MAX7401ESA+T [MAXIM]

Switched Capacitor Filter, 1 Func, Bessel, Lowpass, CMOS, PDSO8, 0.150 INCH, SOIC-8;
MAX7401ESA+T
型号: MAX7401ESA+T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Switched Capacitor Filter, 1 Func, Bessel, Lowpass, CMOS, PDSO8, 0.150 INCH, SOIC-8

开关
文件: 总12页 (文件大小:198K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-4788; Rev 1; 6/99  
8 t h -Ord e r, Lo w p a s s , Be s s e l,  
S w it c h e d -Ca p a c it o r Filt e rs  
1/MAX7405  
Ge n e ra l De s c rip t io n  
Fe a t u re s  
The MAX7401/MAX7405 8th-order, lowpass, Bessel,  
switched-capacitor filters (SCFs) operate from a single  
+5V (MAX7401) or +3V (MAX7405) s up p ly. The s e  
devices draw only 2mA of supply current and allow cor-  
ner frequencies from 1Hz to 5kHz, making them ideal  
for low-power post-DAC filtering and anti-aliasing appli-  
cations. They feature a shutdown mode that reduces  
supply current to 0.2µA.  
8th-Order, Lowpass Bessel Filters  
Low Noise and Distortion: -82dB THD + Noise  
Clock-Tunable Corner Frequency (1Hz to 5kHz)  
100:1 Clock-to-Corner Ratio  
Single-Supply Operation  
+5V (MAX7401)  
Two clocking options are available on these devices:  
self-clocking (through the use of an external capacitor)  
or external clocking for tighter corner-frequency control.  
An offset adjust pin allows for adjustment of the DC out-  
put level.  
+3V (MAX7405)  
Low Power  
2mA (Operating Mode)  
0.2µA (Shutdown Mode)  
The MAX7401/MAX7405 Bessel filters provide low over-  
shoot and fast settling. Their fixed response simplifies  
the design task to selecting a clock frequency.  
Available in 8-Pin SO/DIP Packages  
Low Output Offset: ±5mV  
Ord e rin g In fo rm a t io n  
Ap p lic a t io n s  
PART  
TEMP. RANGE  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
PIN-PACKAGE  
8 SO  
ADC Anti-Aliasing  
Post-DAC Filtering  
Air-Bag Electronics  
CT2 Base Stations  
Speech Processing  
MAX7401CSA  
MAX7401CPA  
MAX7401ESA  
MAX7401EPA  
MAX7405CSA  
MAX7405CPA  
MAX7405ESA  
MAX7405EPA  
8 Plastic DIP  
8 SO  
8 Plastic DIP  
8 SO  
P in Co n fig u ra t io n  
8 Plastic DIP  
8 SO  
TOP VIEW  
8 Plastic DIP  
COM  
IN  
1
2
3
4
8
7
6
5
CLK  
SHDN  
OS  
Typ ic a l Op e ra t in g Circ u it  
MAX7401  
MAX7405  
GND  
V
DD  
OUT  
V
SUPPLY  
0.1µF  
SO/DIP  
V
DD  
SHDN  
OUT  
INPUT  
IN  
OUTPUT  
MAX7401  
MAX7405  
CLOCK  
CLK  
COM  
OS  
0.1µF  
GND  
________________________________________________________________ Maxim Integrated Products  
1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800.  
For small orders, phone 1-800-835-8769.  
8 t h -Ord e r, Lo w p a s s , Be s s e l,  
S w it c h e d -Ca p a c it o r Filt e rs  
ABSOLUTE MAXIMUM RATINGS  
V
DD  
to GND  
Continuous Power Dissipation (T = +70°C)  
A
MAX7401 ..............................................................-0.3V to +6V  
MAX7405 ..............................................................-0.3V to +4V  
8-Pin SO (derate 5.88mW/°C above +70°C)................471mW  
8-Pin DIP (derate 9.09mW/°C above +70°C)...............727mW  
Operating Temperature Ranges  
