MAX7033_V01 [MAXIM]

315MHz/433MHz ASK Superheterodyne Receiver with AGC Lock;
MAX7033_V01
型号: MAX7033_V01
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

315MHz/433MHz ASK Superheterodyne Receiver with AGC Lock

文件: 总16页 (文件大小:908K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MAX7033  
315MHz/433MHz ASK Superheterodyne  
Receiver with AGC Lock  
General Description  
Features  
The MAX7033 fully integrated low-power CMOS super-  
heterodyne receiver is ideal for receiving amplitude shift-  
keyed (ASK) data in the 300MHz to 450MHz frequency  
range. The receiver has an RF input signal range of  
-114dBm to 0dBm. With few external components and a  
low-current power-down mode, it is ideal for cost-sensitive  
and power-sensitive applications typical in consumer  
markets. The MAX7033 consists of a low-noise ampli-  
fier (LNA), a fully differential image-rejection mixer, an  
on-chip phase-locked loop (PLL) with integrated voltage-  
controlled oscillator (VCO), a 10.7MHz IF limiting amplifier  
stage with received-signal-strength indicator (RSSI), and  
analog baseband data-recovery circuitry. The MAX7033  
also has a discrete one-step automatic gain control  
(AGC) that reduces the LNA gain by 35dB when the RF  
input signal exceeds -62dBm. The AGC circuitry offers an  
externally controlled hold feature.  
Optimized for 315MHz or 433MHz Band  
Operates from Single +3.3V or +5.0V Supplies  
High Dynamic Range with On-Chip AGC  
AGC Hold Circuit  
1ms AGC Release Time  
Selectable Image-Rejection Center Frequency  
Selectable x64 or x32 f /f  
Ratio  
XTAL  
LO  
Low 5.2mA Operating Supply Current  
● < 3.5μA Low-Current Power-Down Mode for Efficient  
Power Cycling  
● 250μs Startup Time  
Built-In 44dB RF Image Rejection  
Better than -114dBm Receive Sensitivity  
-40°C to +105°C Operation  
Ordering Information  
The MAX7033 is available in 28-pin TSSOP and 32-pin  
TQFN packages and is specified over the extended  
(-40°C to +105°C) temperature range.  
PART  
TEMP RANGE  
-40°C to +105°C  
-40°C to +105°C  
PIN-PACKAGE  
28 TSSOP  
MAX7033EUI+  
MAX7033ETJ+  
32 TQFN-EP*  
Applications  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
*EP = Exposed pad.  
Security Systems  
Garage Door Openers  
Home Automation  
Remote Controls  
Local Telemetry  
Wireless Sensors  
Typical Application Circuit appears at end of data sheet.  
Pin Configurations  
TOP VIEW  
XTAL1  
+
1
2
3
4
5
6
7
8
9
28 XTAL2  
AVDD  
LNAIN  
27 SHDN  
26 PDOUT  
25 DATAOUT  
LNASRC  
AGND  
+
N.C.  
AGND  
1
2
3
4
5
6
7
8
24 DATAOUT  
23  
24  
V
DD5  
V
DD5  
MAX7033  
LNAOUT  
AVDD  
23 DSP  
22 DFFB  
21 OPP  
20 DSN  
19 DFO  
18 IFIN2  
17 IFIN1  
16 XTALSEL  
15 AC  
LNAOUT  
AVDD  
22 DSP  
21 N.C.  
20 DFFB  
19 OPP  
18 DSN  
17 DFO  
MAX7033  
MIXIN1  
MIXIN2  
MIXIN1  
MIXIN2  
AGND  
AGND 10  
IRSEL 11  
MIXOUT 12  
DGND 13  
DVDD 14  
IRSEL  
TSSOP  
TQFN  
19-3273; Rev 4; 4/14  
MAX7033  
315MHz/433MHz ASK Superheterodyne  
Receiver with AGC Lock  
Absolute Maximum Ratings  
V
to AGND .....................................................-0.3V to +6.0V  
Continuous Power Dissipation (T = +70°C)  
A
DD5  
AVDD to AGND ....................................................-0.3V to +4.0V  
DVDD to DGND....................................................-0.3V to +4.0V  
AGND to DGND ...................................................-0.1V to +0.1V  
IRSEL, DATAOUT, XTALSEL,  
28-Pin TSSOP (derate 12.8mW/°C above +70°C).1025.6mW  
32-Thin QFN (derate 21.3mW/°C above +70°C) ...1702.1mW  
Operating Temperature Range......................... -40°C to +105°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range............................ -60°C to +150°C  
Lead Temperature (soldering 10s) ..................................+300°C  
Soldering Temperature (reflow).......................................+260°C  
AC, SHDN to AGND........................... -0.3V to (V  
+ 0.3V)  
+ 0.3V)  
DD5  
All Other Pins to AGND........................-0.3V to (V  
DVDD  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these  
or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect  
device reliability.  
