  
where HIGH is V  
and LOW is GND. Table 1 illus-  
CC  
trates the SET0 and SET1 configuration for the 8, 16,  
and 64 window ratio ( t  
/t  
).  
WD± WD1  
The MAX6746–MAX6751 feature two modes of watch-  
dog operation: normal mode and extended mode. In nor-  
mal mode (Figure 4a), the watchdog timeout period is  
determined by the value of the capacitor connected  
between SWT and ground. In extended mode (Figure  
4b), the watchdog timeout period is multiplied by 1±8.  
For example, in extended mode, a 0.1µF capacitor gives  
a watchdog timeout period of 65s (see the Extended-  
For example, if C  
is 1500pF, and SET0 and SET1 are  
SWT  
low, then t  
is 975ms (typ) and t  
is 1±±ms (typ).  
WD±  
WD1  
RESET asserts if the watchdog input has two falling  
edges too close to each other (faster than t ) (Figure  
WD1  
5a) or falling edges that are too far apart (slower than  
) (Figure 5b). Normal watchdog operation is dis-  
t
WD±  
played in (Figure 5c). The internal watchdog timer is  
cleared when a WDI falling edge is detected within the  
valid watchdog window or when RESET is deasserted.  
All WDI inputs are ignored while RESET is asserted.  
Mode Watchdog Timeout Period vs. C  
graph in the  
SWT  
Typical Operating Characteristics). To disable the watch-  
dog timer function, connect SWT to ground.  
The watchdog timer begins to count after RESET is  
deasserted. The watchdog timer clears and begins to  
count after a valid WDI falling logic input. WDI falling  
MAX6752/MAX6753  
The MAX675± and MAX6753 have a windowed watch-  
dog timer that asserts RESET for the adjusted reset  
timeout period when the watchdog recognizes a fast  
transitions within periods shorter than t  
or longer  
WD1  
than t  
force RESET to assert low for the reset time-  
WD±  
watchdog fault (t  
< t  
), or a slow watchdog fault  
WDI  
WD1  
out period. WDI falling transitions within the t  
and  
WD1  
(period > t  
). The reset timeout period is adjusted  
independently of the watchdog timeout period.  
WD±  
t
window do not assert RESET. WDI transitions  
WD±  
between t  
and t  
or t  
and  
WD±(min)  
WD1(min)  
WD1(max)  
The slow watchdog period, t is calculated as follows:  
WD±  
t
are not guaranteed to assert or deassert the  
WD±(max)  
t
= 0.65 x 109 x C  
SWT  
RESET. To guarantee that the window watchdog does  
not assert the RESET, strobe WDI between t  
WD±  
WD1(max)  
with t  
in seconds and C  
in Farads.  
WD±  
SWT  
and t  
. The watchdog timer is cleared when  
WD±(min)  
The fast watchdog period, t  
, is selectable as a ratio  
WD1  
RESET is asserted or after a falling transition on WDI or  
after a state change on SET0 or SET1. Disable the  
watchdog timer by connecting SET0 high and SET1 low.  
from the slow watchdog fault period (t  
). Select the  
WD±  
fast watchdog period by pinstrapping SET0 and SET1,  
Maxim Integrated  
9
MAX6746–MAX6753  
µP Reset Circuits with Capacitor-Adjustable  
Reset/Watchdog Timeout Delay  
t
< t  
(MIN)  
5V  
3.3V  
WDI WD1  
V
CC  
MAX6747  
MAX6749  
MAX6451  
MAX6753  
100kΩ  
WDI  
RESET  
V
CC  
RESET  
(a) FAST FAULT  
μP  
RESET  
N
t
> t  
(MAX)  
WDI WD2  
GND  
GND  
WDI  
Figure 6. Interfacing to Other Voltage Levels  
RESET  
normal mode operation, calculate the watchdog time-  
out capacitor as follows:  
(b) SLOW FAULT  
C
SWT  
= t /(5.06 x 106)  
WD  
t
(MAX) < t < t  
(MIN)  
WD1  
WDI WD2  
with t in seconds and C  
in Farads.  
RP  
SRT  
For the MAX675± and MAX6753 windowed watchdog  
function, calculate the slow watchdog period, t  
follows:  
as  
WD±  
WDI  
t
= 0.65 x 109 x C  
RESET  
WD±  
SWT  
C
and C  
must be a low-leakage (< 10nA) type  
SRT  
SWT  
capacitor. Ceramic capacitors are recommended.  
(c) NORMAL OPERATION (NO PULSING, OUTPUT STAYS HIGH)  
Transient Immunity  
In addition to issuing a reset to the µP during power-up,  
power-down, and brownout conditions, these supervi-  
sors are relatively immune to short-duration supply tran-  
sients (glitches). The Maximum Transient Duration vs.  
Reset Threshold Overdrive graph in the Typical  
Operating Characteristics shows this relationship.  
Figure 5. MAX675±/MAX6753 Window Watchdog Diagram  
Applications Information  
Selecting Reset/Watchdog  
Timeout Capacitor  
The reset timeout period is adjustable to accommodate  
a variety of µP applications. Adjust the reset timeout  
The area below the curves of the graph is the region  
in which these devices typically do not generate a reset  
pulse. This graph was generated using a falling pulse  
period (t ) by connecting a capacitor (C  
) between  
RP  
SRT  
SRT and ground. Calculate the reset timeout capacitor  
as folllows:  
applied to V , starting above the actual reset threshold  
CC  
(V ) and ending below it by the magnitude indicated  
TH  
C
SRT  
= t / (5.06 x 106)  
RP  
(reset-threshold overdrive). As the magnitude of the tran-  
sient increases (farther below the reset threshold), the  
maximum allowable pulse width decreases. Typically, a  
with t in seconds and C  
in Farads.  
RP  
SRT  
The watchdog timeout period is adjustable to accom-  
modate a variety of µP applications. With this feature,  
the watchdog timeout can be optimized for software  
execution. The programmer can determine how often  
the watchdog timer should be serviced. Adjust the  
V
transient that goes 100mV below the reset threshold  
CC  
and lasts 50µs or less does not cause a reset pulse to be  
issued.  
watchdog timeout period (t ) by connecting a specif-  
WD  
ic value capacitor (C  
) between SWT and GND. For  
SWT  
10  
Maxim Integrated  
MAX6746–MAX6753r  
µP Reset Circuits with Capacitor-Adjustable  
Reset/Watchdog Timeout Delay  
Interfacing to Other Voltages for  
Logic Compatibility  
The open-drain RESET output can be used to interface  
to a µP with other logic levels. As shown in Figure 6, the  
open-drain output can be connected to voltages from 0  
to 6V.  
Ensuring a Valid RESET Down to V  
= 0V  
CC  
(Push-Pull RESET)  
When V falls below 1V, RESET current sinking capabil-  
CC  
ities decline drastically. The high-impedance CMOS-  
logic inputs connected to RESET can drift to undeter-  
mined voltages. This presents no problems in most  
applications, since most µPs and other circuitry do not  
Generally, the pullup resistor connected to the RESET  
operate with V  
below 1V.  
connects to the supply voltage that is being monitored  
CC  
at the IC’s V  
pin. However, some systems can use  
CC  
In those applications where RESET must be valid down  
to 0V, add a pulldown resistor between RESET and  
GND for the MAX6746/MAX6748/MAX6750/MAX675±  
push/pull outputs. The resistor sinks any stray leakage  
currents, holding RESET low (Figure 7). The value of the  
pulldown resistor is not critical; 100kΩ is large enough  
not to load RESET and small enough to pull RESET to  
ground. The external pulldown can not be used with  
the open-drain reset outputs.  
the open-drain output to level-shift from the monitored  
supply to reset circuitry powered by some other supply.  
Keep in mind that as the supervisor’s V  
decreases  
CC  
towards 1V, so does the IC’s ability to sink current at  
RESET. Also, with any pullup resistor, RESET is pulled  
high as V  
decays toward zero. The voltage where  
CC  
this occurs depends on the pullup resistor value and  
the voltage to which it is connected.  
V
CC  
V
CC  
MAX6746  
MAX6748  
MAX6450  
MAX6752  
RESET  
100kΩ  
GND  
Figure 7. Ensuring RESET Valid to V  
= 0V  
CC  
Maxim Integrated  
11  
MAX6746–MAX6753  
µP Reset Circuits with Capacitor-Adjustable  
Reset/Watchdog Timeout Delay  
Table 2. Reset Threshold Voltage Suffix  
(T = -40°C to +125°C)  
Table 3. Standard Version Table  
A
PART  
TOP MARK  
AEDI  
MAX6746KA16  
MAX6746KA±3  
MAX6746KA±6  
MAX6746KA±9  
MAX6746KA46  
MAX6747KA16  
MAX6747KA±3  
MAX6747KA±6  
MAX6747KA±9  
MAX6747KA46  
MAX6748KA  
SUFFIX  
50  
49  
48  
47  
46  
45  
44  
43  
4±  
41  
40  
39  
38  
37  
36  
35  
34  
33  
3±  
31  
30  
29  
±8  
±7  
26  
±5  
±4  
23  
±±  
±1  
±0  
19  
18  
17  
16  
MIN  
TYP  
MAX  
5.100  
4.998  
4.896  
4.794  
4.718  
4.590  
4.463  
4.386  
4.±84  
4.18±  
4.080  
3.978  
3.876  
3.774  
3.67±  
3.570  
3.468  
3.366  
3.±64  
3.137  
3.060  
2.984  
±.856  
±.754  
2.678  
±.550  
±.448  
2.359  
±.±3±  
±.14±  
±.040  
1.938  
1.836  
1.698  
1.607  
AEDJ  
AEDK  
AALN  
AEDL  
AALO  
AEDM  
AEDN  
AEDO  
AEDP  
AALP  
AALQ  
AEDQ  
AALR  
AEDR  
AEDS  
AEDT  
AEDU  
AEDV  
AEDW  
AEDX  
AEDY  
AEDZ  
AEEA  
AALT  
4.900  
4.80±  
4.704  
4.606  
4.533  
4.410  
4.±88  
4.±14  
4.116  
4.018  
3.9±0  
3.8±±  
3.7±4  
3.6±6  
3.5±8  
3.430  
3.33±  
3.±34  
3.136  
3.014  
±.940  
2.867  
±.744  
±.646  
2.573  
±.450  
±.35±  
2.267  
±.144  
±.058  
1.960  
1.86±  
1.764  
1.63±  
1.544  
5.000  
4.900  
4.800  
4.700  
4.625  
4.500  
4.375  
4.300  
4.±00  
4.100  
4.000  
3.900  
3.800  
3.700  
3.600  
3.500  
3.400  
3.300  
3.±00  
3.075  
3.000  
2.925  
±.800  
±.700  
2.625  
±.500  
±.400  
2.313  
±.188  
±.100  
±.000  
1.900  
1.800  
1.665  
1.575  
MAX6749KA  
MAX6750KA16  
MAX6750KA±3  
MAX6750KA±6  
MAX6750KA±9  
MAX6750KA46  
MAX6751KA16  
MAX6751KA±3  
MAX6751KA±6  
MAX6751KA±9  
MAX6751KA46  
MAX675±KA16  
MAX675±KA±3  
MAX675±KA±6  
MAX675±KA±9  
MAX675±KA46  
MAX6753KA16  
MAX6753KA±3  
MAX6753KA±6  
MAX6753KA±9  
MAX6753KA46  
AEEB  
AEEC  
AEED  
AEEE  
AEEF  
AEEG  
AEEH  
Note: Standard versions are shown in bold. There is a ±500-  
piece minimum order increment for standard versions.  
Sample stock is typically held on standard versions only.  
Nonstandard versions require a minimum order increment of  
10,000 pieces. Contact factory for availability.  
1±  
Maxim Integrated  
MAX6746–MAX6753r  
µP Reset Circuits with Capacitor-Adjustable  
Reset/Watchdog Timeout Delay  
Selector Guide  
FIXED V  
RESET  
THRESHOLD  
ADJUSTABLE  
RESET  
THRESHOLD  
STANDARD  
WATCHDOG WATCHDOG  
MIN/MAX  
MANUAL  
RESET  
INPUT  
CC  
PUSH/ PULL OPEN-DRAIN  
PART  
RESET  
RESET  
TIMER  
TIMER  
MAX6746  
MAX6747  
MAX6748  
MAX6749  
MAX6750  
MAX6751  
MAX675±  
MAX6753  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Typical Operating Circuit  
Pin Configurations (continued)  
V
IN  
TOP VIEW  
MAX6749  
MAX4751  
V
CC  
SET0  
SWT  
SRT  
1
2
3
4
8
7
6
5
V
CC  
R1  
R2  
RESET  
WDI  
MAX6752  
MAX6753  
RESET IN  
V
CC  
μP  
MAX6748  
MAX6749  
MAX6750  
MAX6751  
GND  
SET1  
RESET  
RESET  
GND  
SOT23  
SRT  
C
SRT  
I/O  
WDI  
Chip Information  
SWT  
WDS  
PROCESS: BiCMOS  
C
SWT  
WDS = 0 FOR NORMAL MODE  
WDS = V FOR EXTENDED MODE  
Package Information  
CC  
For the latest package outline information and land patterns (foot-  
prints), go to www.maximintegrated.com/packages. Note that a  
“+”, “#”, or “-” in the package code indicates RoHS status only.  
Package drawings may show a different suffix character, but the  
drawing pertains to the package regardless of RoHS status.  
LAND  
PATTERN NO.  
PACKAGE  
TYPE  
PACKAGE  
CODE  
OUTLINE NO.  
21-0078  
90-0176  
8 SOT±3  
K8-5  
Maxim Integrated  
13  
MAX6746–MAX6753  
µP Reset Circuits with Capacitor-Adjustable  
Reset/Watchdog Timeout Delay  
Revision History  
REVISION  
NUMBER  
REVISION  
DATE  
PAGES  
CHANGED  
DESCRIPTION  
0
3
7/0±  
Initial release  
1
1±/05  
Added the lead-free notation  
Added the automotive version of the MAX6746 and the MAX6753 and  
revised the Typical Operating Characteristics  
4
9/10  
1, 4  
5
6
7
8
1±/10  
4/11  
Added the automotive version of the MAX6750  
Added the automotive version of the MAX6747  
Added the automotive version of the MAX6751  
Added a future product reference to MAX6751KA_ _ /V+T  
1
1
1
1
1±/13  
±/14  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent  
licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and  
max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
14 _________________________________Maxim Integrated 160 Rio Robles, San Jose, CA 95134 USA 1-408-601-1000  
© ±014 Maxim Integrated Products, Inc.  
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  

相关型号:

MAX6753KA44+

Power Management Circuit, Adjustable, 1 Channel, BICMOS, PDSO8, LEAD FREE, MO-178BA, SOT-23, 8 PIN
MAXIM

MAX6753KA44+T

Power Supply Management Circuit, Adjustable, 1 Channel, BICMOS, PDSO8, ROHS COMPLIANT, SOT-23, 8 PIN
MAXIM

MAX6753KA44-T

Power Supply Management Circuit, Adjustable, 1 Channel, BICMOS, PDSO8, SOT-23, 8 PIN
MAXIM

MAX6753KA45

Power Management Circuit, Adjustable, 1 Channel, BICMOS, PDSO8, MO-178BA, SOT-23, 8 PIN
MAXIM

MAX6753KA45+

Power Management Circuit, Adjustable, 1 Channel, BICMOS, PDSO8, LEAD FREE, MO-178BA, SOT-23, 8 PIN
MAXIM

MAX6753KA46

UP Reset Circuits with Capacitor-Adjustable Reset/Watchdog Timeout Delay
MAXIM

MAX6753KA46+

Power Management Circuit, Adjustable, 1 Channel, BICMOS, PDSO8, LEAD FREE, SOT-23, 8 PIN
MAXIM

MAX6753KA46+T

Power Supply Management Circuit, Adjustable, 1 Channel, BICMOS, PDSO8, ROHS COMPLIANT, SOT-23, 8 PIN
MAXIM

MAX6753KA46-T

Power Supply Management Circuit, Adjustable, 1 Channel, BICMOS, PDSO8, SOT-23, 8 PIN
MAXIM

MAX6753KA46/V+T

Power Supply Management Circuit, Adjustable, 1 Channel, BICMOS, PDSO8, SOT-23, 8 PIN
MAXIM

MAX6753KA47

Power Management Circuit, Adjustable, 1 Channel, BICMOS, PDSO8, MO-178BA, SOT-23, 8 PIN
MAXIM

MAX6753KA47+

Power Management Circuit, Adjustable, 1 Channel, BICMOS, PDSO8, LEAD FREE, MO-178BA, SOT-23, 8 PIN
MAXIM