IN, OUT, COM, OS, CLK ...........................-0.3V to (V + 0.3V)  
DD  
SHDN........................................................................-0.3V to +6V  
OUT Short-Circuit Duration...................................................1sec  
MAX740 _C_A ....................................................0°C to +70°C  
MAX740 _E_A .................................................-40°C to +85°C  
Storage Temperature Range .............................-65°C to +150°C  
Lead Temperature (soldering, 10sec) .............................+300°C  
Stresses beyond those listed under Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS—MAX7401  
(V  
DD  
= + 5V, filte r outp ut me a s ure d a t OUT, 10k|| 50p F loa d to GND a t OUT, OS = COM, 0.1µF from COM to GND,  
SHDN = V , f  
= 100kHz, T = T  
to T , unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
DD CLK  
A
MIN  
PARAMETER  
FILTER CHARACTERISTICS  
Corner Frequency  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
1/MAX7405  
f
C
(Note 1)  
0.001 to 5  
100:1  
10  
kHz  
Clock-to-Corner Ratio  
Clock-to-Corner Tempco  
Output Voltage Range  
Output Offset Voltage  
f / f  
C
CLK  
ppm/°C  
V
0.25  
-0.1  
V
DD  
- 0.25  
±25  
V
V
IN  
= V  
= V / 2  
±5  
mV  
OFFSET  
COM  
DD  
DC Insertion Gain with  
Output Offset Removed  
V
COM  
= V / 2 (Note 2)  
0.15  
0.3  
dB  
dB  
DD  
Total Harmonic Distortion  
plus Noise  
f
= 200Hz, V = 4Vp-p,  
IN IN  
THD+N  
-82  
1
measurement bandwidth = 22kHz  
OS Voltage Gain to OUT  
Input Voltage Range at OS  
A
OS  
V/V  
V
V
OS  
V
±0.1  
COM  
V
/ 2  
- 0.5  
V
+ 0.5  
/ 2  
DD  
DD  
Input, COM externally driven  
Output, COM internally biased  
V
/ 2  
/ 2  
DD  
COM Voltage Range  
V
COM  
V
V
DD  
/ 2  
- 0.2  
V
/ 2  
DD  
V
DD  
+ 0.2  
Input Resistance at COM  
Clock Feedthrough  
R
75  
125  
10  
1
kΩ  
mVp-p  
kΩ  
COM  
Resistive Output Load Drive  
R
C
10  
50  
L
L
Maximum Capacitive Load at  
OUT  
500  
pF  
Input Leakage Current at COM  
Input Leakage Current at OS  
CLOCK  
±0.1  
±0.1  
±10  
±10  
µA  
µA  
SHDN = GND, V  
= 0 to V  
DD  
COM  
V
= 0 to (V - 1V) (Note 3)  
DD  
OS  
Internal Oscillator Frequency  
Clock Input Current  
Clock Input High  
f
C
= 1000pF (Note 4)  
= 0 or 5V  
CLK  
29  
38  
48  
kHz  
µA  
V
OSC  
OSC  
I
V
±15  
±30  
CLK  
V
V
- 0.5  
IH  
DD  
Clock Input Low  
V
IL  
0.5  
V
2
_______________________________________________________________________________________  
8 t h -Ord e r, Lo w p a s s , Be s s e l,  
S w it c h e d -Ca p a c it o r Filt e rs  
1/MAX7405  
ELECTRICAL CHARACTERISTICS—MAX7401 (continued)  
(V  
DD  
= + 5V, filte r outp ut me a s ure d a t OUT, 10k|| 50p F loa d to GND a t OUT, OS = COM, 0.1µF from COM to GND,  
SHDN = V , f  
= 100kHz, T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.)  
DD CLK  
A
MIN  
MAX  
A
PARAMETER  
POWER REQUIREMENTS  
Supply Voltage  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
DD  
4.5  
5.5  
3.5  
1
V
Supply Current  
I
DD  
Operating mode, no load, IN = OS = COM  
2
mA  
µA  
dB  
Shutdown Current  
I
0.2  
60  
SHDN = GND, CLK driven from 0 to V  
DD  
SHDN  
Power-Supply Rejection Ratio  
SHUTDOWN  
PSRR  
Measured at DC  
V
V
DD  
- 0.5  
V
V
SHDN Input High  
SDH  
V
SDL  
0.5  
SHDN Input Low  
±0.1  
±10  
µA  
SHDN Input Leakage Current  
V
= 0 to V  
DD  
SHDN  
ELECTRICAL CHARACTERISTICS—MAX7405  
(V  
DD  
= + 3V, filte r outp ut me a s ure d a t OUT, 10k|| 50p F loa d to GND a t OUT, OS = COM, 0.1µF from COM to GND,  
SHDN = V , f  
= 100kHz, T = T  
to T , unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
DD CLK  
A
MIN  
PARAMETER  
FILTER CHARACTERISTICS  
Corner Frequency  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
f
C
(Note 1)  
0.001 to 5  
100:1  
10  
kHz  
Clock-to-Corner Ratio  
Clock-to-Corner Tempco  
Output Voltage Range  
Output Offset Voltage  
f
/f  
CLK C  
ppm/°C  
V
0.25  
-0.1  
V
- 0.25  
±25  
DD  
V
V
IN  
= V  
= V / 2  
±5  
mV  
OFFSET  
COM  
DD  
DC Insertion Gain with  
Output Offset Removed  
V
COM  
= V / 2 (Note 2)  
0.03  
0.3  
dB  
dB  
DD  
Total Harmonic Distortion  
plus Noise  
f
= 200Hz, V = 2.5Vp-p,  
IN IN  
THD+N  
-84  
1
measurement bandwidth = 22kHz  
OS Voltage Gain to OUT  
Input Voltage Range at OS  
A
OS  
V/V  
V
V
OS  
V
±0.1  
COM  
V
- 0.1  
/ 2  
V
+ 0.1  
/ 2  
DD  
DD  
COM Voltage Range  
V
COM internally biased or externally driven  
V
V
/ 2  
COM  
COM  
DD  
Input Resistance at COM  
Clock Feedthrough  
R
75  
125  
10  
1
kΩ  
mVp-p  
kΩ  
Resistance Output Load Drive  
R
C
10  
50  
L
L
Maximum Capacitive  
Load at OUT  
500  
pF  
Input Leakage Current at COM  
Input Leakage Current at OS  
±0.1  
±0.1  
±10  
±10  
µA  
µA  
SHDN = GND, V  
= 0 to V  
DD  
COM  
V
= 0 to (V - 1V) (Note 3)  
DD  
OS  
_______________________________________________________________________________________  
3
8 t h -Ord e r, Lo w p a s s , Be s s e l,  
S w it c h e d -Ca p a c it o r Filt e rs  
ELECTRICAL CHARACTERISTICS—MAX7405 (continued)  
(V  
DD  
= + 3V, filte r outp ut me a s ure d a t OUT, 10k|| 50p F loa d to GND a t OUT, OS = COM, 0.1µF from COM to GND,  
SHDN = V , f  
= 100kHz, T = T  
to T , unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
DD CLK  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
CLOCK  
Internal Oscillator Frequency  
Clock Input Current  
Clock Input High  
f
C
= 1000pF (Note 4)  
OSC  
26  
34  
43  
kHz  
µA  
V
OSC  
I
V
CLK  
= 0 or 3V  
±15  
±30  
CLK  
V
V
- 0.5  
IH  
DD  
Clock Input Low  
V
IL  
0.5  
V
POWER REQUIREMENTS  
Supply Voltage  
V
2.7  
3.6  
3.5  
1
V
DD  
Supply Current  
I
DD  
Operating mode, no load, IN = OS = COM  
2
mA  
µA  
dB  
Shutdown Current  
I
0.2  
60  
SHDN = GND, CLK driven from 0 to V  
SHDN  
DD  
Power-Supply Rejection Ratio  
SHUTDOWN  
PSRR  
Measured at DC  
1/MAX7405  
V
V
DD  
- 0.5  
V
V
SHDN Input High  
SDH  
V
SDL  
0.5  
SHDN Input Low  
V
= 0 to V  
±0.1  
±10  
µA  
SHDN Input Leakage Current  
SHDN  
DD  
FILTER CHARACTERISTICS—MAX7401/MAX7405  
(V = +5V for MAX7401, V = +3V for MAX7405; filter output measured at OUT; 10k|| 50pF load to GND at OUT; SHDN = V ;  
DD  
DD  
DD  
V
V
V
/2; f  
= 100kHz; T = T  
to T ; unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
COM = OS = DD  
CLK  
A
MIN  
PARAMETER  
CONDITIONS  
MIN  
-1.0  
-3.3  
TYP  
-0.8  
-3.0  
-33  
MAX  
-0.6  
-2.7  
-29  
UNITS  
f
= 0.5f  
C
IN  
f
IN  
= f  
C
Insertion Gain Relative to  
DC Gain  
dB  
f
IN  
= 3f  
C
f
IN  
= 6f  
-79  
-74  
C
Note 1: The maximum f is defined as the clock frequency, f  
= 100 · f at which the peak SINAD drops to 68dB with a sinu-  
C,  
C
CLK  
soidal input at 0.2f .  
C
Note 2: DC insertion gain is defined as V  
/ V .  
IN  
OUT  
Note 3: OS voltages above V - 1V saturate the input and result in a 75µA typical input leakage current.  
DD  
3
3
Note 4: For MAX7401, f  
(kHz) 38 · 10 / C  
(pF). For MAX7405, f  
(kHz) 34 · 10 / C  
(pF).  
OSC  
OSC  
OSC  
OSC  
4
_______________________________________________________________________________________  
8 t h -Ord e r, Lo w p a s s , Be s s e l,  
S w it c h e d -Ca p a c it o r Filt e rs  
1/MAX7405  
Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s  
(V = +5V for MAX7401, V = +3V for MAX7405; f  
= 100kHz; SHDN = V ; V  
= V = V / 2; T = +25°C; unless otherwise  
CLK  
DD  
DD  
DD COM OS DD A  
noted.)  
FREQUENCY RESPONSE  
PASSBAND FREQUENCY RESPONSE  
PHASE RESPONSE  
10  
0
0.5  
0
0
-50  
f = 1kHz  
C
f = 1kHz  
C
f = 1kHz  
C
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-0.5  
-1.0  
-1.5  
-2.0  
-2.5  
-3.0  
-3.5  
-100  
-150  
-200  
-250  
-300  
-350  
-400  
0
1
2
3
4
5
0
202  
404  
606  
808  
1010  
0
400  
800  
1200  
1600  
2000  
INPUT FREQUENCY (kHz)  
INPUT FREQUENCY (Hz)  
INPUT FREQUENCY (Hz)  
OFFSET VOLTAGE  
vs. SUPPLY VOLTAGE  
SUPPLY CURRENT  
vs. TEMPERATURE  
SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
2.5  
2.4  
2.3  
2.2  
2.1  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
20  
15  
10  
5
2.03  
2.02  
2.01  
2.00  
1.99  
1.98  
1.97  
NO LOAD  
V
= V  
= V / 2  
IN COM DD  
NO LOAD  
MAX7401  
MAX7401  
MAX7405  
MAX7401  
MAX7405  
0
-5  
-10  
-15  
-20  
MAX7405  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
-40 -20  
0
20  
40  
60  
80 100  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
INTERNAL OSCILLATOR FREQUENCY  
vs. C CAPACITANCE  
NORMALIZED OSCILLATOR FREQUENCY  
vs. SUPPLY VOLTAGE  
OFFSET VOLTAGE vs. TEMPERATURE  
OSC  
1.0  
0.5  
0
10,000  
1.20  
1.15  
1.10  
1.05  
1.00  
0.95  
0.90  
0.85  
0.80  
C
OSC  
= 390pF  
V
= V  
= V / 2  
IN COM DD  
1000  
100  
10  
MAX7405  
-0.5  
-1.0  
-1.5  
MAX7401  
1
0.1  
-40 -20  
0
20  
40  
60  
80 100  
0.01  
0.1  
1
10  
100  
1000  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
TEMPERATURE (°C)  
C
OSC  
CAPACITANCE (nF)  
SUPPLY VOLTAGE (V)  
_______________________________________________________________________________________  
5
8 t h -Ord e r, Lo w p a s s , Be s s e l,  
S w it c h e d -Ca p a c it o r Filt e rs  
Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(V = +5V for MAX7401, V = +3V for MAX7405; f  
= 100kHz; SHDN = V ; V  
= V = V / 2; T = +25°C; unless otherwise  
CLK  
DD  
DD  
DD COM OS DD A  
noted.)  
MAX7401  
MAX7401  
NORMALIZED OSCILLATOR FREQUENCY  
vs. TEMPERATURE  
THD PLUS NOISE vs.  
INPUT SIGNAL AMPLITUDE  
THD PLUS NOISE vs. INPUT SIGNAL  
AMPLITUDE AND RESISTIVE LOAD  
1.04  
1.03  
1.02  
1.01  
1.00  
0.99  
0.98  
0.97  
0.96  
0
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
f
= 200Hz  
IN  
C
OSC  
= 390pF  
NO LOAD  
(SEE TABLE A)  
-10  
f = 1kHz  
C
MEASUREMENT BW = 22kHz  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
MAX7401  
R = 500Ω  
L
MAX7405  
R = 1kΩ  
L
A
B
R = 10kΩ  
L
1/MAX7405  
0
1
2
3
4
5
-40 -20  
0
20  
40  
60  
80 100  
0
1
2
3
4
5
AMPLITUDE (Vp-p)  
TEMPERATURE (°C)  
AMPLITUDE (Vp-p)  
MAX7405  
THD PLUS NOISE vs. INPUT SIGNAL  
AMPLITUDE AND RESISTIVE LOAD  
MAX7405  
THD PLUS NOISE vs.  
INPUT SIGNAL AMPLITUDE  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
f
= 200Hz  
NO LOAD  
(SEE TABLE A)  
IN  
f = 1kHz  
C
MEASUREMENT BW = 22kHz  
R = 500Ω  
L
R = 1kΩ  
L
A
B
R = 10kΩ  
L
-90  
0
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
AMPLITUDE (Vp-p)  
AMPLITUDE (Vp-p)  
Table A. THD Plus Noise vs. Input  
Signal Amplitude Test Conditions  
f
f
f
CLK  
(kHz)  
MEASUREMENT  
BANDWIDTH (kHz)  
IN  
C
TRACE  
(Hz)  
(kHz)  
A
B
1000  
200  
5
1
500  
100  
80  
22  
6
_______________________________________________________________________________________  
8 t h -Ord e r, Lo w p a s s , Be s s e l,  
S w it c h e d -Ca p a c it o r Filt e rs  
1/MAX7405  
P in De s c rip t io n  
PIN  
NAME  
FUNCTION  
Common Input. Biased internally at mid-supply. Bypass externally to GND with a 0.1µF capacitor. To over-  
ride internal biasing, drive with an external supply.  
1
COM  
2
3
4
5
IN  
Filter Input  
GND  
Ground  
V
DD  
Positive Supply Input: +5V for MAX7401, +3V for MAX7405  
Filter Output  
OUT  
OS  
Offset Adjust Input. To adjust output offset, bias OS externally. Connect OS to COM if no offset adjustment is  
needed. Refer to Offset and Common-Mode Input Adjustment section.  
6
7
8
Shutdown Input. Drive low to enable shutdown mode; drive high or connect to V for normal operation.  
DD  
SHDN  
CLK  
Clock Input. To override the internal oscillator, connect to an external clock; otherwise, connect an external  
capacitor (C  
) from CLK to GND to set the internal oscillator frequency.  
OSC  
_______________De t a ile d De s c rip t io n  
The MAX7401/MAX7405 Bessel filters provide low over-  
shoot and fast settling responses. Both parts operate  
with a 100:1 clock-to-corner frequency ratio and a 5kHz  
maximum corner frequency.  
A
2V/div  
Lowpass Bessel filters such as the MAX7401/MAX7405  
delay all frequency components equally, preserving the  
shape of step inputs (subject to the attenuation of the  
higher frequencies). Bessel filters settle quickly—an  
important characteristic in applications that use a multi-  
plexer (mux) to select an input signal for an analog-to-  
digital converter (ADC). An anti-aliasing filter placed  
between the mux and the ADC must settle quickly after  
a new channel is selected.  
B
C
2V/div  
2V/div  
200µs/div  
Figure 1 shows the difference between Bessel and  
Butterworth filters when a 1kHz square wave is applied  
to the filter input. With the filter cutoff frequencies set at  
5kHz, trace B shows the Bessel filter response and  
trace C shows the Butterworth filter response.  
A: 1kHz INPUT SIGNAL  
B: BESSEL FILTER RESPONSE; f = 5kHz  
C
C: BUTTERWORTH FILTER RESPONSE; f = 5kHz  
C
Figure 1. Bessel vs. Butterworth Filter Response  
Ba c k g ro u n d In fo rm a t io n  
Most switched-capacitor filters (SCFs) are designed with  
biquadratic sections. Each section implements two filter-  
ing poles, and the sections are cascaded to produce  
higher order filters. The advantage to this approach is  
ease of design. However, this type of design is highly  
sensitive to component variations if any sections Q is  
high. An alternative approach is to emulate a passive net-  
work using switched-capacitor integrators with summing  
and scaling. Figure 2 shows a basic 8th-order ladder filter  
structure.  
R1  
L5  
L7  
L1  
L3  
+
-
V
0
V
IN  
C6  
R2  
C2  
C4  
C8  
Figure 2. 8th-Order Ladder Filter Network  
_______________________________________________________________________________________  
7
8 t h -Ord e r, Lo w p a s s , Be s s e l,  
S w it c h e d -Ca p a c it o r Filt e rs  
A s witc he d -c a p a c itor filte r s uc h a s the MAX7401/  
Lo w -P o w e r S h u t d o w n Mo d e  
These devices feature a shutdown mode that is activat-  
ed by driving SHDN low. In shutdown mode, the filters  
supply current reduces to 0.2µA (typ) and its output  
becomes high impedance. For normal operation, drive  
MAX7405 emulates a passive ladder filter. The filters  
component sensitivity is low when compared to a cas-  
caded biquad design because each component affects  
the entire filter shape, not just one pole-zero pair. In other  
words, a mismatched component in a biquad design will  
have a concentrated error on its respective poles, while  
the same mismatch in a ladder filter design results in an  
error distributed over all poles.  
SHDN high or connect to V  
.
DD  
___________Ap p lic a t io n s In fo rm a t io n  
Offs e t a n d Co m m o n -Mo d e  
In p u t Ad ju s t m e n t  
Clo c k S ig n a l  
The voltage at COM sets the common-mode input volt-  
age and is biased at mid-supply with an internal resistor-  
d ivid e r. Byp a s s COM with a 0.1µF c a p a c itor a nd  
connect OS to COM. For applications requiring offset  
adjustment or DC level shifting, apply an external bias  
voltage through a resistor-divider network to OS, as  
shown in Figure 3. (Note: Do not leave OS unconnect-  
ed.) The output voltage is represented by this equation:  
External Clock  
The MAX7401/MAX7405 family of SCFs is designed for  
use with external clocks that have a 40% to 60% duty  
cycle. When using an external clock with these devices,  
drive CLK with a CMOS gate powered from 0 to V  
.
DD  
Varying the rate of the external clock adjusts the corner  
frequency of the filter as follows:  
1/MAX7405  
f = f  
/ 100  
C
CLK  
V
= (V - V  
) + V  
OUT  
IN  
COM OS  
Internal Clock  
When using the internal oscillator, connect a capacitor  
(C ) between CLK and ground. The value of the  
with V  
= V / 2 (typical), and where (V - V  
) is  
COM  
DD  
IN  
COM  
OSC  
lowpass filtered by the SCF, and V  
is added at the  
OS  
capacitor determines the oscillator frequency as follows:  
output stage. See the Electrical Characteristics for the  
voltage range of COM and OS. Changing the voltage on  
COM or OS significantly from mid-supply reduces the fil-  
ters dynamic range.  
3
K 10  
f
(kHz) =  
; C  
in pF  
OSC  
OSC  
C
OSC  
P o w e r S u p p lie s  
The MAX7401 operates from a single +5V supply, and  
the MAX7405 op e ra te s from a s ing le + 3V s up p ly.  
where K = 38 for MAX7401 and K = 34 for MAX7405.  
Minimize the stray capacitance at CLK so that it does  
not affect the internal oscillator frequency. Vary the rate  
of the internal oscillator to adjust the filters corner fre-  
quency by a 100:1 clock-to-corner frequency ratio. For  
example, an internal oscillator frequency of 100kHz  
produces a nominal corner frequency of 1kHz.  
Bypass V to GND with a 0.1µF capacitor. If dual sup-  
DD  
p lie s a re re q uire d (± 2.5V for MAX7401, ± 1.5V for  
MAX7405), connect COM to system ground and connect  
V
SUPPLY  
In p u t Im p e d a n c e vs . Clo c k Fre q u e n c ie s  
The MAX7401/MAX7405s input impedance is effectively  
that of a switched-capacitor resistor and is inversely pro-  
portional to frequency. The input impedance values  
determined below represent the average input imped-  
ance since the input current is not continuous. As a rule,  
use a driver with an output impedance less than 10% of  
the filters input impedance. Estimate the input imped-  
ance of the filter using the following formula:  
0.1µF  
V
DD  
SHDN  
OUT  
OUTPUT  
INPUT  
IN  
COM  
0.1µF  
0.1µF  
50k  
MAX7401  
MAX7405  
50k  
50k  
CLOCK  
CLK  
OS  
1
Z
=
IN  
f
C
IN  
(
)
CLK  
GND  
where f  
= clock frequency and C = 3.37pF.  
IN  
CLK  
Figure 3. Offset Adjustment Circuit  
8
_______________________________________________________________________________________  
8 t h -Ord e r, Lo w p a s s , Be s s e l,  
S w it c h e d -Ca p a c it o r Filt e rs  
1/MAX7405  
Table 1. Typical Harmonic Distortion  
TYPICAL HARMONIC DISTORTION (dB)  
f
f
f
V
IN  
(Vp-p)  
CLK  
C
IN  
FILTER  
MAX7401  
MAX7405  
(kHz)  
(kHz)  
(Hz)  
2nd  
-91  
-89  
-87  
-83  
3rd  
-83  
-79  
-83  
-82  
4th  
-90  
-92  
-87  
-88  
5th  
-93  
-92  
-88  
-88  
100  
500  
100  
500  
1
5
1
5
200  
1000  
200  
4
2
1000  
An t i-Alia s in g a n d P o s t -DAC Filt e rin g  
V+  
When using the MAX7401/MAX7405 for anti-aliasing or  
post-DAC filtering, synchronize the DAC and the filter  
clocks. If the clocks are not synchronized, beat frequen-  
cies may alias into the passband.  
*
V
DD  
SHDN  
The high clock-to-corner frequency ratio (100:1) also  
eases the requirements of pre- and post-SCF filtering. At  
the input, a lowpass filter prevents the aliasing of fre-  
quencies around the clock frequency into the passband.  
At the output, a lowpass filter attenuates the clock  
feedthrough.  
OUT  
OUTPUT  
INPUT  
IN  
COM  
MAX7401  
MAX7405  
V+  
V-  
CLOCK  
CLK  
OS  
0.1µF  
0.1µF  
A high clock-to-corner frequency ratio allows a simple  
RC lowpass filter, with the cutoff frequency set above  
the SCF corner frequency, to provide input anti-aliasing  
and reasonable output clock attenuation.  
GND  
V-  
Ha rm o n ic Dis t o rt io n  
Harmonic distortion arises from nonlinearities within the  
filter. These nonlinearities generate harmonics when a  
pure sine wave is applied to the filter input. Table 1 lists  
the MAX7401/MAX7405s typical harmonic-distortion  
values with a 10kload at TA = +25°C.  
*DRIVE SHDN TO V- FOR LOW-POWER SHUTDOWN MODE.  
Figure 4. Dual-Supply Operation  
GND to the negative supply. Figure 4 shows an example  
of dual-supply operation. Single- and dual-supply perfor-  
mance are equivalent. For either single- or dual-supply  
operation, drive CLK and SHDN from GND (V- in dual-  
supply operation) to V . For ±5V dual-supply applica-  
tions, use the MAX291–MAX297.  
DD  
Ch ip In fo rm a t io n  
In p u t S ig n a l Am p lit u d e Ra n g e  
The optimal input signal range is determined by observ-  
ing the voltage level at which the total harmonic distor-  
tion plus noise (THD+N) is minimized for a given corner  
frequency. The Typical Operating Characteristics show  
graphs of the devices’ THD+N response as the input  
signal’s peak-to-peak amplitude is varied. These mea-  
surements are made with OS and COM biased at mid-  
supply.  
TRANSISTOR COUNT: 1116  
_______________________________________________________________________________________  
9
8 t h -Ord e r, Lo w p a s s , Be s s e l,  
S w it c h e d -Ca p a c it o r Filt e rs  
________________________________________________________P a c k a g e In fo rm a t io n  
1/MAX7405  
10 ______________________________________________________________________________________  
8 t h -Ord e r, Lo w p a s s , Be s s e l,  
S w it c h e d -Ca p a c it o r Filt e rs  
1/MAX7405  
P a c k a g e In fo rm a t io n (c o n t in u e d )  
______________________________________________________________________________________ 11  
8 t h -Ord e r, Lo w p a s s , Be s s e l,  
S w it c h e d -Ca p a c it o r Filt e rs  
NOTES  
1/MAX7405  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
12 ____________________Ma x im In t e g ra t e d P ro d u c t s , 1 2 0 S a n Ga b rie l Drive , S u n n yva le , CA 9 4 0 8 6 4 0 8 -7 3 7 -7 6 0 0  
© 1999 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX7401ESA-T

Switched Capacitor Filter, 1 Func, Bessel, Lowpass, CMOS, PDSO8, 0.150 INCH, MS-012AA, SOIC-8
MAXIM

MAX7403

8th-Order, Lowpass, Elliptic, Switched-Capacitor Filters
MAXIM

MAX7403CPA

Analog Filter
MAXIM

MAX7403CPA+

Switched Capacitor Filter, 1 Func, Elliptic, Lowpass, CMOS, PDIP8, PLASTIC, DIP-8
MAXIM

MAX7403CSA

Analog Filter
MAXIM

MAX7403CSA+

暂无描述
MAXIM

MAX7403CSA-T

Switched Capacitor Filter, 1 Func, Elliptic, Lowpass, CMOS, PDSO8, 0.150 INCH, MS-012AA, SOIC-8
MAXIM

MAX7403EPA

Analog Filter
MAXIM

MAX7403EPA+

暂无描述
MAXIM

MAX7403ESA

Analog Filter
MAXIM

MAX7403ESA+

暂无描述
MAXIM

MAX7404

8th-Order, Lowpass, Elliptic, Switched-Capacitor Filters
MAXIM