DC Electrical Characteristics (+3.3V Operation)  
(Typical Application Circuit, V  
= V  
= V  
= +3.0V to +3.6V, no RF signal applied, T = -40°C to +105°C, unless otherwise  
AVDD  
DVDD  
DD5 A  
noted. Typical values are at V  
= V  
= V = +3.3V and T = +25°C.) (Note 1)  
DD5 A  
AVDD  
DVDD  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
V
,
AVDD  
Supply Voltage  
+3.3V nominal supply voltage  
3.0  
3.3  
3.6  
V
DVDD  
f
f
f
f
= 315MHz  
= 433MHz  
= 315MHz  
= 433MHz  
5.2  
5.7  
2.6  
3.5  
6.23  
6.88  
RF  
RF  
RF  
RF  
Supply Current  
I
V
= V  
DVDD  
mA  
µA  
DD  
SHDN  
V
V
= 0V,  
= 0V  
SHDN  
XTALSEL  
Shutdown Supply Current  
I
SHDN  
8.0  
0.4  
Input-Voltage Low  
V
V
V
IL  
IH  
IH  
Input-Voltage High  
Input Logic Current High  
V
V
- 0.4  
DVDD  
I
10  
µA  
f
f
f
I
I
= 433MHz, V  
= 375MHz, V  
= 315MHz, V  
= V  
= V  
V
- 0.4  
RF  
IRSEL  
IRSEL  
IRSEL  
DD5  
DD5  
1.1  
Image-Reject Select Voltage  
(Note 2)  
/2  
V
DD5  
- 1.0  
0.4  
V
RF  
DD5  
= 0V  
RF  
DATAOUT Output-Voltage Low  
DATAOUT Output-Voltage High  
V
= 10µA  
0.125  
- 0.125  
V
V
OL  
SINK  
V
= 10µA  
V
DVDD  
OH  
SOURCE  
DC Electrical Characteristics (+5.0V Operation)  
(Typical Application Circuit, V  
= +4.5V to +5.5V, no RF signal applied, T = -40°C to +105°C, unless otherwise noted. Typical  
DD5  
A
values are at V  
= +5.0V and T = +25°C.) (Note 1)  
A
DD5  
PARAMETER  
Supply Voltage  
SYMBOL  
CONDITIONS  
MIN  
TYP  
5.0  
5.2  
5.7  
3.7  
4.2  
MAX  
5.5  
UNITS  
V
+5.0V nominal supply voltage  
4.5  
V
DD5  
f
f
f
f
= 315MHz  
= 433MHz  
= 315MHz  
= 433MHz  
6.4  
RF  
RF  
RF  
RF  
Supply Current  
I
mA  
V
= V  
DD5  
DD  
SHDN  
6.76  
V
V
= 0V,  
= 0V  
SHDN  
XTALSEL  
Shutdown Supply Current  
Input-Voltage Low  
µA  
V
I
SHDN  
9.8  
0.4  
V
IL  
Maxim Integrated  
2  
www.maximintegrated.com  
MAX7033  
315MHz/433MHz ASK Superheterodyne  
Receiver with AGC Lock  
Electrical Characteristics (continued)  
(Typical Application Circuit, V  
= +4.5V to +5.5V, no RF signal applied, T = -40°C to +105°C, unless otherwise noted. Typical  
DD5  
A
values are at V  
= +5.0V and T = +25°C.) (Note 1)  
A
DD5  
PARAMETER  
Input-Voltage High  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
V
V
V
- 0.4  
- 0.4  
IH  
DD5  
Input Logic Current High  
I
15  
µA  
IH  
f
f
f
I
I
= 433MHz, V  
= 375MHz, V  
= 315MHz, V  
= V  
= V  
RF  
IRSEL  
IRSEL  
IRSEL  
DD5  
DD5  
1.1  
Image-Reject Select Voltage  
(Note 2)  
/2  
V
- 1.5  
DD5  
V
RF  
DD5  
= 0V  
0.4  
RF  
DATAOUT Output-Voltage Low  
DATAOUT Output-Voltage High  
V
OL  
= 10µA  
0.125  
V
V
SINK  
V
= 10µA  
V
- 0.125  
DD5  
OH  
SOURCE  
AC Electrical Characteristics  
(Typical Application Circuit, V  
= V  
= V  
= +3.0V to +3.6V, all RF inputs are referenced to 50Ω, f = 315MHz,  
RF  
AVDD  
DVDD  
DD5  
T
= -40°C to +105°C, unless otherwise noted. Typical values are at V  
= V  
= V  
= +3.3V and T = +25°C.) (Note 1)  
A
AVDD  
DVDD  
DD5 A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
GENERAL CHARACTERISTICS  
Time for valid signal detection after V  
SHDN  
Startup Time  
t
250  
µs  
ON  
= V  
DVDD  
Receiver Input Frequency  
f
300  
450  
MHz  
dBm  
RF  
Maximum Receiver Input Level  
Modulation depth > 18dB  
Average carrier power level  
Peak power level  
0
-120  
-114  
8
Sensitivity (Note 3)  
AGC Hysteresis  
dBm  
LNA gain from low to high  
Switching time from low to high gain  
Manchester coded  
dB  
ms  
1
33  
66  
Maximum Data Rate  
kbps  
NRZ coded  
LNA IN HIGH-GAIN MODE  
f
f
f
= 433MHz  
= 375MHz  
= 315MHz  
1 - j3.4  
1 - j3.9  
1 - j4.7  
-22  
RF  
RF  
RF  
Input Impedance  
Z
Normalized to 50Ω  
IN_LNA  
1dB Compression Point  
P1dB  
dBm  
dBm  
LNA  
Input-Referred 3rd-Order Intercept  
IIP3  
-12  
LNA  
LO Signal Feedthrough to  
Antenna  
-80  
3
dBm  
dB  
Noise Figure  
NF  
LNA  
Maxim Integrated  
3  
www.maximintegrated.com  
MAX7033  
315MHz/433MHz ASK Superheterodyne  
Receiver with AGC Lock  
Electrical Characteristics (continued)  
(Typical Application Circuit, V  
= V  
= V  
= +3.0V to +3.6V, all RF inputs are referenced to 50Ω, f  
= 315MHz,  
RF  
AVDD  
DVDD  
DD5  
T
= -40°C to +105°C, unless otherwise noted. Typical values are at V  
= V  
= V  
= +3.3V and T = +25°C.) (Note 1)  
A
AVDD  
DVDD  
DD5 A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
LNA IN LOW-GAIN MODE  
f
f
f
= 433MHz  
= 375MHz  
= 315MHz  
1 - j3.4  
1 - j3.9  
1 - j4.7  
-10  
RF  
RF  
RF  
Normalized to 50Ω  
(Note 4)  
Input Impedance  
Z
IN_LNA  
1dB Compression Point  
P1dB  
dBm  
dBm  
LNA  
Input-Referred 3rd-Order Intercept  
IIP3  
-7  
LNA  
LO Signal Feedthrough to  
Antenna  
-80  
dBm  
Noise Figure  
NF  
3
dB  
dB  
LNA  
Voltage-Gain Reduction  
MIXER  
AGC enabled (depends on tank Q)  
35  
Input-Referred 3rd-Order Intercept  
IIP3  
-18  
dBm  
MIX  
Output Impedance  
Noise Figure  
Z
330  
16  
42  
44  
44  
48  
13  
OUT_MIX  
NF  
dB  
MIX  
f
f
f
= 433MHz, V  
= 375MHz, V  
= 315MHz, V  
= V  
= V  
RF  
RF  
RF  
IRSEL  
IRSEL  
IRSEL  
DVDD  
Image Rejection  
(Not Including LNA Tank)  
/2  
dB  
dB  
DVDD  
= 0V  
LNA in high-gain mode  
LNA in low-gain mode  
LNA/Mixer Voltage Gain  
330Ω IF filter load  
INTERMEDIATE FREQUENCY (IF)  
Input Impedance  
Z
330  
10.7  
10  
IN_IF  
Operating Frequency  
3dB Bandwidth  
f
Bandpass response  
MHz  
MHz  
dB  
IF  
RSSI Linearity  
±0.5  
80  
RSSI Dynamic Range  
dB  
P
P
< -120dBm  
1.15  
2.2  
RFIN  
RSSI Level  
V
V
> 0dBm, AGC enabled  
RFIN  
LNA gain from low to high  
LNA gain from high to low  
1.39  
1.98  
AGC Threshold  
DATA FILTER  
Maximum Bandwidth  
DATA SLICER  
50  
kHz  
kHz  
Comparator Bandwidth  
100  
Maxim Integrated  
4  
www.maximintegrated.com  
MAX7033  
315MHz/433MHz ASK Superheterodyne  
Receiver with AGC Lock  
Electrical Characteristics (continued)  
(Typical Application Circuit, V  
= V  
= V  
= +3.0V to +3.6V, all RF inputs are referenced to 50Ω, f  
= 315MHz,  
RF  
AVDD  
DVDD  
DD5  
T
= -40°C to +105°C, unless otherwise noted. Typical values are at V  
= V  
= V  
= +3.3V and T = +25°C.) (Note 1)  
A
AVDD  
DVDD  
DD5 A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Maximum Load Capacitance  
Output High Voltage  
C
10  
pF  
V
LOAD  
V
DD5  
0
Output Low Voltage  
V
CRYSTAL OSCILLATOR  
V
V
V
V
= 0V  
6.6128  
13.2256  
4.7547  
9.5094  
50  
XTALSEL  
XTALSEL  
XTALSEL  
XTALSEL  
f
f
= 433MHz  
RF  
RF  
= VDD5  
= 0V  
Crystal Frequency (Note 5)  
f
MHz  
XTAL  
= 315MHz  
= VDD5  
Crystal Tolerance  
Input Capacitance  
ppm  
pF  
From each pin to ground  
6.2  
Note 1: 100% tested at T = +25°C. Guaranteed by design and characterization over temperature.  
A
Note 2: IRSEL is internally set to 375MHz IR mode. It can be left open when the 375MHz image-rejection setting is desired. Bypass  
to AGND with a 1nF capacitor in a noisy environment.  
-3  
Note 3: BER = 2 x 10 , Manchester encoded, data rate = 4kbps, IF bandwidth = 280kHz.  
Note 4: Input impedance is measured at the LNAIN pin. Note that the impedance includes the 15nH inductive degeneration con-  
nected from the LNA source to ground. The equivalent input circuit is 50Ω in series with 2.2pF.  
Note 5: Crystal oscillator frequency for other RF carrier frequency within the 300MHz to 450MHz range is (f - 10.7MHz)/64 for  
RF  
V
= 0V, and (f - 10.7MHz)/32 for XTALSEL = V  
.
XTALSEL  
RF  
DD5  
Typical Operating Characteristics  
(Typical Application Circuit, V  
= V  
= V  
= +3.3V, f = 315MHz, T = +25°C, unless otherwise noted.)  
AVDD  
DVDD  
DD5 RF A  
SUPPLY CURRENT  
vs. RF FREQUENCY  
BIT-ERROR RATE  
vs. AVERAGE CARRIER POWER  
SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
6.0  
5.8  
5.6  
5.4  
5.2  
5.0  
4.8  
4.6  
4.4  
4.2  
4.0  
7.0  
6.5  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
100  
10  
f
= 433MHz  
+105°C  
RF  
+105°C  
+85°C  
1
f
= 315MHz  
RF  
+85°C  
+25°C  
-40°C  
+25°C  
0.1  
0.01  
-40°C  
3.3  
3.0  
3.1  
3.2  
3.4  
3.5  
3.6  
250  
300  
350  
400  
450  
500  
-130 -128 -126 -124 -122 -120 -118 -116 -114  
AVERAGE CARRIER POWER (dBm)  
SUPPLY VOLTAGE (V)  
RF FREQUENCY (MHz)  
Maxim Integrated  
5  
www.maximintegrated.com  
MAX7033  
315MHz/433MHz ASK Superheterodyne  
Receiver with AGC Lock  
Typical Operating Characteristics (continued)  
(Typical Application Circuit, V  
= V  
= V  
= +3.3V, f = 315MHz, T = +25°C, unless otherwise noted.)  
AVDD  
DVDD  
DD5 RF A  
RSSI AND DELTA  
vs. IF INPUT POWER  
RSSI vs. RF INPUT POWER  
SENSITIVITY vs. TEMPERATURE  
MAX7033 toc06  
-108  
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
3.5  
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
AVERAGE CARRIER POWER  
0.2% BER  
IF BANDWIDTH = 280kHz  
IF BANDWIDTH = 280kHz  
V
= V  
DVDD  
AC  
-110  
-112  
-114  
-116  
-118  
2.5  
1.5  
f
= 433MHz  
RF  
0.5  
V
= 0V  
AC  
-0.5  
-1.5  
-2.5  
-3.5  
DELTA  
-120  
-122  
f
= 315MHz  
RF  
RSSI  
-50  
-124  
-40  
-15  
10  
35  
60  
85  
110  
-140 -120 -100 -80 -60 -40 -20  
RF INPUT POWER (dBm)  
0
-90  
-70  
-30  
-10  
10  
TEMPERATURE (°C)  
IF INPUT POWER (dBm)  
LNA/MIXER VOLTAGE GAIN  
vs. IF FREQUENCY  
IMAGE REJECTION  
vs. RF FREQUENCY  
IMAGE REJECTION  
vs. TEMPERATURE  
65  
55  
45  
35  
25  
15  
5
55  
50  
45  
40  
35  
30  
45.0  
44.5  
44.0  
43.5  
43.0  
42.5  
42.0  
41.5  
41.0  
40.5  
f
= 315MHz  
RF  
UPPER  
SIDEBAND  
49dB IMAGE  
REJECTION  
LOWER  
f
= 375MHz  
RF  
SIDEBAND  
f
= 375MHz  
f
RF  
f
= 433MHz  
RF  
FROM RFIN  
TO MIXOUT  
= 315MHz  
RF  
f
= 315MHz  
f
= 433MHz  
RF  
RF  
-5  
0
5
10  
15  
20  
25  
30  
280 300 320 340 360 380 400 420 440 460 480  
RF FREQUENCY (MHz)  
-40  
-15  
10  
35  
60  
85  
IF FREQUENCY (MHz)  
TEMPERATURE (°C)  
Maxim Integrated  
6  
www.maximintegrated.com  
MAX7033  
315MHz/433MHz ASK Superheterodyne  
Receiver with AGC Lock  
Typical Operating Characteristics (continued)  
(Typical Application Circuit, V  
= V  
= V  
= +3.3V, f = 315MHz, T = +25°C, unless otherwise noted.)  
AVDD  
DVDD  
DD5 RF A  
NORMALIZED IF GAIN  
vs. IF FREQUENCY  
S
11  
SMITH CHART PLOT OF RFIN  
MAX7033 toc12  
S
11  
LOG MAGNITUDE PLOT OF RFIN  
5
0
50  
40  
30  
-5  
WITH INPUT  
MATCHING  
20  
500MHz  
200MHz  
10  
-10  
-15  
-20  
-25  
-30  
315MHz  
0
-10  
-20  
-30  
-40  
-50  
315MHz  
-36dB  
1
10  
100  
0
100 200 300 400 500 600 700 800 900 1000  
FREQUENCY (MHz)  
IF FREQUENCY (MHz)  
REGULATOR VOLTAGE  
vs. REGULATOR CURRENT  
PHASE NOISE  
vs. OFFSET FREQUENCY  
PHASE NOISE  
vs. OFFSET FREQUENCY  
3.5  
3.3  
3.1  
2.9  
2.7  
2.5  
2.3  
2.1  
1.9  
1.7  
0
-20  
0
-20  
f
RF  
= 315MHz  
f
= 433MHz  
RF  
-40  
-40  
-40°C  
-60  
-60  
+25°C  
+85°C  
+105°C  
-80  
-80  
-100  
-120  
-140  
-100  
-120  
-140  
0
10  
20  
30  
40  
50  
60  
10  
100  
1k  
10k 100k  
1M  
10M  
10  
100  
1k  
10k 100k  
1M  
10M  
REGULATOR CURRENT (mA)  
OFFSET FREQUENCY (Hz)  
OFFSET FREQUENCY (Hz)  
Maxim Integrated  
7  
www.maximintegrated.com  
MAX7033  
315MHz/433MHz ASK Superheterodyne  
Receiver with AGC Lock  
Pin Description  
PIN  
NAME  
FUNCTION  
TSSOP  
TQFN  
1
29  
XTAL1  
Crystal Input 1 (see the Phase-Locked Loop section)  
Positive Analog Supply Voltage. For +5V operation, pin 2 is the output of an on-chip +3.2V  
low-dropout regulator, and should be bypassed to AGND with a 0.1µF capacitor as close  
as possible to the pin. Pin 7 must be externally connected to the supply from pin 2, and  
bypassed to AGND with a 0.01µF capacitor as close as possible to the pin (see the Voltage  
Regulator section and the Typical Application Circuit).  
2, 7  
4, 30  
AVDD  
3
4
31  
32  
2, 7  
3
LNAIN  
LNASRC  
AGND  
Low-Noise Amplifier Input (see the Low-Noise Amplifier section)  
Low-Noise Amplifier Source for External Inductive Degeneration. Connect inductor to ground  
to set the LNA input impedance (see the Low-Noise Amplifier section).  
5, 10  
6
Analog Ground  
Low-Noise Amplifier Output. Connect to mixer input through an LC tank filter (see the Low-  
Noise Amplifier section).  
LNAOUT  
8
9
5
6
MIXIN1  
MIXIN2  
1st Differential Mixer Input. Connect to LC tank filter from LNAOUT.  
2nd Differential Mixer Input. Connect through a 100pF capacitor to V  
side of the LC tank.  
DD3  
Image-Rejection Select. Set V  
= 0V to center image rejection at 315MHz. Leave IRSEL  
IRSEL  
11  
8
IRSEL  
unconnected to center image rejection at 375MHz. Set V  
= V  
to center image  
IRSEL  
DD5  
rejection at 433MHz.  
12  
13  
9
MIXOUT  
330Ω Mixer Output. Connect to the input of the 10.7MHz bandpass filter.  
10  
DGND  
Digital Ground  
Positive Digital Supply Voltage. Connect to both of the AVDD pins. Bypass to DGND with a  
0.01µF capacitor as close as possible to the pin (see the Typical Application Circuit).  
14  
15  
16  
11  
12  
14  
DVDD  
AC  
Automatic Gain Control. See Figure 1. Internally pulled down to AGND with a 100kΩ resistor.  
Crystal Divider Ratio Select. Drive XTALSEL low to select f /f  
ratio of 64, or drive  
LO XTAL  
XTALSEL  
XTALSEL high to select f /f  
ratio of 32.  
LO XTAL  
1st Differential Intermediate-Frequency Limiter Amplifier Input. Bypass to AGND with a  
1500pF capacitor as close to the pin as possible.  
17  
18  
15  
16  
IFIN1  
IFIN2  
2nd Differential Intermediate-Frequency Limiter Amplifier Input. Connect to the output of a  
10.7MHz bandpass filter.  
19  
20  
21  
22  
23  
17  
18  
19  
20  
22  
DFO  
DSN  
OPP  
DFFB  
DSP  
Data Filter Output  
Negative Data Slicer Input  
Noninverting Op-Amp Input for the Sallen-Key Data Filter  
Data-Filter Feedback Node. Input for the feedback of the Sallen-Key data filter.  
Positive Data Slicer Input  
+5V Supply Voltage. Bypass to AGND with a 0.01µF capacitor as close as possible to the  
pin. For +5V operation, V  
appears at the pin 2 AVDD pin (see the Voltage Regulator section and the Typical Application  
is the input to an on-chip voltage regulator whose +3.2V output  
DD5  
24  
23  
V
DD5  
Circuit).  
25  
26  
24  
26  
DATAOUT Digital Baseband Data Output  
PDOUT  
Peak-Detector Output  
Power-Down Select Input. Drive high to power up the IC. Internally pulled down to AGND with  
a 100kΩ resistor.  
27  
27  
SHDN  
Maxim Integrated  
8  
www.maximintegrated.com  
MAX7033  
315MHz/433MHz ASK Superheterodyne  
Receiver with AGC Lock  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
TSSOP  
TQFN  
Crystal Input 2. Can also be driven with an external reference oscillator (see the Crystal  
Oscillator section).  
28  
28  
XTAL2  
1, 13,  
21, 25  
N.C.  
No Connection  
EP  
Exposed Pad (TQFN Only). Connect EP to GND.  
Functional Diagram  
28-PIN TSSOP  
PACKAGE  
LNASRC  
4
AC LNAOUT MIXIN1 MIXIN2  
IRSEL  
11  
MIXOUT  
12  
IFIN1 IFIN2  
17 18  
15  
6
8
9
0˚  
IF LIMITING  
AMPS  
AUTOMATIC  
GAIN  
CONTROL  
3
Q
I
LNA  
LNAIN  
AVDD  
IMAGE  
REJECTION  
2
24  
7
90˚  
MAX7033  
3.2V REG  
RSSI  
V
DD5  
AVDD  
DVDD  
DATA  
FILTER  
DIVIDE  
BY 64  
14  
VCO  
R
DF2  
R
DF1  
100kΩ  
100kΩ  
PHASE  
LOOP  
13  
DGND  
AGND  
DETECTOR  
FILTER  
DATA  
SLICER  
5, 10  
÷1  
÷2  
CRYSTAL  
DRIVER  
POWER-  
DOWN  
16  
1
28  
27  
25  
20 23 19  
26  
21  
22  
XTALSEL  
XTAL1 XTAL2  
SHDN DATAOUT  
DSN DSP DFO  
PDOUT OPP  
DFFB  
connect V  
to the supply voltage. An on-chip voltage  
DD5  
Detailed Description  
regulator drives one of the AVDD pins to approximately  
+3.2V. For proper operation, DVDD and both the AVDD  
pins must be connected together. Bypass V  
and the pin 7 AVDD pin to AGND with 0.01μF capacitors,  
and the pin 2 AVDD pin to AGND with a 0.1μF capacitor,  
all placed as close as possible to the pins.  
The MAX7033 CMOS superheterodyne receiver and a few  
external components provide the complete receive chain  
from the antenna to the digital output data. Depending on  
signal power and component selection, data rates as high  
as 33kbps Manchester (66kbps NRZ) can be achieved.  
, DVDD,  
DD5  
The MAX7033 is designed to receive binary ASK data  
modulated in the 300MHz to 450MHz frequency range.  
ASK modulation uses a difference in amplitude of the car-  
rier to represent logic 0 and logic 1 data.  
Low-Noise Amplifier  
The LNA is an nMOS cascode amplifier with off-chip  
inductive degeneration, with a 3.0dB noise figure and an  
IIP3 of -12dBm. The gain and noise figures are dependent  
on both the antenna matching network at the LNA input  
and the LC tank network between the LNA output and the  
mixer inputs.  
Voltage Regulator  
For operation with a single +3.0V to +3.6V supply voltage,  
connect AVDD, DVDD, and V  
For operation with a single +4.5V to +5.5V supply voltage,  
to the supply voltage.  
DD5  
Maxim Integrated  
9  
www.maximintegrated.com  
MAX7033  
315MHz/433MHz ASK Superheterodyne  
Receiver with AGC Lock  
The off-chip inductive degeneration is achieved by con-  
necting an inductor from LNASRC to AGND. This inductor  
sets the real part of the input impedance at LNAIN, allow-  
ing for a more flexible input impedance match, such as a  
typical PCB trace antenna. A nominal value for this induc-  
tor with a 50Ω input impedance is 15nH, but is affected  
by PCB trace.  
resistor. The resistor reduces the LNA gain by 35dB,  
thereby reducing the RSSI output by about 500mV. The  
LNA resumes high-gain mode when the RSSI level drops  
back below 1.39V (approximately -70dBm at RF input)  
for 1ms. The AGC has a hysteresis of 8dB. With the AGC  
function, the MAX7033 can reliably produce an ASK out-  
put for RF input levels up to 0dBm with modulation depth  
of 18dB.  
The LC tank filter connected to LNAOUT comprises L3  
and C2 (see the Typical Application Circuit). Select L3  
and C2 to resonate at the desired RF input frequency. The  
resonant frequency is given by:  
When the AC pin is high and SHDN goes high, the AGC  
circuit is disabled and the LNA is always in high gain  
mode. The AGC function can be resumed by bringing the  
AC pin low when SHDN is high.  
1
f
=
The MAX7033 features an AGC lock function that is  
asserted when the level at the AC pin transitions from  
low to high while SHDN is high. Locking the AGC locks  
the LNA in the current gain state. As shown in Figure 1,  
the AGC lock function can be enabled or disabled as long  
as the SHDN pin is high. Changing the state of AC when  
SHDN is low has no effect.  
RF  
2π L  
× C  
TOTAL  
TOTAL  
where:  
L
= L3 + L  
.
TOTAL  
PARASITICS  
C
= C2 + C  
.
TOTAL  
PARASITICS  
L
and C  
include inductance and  
PARASITICS  
PARASITICS  
Mixer  
capacitance of the PCB traces, package pins, mixer input  
impedance, LNA output impedance, etc. These parasitics  
at high frequencies cannot be ignored, and can have a  
dramatic effect on the tank filter center frequency. Lab  
experimentation should be done to optimize the center  
frequency of the tank.  
A unique feature of the MAX7033 is the integrated image  
rejection of the mixer. This device eliminates the need  
for a costly front-end SAW filter for most applications.  
Advantages of not using a SAW filter are increased sen-  
sitivity, simplified antenna matching, less board space,  
and lower cost.  
Automatic Gain Control  
The mixer cell is a pair of double balanced mixers that  
perform an IQ downconversion of the RF input to the  
When the AC pin is low, the automatic gain-control (AGC)  
circuit monitors the RSSI output. As the RSSI output  
reaches 1.98V, which corresponds to RF input level of  
-62dBm, the AGC switches on the LNA gain reduction  
10.7MHz IF from a low-side injected LO (i.e., f  
= f  
LO  
RF  
- f ). The image-rejection circuit then combines these sig-  
IF  
nals to achieve 44dB of image rejection. Low-side injection  
V
IH  
V
IL  
SHDN  
PIN  
V
IH  
V
IL  
AC PIN  
AGC  
AGC  
AGC  
AGC  
NO  
NO  
NO  
LOCK  
UNLOCK  
LOCK  
UNLOCK  
EFFECT  
EFFECT  
EFFECT  
AGC  
DISABLED  
AGC  
ENABLED  
AGC  
DISABLED  
AGC ENABLED  
Figure 1. AGC Lock Activation Cycles  
Maxim Integrated  
10  
www.maximintegrated.com  
MAX7033  
315MHz/433MHz ASK Superheterodyne  
Receiver with AGC Lock  
is required due to the on-chip image-rejection architec-  
ture. The IF output is driven by a source follower biased to  
create a driving-point impedance of 330Ω; this provides a  
good match to the off-chip 330Ω ceramic IF filter.  
Phase-Locked Loop  
The PLL block contains a phase detector, charge pump,  
integrated loop filter, VCO, asynchronous 64x clock  
divider, and crystal oscillator driver. Besides the crystal,  
this PLL does not require any external components. The  
VCO generates a low-side LO. The relationship between  
the RF, IF, and crystal frequencies is given by:  
The IRSEL pin is a logic input that selects one of the  
three possible image-rejection frequencies. When V  
IRSEL  
= 0V, the image rejection is tuned to 315MHz. V  
=
IRSEL  
V
= V  
/2 tunes the image rejection to 375MHz, and V  
DD5  
IRSEL  
f
- f  
RF IF  
f
=
tunes the image rejection to 433MHz. The IRSEL  
XTAL  
DD5  
32 ×M  
pin is internally set to V  
when it is left unconnected, thereby eliminating the need  
for an external V /2 voltage.  
/2 (image rejection at 375MHz)  
DD5  
where:  
M = 1 (V  
= V  
) or 2 (V = 0V)  
XTALSEL  
XTALSEL  
DD5  
DD5  
To allow the smallest possible IF bandwidth (for best sen-  
sitivity), minimize the tolerance of the reference crystal.  
Table 1. Component Values for Typical Application Circuit  
COMPONENT  
VALUE FOR f = 433MHz  
RF  
VALUE FOR f = 315MHz  
RF  
DESCRIPTION  
C1  
C2  
100pF  
2pF  
100pF  
4pF  
5%  
± 0.1pF  
C3  
100pF  
100pF  
5%  
C4  
100pF  
100pF  
5%  
C5  
1500pF  
220pF  
1500pF  
220pF  
10%  
C6  
5%  
C7  
470pF  
470pF  
5%  
C8  
0.47µF  
220pF  
0.47µF  
220pF  
20%  
C9  
10%  
C10  
C11  
C12  
C13  
C14  
C15  
L1  
0.01µF  
0.1µF  
0.01µF  
0.1µF  
20%  
20%  
15pF  
15pF  
Depends on XTAL  
15pF  
15pF  
Depends on XTAL  
0.01µF  
0.01µF  
56nH  
0.01µF  
0.01µF  
120nH  
20%  
20%  
5% or better*  
L2  
15nH  
15nH  
5% or better*  
L3  
15nH  
27nH  
5% or better*  
R1  
5.1kΩ  
5.1kΩ  
5%  
R2  
Open  
Open  
R3  
Short  
Short  
X1 (÷64)  
X1 (÷32)  
Y1  
6.6128MHz**  
13.2256MHz**  
10.7MHz ceramic filter  
4.7547MHz**  
9.5094MHz**  
10.7MHz ceramic filter  
Crystek or Hong Kong Crystal  
Crystek or Hong Kong Crystal  
Murata  
*Wire wound recommended.  
**Crystal frequencies shown are for ÷64 (V  
= 0V) and ÷32 (V  
= V  
)
XTALSEL  
XTALSEL  
DD  
Maxim Integrated  
11  
www.maximintegrated.com  
MAX7033  
315MHz/433MHz ASK Superheterodyne  
Receiver with AGC Lock  
It is possible to use an external reference oscillator in  
place of a crystal to drive the VCO. AC-couple the exter-  
nal oscillator to XTAL2 with a 1000pF capacitor. Drive  
XTAL2 with a signal level of approximately -10dBm.  
AC-couple XTAL1 to ground with a 1000pF capacitor.  
Intermediate Frequency and RSSI  
The IF section presents a differential 330Ω load to provide  
matching for the off-chip ceramic filter. The six internal  
AC-coupled limiting amplifiers produce an overall gain of  
approximately 65dB, with a bandpass-filter-type response  
centered near the 10.7MHz IF frequency 1 with a 3dB  
bandwidth of approximately 10MHz. The RSSI circuit  
demodulates the IF by producing a DC output propor-  
tional to the log of the IF signal level, with a slope of  
approximately 14.2mV/dB (see the Typical Operating  
Characteristics).  
Data Filter  
The data filter is implemented as a 2nd-order lowpass  
Sallen-Key filter. The pole locations are set by the  
combination of two on-chip resistors and two external  
capacitors. Adjusting the value of the external capacitors  
changes the corner frequency to optimize for different  
data rates. The corner frequency should be set to approxi-  
mately 1.5 times the fastest expected data rate from the  
transmitter. Keeping the corner frequency near the data  
rate rejects any noise at higher frequencies, resulting in  
an increase in receiver sensitivity.  
Applications Information  
Crystal Oscillator  
The crystal oscillator in the MAX7033 is designed to  
present a capacitance of approximately 3pF between the  
XTAL1 and XTAL2. If a crystal designed to oscillate with  
a different load capacitance is used, the crystal is pulled  
away from its stated operating frequency, introducing an  
error in the reference frequency. Crystals designed to  
operate with higher differential load capacitance always  
pull the reference frequency higher. For example, a  
4.7547MHz crystal designed to operate with a 10pF load  
capacitance oscillates at 4.7563MHz with the MAX7033,  
causing the receiver to be tuned to 315.1MHz rather than  
315.0MHz, an error of about 100kHz, or 320ppm.  
The configuration shown in Figure 2 can create a  
Butterworth or Bessel response. The Butterworth filter  
offers a very flat amplitude response in the passband and  
a rolloff rate of 40dB/decade for the two-pole filter. The  
Bessel filter has a linear phase response, which works  
well for filtering digital data. To calculate the value of C5  
and C6, use the following equations, along with the coef-  
ficients in Table 2:  
b
C5 =  
a 100k π f  
(
)( )  
(
)
)
C
C
In actuality, the oscillator pulls every crystal. The crystal’s  
natural frequency is really below its specified frequency,  
but when loaded with the specified load capacitance, the  
crystal is pulled and oscillates at its specified frequency.  
This pulling is already accounted for in the specification of  
the load capacitance. Additional pulling can be calculated  
if the electrical parameters of the crystal are known. The  
frequency pulling is given by:  
a
C6 =  
4 100k π f  
)( )  
(
(
where f is the desired 3dB corner frequency.  
C
Table 2. Coefficents to Calculate C5 and C6  
FILTER TYPE  
Butterworth (Q = 0.707)  
Bessel (Q = 0.577)  
a
b
1.414  
1.3617  
1.000  
0.618  
C
1
1
6
M
f
=
-
×10  
P
2
C
+ C  
C
+ C  
SPEC  
CASE  
LOAD CASE  
where:  
f is the amount the crystal frequency pulled in ppm.  
MAX7033  
P
RSSI  
R
C
C
C
C
is the motional capacitance of the crystal.  
M
R
DF1  
DF2  
is the case capacitance.  
CASE  
SPEC  
LOAD  
100k  
100kΩ  
is the specified load capacitance.  
is the actual load capacitance.  
22  
DFFB  
19  
DFO  
21  
OPP  
C6  
C5  
When the crystal is loaded as specified, i.e., C  
=
LOAD  
C
, the frequency pulling equals zero.  
SPEC  
Figure 2. Sallen-Key Lowpass Data Filter  
Maxim Integrated  
12  
www.maximintegrated.com  
MAX7033  
315MHz/433MHz ASK Superheterodyne  
Receiver with AGC Lock  
For example, to choose a Butterworth filter response with  
a corner frequency of 5kHz:  
MAX7033  
1.000  
C5 =  
C6 =  
450pF  
1.414 100k3.14 5kHz  
)( )( )(  
(
)
DATA  
SLICER  
1.414  
225pF  
4 100k3.14 5kHz  
( )( )( )(  
)
25  
20  
DSN  
23  
DSP  
19  
DFO  
Choosing standard capacitor values changes C5 to 470pF  
and C6 to 220pF, as shown in the Typical Application  
Circuit.  
DATAOUT  
R1  
C4  
Data Slicer  
The data slicer takes the analog output of the data filter  
and converts it to a digital signal. This is achieved by using  
a comparator and comparing the analog input to a thresh-  
old voltage. One input is supplied by the data filter output.  
Both comparator inputs are accessible offchip to allow  
for different methods of generating the slicing threshold,  
which is applied to the second comparator input.  
Figure 3. Generating Data Slicer Threshold  
MAX7033  
The suggested data slicer configuration uses a resistor  
(R1) connected between DSN and DSP with a capacitor  
(C4) from DSN to DGND (Figure 3). This configuration  
averages the analog output of the filter and sets the  
threshold to approximately 50% of that amplitude. With  
this configuration, the threshold automatically adjusts as  
the analog signal varies, minimizing the possibility for  
errors in the digital data. The values of R1 and C4 affect  
how fast the threshold tracks to the analog amplitude. Be  
sure to keep the corner frequency of the RC circuit much  
lower than the lowest expected data rate.  
DATA  
SLICER  
25  
23  
DSP  
20  
DSN  
19  
DFO  
DATAOUT  
R4  
R1  
R2  
R3  
C4  
*OPTIONAL  
Figure 4. Generating Data Slicer Hysteresis  
Note that a long string of zeros or ones can cause the  
threshold to drift. This configuration works best if a coding  
scheme, such as Manchester coding, which has an equal  
number of zeros and ones, is used.  
MAX7033  
To prevent continuous toggling of DATAOUT in the  
absence of an RF signal due to noise, add hysteresis to  
the data slicer as shown in Figure 4.  
DATA  
SLICER  
Peak Detector  
The peak-detector output (PDOUT), in conjunction with  
an external RC filter, creates a DC output voltage equal  
to the peak value of the data signal. The resistor provides  
a path for the capacitor to discharge, allowing the peak  
detector to dynamically follow peak changes of the data-  
filter output voltage. For faster data slicer response, use  
the circuit shown in Figure 5.  
25  
23  
DSP  
19  
DFO  
26  
PDOUT  
20  
DSN  
DATAOUT  
25k  
47nF  
Figure 5. Using PDOUT for Faster Startup  
Maxim Integrated  
13  
www.maximintegrated.com  
MAX7033  
315MHz/433MHz ASK Superheterodyne  
Receiver with AGC Lock  
To reduce the parasitic inductance, use wider traces and  
a solid ground or power plane below the signal traces.  
Also, use low-inductance connections to ground on all  
GND pins, and place decoupling capacitors close to all  
power-supply pins.  
Layout Considerations  
A properly designed PCB is an essential part of any RF/  
microwave circuit. On high-frequency inputs and outputs,  
use controlled-impedance lines and keep them as short  
as possible to minimize losses and radiation. At high  
frequencies, trace lengths that are on the order of λ/10 or  
longer act as antennas.  
Control Interface Considerations  
When operating the MAX7033 with a +4.5V to +5.5V sup-  
ply voltage, the SHDN and AC pins can be driven by a  
microcontroller with either 3V or 5V interface logic levels.  
When operating the MAX7033 with a +3.0V to +3.6V sup-  
ply, only 3V logic from the microcontroller is allowed.  
Keeping the traces short also reduces parasitic induc-  
tance. Generally, 1in of a PCB trace adds about 20nH of  
parasitic inductance. The parasitic inductance can have  
a dramatic effect on the effective inductance of a pas-  
sive component. For example, a 0.5in trace connecting a  
100nH inductor adds an extra 10nH of inductance or 10%.  
Typical Application Circuit  
V
DD3  
V
DD  
(SEE TABLE)  
X1  
IF V IS  
THEN V  
IS  
DD  
DD3  
3.0V TO 3.6V CONNECTED TO V  
DD  
CREATED BY LDO,  
AVAILABLE AT AVDD  
(PIN 2)  
4.5V TO 5.5V  
C11  
C12  
C13  
1
2
3
4
28  
XTAL1  
AVDD  
XTAL2  
RF INPUT  
TO/FROM µP  
POWER-DOWN  
DATA OUT  
27  
SHDN  
PDOUT  
C1  
L1  
26  
25  
LNAIN  
LNASRC  
MAX7033  
R2  
DATAOUT  
C15  
L2  
5
6
24  
23  
AGND  
V
DD5  
R3  
LNAOUT  
DSP  
C14  
C3  
V
DD3  
7
8
9
22  
21  
20  
19  
18  
17  
16  
15  
L3  
AVDD  
DFFB  
OPP  
C2  
MIXIN1  
MIXIN2  
AGND  
IRSEL  
MIXOUT  
DGND  
DVDD  
C7  
DSN  
C4  
10  
DFO  
C9  
11  
12  
13  
14  
IFIN2  
IFIN1  
XTALSEL  
AC  
R1  
**  
FROM P  
C5  
C6  
C8  
*
Y1  
C10  
IF FILTER  
IN  
OUT  
COMPONENT VALUES  
IN TABLE 1  
GND  
**SEE THE MIXER SECTION.  
*SEE PHASE-LOCKED LOOP SECTION.  
Maxim Integrated  
14  
www.maximintegrated.com  
MAX7033  
315MHz/433MHz ASK Superheterodyne  
Receiver with AGC Lock  
Chip Information  
PROCESS: CMOS  
Package Information  
For the latest package outline information and land patterns  
(footprints), go to www.maximintegrated.com/packages. Note  
that a “+”, “#”, or “-” in the package code indicates RoHS status  
only. Package drawings may show a different suffix character, but  
the drawing pertains to the package regardless of RoHS status.  
PACKAGE  
TYPE  
PACKAGE OUTLINE  
LAND  
PATTERN NO.  
CODE  
NO.  
28 TSSOP  
U28+1  
21-0066  
21-0140  
90-0171  
90-0001  
32 TQFN-EP  
T3255+3  
Maxim Integrated  
15  
www.maximintegrated.com  
MAX7033  
315MHz/433MHz ASK Superheterodyne  
Receiver with AGC Lock  
Revision History  
REVISION REVISION  
PAGES  
CHANGED  
DESCRIPTION  
NUMBER  
DATE  
0
7/04  
Initial release  
Updated Ordering Information, Pin Configurations, Absolute Maximum Ratings,  
DC Electrical Characteristics, AC Electrical Characteristics, Typical Operating  
Characteristics, Pin Description, Functional Diagram, Voltage Regulator and  
Layout Considerations sections, Typical Application Circuit, Chip Information, and  
Package Information  
1
1/11  
1–9, 13, 14, 15  
Updated input impedance values in AC Electrical Characteristics table; updated  
TOC3 and TOC4 labels in Typical Operating Characteristics; clarified equations  
in Pin Description and Phase-Locked Loop and Crystal Oscillator sections;  
updated components in Table 1; and added new Control Interface Considerations  
section  
2
3
9/11  
4/14  
3–6, 11–14  
1
Updated Applications and General Description  
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated’s website at www.maximintegrated.com.  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses  
are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits)  
shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
©
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  
2014 Maxim Integrated Products, Inc.  
16  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY