MAX7302_0712 [MAXIM]

SMBus/I2C Interfaced 9-Port, Level-Translating GPIO and LED Driver with CLA; 的SMBus /I²C接口, 9端口电平转换GPIO和LED驱动器,具有CLA
MAX7302_0712
型号: MAX7302_0712
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

SMBus/I2C Interfaced 9-Port, Level-Translating GPIO and LED Driver with CLA
的SMBus /I²C接口, 9端口电平转换GPIO和LED驱动器,具有CLA

驱动器
文件: 总30页 (文件大小:313K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-0749; Rev 1; 12/07  
2
SMBus/I C Interfaced 9-Port,  
Level-Translating GPIO and LED Driver with CLA  
General Description  
Features  
The MAX7302 I2C-/SMBus™-compatible, serial-interfaced  
peripheral features 9 level-translating I/Os, and operates  
from a 1.62V to 3.6V power supply. The MAX7302 fea-  
LA  
1.62V to 5.5V I/O Level-Translation Port Supply (V  
1.62V to 3.6V Power Supply  
)
9 Individually Configurable GPIO Ports  
P1 Open-Drain I/O  
tures a port supply V that allows level-translation on I/O  
LA  
ports to operate from a separate power supply from 1.62V  
to 5.5V. An address select input, AD0, allows up to four  
unique slave addresses for the device.  
P2–P9 Push-Pull or Open-Drain I/Os  
Individual 33-Step PWM Intensity Control  
Blink Controls with 15 Steps on Outputs  
The MAX7302 ports P2–P9 can be configured as inputs,  
push-pull outputs, and open-drain outputs. Port P1 can  
be configured as a general-purpose input, open-drain  
output, or an open-drain INT output. Ports P2–P9 can be  
configured as OSCIN and OSCOUT, respectively. Ports  
P2–P9 can also be used as configurable logic arrays  
(CLAs) to form user-defined logic gates, replacing exter-  
nal discrete gates. Outputs are capable of sinking up to  
25mA, and sourcing up to 10mA when configured as  
push-pull outputs.  
1kHz PWM Period Provides Flicker-Free LED  
Intensity Control  
25mA (max) Port Output Sink Current (100mA  
max Ground Current)  
Inputs Overvoltage Protected Up to 5.5V (V  
)
LA  
Transition Detection with Optional Interrupt Output  
Optional Input Debouncing  
I/O Ports Configurable as Logic Gates (CLA)  
External RST Input  
The MAX7302 includes an internal oscillator for PWM,  
blink, and key debounce, or to cascade multiple  
MAX7302s. The external clock can be used to set a spe-  
cific PWM and blink timing. The RST input asynchronous-  
ly clears the 2-wire interface and terminates a bus lockup  
involving the MAX7302.  
Oscillator Input and Output Enable Cascading  
Multiple Devices  
Low 0.75µA (typ) Standby Current  
Ordering Information  
PIN-  
PACKAGE  
PKG  
CODE  
All ports configured as an output feature a 33-step PWM,  
allowing any output to be set from fully off, 1/32 to 31/32  
duty cycle, to fully on. All output ports also feature LED  
blink control, allowing blink periods of 1/8s, 1/4s, 1/2s, 1s,  
2s, 4s, or 8s. Any port can blink during this period with a  
1/16 to 15/16 duty cycle.  
PART  
TEMP RANGE  
MAX7302AEE+ -40°C to +125°C 16 QSOP  
E16-4  
16 TQFN-EP*  
(3mm x 3mm)  
MAX7302ATE+ -40°C to +125°C  
T1633-4  
+Denotes lead-free package.  
*EP = Exposed paddle.  
The MAX7302 is specified over the -40°C to +125°C  
temperature range and is available in 16-pin QSOP and  
16-pin TQFN (3mm x 3mm) packages.  
Typical Operating Circuit  
Applications  
Cell Phones  
+1.8V  
+4.5V  
Servers  
V
DD  
V
LA  
System I/O Ports  
μC  
LCD/Keypad Backlights  
LED Status Indicators  
SDA  
SCL  
RST  
INT  
SDA  
MAX7302  
SCL  
RST  
P2  
P1/INT  
P3  
P4  
P5  
P6  
P7  
P8  
1.8V OPEN-DRAIN OUTPUT  
4.5V PUSH-PULL OUTPUT  
4.5V LOGIC INPUT  
3.3V LOGIC INPUT  
2.5V LOGIC INPUT  
ADO  
P9  
GND  
Pin Configurations appear at end of data sheet.  
SMBus is a trademark of Intel Corp.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,  
or visit Maxim's website at www.maxim-ic.com.  
2
SMBus/I C Interfaced 9-Port,  
Level-Translating GPIO and LED Driver with CLA  
ABSOLUTE MAXIMUM RATINGS  
(All voltages referenced to GND.)  
GND Current ....................................................................100mA  
V
V
..........................................................................-0.3V to +4V  
, SCL, SDA, AD0, RST, P1..................................-0.3V to +6V  
Continuous Power Dissipation (T = +70°C)  
DD  
LA  
A
16-Pin QSOP (derate 8.3mW/°C over +70°C)..............666mW  
16-Pin TQFN (derate 14.7mW/°C over +70°C) ..........1176mW  
Operating Temperature Range .........................-40°C to +125°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
P2–P9 ............................................................-0.3V to V + 0.3V  
LA  
P1–P9 Sink Current ............................................................25mA  
P2–P9 Source Current ........................................................10mA  
SDA Sink Current ...............................................................10mA  
V
V
Current .......................................................................10mA  
Current ........................................................................35mA  
DD  
LA  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V = 1.62V to 3.6V, T = T  
to T  
, unless otherwise noted. Typical values are at V  
= 3.3V, V = 3.3V, T = +25°C.) (Note 1)  
DD LA A  
DD  
A
MIN  
MAX  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
3.60  
5.50  
1.6  
UNITS  
Operating Supply Voltage  
Port Logic Supply Voltage  
Power-On-Reset Voltage  
Power-On-Reset Hysteresis  
V
1.62  
1.62  
1.0  
V
V
DD  
V
LA  
V
V
rising  
DD  
1.3  
V
POR  
PORHYST  
V
10  
158  
300  
mV  
Internal oscillator disabled;  
SCL, SDA, digital inputs at V  
GND; P1–P9 (as inputs) at V or  
LA  
or  
DD  
I
0.75  
17  
2
STB  
GND  
Standby Current (Interface Idle)  
µA  
µA  
Internal oscillator enabled;  
SCL, SDA, digital inputs at V  
GND; P1–P9 (as inputs) at V or  
LA  
or  
DD  
I
25  
OSC  
GND  
f
= 400kHz;  
SCL  
Supply Current (Interface Running)  
Port Supply Current (V  
I
31  
40  
5
SUP  
other digital inputs at V  
or GND  
DD  
)
I
Port inputs at V or GND  
0.06  
µA  
V
LA  
VLA  
LA  
Input High Voltage SDA, SCL, AD0, RST  
Input Low Voltage SDA, SCL, AD0, RST  
Input High Voltage P1–P9  
V
0.7 x V  
0.7 x V  
0.7 x V  
IH  
DD  
DD  
LA  
V
0.3 x V  
V
IL  
DD  
DD  
V
Input is V  
Input is V  
referred  
referred  
V
IHP  
DD  
DD  
Input Low Voltage P1–P9  
V
0.3 x V  
V
ILP  
Input High Voltage P1–P9  
V
Input is V referred  
V
IHPA  
LA  
Input Low Voltage P1–P9  
V
Input is V referred  
0.3 x V  
+1  
V
ILPA  
LA  
LA  
Input Leakage Current SDA, SCL, AD0, RST  
Input Leakage Current P1–P9  
I
, I  
V
V
or GND  
or GND  
-1  
-2  
µA  
µA  
IH IL  
DD  
LA  
I
, I  
+2  
IHP ILP  
Input Capacitance SDA, SCL, AD0,  
P1–P9, RST  
8
pF  
V
V
V
V
V
V
= 1.62V, I  
= 3mA  
0.05  
0.19  
0.19  
1.58  
0.11  
0.31  
0.31  
DD  
DD  
DD  
LA  
SINK  
Output Low Voltage P1–P9  
V
= 2.5V, I  
= 3.3V, I  
= 16mA  
= 20mA  
V
OL  
SINK  
SINK  
= 1.62V, I  
= 0.5mA  
1.55  
SOURCE  
Output High Voltage P2–P9  
Output Low Voltage SDA  
V
2.5V, I  
3.3V, I  
= 5mA  
V
V
- 0.4 2.32  
V
V
OH  
LA  
SOURCE  
SOURCE  
LA  
LA  
= 10mA  
- 0.6  
3.1  
LA  
V
I
= 6mA  
0.3  
OLSDA  
SINK  
2
_______________________________________________________________________________________  
2
SMBus/I C Interfaced 9-Port,  
Level-Translating GPIO and LED Driver with CLA  
PORT, INTERRUPT (INT), AND RESET (RST) TIMING CHARACTERISTICS  
(V  
DD  
= 1.62V to 3.6V, T = T  
to T  
, unless otherwise noted. Typical values are at V  
= 3.3V, V = 3.3V, T = +25°C.) (Note 1)  
LA A  
DD  
A
MAX  
MIN  
(Figures 10, 15, 16 and 17)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
f
f
C
C
= internal oscillator  
= OSCIN external input  
100pF  
32  
kHz  
MHz  
µs  
CLK  
Oscillator Frequency  
Port Output Data Valid High Time  
f
CLK  
1
4
CLK  
t
PPVH  
L
L
Port Output Data Valid Low Time (Note 6)  
Port Input Setup Time  
t
100pF (Note 2)  
1/f  
s
PPVL  
CLK  
t
C = 100pF  
0
4
µs  
PSU  
L
Port Input Hold Time  
t
C = 100pF  
µs  
PH  
L
CLA Rise Time P5, P9 as Push-Pull Outputs  
17  
14  
t
C = 100pF, V 2.7V  
ns  
ns  
RFCLA  
L
LA  
CLA Fall Time P5, P9 as Push-Pull Outputs  
CLA Propagation Delay P2, P3, or P4 to P5; P6, P7,  
or P8 to P9  
t
C = 100pF, V 2.7V  
28  
50  
PDCLA  
L
LA  
INT Input Data Valid Time  
t
C = 100pF  
C = 100pF  
L
4
4
µs  
µs  
ns  
ns  
IV  
L
INT Reset Delay Time from Acknowledge  
RST Rising to START Condition Setup Time  
RST Pulse Width  
t
IR  
t
900  
500  
RST  
t
W
SERIAL INTERFACE TIMING CHARACTERISTICS  
(V  
= 1.62V to 3.6V, T = T  
to T  
, unless otherwise noted. Typical values are at V  
= 3.3V, V = 3.3V, T = +25°C.) (Note 1)  
LA A  
DD  
A
MAX  
DD  
MIN  
(Figure 10)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
kHz  
ms  
µs  
Serial-Clock Frequency  
Bus Timeout  
f
400  
SCL  
TIMEOUT  
t
31  
Bus Free Time Between a STOP and a START Condition  
Hold Time, (Repeated) START Condition  
Repeated START Condition Setup Time  
STOP Condition Setup Time  
t
1.3  
0.6  
0.6  
0.6  
BUF  
t
µs  
HD,STA  
t
µs  
SU,STA  
SU,STO  
HD,DAT  
t
µs  
Data Hold Time  
t
(Note 3)  
0.9  
µs  
Data Setup Time  
t
100  
1.3  
0.7  
ns  
SU,DAT  
SCL Clock Low Period  
t
µs  
LOW  
SCL Clock High Period  
t
µs  
HIGH  
Rise Time of Both SDA and SCL Signals, Receiving  
Fall Time of Both SDA and SCL Signals, Receiving  
Fall Time of SDA Transmitting  
t
(Notes 2, 4)  
(Notes 2, 4)  
(Note 4)  
20 + 0.1C  
300  
300  
250  
ns  
R
b
t
20 + 0.1C  
ns  
F
b
t
20 + 0.1C  
ns  
F.TX  
b
Pulse Width of Spike Suppressed  
Capacitive Load for Each Bus Line  
t
(Note 5)  
50  
ns  
SP  
C
(Note 2)  
400  
pF  
b
Note 1: All parameters are tested at T = +25°C. Specifications over temperature are guaranteed by design.  
A
Note 2: Guaranteed by design.  
Note 3: A master device must provide a hold time of at least 300ns for the SDA signal (referred to V of the SCL signal) to bridge the  
IL  
undefined region of SCL’s falling edge.  
Note 4: C = total capacitance of one bus line in pF. t and t are measured between 0.3 x V  
and 0.7 x V  
.
DD  
b
R
F
DD  
Note 5: Input filters on the SDA and SCL inputs suppress noise spikes less than 50ns.  
Note 6: A startup time is required for the internal oscilator to start if it is not running already.  
_______________________________________________________________________________________  
3
2
SMBus/I C Interfaced 9-Port,  
Level-Translating GPIO and LED Driver with CLA  
Typical Operating Characteristics  
(V  
= 3.3V, V = 3.3V and T = +25°C, unless otherwise noted.)  
LA A  
DD  
STANDBY CURRENT  
vs. TEMPERATURE  
STANDBY CURRENT  
vs. TEMPERATURE  
STANDBY CURRENT  
vs. TEMPERATURE  
2.0  
20  
16  
12  
8
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
INTERFACE IDLE  
INTERNAL OSCILLATOR  
DISABLED  
INTERFACE RUNNING  
V
= 3.6V  
DD  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
V
= 3.6V  
DD  
V
= 3.3V  
DD  
V
= 1.62V  
DD  
V
= 3.6V  
DD  
V
= 3.3V  
DD  
V
= 1.62V  
50  
DD  
V
= 1.62V  
50  
DD  
4
V
= 3.3V  
DD  
INTERFACE IDLE  
INTERNAL OSCILLATOR  
RUNNING  
0
-50 -25  
0
25  
75 100 125  
-50 -25  
0
25  
50  
75 100 125  
-50 -25  
0
25  
75 100 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
OUTPUT LOW VOLTAGE  
vs. SINK CURRENT  
OUTPUT HIGH VOLTAGE  
vs. TEMPERATURE  
OUTPUT LOW VOLTAGE  
vs. TEMPERATURE  
0.4  
0.3  
0.2  
0.1  
0
3.6  
3.0  
2.4  
1.8  
1.2  
0.6  
0
0.30  
0.24  
0.18  
0.12  
0.06  
0
LOAD CURRENT = 20mA  
V
= 1.62V  
DD  
V
= 3.3V  
DD  
V
= 3.6V  
DD  
V
= 3.3V  
DD  
V
= 3.3V  
DD  
LOAD CURRENT = 10mA  
-50 -25 25  
TEMPERATURE (°C)  
0
5
10  
15  
20  
(mA)  
25  
30  
35  
0
50  
75 100 125  
-50 -25  
0
25  
50  
75 100 125  
I
SINK  
TEMPERATURE (°C)  
OUTPUT HIGH VOLTAGE  
vs. SOURCE CURRENT  
INTERNAL OSCILLATOR FREQUENCY  
vs. TEMPERATURE  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
45  
40  
35  
30  
V
= 3.6V  
LA  
V
= 3.3V  
LA  
V
= 3.6V  
DD  
V
= 3.3V  
DD  
V
= 1.62V  
LA  
V
= 1.62V  
DD  
0
2
4
I
6
8
10  
12  
-50 -25  
0
25  
50  
75 100 125  
(mA)  
TEMPERATURE (°C)  
SOURCE  
4
_______________________________________________________________________________________  
2
SMBus/I C Interfaced 9-Port,  
Level-Translating GPIO and LED Driver with CLA  
Typical Operating Characteristics (continued)  
(V  
= 3.3V, V = 3.3V and T = +25°C, unless otherwise noted.)  
LA A  
DD  
CLA PROPAGATION DELAY  
OUTPUT RISING  
STAGGERED PWM OUTPUTS  
MAX7302 toc09  
MAX7302 toc10  
C = 100pF  
L
PORT2  
5V/div  
PORT2  
2V/div  
PORT3  
5V/div  
PORT3  
2V/div  
PORT4  
5V/div  
PORT5  
2V/div  
PORT5  
5V/div  
400μs/div  
40ns/div  
CLA PROPAGATION DELAY  
OUTPUT FALLING  
MAX7302 toc11  
C = 100pF  
L
PORT2  
2V/div  
PORT3  
2V/div  
PORT5  
2V/div  
40ns/div  
_______________________________________________________________________________________  
5
2
SMBus/I C Interfaced 9-Port,  
Level-Translating GPIO and LED Driver with CLA  
Pin Description  
PIN  
NAME  
FUNCTION  
Port Supply for P1–P9. Connect V to a power supply between 1.62V and 5.5V.  
QSOP  
TQFN  
LA  
1
15  
V
LA  
Bypass V to GND with a 0.047µF ceramic capacitor.  
LA  
Address Input. Sets the device slave address. Connect to GND, V , SCL, or SDA to  
DD  
provide four address combinations.  
2
3
16  
1
AD0  
Reset Input. RST is an active-low input, referenced to V , that clears the 2-wire interface  
DD  
RST  
and can be configured to put the device in the power-up reset and/or to reset the PWM  
and blink timing.  
Input/Output Port. P1/INT is a general-purpose I/O that can be configured as a  
transition detection interrupt output.  
4
5
6
2
3
4
P1/INT  
P2/OSCIN  
P3/OSCOUT  
P4–P9  
Input/Output Port. P2/OSCIN is a general-purpose I/O that can be configured as the  
oscillator input for PWM and blink features.  
Input/Output Port. P3/OSCOUT is a general-purpose I/O that can be configured as the  
PWM/blink/timing oscillator output for PWM and blink features.  
7, 8, 9,  
11, 12, 13  
5, 6, 7,  
9, 10, 11  
Input/Output Ports. P4–P9 are general-purpose I/Os.  
10  
14  
15  
16  
8
GND  
SCL  
SDA  
Ground  
12  
13  
14  
EP  
Serial-Clock Input  
Serial-Data I/O  
V
Positive Supply Voltage. Bypass V  
to GND with a 0.047µF ceramic capacitor.  
DD  
DD  
EP  
Exposed Paddle on Package Underside. Connect to GND.  
6
_______________________________________________________________________________________  
2
SMBus/I C Interfaced 9-Port,  
Level-Translating GPIO and LED Driver with CLA  
Block Diagram  
V
LA  
V
DD  
MAX7302  
AD0  
SCL  
SDA  
RST  
P1–P9  
OUTPUT  
LOGIC  
I/O  
2
I C  
I/O  
CONTROL  
INPUT  
LOGIC  
REGISTER  
BANK  
CLA  
GND  
its output ports. Output ports have PWM and blink  
capabilities, as well as logic drive.  
Detailed Description  
The MAX7302 9-port, general-purpose port expander  
operates from a 1.62V to 3.6V power supply. Port P1  
can be configured as an input and an open-drain out-  
put. Port P1 can also be configured to function as an  
INT output. Ports P2–P9 can be configured as inputs,  
push-pull outputs, and open-drain outputs. Ports P2–P9  
can be used as simple configurable logic arrays  
(CLAs) to form user-defined logic gates.  
Initial Power-Up  
On power-up, the MAX7302 default configuration has all  
9 ports, P1–P9, configured as input ports with logic lev-  
els referenced to V . The transition detection interrupt  
LA  
status flag resets and stays high (see Tables 1 and 2).  
Device Configuration Registers  
The device configuration registers set up the interrupt  
function, serial-interface bus timeout, and PWM/blink  
oscillator options, global blink period, and reset options  
(see Tables 3 and 4).  
Each port configured as an open-drain or push-pull  
output can sink up to 25mA. Push-pull outputs also  
have a 5mA source drive capability. The MAX7302 is  
rated to sink a total of 100mA into any combination of  
_______________________________________________________________________________________  
7
2
SMBus/I C Interfaced 9-Port,  
Level-Translating GPIO and LED Driver with CLA  
Table 1. Register Address Map  
REGISTER  
ADDRESS  
0x01  
AUTOINCREMENT ADDRESS  
POR STATE  
0x80  
0x80  
0x80  
0x80  
0x80  
0x80  
0x80  
0x80  
0x80  
0xCC  
0x8F  
0x00  
0x00  
0x80  
0x80  
0x00  
0x00  
0x00  
0x00  
0xF0  
0x80  
Port P1 or INT Output  
0x02  
0x03  
Port P2 or OSCIN Input  
0x02  
Port P3 or OSCOUT Output  
Port P4  
0x03  
0x04  
0x04  
0x05  
Port P5  
0x05  
0x06  
Port P6  
0x06  
0x07  
Port P7  
0x07  
0x08  
Port P8  
0x08  
0x09  
Port P9  
0x09  
0x0A or 0x4A  
0x27  
Configuration 26  
0x26  
Configuration 27  
0x27  
0x28  
Ports P2–P5 Configurable Logic CLA0  
Ports P6–P9 Configurable Logic CLA1  
Write Ports P2–P5 Same Data; Read P2  
Write Ports P6–P9 Same Data; Read P6  
FACTORY RESERVED (Do not write to these registers)  
CLA0 and CLA1 Configurable Logic Enable  
CLA0 and CLA1 Configurable Logic Lock  
Configuration 67 Lock, Ports P1–P5 Lock  
Ports P6–P9 Lock  
0x28  
0x29  
0x29  
0x2A  
0x3C  
0x3D  
0x3C–0x3F  
0x70  
0x3D  
0x3E  
0x3F–0x40  
0x71  
0x71  
0x72  
0x72  
0x73  
0x73  
0x74  
FACTORY RESERVED (Do not write to these registers)  
0x00  
0x01  
Table 2. Power-Up Register Status  
REGISTER DATA  
ADDRESS  
CODE (HEX)  
REGISTER  
POWER-UP CONDITION  
D7 D6 D5 D4 D3 D2 D1 D0  
Ports P_ are V -referred input ports with interrupt  
LA  
and debounce disabled  
Ports P1–P9  
0x01–0x09  
0x26  
1
1
1
0
1
0
0
0
0
0
0
0
0
1
1
0
1
1
0
0
1
0
0
1
RST  does not reset registers or counters; blink period  
is 1Hz; transition flag clear; interrupt status flag clear  
Configuration 26  
Configuration 27  
Ports P1–P9 are GPIO ports; bus timeout is  
disabled  
0x27  
Ports CLA0 to CLA1  
CLA0 to CLA1  
Default gate structure  
CLA not enable  
0x28–0x29  
0x70  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Configuration 27 Lock,  
Ports P1–P5 Lock  
Configuration 27 is not locked;  
ports P1–P5 are not locked  
0x72  
0x73  
0
1
0
1
0
1
0
1
0
0
0
0
0
0
0
0
Ports P6–P9 Lock  
Ports P6–P9 are not locked  
8
_______________________________________________________________________________________  
2
SMBus/I C Interfaced 9-Port,  
Level-Translating GPIO and LED Driver with CLA  
Table 3. Configuration Register (0x26)  
REGISTER BIT  
DESCRIPTION  
VALUE  
FUNCTION  
An interrupt has occurred on at least one interrupt enabled input port.  
No interrupt has occurred on an interrupt enabled input port.  
A transition has occurred on an input port.  
No transition has occurred on an input port.  
Reserved  
0
1*  
0
Interrupt status flag  
(read only)  
D7  
Transition flag  
(read only)  
D6  
1*  
0/1  
0*  
1
D5  
Reserved  
Blink prescalor bits  
D4, D3, D2  
Blink timer bits, see Table 10.  
RST does not reset counters PWM/blink  
RST resets PWM/blink counters  
D1  
RST timer  
RST POR  
0*  
1
RST does not reset registers to power-on-reset state.  
RST resets registers to power-on-reset state.  
D0  
*Default state.  
Table 4. Configuration Register (0x27)  
REGISTER BIT  
DESCRIPTION  
VALUE  
FUNCTION  
Enables the bus timeout feature.  
Disables the bus timeout feature.  
Reserved  
0
1
D7  
Bus timeout  
0
D6, D5, D4  
Reserved  
P3/OSCOUT  
P2/OSCIN  
1
Reserved  
0
Sets P3 to output the oscillator.  
D3  
D2  
D1  
1*  
0
Sets P3 as a GPIO controlled by register 0x03.  
Sets P2 as the oscillator input.  
1*  
0
Sets P2 as a GPIO controlled by register 0x02.  
Sets P1 as the interrupt output.  
P1/INT output  
Input transition  
1
Sets P1 as a GPIO controlled by register 0x01.  
Set to 0 on power-up to detect transition on inputs.  
D0  
0
*Default state.  
_______________________________________________________________________________________  
9
2
SMBus/I C Interfaced 9-Port,  
Level-Translating GPIO and LED Driver with CLA  
level of the port input, read the port I/O register bit, D0.  
This readback value is the instantaneous logic level at  
the time of the read request if debounce is disabled for  
the port (port I/O register bit D2 = 0), or the debounced  
result if debounce is enabled for the port (port I/O reg-  
ister bit D2 = 1).  
Slave Address  
The MAX7302 is set to one of four I2C slave addresses,  
using the address input AD0 (see Table 5) and is  
accessed over an I2C or SMBus serial interface up to  
400kHz. The MAX7302 slave address is determined on  
each I2C transmission, regardless of whether or not the  
transmission is actually addressing the device. The  
MAX7302 distinguishes whether address input AD0 is  
I/O Output Port  
Configure a port as an output by writing a logic-low to the  
MSB (bit D7) of the port I/O register. See Figures 2 and 3  
for output port structure. The device reads back the logic  
level, PWM, or the blink setting of the port (see Table 7).  
The MAX7302 monitors the logic level of ports configured  
as CLA outputs (see the Configurable Logic Array (CLA)  
section).  
connected to SDA, SCL, V , or GND during the trans-  
DD  
mission. Therefore, the MAX7302 slave address can be  
configured dynamically in an application without tog-  
gling the device supply.  
I/O Port Registers  
The port I/O registers set the I/O ports, one register per  
port (see Tables 6 and 7). Ports can be independently  
configured as inputs or outputs (D7), push-pull or open  
drain (D6). Port P1 can only be configured as an input or  
an open-drain output. The push-pull bit (D6) setting for  
the port I/O register P1 is ignored.  
Port Supplies and Level Translation  
The port supply, V , provides the logic supplies to all  
LA  
push-pull I/O ports. Ports P2–P9 can be configured as  
push-pull I/O ports (see Figure 3). V powers the logic-  
LA  
high port output voltage sourcing the logic-high port load  
current. V provides level translation capability for the  
LA  
I/O Input Port  
Configure a port as an input by writing a logic-high to  
the MSB (bit D7) of the port I/O register (see Table 6).  
See Figure 1 for input port structure. To obtain the logic  
outputs and operates over a 1.62V to 5.5V voltage inde-  
pendent of the MAX7302 power-supply voltage, V  
.
DD  
Each port set as an input can be configured to switch  
midrail of either the V or the V port supplies.  
DD  
LA  
Table 5. Slave Address Selection  
Whenever the port supply reference is changed from V  
DD  
DEVICE ADDRESS  
AD0  
to V , or vice versa, read the port register to clear any  
LA  
R
transition flag on the port.  
CONNECTION  
A6 A5 A4 A3 A2 A1 A0  
W
1
1
1
1
0
GND  
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
0
0
0
V
DD  
SCL  
SDA  
Table 6. Port I/O Registers (I/O Port Set as an Input, Registers 0x01/0x41 to 0x09/049)  
REGISTER BIT  
DESCRIPTION  
VALUE  
FUNCTION  
D7  
Port I/O set bit  
1
0
1
0
1
0
0
1
0
1
0
1
Sets the I/O port as an input.  
Refers the input to the V supply voltage.  
LA  
Port supply  
reference  
D6  
Refers the input to the V  
supply voltage.  
DD  
Disables the transition interrupt.  
Transition interrupt  
enable  
D5  
D4, D3  
D2  
Enables the transition interrupt.  
Reserved bits  
Do not write to these registers.  
Disables debouncing of the input port.  
Enables debouncing of the input port.  
No transition has occurred since the last port read.  
A transition has occurred since the last port read.  
Port input is logic-low.  
Debounce  
Port transition state  
(read only)  
D1  
D0  
Port status  
(read only)  
Port input is logic-high.  
10 ______________________________________________________________________________________  
2
SMBus/I C Interfaced 9-Port,  
Level-Translating GPIO and LED Driver with CLA  
V
DD  
V
LA  
PORT_ [2]  
(DEBOUNCE)  
PORT_ [6]  
(THRESHOLD  
SELECT)  
PORT_ [0]  
(PORTIN)  
0
1
I/O  
DEBOUNCE LOGIC  
PORT_ [4:3]  
TRANSITION  
DETECTION  
TRANSITION  
DETECTION  
PORT_ [5]  
INTERRUPT  
ENABLE  
INTERRUPT  
LOGIC  
INT  
INT2  
INT9  
INT  
Figure 1. Input Port Structure  
Table 7. Port I/O Registers (I/O Port Set as an Output, Registers 0x01 to 0x09)  
REGISTER BIT  
DESCRIPTION  
VALUE  
FUNCTION  
D7  
Port I/O set bit  
0
Sets the I/O port as an output.  
Output port set to  
push-pull  
or open drain  
0
1
Sets the output type to open drain.  
Sets the output type to push-pull.  
D6  
0
Sets the output to PWM mode.  
D5  
PWM/blink enable  
1
Sets the output to blink mode.  
D4  
D3  
D2  
D1  
D0  
Duty-cycle bit 4  
Duty-cycle bit 3  
Duty-cycle bit 2  
Duty-cycle bit 1  
Duty-cycle bit 0  
0/1  
0/1  
0/1  
0/1  
0/1  
MSB of the 5-bit duty-cycle setting. See Tables 9 and 11.  
Bit 3 of the 5-bit duty-cycle setting. See Tables 9 and 11.  
Bit 2 of the 5-bit duty-cycle setting. See Tables 9 and 11.  
Bit 1 of the 5-bit duty-cycle setting. See Tables 9 and 11.  
LSB of the 5-bit duty-cycle setting. See Tables 9 and 11.  
______________________________________________________________________________________ 11  
2
SMBus/I C Interfaced 9-Port,  
Level-Translating GPIO and LED Driver with CLA  
PORT_ [5]  
5-BIT PWM  
PORT_ [4:0]  
0
1
I/O  
3-BIT PRESCALER  
CONFIG26 [4:2]  
4-BIT BLINK  
PORT_ [3:0]  
CLOCK  
Figure 2. Output Port Structure  
V+  
V
V+  
V
LA  
LA  
SELECT  
INPUT  
SELECT  
INPUT  
PORT  
P2–P9  
PORT P1  
OUTPUT  
OUTPUT  
P1  
P2–P9  
Figure 3. Port I/O Structure  
Ports P2–P9 are overvoltage protected to V . This is true  
When a bit position in the port lock register is set, the  
corresponding port I/O registers cannot change. When a  
port I/O register is locked as an output, none of its output  
register settings can change. When a port I/O register is  
locked as an input, only bits D0 and D1 can change, and  
the locked input behaviour options, such as debounce  
and transition detection, operate as normal.  
LA  
even for a port used as an input with a V  
port logic-  
DD  
input threshold. Port P1 is overvoltage protected to 5.5V,  
independent of V and V (see Figure 3). To mix logic  
DD  
LA  
outputs with more than one voltage swing on a group of  
ports using the same port supply, set the port supply volt-  
age (V ) to be the highest output voltage. Use push-pull  
LA  
outputs and port P1 for the highest voltage ports, and use  
open-drain outputs with external pullup resistors for the  
lower voltage ports. When P2–P9 are acting as inputs ref-  
Input Debounce  
The MAX7302 samples the input ports every 31ms if  
input debouncing is enabled for an input port (D2 = 1  
of the port I/O register). The MAX7302 compares each  
new sample with the previous sample. If the new sam-  
ple and the previous sample have the same value, the  
corresponding internal register updates.  
erenced to V , make sure the V voltage is greater  
DD  
LA  
than V - 0.3V.  
DD  
Port Lock Registers  
Use the port lock registers to lock any combination of  
port I/O register functionality (see Table 8). The port  
lock registers are unlocked on power-up or by configur-  
ing the RSTPOR bit to reset to POR value. The bits in  
the port lock register can only be written to once. After  
setting a bit to logic-high, the bit can only be cleared  
by powering off the device.  
When the port input is read through the serial interface,  
the MAX7302 does not return the instantaneous value  
of the logic level from the port because debounce is  
active. Instead, the MAX7302 returns the stored  
debounced input signal.  
12 ______________________________________________________________________________________  
2
SMBus/I C Interfaced 9-Port,  
Level-Translating GPIO and LED Driver with CLA  
Table 8. Port Lock Registers  
REGISTER DATA  
ADDRESS  
CODE  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Port  
P5  
Port  
P4  
Port  
P3  
Port  
P2  
Port  
P1  
Configuration  
register 0x27  
0x72  
0x73  
0
Port  
P9  
Port  
P8  
Port  
P7  
Port  
P6  
When debouncing is enabled for a port input, transition  
detection applies to the stored debounced input signal  
value, rather than to the instantaneous value at the  
input. This process allows for useful transition detection  
of noisy signals, such as keyswitch inputs, without  
causing spurious interrupts.  
The INT output never reasserts during a read sequence  
because this process could cause a recursive reentry  
into the interrupt service routine. Instead, if a data  
change occurs during the read that would normally set  
the INT output, the interrupt assertion is delayed until  
the STOP condition. If the changed input data is read  
before the STOP condition, a new interrupt is not  
required and not asserted. The INT bit and INT output  
(if selected) have the same value at all times.  
Port Input Transition Detection and Interrupt  
Any transition on ports configured as inputs automatically  
set the D1 bit of that port’s I/O registers high. Any input can  
be selected to assert an interrupt output indicating a transi-  
tion has occurred at the input port(s). The MAX7302 sam-  
ples the port input (internally latched into a snapshot  
register) during a read access to its port P_ I/O register.  
The MAX7302 continuously compares the snapshot with  
the port’s input condition. If the device detects a change  
for any port input, an internal transition flag sets for that  
port. Read register 0x26 to clear the interrupt, then read all  
the port I/O registers (0x01 to 0x09) by initiating a burst  
read to clear the MAX7302’s internal transition flag. Note  
that when debouncing is enabled for a port input, transition  
detection applies to the stored debounced input signal  
value, rather than to the instantaneous value at the input.  
Transition bits D4 and D3 must be set to 0 to detect the  
next rising or falling edge on the input port P_.  
Transition Flag  
The Transition bit in device configuration register 0x26 is  
a NOR of all the port I/O registers’ individual Transition  
bits. A port I/O register’s Transition bit sets when that  
port is set as an input, and the input changes from the  
port’s I/O registers last read through the serial interface.  
A port’s individual Transition bit clears by reading that  
port’s I/O register. The Transition flag of configuration  
register 0x26 is only cleared after reading all port I/O  
registers on which a transition has occurred.  
RST Input  
The active-low RST input operates as a hardware reset  
2
which voids any on-going I C transaction involving the  
MAX7302. This feature allows the MAX7302 supply cur-  
rent to be minimized in power critical applications by  
effectively disconnecting the MAX7302 from the bus.  
RST also operates as a chip enable, allowing multiple  
The MAX7302 allows the user to select the input port(s)  
that cause an interrupt on the INT output. Set INT for  
each port by using the INTenable bit (bit D5) in each  
port P_ register. The appropriate port’s transition flag  
always sets when an input changes, regardless of the  
port’s INTenable bit settings. The INTenable bits allow  
processor interrupt only on critical events, while the  
inputs and the transition flags can be polled periodical-  
ly to detect less critical events.  
2
devices to use the same I C slave address if only one  
MAX7302 has its RST input high at any time. RST can  
be configured to restore all port registers to the power-  
up settings by setting bit D0 of device configuration reg-  
ister 0x26 (Table 1). RST can also be configured to reset  
the internal timing counters used for PWM and blink by  
setting bit D1 of device configuration register 0x26.  
When debounce is disabled, signal transtions between  
the 9th and 11th falling edges of clock will not be regis-  
tered since the transition is detected and cleared at the  
same read cycle.  
2
When RST is low, the MAX7302 is forced into the I C  
STOP condition. The reset action does not clear the  
interrupt output INT. The RST input is referenced to VDD  
and is overvoltage tolerant up to the supply voltage, VLA  
.
Ports configured as outputs do not feature transition  
detection, and therefore, cannot cause an interrupt.  
The exception to this rule is the CLA outputs.  
______________________________________________________________________________________ 13  
2
SMBus/I C Interfaced 9-Port,  
Level-Translating GPIO and LED Driver with CLA  
connects to the P2/OSCIN port. The P3/OSCOUT port  
provides a buffered and level-shifted output of the inter-  
nal oscillator or external clock to drive other devices.  
Select the P2/OSCIN and P3/OSCOUT port options  
using the device configuration register 0x67 bits D2  
and D3 (see Table 4).  
INT Output  
Port P1 can be configured as a latching interrupt out-  
put, INT, that flags any transients on any combination of  
selected ports configured as inputs. Configurable logic  
gate outputs can also be monitored as readback inputs  
with the same options as normal I/O port inputs. Any  
transitions occurring at the selected inputs assert INT  
low to alert the host processor of data changes at the  
selected inputs. Reset INT by reading any ports I/O  
registers (0x01 to 0x09).  
The P2/OSCIN port is overvoltage protected to supply  
voltage V , so the external clock can exceed V  
if  
LA  
DD  
V
is greater than V . The port P2 register (see  
LA  
DD  
Tables 2 and 6) sets the P2/OSCIN logic threshold  
(30%/70%) to either the V supply or the V  
.
LA  
DD  
Standby Mode  
Upon power-up, the MAX7302 enters standby mode  
when the serial interface is idle. If any of the PWM  
intensity control, blink, or debounce features are used,  
the operating current rises because the internal PWM  
oscillator is running and toggling counters. When using  
OSCIN to override the internal oscillator, the operating  
current varies according to the frequency at OSCIN.  
When the serial interface is active, the operating cur-  
rent also increases because the MAX7302, like all I2C  
slaves, has to monitor every transmission. The bus  
timeout and debounce circuits use the internal oscilla-  
tor even if OSCIN is selected.  
Use OSCOUT or an external clock source to cascade  
up to four MAX7302s per master for applications requir-  
ing additional ports. To synchronize the blink action  
across multiple MAX7302s (see Figures 4 and 5), use  
OSCOUT from one MAX7302 to drive OSCIN of the  
other MAX7302s. This process ensures the same blink  
frequency of all the devices, but also make sure to syn-  
chronize the blink phase. The blink timing of multiple  
MAX7302s is synchronous at the instant of power-up  
because the blink and PWM counters clear by each  
MAX7302’s internal reset circuit, and by default the  
MAX7302s’ internal oscillators are off upon power-up.  
Ensure that the blink phase of all the devices remains  
synchronized by programming the OSCIN and  
OSCOUT functionality before programming any feature  
that causes a MAX7302’s internal oscillator to operate  
(blink, PWM, bus timeout, or key debounce). Configure  
the RST input to reset the internal timing counters used  
for PWM and blink by setting bit D1 of device configu-  
ration register 0x26 (see Table 3).  
Internal Oscillator and OSCIN/OSCOUT  
External Clock Options  
The MAX7302 contains an internal 32kHz oscillator. The  
MAX7302 always uses the internal oscillator for bus  
timeout and for debounce timing (when enabled). It is  
used by default to generate PWM and blink timing. The  
internal oscillator only runs when the clock output  
OSCOUT is needed to keep the operating current as  
low as possible.  
PWM and Blink Timing  
The MAX7302 divides the 32kHz nominal internal oscilla-  
tor OSC or external clock source OSCIN frequency by 32  
to provide a nominal 1kHz PWM frequency. Use the reset  
The MAX7302 can use an external clock source instead  
of the internal oscillator for the PWM and blink timing.  
The external clock can range from DC to 1MHz, and it  
MAX7302  
MAX7302  
MAX7302  
MAX7302  
P3/OSCOUT  
P2/OSCIN  
P2/OSCIN  
MAX7302  
MAX7302  
P3/OSCOUT  
P2/OSCIN  
P2/OSCIN  
P3/OSCOUT  
Figure 4. Synchronizing Multiple MAX7302s (Internal Oscillator)  
14 ______________________________________________________________________________________  
2
SMBus/I C Interfaced 9-Port,  
Level-Translating GPIO and LED Driver with CLA  
MAX7302  
0 TO 1MHz  
MAX7302  
MAX7302  
EXTERNAL  
OSCILLATOR  
P2/OSCIN  
P2/OSCIN  
P2/OSCIN  
P2/OSCIN  
MAX7302  
MAX7302  
MAX7302  
0 TO 1MHz  
EXTERNAL  
OSCILLATOR  
P2/OSCIN  
P3/OSCOUT  
P2/OSCIN  
P3/OSCOUT  
Figure 5. Synchronizing Multiple MAX7302s (External Clock)  
Table 9. PWM Settings on Output Port  
REGISTER DATA  
PWM SETTINGS  
D7  
0
D6  
X
D5  
0
D4  
0
D3  
0
D2  
D1  
0
D0  
0
Port P_ is a static logic-level low output port  
Port P_ is a PWM output port; PWM duty cycle is 1/32  
Port P_ is a PWM output port; PWM duty cycle is 2/32  
Port P_ is a PWM output port; PWM duty cycle is 3/32  
Port P_ is a PWM output port; PWM duty cycle is 4/32  
0
0
0
0
1
0
X
0
0
0
0
1
0
X
0
0
0
1
0
0
X
0
0
0
1
1
0
X
0
0
0
0
0
Port P_ is a PWM output port; PWM duty cycle is 30/32  
Port P_ is a PWM output port; PWM duty cycle is 31/32  
Port P_ is a static logic-level high output port  
0
0
0
X
X
1
0
0
1
1
1
1
1
1
X
1
1
X
1
1
X
0
1
X
function to synchronize multiple MAX7302s that are oper-  
ating from the same OSCIN, or to synchronize a single  
MAX7302’s blink timing to an external event. Configure  
the RST input to reset the internal timing counters used by  
PWM and blink by setting bit D1 of the device configura-  
tion register 0x26 (see Table 3).  
OSCOUT from its internal clock, and use this signal to  
drive the remaining MAX7302s’ OSCIN.  
A PWM period contains 32 cycles of the nominal 1kHz  
PWM clock (see Figure 6). Set ports individually to a  
PWM duty cycle between 0/32 and 31/32. For static  
logic-level low output, set the ports to 0/32 PWM, and  
for static logic-level high output, set the port register to  
0111XXXX (see Table 9). The MAX7302 staggers the  
PWM timing of the 9-port outputs, in single or dual  
ports, by 1/8 of the PWM period. These phase shifts  
distribute the port-output switching points across the  
PWM period (see Figure 7). This staggering reduces  
the di/dt output-switching transient on the supply and  
also reduces the peak/mean current requirement.  
The MAX7302 uses the internal oscillator by default.  
Configure port P2 using device configuration register  
0x27 bit D2 (see Table 4) as an external clock source  
input, OSCIN, if the application requires a particular or  
more accurate timing for the PWM or blink functions.  
OSCIN only applies to PWM and blink; the MAX7302  
always uses the internal oscillator for debouncing and  
bus timeout. OSCIN can range up to 1MHz. Use device  
configuration register 0x27 bit D3 (see Table 4) to con-  
figure port P3 as OSCOUT to output a MAX7302’s  
clock. The MAX7302 buffers the clock output of either  
the internal oscillator OSC or the external clock source  
OSCIN, according to port D2’s setup. Synchronize mul-  
tiple MAX7302s without using an external clock source  
input by configuring one MAX7302 to generate  
All ports feature LED blink control. A global blink period  
of 1/8s, 1/4s, 1/2s, 1s, 2s, 4s, or 8s applies to all ports  
(see Table 10). Any port can blink during this period  
with a 1/16 to 15/16 duty cycle, adjustable in 1/16  
increments (see Table 11). For PWM fan control, the  
MAX7302 can set the blink frequency to 32Hz.  
______________________________________________________________________________________ 15  
2
SMBus/I C Interfaced 9-Port,  
Level-Translating GPIO and LED Driver with CLA  
PORT  
REGISTER  
VALUE  
977μs NOMINAL PWM PERIOD (1024Hz PERIOD)  
OUTPUT STATIC LOW (STATIC LOGIC-LOW OUTPUT OR LED DRIVE ON)  
HIGH-Z  
LOW  
0b0X000000  
0b0X000001  
0b0X000010  
0b0X000011  
HIGH-Z  
LOW  
OUTPUT LOW 1/32 DUTY PWM  
OUTPUT LOW 2/32 DUTY PWM  
OUTPUT LOW 3/32 DUTY PWM  
HIGH-Z  
LOW  
HIGH-Z  
LOW  
HIGH-Z  
LOW  
0b0X011101  
OUTPUT LOW 29/32 DUTY PWM  
HIGH-Z  
LOW  
OUTPUT LOW 30/32 DUTY PWM  
0b0X011110  
0b0X011111  
0b0111XXXX  
HIGH-Z  
LOW  
OUTPUT LOW 31/32 DUTY PWM  
HIGH-Z  
LOW  
OUTPUT STATIC HIGH (STATIC LOGIC-HIGH OUTPUT OR LED DRIVE OFF)  
Figure 6. Static and PWM Port Output Waveforms  
977μs NOMINAL PWM PERIOD  
NEXT PWM PERIOD  
NEXT PWM PERIOD  
0
1
2
3
4
5
6
7
8
OUTPUT P8  
OUTPUTS P1, P9  
OUTPUT P2  
OUTPUT P3  
OUTPUT P4  
OUTPUT P5  
OUTPUT P6  
OUTPUT P7  
OUTPUT P8  
OUTPUTS P1, P9  
OUTPUT P8  
OUTPUTS P1, P9  
OUTPUT P2  
OUTPUTP3  
OUTPUT P4  
OUTPUT P5  
OUTPUT P6  
OUTPUT P7  
OUTPUT P2  
OUTPUT P3  
Figure 7. Staggered PWM Phasing Between Port Outputs  
16 ______________________________________________________________________________________  
2
SMBus/I C Interfaced 9-Port,  
Level-Translating GPIO and LED Driver with CLA  
Table 10. Blink and PWM Frequencies  
DEVICE CONFIGURATION  
REGISTER 0x26  
BLINK OR PWM  
FREQUENCY (32kHz  
INTERNAL OSCILLATOR)  
(Hz)  
BLINK OR PWM  
FREQUENCY (0 TO 1MHz  
EXTERNAL OSCILLATOR)  
BLINK OR PWM SETTING  
BIT D4  
BIT D3  
BIT D2  
BLINK2 BLINK1 BLINK0  
Blink period is 8s (0.125Hz)  
Blink period is 4s (0.25Hz)  
Blink period is 2s (0.5Hz)  
Blink period is 1s (1Hz)  
Blink period is a 1/2s (2Hz)  
Blink period is a 1/4s (4Hz)  
Blink period is an 1/8s (8Hz)  
Blink period is a 1/32s (32Hz)  
PWM  
0
0
0
0
1
1
1
1
X
0
0
1
1
0
0
1
1
X
0
1
0
1
0
1
0
1
X
0.125  
0.25  
0.5  
1
OSCIN / 262,144  
OSCIN / 131,072  
OSCIN / 65,536  
OSCIN / 32,768  
OSCIN / 16,384  
OSCIN / 8192  
OSCIN / 4096  
OSCIN / 1024  
OSCIN / 32  
2
4
8
32  
1024  
Table 11. Blink Settings on Output Ports  
REGISTER DATA  
PWM SETTINGS  
D7  
D6  
X
D5  
1
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
Port P_ is a static logic-level low output port  
Port P_ is a PWM output port; PWM duty cycle is 1/16  
Port P_ is a PWM output port; PWM duty cycle is 2/16  
Port P_ is a PWM output port; PWM duty cycle is 3/16  
0
0
0
0
X
1
0
0
0
0
1
X
1
0
0
0
1
0
X
1
0
0
1
0
0
Port P_ is a PWM output port; PWM duty cycle is 14/16  
Port P_ is a PWM output port; PWM duty cycle is 15/16  
Port P_ is a static logic-level high output port (32/32)  
0
0
0
X
X
1
1
1
1
0
0
1
1
1
X
1
1
X
1
1
X
0
1
X
Table 12. CLA0 (P2–P5) Configuration Register Setting (0x28)  
REGISTER BIT  
FUNCTION  
D5  
D4  
D3  
D2  
0
1
0
1
0
0
1
1
0
0
1
1
D1  
D0  
XOR noninverted  
XOR P3 inverted  
0
0
1
1
0
1
0
1
0
1
0
1
0
1
X
X
XOR P2 inverted  
XOR both ports inverted  
3 input AND/OR all noninverted  
3 input AND/OR P2 inverted  
0
0
0
0
1
1
1
1
3 input AND/OR P3 inverted  
3 input AND/OR P4 inverted  
1
1
1
3 input AND/OR P2 and P3 inverted  
3 input AND/OR P2 and P4 inverted  
3 input AND/OR P3 and P4 inverted  
3 input AND/OR all inverted  
______________________________________________________________________________________ 17  
2
SMBus/I C Interfaced 9-Port,  
Level-Translating GPIO and LED Driver with CLA  
Table 12. CLA0 (P2–P5) Configuration Register Setting (0x28) (continued)  
REGISTER BIT  
FUNCTION  
D5  
D4  
D3  
D2  
0
D1  
D0  
0
2 input AND/OR P2 and P3 noninverted  
2 input AND/OR P2 and P3 inverted  
2 input AND/OR P2 inverted and P3  
2 input AND/OR P2 and P3 both inverted  
2 input AND/OR P2 and P4 noninverted  
2 input AND/OR P2 and P4 inverted  
2 input AND/OR P2 inverted and P4  
2 input AND/OR P2 and P4 both inverted  
2 input AND/OR P3 and P4 noninverted  
2 input AND/OR P3 and P4 inverted  
2 input AND/OR P3 inverted and P4  
2 input AND/OR P3 and P4 both inverted  
1
0
0
X
1
1
0
1
1
1
0
1
0
1
0
0
1
1
0
0
1
1
0
1
X
1
0
1
1
0
1
0
1
X
Table 13. Output P5 Configuration  
BIT  
LOGIC LEVEL  
FUNCTION  
Output not cascaded to CLA1  
Output cascaded to CLA1  
Output noninverted  
0
1
0
1
D7  
D6  
Output inverted  
Table 14. CLA1 (P6–P9) Configuration Register Setting (0x29)  
REGISTER BIT  
FUNCTION  
D5  
D4  
D3  
D2  
0
1
0
1
0
0
1
1
0
0
1
1
0
1
0
1
D1  
D0  
0
0
1
1
0
1
0
1
0
1
0
1
0
0
1
1
XOR noninverted  
XOR P7 inverted  
0
1
X
X
XOR P6 inverted  
XOR both ports inverted  
3 input AND/OR all noninverted  
3 input AND/OR P6 inverted  
0
0
0
0
1
1
1
1
3 input AND/OR P7 inverted  
3 input AND/OR P8 inverted  
1
0
1
1
1
1
3 input AND/OR P6 and P7 inverted  
3 input AND/OR P6 and P8 inverted  
3 input AND/OR P7 and P8 inverted  
3 input AND/OR all inverted  
2 input AND/OR P6 and P7 noninverted  
2 input AND/OR P6 and P7 inverted  
2 input AND/OR P6 inverted and P7  
2 input AND/OR P6 and P7 both inverted  
X
18 ______________________________________________________________________________________  
2
SMBus/I C Interfaced 9-Port,  
Level-Translating GPIO and LED Driver with CLA  
Table 14. CLA1 (P6–P9) Configuration Register Setting (0x29) (continued)  
REGISTER BIT  
FUNCTION  
D5  
D4  
0
D3  
D2  
D1  
D0  
0
2 input AND/OR P6 and P8 noninverted  
2 input AND/OR P6 and P8 inverted  
2 input AND/OR P6 inverted and P8  
2 input AND/OR P6 and P8 both inverted  
2 input AND/OR P7 and P8 noninverted  
2 input AND/OR P7 and P8 inverted  
2 input AND/OR P7 inverted and P8  
2 input AND/OR P7 and P8 both inverted  
1
0
1
0
X
1
0
1
1
1
0
0
1
0
1
0
1
1
0
X
1
1
Table 15. Output P9 and Cascade P5  
Input Configuration  
Table 17. Configurable Logic-Array Lock  
Register (0x71)  
BIT  
LOGIC LEVEL  
FUNCTION  
Cascade input noninverted  
Cascade input inverted  
Output noninverted  
REGISTER DATA  
REGISTER  
D7–D2  
D1  
D0  
0
1
0
1
D7  
CLA0 and CLA1 configurable  
logic lock  
CLA1 CLA0  
D6  
CLA0 is not locked  
CLA0 is locked  
CLA1 is not locked  
CLA1 is locked  
X
X
0
1
0
1
X
X
Output inverted  
Table 16. Configurable Logic-Array  
Enable Register (0x70)  
REGISTER DATA  
REGISTER  
D7–D2  
D1  
D0  
CLA0 and CLA1 configurable  
logic enable  
CLA1 CLA0  
Ports P2–P5 are GPIO ports  
X
X
0
1
0
1
X
X
Ports P2–P5 are configurable logic  
CLA0  
Ports P6–P9 are GPIO ports  
Ports P6–P9 are configurable logic  
CLA1  
______________________________________________________________________________________ 19  
2
SMBus/I C Interfaced 9-Port,  
Level-Translating GPIO and LED Driver with CLA  
Table 18. Port I/O Registers (I/O Port 5 and 9 Configured as CLA Outputs, Registers  
0x05 and 0x09)  
REGISTER BIT  
DESCRIPTION  
VALUE  
FUNCTION  
D7  
Don’t care  
x
0
1
0
1
Don’t care.  
Refers inputs to the VL supply voltage; sets outputs to open drain.  
Refers inputs to the V supply voltage; sets outputs to push-pull.  
Port supply  
reference  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
DD  
Disables the transition interrupt.  
Enables the transition interrupt.  
Transition interrupt  
enable  
Transition detection  
bit 1  
0
0
Detects the next transition on the port input.  
Detects the next transition on the port input.  
Transition detection  
bit 0  
0
1
0
1
0
1
Disables debouncing of the input port.  
Enables debouncing of the input port.  
No transition has occurred since the last port read.  
A transition has occurred since the last port read.  
Port input is logic-low.  
Debounce  
Port transition state  
Port status  
Port input is logic-high.  
RSTPOR bit in the configure register. Each lock bit can  
only be written to once per power cycle.  
Configurable Logic Array (CLA)  
The CLA configures groups of four ports as either a  
combinational logic gate up to three inputs, or a two  
input exclusive OR/NOR gate (see Tables 12-15).  
Eight-port dual groups can be cascaded to form a  
two-level gate with the intermediate term brought out  
as an output or not, as desired. If fewer than three  
gate inputs are needed, the unused CLA input(s)  
(which can be any combination of the three CLA  
inputs) remain available as independent GPIO ports  
(see Figure 8). Use the configurable logic-array enable  
register (see Table 16) to enable ports as CLAs. Use the  
configurable logic-array lock register (see Table 17) to  
permanently lock in any logic-array combination of CLAs  
until the next power cycle. Setting D0 and D1 to logic-  
high in the configurable logic-array lock register locks the  
corresponding bit position in the configurable logic-array  
enable register. Additionally, the appropriate CLA_ regis-  
ter (addresses 0x28 and 0x29) cannot be changed.  
A CLA’s input(s) and output can be read through the  
serial interface like a normal input port. The MAX7302  
creates a gate that provides an independent real-time  
logic function, and every node of it can be examined  
through the I2C interface with optional debounce and  
transition detection.  
Setting bits D0 and D1 to logic-high enables the CLA  
functionality and sets ports P5 and P9 as CLA outputs  
(see Table 16). When in CLA mode, the port I/O regis-  
ter data is interpreted differently for CLA output ports  
(see Table 18). Bit D7 that normally selects the port  
direction is ignored because either port P5 or P9 is  
always an output. Bit D6 sets both the CLA output type  
(push-pull or open drain) and the logic threshold for  
reading the CLA output status back through the I2C  
interface. The other bits set the readback options, such  
as debounce and transition detection interrupt.  
The configurable logic-array lock register is unlocked  
on power-up, or by RST when configured by the  
20 ______________________________________________________________________________________  
2
SMBus/I C Interfaced 9-Port,  
Level-Translating GPIO and LED Driver with CLA  
ENABLE P2  
DEBOUNCE  
DEBOUNCE  
TRANSITION DETECTION  
TRANSITION DETECTION  
PIN P2  
INVERT P2  
PIN P3  
INVERT P3  
P2–P5  
[CLA0]  
ENABLE P3  
ENABLE P4  
DEBOUNCE  
TRANSITION DETECTION  
PIN P4  
INVERT P4  
INVERT P5  
P5 OUTPUT REGISTER  
PIN P5  
P5 IS CLA/GPIO  
ENABLE EXOR23  
ENABLE EXOR23 = /D5 * D4 IN CLA REGISTER 0x28  
INVERT P5 CASCADE  
ENABLE P5 CASCADE  
ENABLE P6  
DEBOUNCE  
DEBOUNCE  
TRANSITION DETECTION  
TRANSITION DETECTION  
PIN P6  
INVERT P6  
P6–P9  
[CLA1]  
PIN P7  
INVERT P7  
ENABLE P7  
ENABLE P8  
PIN P8  
DEBOUNCE  
TRANSITION DETECTION  
INVERT P8  
INVERT P9  
P9 OUTPUT REGISTER  
PIN P9  
P9 IS CLA/GPIO  
ENABLE EXOR67  
ENABLE EXOR67 = /D5 * D4 IN CLA REGISTER 0x29  
Figure 8. Configurable Logic-Array Structure  
P2  
P3  
P4  
P2  
P3  
P2  
P3  
P4  
P2  
P2  
P3  
P5  
P6  
P5  
P6  
P7  
P4  
P5  
P6  
P7  
P7  
P8  
P9  
P7  
P9  
P7  
P9  
P9  
P9  
EXAMPLE 1:  
EXAMPLE 2:  
EXAMPLE 3:  
EXAMPLE 4:  
EXAMPLE 5:  
REGISTER 0x28: DATA VALUE 8’b1011_1110 REGISTER 0x28: DATA VALUE 8’b0010_0011 REGISTER 0x28: DATA VALUE 8’b1001_1011 REGISTER 0x28: DATA VALUE 8’b0101_1010 REGISTER 0x28: DATA VALUE 8’b1110_1111  
REGISTER 0x29: DATA VALUE 8’b0000_1100 REGISTER 0x29: DATA VALUE 8’b0011_1101 REGISTER 0x29: DATA VALUE 8’b1101_1010 REGISTER 0x29: DATA VALUE 8’b0001_1010 REGISTER 0x29: DATA VALUE 8’b0101_1010  
Figure 9. Configurable Logic Examples  
______________________________________________________________________________________ 21  
2
SMBus/I C Interfaced 9-Port,  
Level-Translating GPIO and LED Driver with CLA  
Each transmission consists of a START condition (see  
Figure 11) sent by a master, followed by the MAX7302  
Serial Interface  
Serial Addressing  
The MAX7302 operates as a slave that sends and  
receives data through an I2C-compatible, 2-wire inter-  
face. The interface uses a serial-data line (SDA) and a  
serial-clock line (SCL) to achieve bidirectional commu-  
nication between master(s) and slave(s). A master (typ-  
ically a microcontroller) initiates all data transfers to and  
from the MAX7302 and generates the SCL clock that  
synchronizes the data transfer (see Figure 10).  
7-bit slave address plus R/W bit, a register address byte,  
one or more data bytes, and finally a STOP condition  
(see Figure 11).  
START and STOP Conditions  
Both SCL and SDA remain high when the interface is  
not busy. A master signals the beginning of a transmis-  
sion with a START (S) condition by transitioning SDA  
from high to low while SCL is high. When the master  
has finished communicating with the slave, it issues a  
STOP (P) condition by transitioning SDA from low to  
high while SCL is high. The bus is then free for another  
transmission (see Figure 11).  
The MAX7302 SDA line operates as both an input and  
an open-drain output. A 4.7kΩ (typ) pullup resistor is  
required on SDA. The MAX7302 SCL line operates only  
as an input. A 4.7kΩ (typ) pullup resistor is required on  
SCL if there are multiple masters on the 2-wire inter-  
face, or if the master in a single-master system has an  
open-drain SCL output.  
Bit Transfer  
One data bit is transferred during each clock pulse.  
The data on SDA must remain stable while SCL is high  
(see Figure 12).  
SDA  
t
BUF  
t
SU,STA  
t
SU,DAT  
t
HD,STA  
t
LOW  
t
SU,STO  
t
HD,DAT  
t
SCL  
t
HIGH  
HD,STA  
t
t
F
R
START CONDITION  
REPEATED START CONDITION  
STOP  
CONDITION  
START  
CONDITION  
RESET  
t
WL(RST)  
Figure 10. 2-Wire Serial Interface Timing Details  
SDA  
SCL  
SDA  
SCL  
S
P
START  
CONDITION  
STOP  
CONDITION  
DATA LINE STABLE; CHANGE OF DATA  
DATA VALID ALLOWED  
Figure 11. START and STOP Conditions  
Figure 12. Bit Transfer  
22 ______________________________________________________________________________________  
2
SMBus/I C Interfaced 9-Port,  
Level-Translating GPIO and LED Driver with CLA  
Acknowledge  
The acknowledge bit is a clocked 9th bit that the recipi-  
ent uses to handshake receipt of each byte of data (see  
Figure 13). Thus, each effectively transferred byte  
requires 9 bits. The master generates the 9th clock  
pulse, and the recipient pulls down SDA during the  
acknowledge clock pulse, such that the SDA line is sta-  
ble low during the high period of the clock pulse. When  
the master is transmitting to the MAX7302, the MAX7302  
generates the acknowledge bit because the MAX7302  
is the recipient. When the MAX7302 is transmitting to the  
master, the master generates the acknowledge bit  
because the master is the recipient.  
Message Format for Writing to the MAX7302  
A write to the MAX7302 comprises the transmission of the  
MAX7302’s slave address with the R/W bit set to zero, fol-  
lowed by at least 1 byte of information (see Figure 16).  
The first byte of information is the command byte. The  
command byte determines which register of the  
MAX7302 is to be written to by the next byte, if received.  
If a STOP condition is detected after the command byte is  
received, the MAX7302 takes no further action beyond  
storing the command byte (see Figure 15).  
Any bytes received after the command byte are data  
bytes. The first data byte goes into the internal register of  
the MAX7302 selected by the command byte (see Figure  
16). If multiple data bytes are transmitted before a STOP  
condition is detected, these bytes are generally stored in  
subsequent MAX7302 internal registers because the  
command byte address autoincrements (see Table 3).  
The Slave Address  
The MAX7302 has a 7-bit long slave address (Figure  
14). The 8th bit following the 7-bit slave address is the  
R/W bit. Set R/W bit low for a write command and high  
for a read command.  
Message Format for Reading  
The MAX7302 is read using the MAX7302’s internally  
stored command byte as an address pointer the same  
way the stored command byte is used as an address  
pointer for a write. The pointer autoincrements after  
each data byte is read using the same rules as for a  
write. Thus, a read is initiated by first configuring the  
MAX7302’s command byte by performing a write  
(Figure 15). The master can now read n consecutive  
bytes from the MAX7302 with the first data byte being  
read from the register addressed by the initialized com-  
mand byte (see Figure 17). When performing read-  
after-write verification, remember to reset the command  
byte’s address because the stored command byte  
address has been autoincremented after the write.  
The first 5 bits of the MAX7302 slave address (A6–A2)  
are always 1, 0, 0, 1, and 1. Slave address bit A1, A0 is  
selected by the address input AD0. AD0 can be con-  
nected to GND, V , SDA, or SCL. The MAX7302 has  
DD  
four possible slave addresses (see Table 5), and there-  
fore, a maximum of four MAX7302 devices can be con-  
trolled independently from the same interface.  
CLOCK PULSE  
START  
FOR ACKNOWLEDGE  
CONDITION  
SCL  
1
2
8
9
SDA BY  
TRANSMITTER  
SDA BY  
RECEIVER  
S
Figure 13. Acknowledge  
1
0
0
1
1
A1  
A0  
R/W  
ACK  
SDA  
MSB  
SCL  
LSB  
Figure 14. Slave Address  
D15 D14 D13 D12 D11 D10  
D9  
D8  
ACKNOWLEDGE FROM MAX7302  
SLAVE ADDRESS  
S
0
A
REGISTER ADDRESS  
A
P
R/W  
ACKNOWLEDGE FROM MAX7302  
Figure 15. Register Address Received  
______________________________________________________________________________________ 23  
2
SMBus/I C Interfaced 9-Port,  
Level-Translating GPIO and LED Driver with CLA  
WRITE TO OUTPUT PORTS REGISTERS  
(P4)  
1
2
3
4
5
6
7
8
9
SCL  
SDA  
SLAVE ADDRESS  
COMMAND BYTE  
S
1
0
0
1
1
A1  
A0  
0
A
0
0
0
0
0
1
0
0
A
MSB  
DATA  
LSB  
A  
P
STOP  
START CONDITION  
R/W  
ACKNOWLEDGE FROM SLAVE  
ACKNOWLEDGE FROM SLAVE  
ACKNOWLEDGE  
DATA VALID  
P9 TO P1  
t
PPV  
Figure 16. Write to Output Port Registers  
READ FROM INPUT PORTS REGISTERS  
1
2
3
4
5
6
7
8
9
SCL  
SDA  
S
1
0
0
1
1
A1  
A0  
1
A
MSB  
DATA1  
LSB  
A
MSB  
DATA4  
DATA4  
LSB NA  
P
STOP  
START CONDITION  
R/W  
ACKNOWLEDGE FROM SLAVE  
DATA2  
ACKNOWLEDGE FROM MASTER  
NO ACKNOWLEDGE  
DATA1  
DATA3  
P9 TO P1  
t
PH  
t
PSU  
Figure 17. Read from Input Port Registers  
INTERRUPT VALID/RESET  
1
2
3
4
5
6
7
8
9
SCL  
SDA  
S
1
0
0
1
1
A1  
A0  
1
A
MSB  
DATA2  
LSB  
A
MSB  
DATA3  
LSB  
NA  
P
START CONDITION  
R/W  
STOP  
NO ACKNOWLEDGE  
ACKNOWLEDGE FROM SLAVE  
DATA2  
ACKNOWLEDGE FROM MASTER  
DATA3  
DATA1  
P9 TO P1  
INT  
t
IR  
t
IR  
t
t
IV  
IV  
Figure 18. Interrupt and Reset Timing  
Operation with Multiple Masters  
If the MAX7302 is operated on a 2-wire interface with  
multiple masters, a master reading the MAX7302  
should use a repeated start between the write that sets  
the MAX7302’s address pointer, and the read(s) that  
takes the data from the location(s). This is because it is  
possible for master 2 to take over the bus after master  
1 has set up the MAX7302’s address pointer, but  
before master 1 has read the data. If master 2 subse-  
quently changes the MAX7302’s address pointer, then  
master 1’s delayed read can be from an unexpected  
location.  
Bus Timeout  
Clear device configuration register 0x27 bit D7 to  
enable the bus timeout function (see Table 4), or set it  
to disable the bus timeout function. Enabling the time-  
out feature resets the MAX7302 serial-bus interface  
when SCL stops either high or low during a read or  
write. If either SCL or SDA is low for more than nominal-  
ly 31ms after the start of a valid serial transfer, the inter-  
face resets itself and sets up SDA as an input. The  
MAX7302 then waits for another START condition.  
24 ______________________________________________________________________________________  
2
SMBus/I C Interfaced 9-Port,  
Level-Translating GPIO and LED Driver with CLA  
V
is the supply voltage used to drive the  
SUPPLY  
LED (V)  
Applications Information  
Hot Insertion  
Serial interfaces SDA, SCL, and AD0 remain high  
impedance with up to 6V asserted on them when the  
V
is the forward voltage of the LED (V)  
LED  
V
is the output low voltage of the MAX7302  
OL  
when sinking I  
(V)  
LED  
MAX7302 is powered down (V  
= 0V) independent of  
DD  
the voltages on the port supply V . When V  
= 0V, or  
DD  
I
is the desired operating current of the LED (A).  
LA  
LED  
if V  
falls below the MAX7302’s reset threshold, all I/O  
DD  
For example, to operate a 2.2V red LED at 20mA from a  
5V supply, R = (5 - 2.2 - 0.8) / 0.020 = 100Ω.  
ports become high impedance. The ports remain high  
LED  
impedance to signals between 0V and the port supply  
Driving Load Currents Higher than 25mA  
The MAX7302 can sink current from loads drawing  
more than 25mA by sharing the load across multiple  
ports configured as open-drain outputs. Use at least  
one output per 25mA of load current; for example, drive  
a 90mA white LED with four ports.  
V
. If a signal outside this range is applied to a port,  
LA  
the port’s protection diodes clamp the input signal to  
or 0V, as appropriate. If supply V is lower than  
V
LA  
LA  
the input signal, the port pulls up V and the protec-  
LA  
tion diode effectively powers any load on V from the  
LA  
input signal. This behavior is safe if the current through  
each protection diode is limited to 10mA.  
The register structure of the MAX7302 allows only one  
port to be manipulated at a time. Do not connect ports  
directly in parallel because multiple ports cannot be  
switched high or low at the same time, which is neces-  
sary to share a load safely. Multiple ports can drive  
high-current LEDs because each port can use its own  
external current-limiting resistor to set that port’s cur-  
rent through the LED.  
If it is important that I/O ports remain high impedance  
when all the supplies are powered down, including the  
port supply V , then ensure that there is no direct or  
LA  
parasitic path for MAX7302 input signals to drive current  
into either the regulator providing V or other circuits  
LA  
powered from V . One simple way to achieve this is  
LA  
with a series small-signal Schottky diode, such as the  
BAT54, between the port supply and the V input.  
LA  
The exceptions to this paralleling rule are the four ports,  
P2–P5, and the four ports, P6–P9. These groups of four  
ports can be programmed simultaneously through the  
pseudoregisters 0x3C and 0x3D, respectively. A write  
access to 0x3C writes the same data to registers 0x02  
through 0x05. A write access to 0x3D writes the same  
data to registers 0x06 through 0x09. Either of these  
groups of four ports can be paralleled to drive a load  
up to 100mA.  
Output Level Translation  
The open-drain output configuration of the ports allows  
them to level translate the outputs to lower (but not  
higher) voltages than the V  
supply. An external  
LA  
pullup resistor converts the high-impedance, logic-high  
condition to a positive voltage level. Connect the resis-  
tor to any voltage up to V . For interfacing CMOS  
LA  
inputs, a pullup resistor value of 220kΩ is a good start-  
ing point. Use a lower resistance to improve noise  
immunity, in applications where power consumption is  
less critical, or where a faster rise time is needed for a  
given capacitive load.  
Power-Supply Considerations  
The MAX7302 operates with a V  
of 1.62V to 3.6V. Bypass V  
power-supply voltage  
DD  
to GND with a 0.047µF  
DD  
capacitor as close as possible to the device. The port  
supply V is connected to a supply voltage between  
LA  
Driving LED Loads  
When driving LEDs, use a resistor in series with the  
LED to limit the LED current to no more than 25mA.  
Choose the resistor value according to the following  
formula:  
1.62V to 5.5V and bypassed with a 0.1µF capacitor as  
close as possible to the device. The V  
supply and port  
DD  
supply are independent and can be connected to differ-  
ent voltages or the same supply as required.  
Power supplies V  
either order or together.  
and V  
can be sequenced in  
LA  
DD  
R
LED  
= (V  
- V  
- VOL) / I  
LED LED  
SUPPLY  
where:  
R
is the resistance of the resistor in series with  
LED  
the LED (Ω)  
______________________________________________________________________________________ 25  
2
SMBus/I C Interfaced 9-Port,  
Level-Translating GPIO and LED Driver with CLA  
Pin Configurations  
TOP VIEW  
+
V
12  
11  
10  
9
LA  
1
2
3
4
5
6
7
8
16 V  
DD  
ADO  
RST  
15 SDA  
14 SCL  
13 P9  
GND  
P6  
13  
14  
15  
16  
SDA  
8
7
6
5
V
DD  
P1/INT  
P2/OSCIN  
P3/OSCOUT  
P4  
MAX7302  
MAX7302  
12 P8  
P5  
V
LA  
11 P7  
*EP  
P4  
AD0  
+
10 GND  
1
2
3
4
P5  
9
P6  
QSOP  
TQFN  
*EP = Exposed pad.  
Chip Information  
PROCESS: BiCMOS  
26 ______________________________________________________________________________________  
2
SMBus/I C Interfaced 9-Port,  
Level-Translating GPIO and LED Driver with CLA  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
______________________________________________________________________________________ 27  
2
SMBus/I C Interfaced 9-Port,  
Level-Translating GPIO and LED Driver with CLA  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
(NE - 1)  
X e  
MARKING  
E
E/2  
D2/2  
(ND - 1)  
e
X e  
D/2  
AAAA  
C
D2  
D
L
k
b
0.10 M  
C A B  
C
L
E2/2  
L
E2  
C
L
C
L
0.10  
C
0.08  
A
C
A2  
A1  
L
L
e
e
PACKAGE OUTLINE  
8, 12, 16L THIN QFN, 3x3x0.8mm  
1
21-0136  
I
2
28 ______________________________________________________________________________________  
2
SMBus/I C Interfaced 9-Port,  
Level-Translating GPIO and LED Driver with CLA  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
PKG  
8L 3x3  
12L 3x3  
16L 3x3  
EXPOSED PAD VARIATIONS  
REF. MIN. NOM. MAX. MIN. NOM. MAX. MIN. NOM. MAX.  
D2  
E2  
PKG.  
PIN ID  
JEDEC  
CODES  
A
b
0.70 0.75 0.80 0.70 0.75 0.80  
0.25 0.30 0.35 0.20 0.25 0.30  
0.70 0.75 0.80  
0.20 0.25 0.30  
MIN.  
0.25  
0.95  
0.95  
0.95  
0.95  
0.65  
0.65  
0.95  
0.95  
NOM. MAX.  
MIN.  
0.25  
0.95  
0.95  
0.95  
NOM. MAX.  
TQ833-1  
T1233-1  
T1233-3  
0.70  
1.10  
1.10  
1.10  
1.25  
1.25  
1.25  
0.70  
1.10  
1.10  
1.10  
1.10  
0.80  
0.80  
1.10  
1.10  
1.25  
1.25  
1.25  
1.25  
1.25  
0.95  
0.95  
0.35 x 45°  
0.35 x 45°  
0.35 x 45°  
0.35 x 45°  
0.35 x 45°  
0.225 x 45°  
0.225 x 45°  
0.35 x 45°  
0.35 x 45°  
WEEC  
D
2.90 3.00 3.10 2.90 3.00 3.10 2.90 3.00 3.10  
2.90 3.00 3.10 2.90 3.00 3.10 2.90 3.00 3.10  
WEED-1  
WEED-1  
WEED-1  
WEED-2  
WEED-2  
WEED-2  
WEED-2  
WEED-2  
E
e
0.65 BSC.  
0.50 BSC.  
0.50 BSC.  
T1233-4  
T1633-2  
1.25  
1.25  
0.95  
0.95  
1.25  
1.25  
L
0.35 0.55 0.75 0.45 0.55 0.65 0.30 0.40 0.50  
1.10  
0.80  
0.80  
1.10  
0.95  
0.65  
0.65  
0.95  
N
ND  
NE  
A1  
A2  
k
8
12  
16  
T1633F-3  
T1633FH-3  
T1633-4  
2
3
4
2
3
4
1.25  
1.25  
0
0.02 0.05  
0
0.02 0.05  
0
0.02 0.05  
T1633-5  
1.10  
0.95  
0.20 REF  
0.20 REF  
0.20 REF  
-
-
-
-
-
-
0.25  
0.25  
0.25  
NOTES:  
1. DIMENSIONING & TOLERANCING CONFORM TO ASME Y14.5M-1994.  
2. ALL DIMENSIONS ARE IN MILLIMETERS. ANGLES ARE IN DEGREES.  
3. N IS THE TOTAL NUMBER OF TERMINALS.  
4. THE TERMINAL #1 IDENTIFIER AND TERMINAL NUMBERING CONVENTION SHALL CONFORM TO  
JESD 95-1 SPP-012. DETAILS OF TERMINAL #1 IDENTIFIER ARE OPTIONAL, BUT MUST BE LOCATED  
WITHIN THE ZONE INDICATED. THE TERMINAL #1 IDENTIFIER MAY BE EITHER A MOLD OR  
MARKED FEATURE.  
5. DIMENSION b APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.20 mm AND 0.25 mm  
FROM TERMINAL TIP.  
6. ND AND NE REFER TO THE NUMBER OF TERMINALS ON EACH D AND E SIDE RESPECTIVELY.  
7. DEPOPULATION IS POSSIBLE IN A SYMMETRICAL FASHION.  
8. COPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS  
9. DRAWING CONFORMS TO JEDEC MO220 REVISION C.  
.
10. MARKING IS FOR PACKAGE ORIENTATION REFERENCE ONLY.  
11. NUMBER OF LEADS SHOWN ARE FOR REFERENCE ONLY.  
12. WARPAGE NOT TO EXCEED 0.10mm.  
PACKAGE OUTLINE  
8, 12, 16L THIN QFN, 3x3x0.8mm  
2
21-0136  
I
2
______________________________________________________________________________________ 29  
2
SMBus/I C Interfaced 9-Port,  
Level-Translating GPIO and LED Driver with CLA  
Revision History  
REVISION  
NUMBER  
REVISION  
DATE  
PAGES  
CHANGED  
DESCRIPTION  
0
7/07  
Initial release  
Corrected configuration 26 errors in Tables 1 and 2 and updated package outline  
for 16-pin QSOP.  
1
12/07  
8, 27  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
30 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2007 Maxim Integrated Products  
is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY