MAX7411EUA [MAXIM]

5th-Order, Lowpass, Elliptic, Switched-Capacitor Filters; 5阶,低通,椭圆,开关电容滤波器
MAX7411EUA
型号: MAX7411EUA
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

5th-Order, Lowpass, Elliptic, Switched-Capacitor Filters
5阶,低通,椭圆,开关电容滤波器

有源滤波器 过滤器 开关 光电二极管 LTE
文件: 总12页 (文件大小:139K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1378; Rev 1; 10/98  
5 t h -Ord e r, Lo w p a s s , Ellip t ic ,  
S w it c h e d -Ca p a c it o r Filt e rs  
082/MAX7415  
Ge n e ra l De s c rip t io n  
Fe a t u re s  
The MAX7408/MAX7411/MAX7412/MAX7415 5th-order,  
lowpass, elliptic, switched-capacitor filters (SCFs) oper-  
ate from a single +5V (MAX7408/MAX7411) or +3V  
(MAX7412/MAX7415) supply. The devices draw only  
1.2mA of supply current and allow corner frequencies  
from 1Hz to 15kHz, making them ideal for low-power  
post-DAC filtering and anti-aliasing applications. They  
can be put into a low-power mode, reducing supply  
current to 0.2µA.  
5th-Order, Elliptic Lowpass Filters  
Low Noise and Distortion: -80dB THD + Noise  
Clock-Tunable Corner Frequency (1Hz to 15kHz)  
Single-Supply Operation  
+5V (MAX7408/MAX7411)  
+3V (MAX7412/MAX7415)  
Low Power  
Two clocking options are available: self-clocking (through  
the use of an external capacitor) or external clocking for  
tighter cutoff-frequency control. An offset-adjust pin  
allows for adjustment of the DC output level.  
1.2mA (operating mode)  
0.2µA (shutdown mode)  
Available in 8-Pin µMAX/DIP Packages  
Low Output Offset: ±4mV  
The MAX7408/MAX7412 d e live r 53d B of s top b a nd  
rejection and a sharp rolloff with a transition ratio of 1.6.  
The MAX7411/MAX7415 achieve a sharper rolloff with a  
transition ratio of 1.25 while still providing 37dB of stop-  
band rejection. Their fixed response limits the design  
task to selecting a clock frequency.  
Ord e rin g In fo rm a t io n  
PART  
TEMP. RANGE  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
PIN-PACKAGE  
8 Plastic DIP  
8 µMAX  
MAX7408CPA  
MAX7408CUA  
MAX7408EPA  
MAX7408EUA  
MAX7411CPA  
MAX7411CUA  
MAX7411EPA  
MAX7411EUA  
MAX7412CPA  
MAX7412CUA  
MAX7412EPA  
MAX7412EUA  
MAX7415CPA  
MAX7415CUA  
MAX7415EPA  
MAX7415EUA  
Ap p lic a t io n s  
8 Plastic DIP  
8 µMAX  
ADC Anti-Aliasing  
Post-DAC Filtering  
CT2 Base Stations  
Speech Processing  
8 Plastic DIP  
8 µMAX  
S e le c t o r Gu id e  
8 Plastic DIP  
8 µMAX  
OPERATING  
VOLTAGE (V)  
PART  
TRANSITION RATIO  
8 Plastic DIP  
8 µMAX  
MAX7408  
MAX7411  
MAX7412  
MAX7415  
r = 1.6  
r = 1.25  
r = 1.6  
r = 1.25  
+5  
+5  
+3  
+3  
8 Plastic DIP  
8 µMAX  
8 Plastic DIP  
8 µMAX  
8 Plastic DIP  
8 µMAX  
Typ ic a l Op e ra t in g Circ u it  
V
SUPPLY  
P in Co n fig u ra t io n  
0.1µF  
TOP VIEW  
V
DD  
SHDN  
OUT  
INPUT  
IN  
OUTPUT  
COM  
IN  
1
2
3
4
8
7
6
5
CLK  
SHDN  
OS  
MAX7408  
MAX7411  
MAX7412  
MAX7415  
MAX7408  
MAX7411  
MAX7412  
MAX7415  
GND  
CLOCK  
CLK  
COM  
OS  
V
DD  
OUT  
0.1µF  
GND  
µMAX/DIP  
________________________________________________________________ Maxim Integrated Products  
1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800.  
For small orders, phone 1-800-835-8769.  
5 t h -Ord e r, Lo w p a s s , Ellip t ic ,  
S w it c h e d -Ca p a c it o r Filt e rs  
ABSOLUTE MAXIMUM RATINGS  
V
DD  
to GND..............................................................-0.3V to +6V  
Operating Temperature Ranges  
IN, OUT, COM, OS, CLK, SHDN ................-0.3V to (V + 0.3V)  
OUT Short-Circuit Duration...................................................1sec  
MAX74_ _C_A .....................................................0°C to +70°C  
MAX74_ _E_A ..................................................-40°C to +85°C  
Storage Temperature Range .............................-65°C to +160°C  
Lead Temperature (soldering, 10sec) .............................+300°C  
DD  
Continuous Power Dissipation (T = +70°C)  
A
8-Pin DIP (derate 6.90mW/°C above +70°C)...............552mW  
8-Pin µMAX (derate 4.1mW/°C above +70°C) .............330mW  
Stresses beyond those listed under Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS—MAX7408/MAX7411  
(V = +5V; filter output measured at OUT, 10k|| 50pF load to GND at OUT, SHDN = V , OS = COM, 0.1µF from COM to GND,  
DD  
DD  
f
= 100kHz, T = T  
to T , unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
CLK  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
FILTER  
Corner-Frequency Range  
Clock-to-Corner Ratio  
Clock-to-Corner Tempco  
Output Voltage Range  
Output Offset Voltage  
f
(Note 1)  
0.001 to 15  
100:1  
kHz  
C
f
/f  
CLK C  
10  
ppm/°C  
V
0.25  
0
V
- 0.25  
±25  
DD  
V
V
IN  
= V  
= V / 2  
±4  
mV  
OFFSET  
COM DD  
DC Insertion Gain with Output  
Offset Removed  
V
COM  
= V / 2 (Note 2)  
0.2  
0.4  
dB  
DD  
Total Harmonic Distortion plus  
Noise  
f
= 200Hz, V = 4Vp-p,  
IN IN  
THD+N  
-81  
1
dB  
measurement bandwidth = 22kHz  
Offset Voltage Gain  
A
OS  
OS to OUT  
V/V  
V
2
V
V
DD  
2
DD  
DD  
2
Input, COM externally driven  
- 0.5  
- 0.2  
+ 0.5  
+ 0.2  
COM Voltage Range  
V
COM  
V
V
DD  
2
V
DD  
2
V
DD  
2
Output, COM internally driven  
Measured with respect to COM  
Input Voltage Range at OS  
Input Resistance at COM  
Clock Feedthrough  
V
±0.1  
180  
5
V
kΩ  
OS  
R
110  
COM  
T
A
= +25°C  
mVp-p  
kΩ  
082/MAX7415  
Resistive Output Load Drive  
R
C
10  
50  
1
L
L
Maximum Capacitive Load  
at OUT  
500  
pF  
Input Leakage Current at COM  
Input Leakage Current at OS  
CLOCK  
±0.2  
±0.2  
±10  
µA  
µA  
SHDN = GND, V  
= 0 to V  
DD  
COM  
V
= 0 to V  
±10  
OS  
DD  
Internal Oscillator Frequency  
f
C
= 1000pF (Note 3)  
OSC  
19  
27  
34  
kHz  
µA  
OSC  
Clock Output Current  
(Internal Oscillator Mode)  
I
±12  
±20  
CLK  
Clock Input High  
Clock Input Low  
V
4.5  
V
V
IH  
V
IL  
0.5  
2
_______________________________________________________________________________________  
5 t h -Ord e r, Lo w p a s s , Ellip t ic ,  
S w it c h e d -Ca p a c it o r Filt e rs  
082/MAX7415  
ELECTRICAL CHARACTERISTICS—MAX7408/MAX7411 (continued)  
(V = +5V; filter output measured at OUT, 10k|| 50pF load to GND at OUT, SHDN = V , OS = COM, 0.1µF from COM to GND,  
DD  
DD  
f
= 100kHz, T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.)  
A
MAX  
CLK  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
POWER REQUIREMENTS  
Supply Voltage  
V
4.5  
5.5  
1.5  
1
V
DD  
Supply Current  
I
DD  
Operating mode, no load  
1.16  
0.2  
70  
mA  
µA  
dB  
Shutdown Current  
I
SHDN  
SHDN = GND  
Power-Supply Rejection Ratio  
SHUTDOWN  
PSRR  
Measured at DC  
V
4.5  
V
V
SHDN Input High  
SDH  
V
SDL  
0.5  
SHDN Input Low  
V
= 0 to V  
±0.2  
±10  
µA  
SHDN Input Leakage Current  
DD  
SHDN  
ELECTRICAL CHARACTERISTICS—MAX7412/MAX7415  
(V = +3V, filter output measured at OUT pin, 10k|| 50pF load to GND at OUT, SHDN = V , OS = COM, 0.1µF from COM to  
DD  
DD  
GND, f  
= 100kHz; T = T  
to T , unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
CLK  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
FILTER CHARACTERISTICS  
Corner-Frequency Range  
Clock-to-Corner Ratio  
f
(Note 1)  
0.001 to 15  
100:1  
kHz  
C
f
/f  
CLK C  
Clock-to-Corner Tempco  
Output Voltage Range  
Output Offset Voltage  
10  
ppm/°C  
V
0.25  
0
V
DD  
- 0.25  
±25  
V
V
= V  
= V / 2  
±4  
mV  
OFFSET  
IN  
COM DD  
DC Insertion Gain with Output  
Offset Removed  
V
COM  
= V / 2 (Note 2)  
0.2  
0.4  
dB  
DD  
Total Harmonic Distortion plus  
Noise  
f
= 200Hz, V = 2.5Vp-p,  
IN IN  
THD+N  
-79  
1
dB  
V/V  
V
measurement bandwidth = 22kHz  
Offset Voltage Gain  
COM Voltage Range  
A
OS  
OS to OUT  
V
2
V
DD  
2
V
DD  
2
DD  
V
COM  
- 0.1  
+ 0.1  
Input Voltage Range at OS  
Input Resistance at COM  
Clock Feedthrough  
V
Measured with respect to COM  
±0.1  
180  
3
V
kΩ  
OS  
R
110  
COM  
T
= +25°C  
mVp-p  
kΩ  
A
Resistance Output Load Drive  
R
C
10  
50  
1
L
L
Maximum Capacitive Load  
at OUT  
500  
pF  
Input Leakage Current at COM  
Input Leakage Current at OS  
±0.2  
±0.2  
±10  
±10  
µA  
µA  
SHDN = GND, V  
= 0 to V  
DD  
COM  
V
= 0 to V  
DD  
OS  
_______________________________________________________________________________________  
3
5 t h -Ord e r, Lo w p a s s , Ellip t ic ,  
S w it c h e d -Ca p a c it o r Filt e rs  
ELECTRICAL CHARACTERISTICS—MAX7412/MAX7415 (continued)  
(V = +3V, filter output measured at OUT pin, 10k|| 50pF load to GND at OUT, SHDN = V , OS = COM, 0.1µF from COM to  
DD  
DD  
GND, f  
= 100kHz; T = T  
to T , unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
CLK  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
= 1000pF (Note 3)  
OSC  
MIN  
TYP  
MAX  
UNITS  
CLOCK  
Internal Oscillator Frequency  
f
C
19  
27  
34  
kHz  
µA  
OSC  
Clock Output Current  
(Internal Oscillator Mode)  
I
V
= 0 or 3V  
±12  
±20  
CLK  
CLK  
Clock Input High  
V
2.5  
2.7  
V
V
IH  
Clock Input Low  
V
IL  
0.5  
POWER REQUIREMENTS  
Supply Voltage  
V
DD  
3.6  
1.5  
1
V
Supply Current  
I
DD  
Operating mode, no load  
SHDN = GND  
1.13  
0.2  
70  
mA  
µA  
dB  
Shutdown Current  
Power-Supply Rejection Ratio  
SHUTDOWN  
I
SHDN  
PSRR  
Measured at DC  
V
2.5  
V
V
SHDN Input High  
SDH  
V
SDL  
0.5  
SHDN Input Low  
V
= 0 to V  
±0.2  
±10  
µA  
SHDN Input Leakage Current  
SHDN  
DD  
ELLIPTIC FILTER (r = 1.6) CHARACTERISTICS—MAX7408/MAX7412  
(V = +5V for MAX7408, V = +3V for MAX7412; filter output measured at OUT; 10k|| 50pF load to GND at OUT; SHDN = V ;  
DD  
DD  
DD  
V
COM  
= V = V / 2; f  
= 100kHz; T = T  
to T  
; unless otherwise noted. Typical values are at T = +25°C.) (Note 3)  
OS  
DD  
CLK  
A
MIN  
MAX  
A
PARAMETER  
CONDITIONS  
MIN  
-0.4  
-0.4  
-0.4  
-0.4  
-0.7  
TYP  
-0.2  
0.2  
MAX  
0.4  
0.4  
0.4  
0.4  
0.2  
-50  
-50  
-50  
UNITS  
f
= 0.34f  
IN  
C
C
C
C
f
IN  
= 0.63f  
f
IN  
= 0.84f  
-0.2  
0.2  
Insertion Gain  
with DC Gain Error Removed  
(Note 4)  
f
IN  
= 0.96f  
dB  
f
IN  
= f  
-0.2  
-53.4  
-53.4  
-53.4  
C
082/MAX7415  
f
IN  
= 1.60f  
C
C
C
f
IN  
= 1.90f  
f
IN  
= 4.62f  
4
_______________________________________________________________________________________  
5 t h -Ord e r, Lo w p a s s , Ellip t ic ,  
S w it c h e d -Ca p a c it o r Filt e rs  
082/MAX7415  
ELLIPTIC FILTER (r = 1.25) CHARACTERISTICS—MAX7411/MAX7415  
(V = +5V for MAX7411, V  
= +3V for MAX7415; filter output measured at OUT; 10k|| 50pF load to GND at OUT; SHDN = V  
DD  
DD  
DD,  
V
= V = V / 2; f  
= 100kHz; T = T  
to T  
; unless otherwise noted. Typical values are at T = +25°C.) (Note 3)  
COM  
OS  
DD  
CLK  
A
MIN  
MAX  
A
PARAMETER  
CONDITIONS  
MIN  
-0.4  
-0.4  
-0.4  
-0.4  
-0.7  
TYP  
-0.2  
0.2  
MAX  
0.4  
0.4  
0.4  
0.4  
0.2  
-34  
-35  
-35  
UNITS  
f
= 0.38f  
C
IN  
f
IN  
= 0.68f  
C
f
IN  
= 0.87f  
-0.2  
0.2  
C
Insertion Gain  
with DC Gain Error Removed  
(Note 4)  
f
IN  
= 0.97f  
C
dB  
f
IN  
= f  
-0.2  
-38.5  
-37.2  
-37.2  
C
f
IN  
= 1.25f  
C
f
IN  
= 1.43f  
C
f
IN  
= 3.25f  
C
Note 1: The maximum f is defined as the clock frequency f  
= 100 · f at which the peak SINAD drops to 68dB with a sinusoidal  
C
C
CLK  
input at 0.2f .  
C
Note 2: DC insertion gain is defined as V  
/ V .  
IN  
OUT  
3
Note 3: f  
(kHz) 27 · 10 / C  
(C  
in pF).  
OSC  
OSC  
OSC  
Note 4: The input frequencies, f , are selected at the peaks and troughs of the ideal elliptic frequency responses.  
IN  
Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s  
(V  
DD  
= +5V for MAX7408/MAX7411, V  
= +3V for MAX7412/MAX7415; f  
= 100kHz; SHDN = V ; V  
= V = V / 2;  
COM OS  
DD  
CLK  
DD  
DD  
T
A
= +25°C; unless otherwise noted.)  
MAX7408/MAX7412  
PASSBAND FREQUENCY RESPONSE  
MAX7408/MAX7412  
FREQUENCY RESPONSE  
MAX7411/MAX7415  
FREQUENCY RESPONSE  
0.2  
0
20  
20  
0
f = 1kHz  
C
r = 1.6  
f = 1kHz  
r = 1.25  
C
0
-20  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-1.2  
-20  
-40  
-60  
-80  
-100  
-120  
-40  
-60  
-80  
f = 1kHz  
C
r = 1.6  
-100  
-120  
0
204  
408  
612  
816  
1.02k  
0
1
2
3
4
5
0
1
2
3
4
5
INPUT FREQUENCY (Hz)  
INPUT FREQUENCY (kHz)  
INPUT FREQUENCY (kHz)  
_______________________________________________________________________________________  
5
5 t h -Ord e r, Lo w p a s s , Ellip t ic ,  
S w it c h e d -Ca p a c it o r Filt e rs  
Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(V  
DD  
= +5V for MAX7408/MAX7411, V  
= +3V for MAX7412/MAX7415; f  
= 100kHz; SHDN = V ; V  
= V = V / 2;  
COM OS  
DD  
CLK  
DD  
DD  
T
A
= +25°C; unless otherwise noted.)  
MAX7411/MAX7415  
PHASE RESPONSE  
MAX7411/MAX7415  
PASSBAND FREQUENCY RESPONSE  
0.2  
MAX7408/MAX7412  
PHASE RESPONSE  
0
-100  
-200  
-300  
-400  
-500  
-600  
0
-50  
f = 1kHz  
C
r = 1.25  
f = 1kHz  
C
r = 1.6  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-100  
-150  
-200  
-250  
-300  
-350  
-400  
f = 1kHz  
C
r = 1.25  
-1.2  
-1.4  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6  
INPUT FREQUENCY (kHz)  
0
204  
408  
612  
816  
1.02k  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6  
INPUT FREQUENCY (kHz)  
INPUT FREQUENCY (Hz)  
MAX7408  
SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. INPUT SIGNAL AMPLITUDE  
SUPPLY CURRENT vs. TEMPERATURE  
1.20  
1.19  
1.18  
1.17  
1.16  
1.15  
1.14  
1.13  
1.12  
1.11  
1.10  
1.17  
1.16  
1.15  
1.14  
1.13  
1.12  
1.11  
0
SEE TABLE A  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
V
= +5V  
= +3V  
DD  
V
DD  
B
4
A
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
0
1
2
3
5
-60 -40 -20  
0
20 40 60 80 100  
SUPPLY VOLTAGE (V)  
AMPLITUDE (Vp-p)  
TEMPERATURE (°C)  
MAX7411  
082/MAX7415  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. INPUT SIGNAL AMPLITUDE  
0
SEE TABLE A  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
Table A. THD + Noise Test Conditions  
f
f
f
CLK  
(kHz)  
MEASUREMENT  
BANDWIDTH (kHz)  
IN  
C
LABEL  
(Hz)  
(kHz)  
A
B
200  
1k  
1
5
100  
500  
22  
80  
B
B
A
A
4
0
1
2
3
5
AMPLITUDE (Vp-p)  
6
_______________________________________________________________________________________  
5 t h -Ord e r, Lo w p a s s ,  
Ellip t ic , S w it c h e d -Ca p a c it o r  
082/MAX7415  
Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(V  
DD  
= +5V for MAX7408/MAX7411, V  
= +3V for MAX7412/MAX7415; f  
= 100kHz; SHDN = V ; V  
= V = V / 2;  
COM OS  
DD  
CLK  
DD  
DD  
T
A
= +25°C; unless otherwise noted.)  
MAX7415  
MAX7412  
TOTAL HARMONIC DISTORTION PLUS NOISE  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. INPUT SIGNAL AMPLITUDE  
vs. INPUT SIGNAL AMPLITUDE  
0
0
SEE TABLE A  
SEE TABLE A  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
B
B
B
A
A
A
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
AMPLITUDE (Vp-p)  
AMPLITUDE (Vp-p)  
INTERNAL OSCILLATOR FREQUENCY  
vs. SUPPLY VOLTAGE  
INTERNAL OSCILLATOR PERIOD  
vs. SMALL CAPACITANCE (in pF)  
INTERNAL OSCILLATOR PERIOD  
vs. LARGE CAPACITANCE (in nF)  
27.4  
27.3  
27.2  
27.1  
27.0  
26.9  
26.8  
26.7  
26.6  
120  
100  
80  
60  
40  
20  
0
12  
10  
8
V
DD  
= +5V  
V
DD  
= +5V  
V
DD  
= +3V  
V
DD  
= +3V  
6
4
2
C
OSC  
= 1000pF  
0
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
SUPPLY VOLTAGE  
0
500 1000 1500 2000 2500 3000 3500  
CAPACITANCE (pF)  
0
50 100 150 200 250 300 350  
CAPACITANCE (nF)  
DC OFFSET VOLTAGE  
vs. SUPPLY VOLTAGE  
INTERNAL OSCILLATOR FREQUENCY  
vs. TEMPERATURE  
DC OFFSET VOLTAGE  
vs. TEMPERATURE  
28.0  
27.5  
27.0  
26.5  
26.0  
25.5  
0
-0.5  
-1.0  
-1.5  
-2.0  
-2.5  
-3.0  
-3.5  
0
-0.5  
-1.0  
-1.5  
-2.0  
-2.5  
-3.0  
-3.5  
-4.0  
V
= +3V  
DD  
V
= +3V  
DD  
V
DD  
= +5V  
V
DD  
= +5V  
C
OSC  
= 1000pF  
-50 -30 -10 10 30 50 70 90 110  
TEMPERATURE (°C)  
-40 -20  
0
20  
40  
60  
80 100  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
_______________________________________________________________________________________  
7
5 t h -Ord e r, Lo w p a s s , Ellip t ic ,  
S w it c h e d -Ca p a c it o r Filt e rs  
P in De s c rip t io n  
PIN  
NAME  
FUNCTION  
Common Input Pin. Biased internally at mid-supply. Bypass externally to GND with 0.1µF capacitor. To  
override internal biasing, drive with an external supply.  
1
COM  
2
3
4
5
IN  
Filter Input  
GND  
Ground  
V
DD  
Positive Supply Input, +5V for MAX7408/MAX7411 or +3V for MAX7412/MAX7415  
Filter Output  
OUT  
OS  
Offset Adjust Input. To adjust output offset, bias OS with a resistive voltage-divider between an external  
supply and ground. Connect OS to COM if no offset adjustment is needed.  
6
7
8
Shutdown Input. Drive low to enable shutdown mode; drive high or connect to V for normal operation.  
DD  
SHDN  
CLK  
Clock Input. Connect an external capacitor (C  
frequency. To override the internal oscillator, connect to an external clock.  
) from CLK to GND to set the internal oscillator  
OSC  
because each component affects the entire filter shape  
De t a ile d De s c rip t io n  
rather than a single pole-zero pair. In other words, a  
mismatched component in a biquadratic design has a  
concentrated error on its respective poles, while the  
same mismatch in a ladder filter design spreads its  
error over all poles.  
The MAX7408/MAX7411/MAX7412/MAX7415 family of  
5th-order, elliptic, lowpass filters provides sharp rolloff  
with good stopband rejection. All parts operate with a  
100:1 clock-to-corner frequency ratio and a 15kHz  
maximum corner frequency.  
Ellip t ic Ch a ra c t e ris t ic s  
Lowpass elliptic filters such as the MAX7408/MAX7411/  
MAX7412/MAX7415 p rovid e the s te e p e s t p os s ib le  
rolloff with frequency of the four most common filter  
types (Butterworth, Bessel, Chebyshev, and elliptic).  
The high Q value of the poles near the passband edge  
combined with the stopband zeros allows for the sharp  
attenuation characteristic of elliptic filters, making these  
devices ideal for anti-aliasing and post-DAC filtering in  
single-supply systems (see the Anti-Aliasing and Post-  
DAC Filtering section).  
Most switched-capacitor filters (SCFs) are designed  
with biquadratic sections. Each section implements two  
pole-zero pairs, and the sections can be cascaded to  
produce higher order filters. The advantage to this  
a p p roa c h is e a s e of d e s ig n. Howe ve r, this typ e of  
d e s ig n is hig hly s e ns itive to c omp one nt va ria tions  
if any sections Q is high. The MAX7408/MAX7411/  
MAX7412/MAX7415 use an alternative approach, which  
is to emulate a passive network using switched-capaci-  
tor integrators with summing and scaling. The passive  
network may be synthesized using CAD programs, or  
may be found in many filter books. Figure 1 shows a  
basic 5th-order ladder elliptic filter structure.  
In the frequency domain, the first transmission zero  
causes the filters amplitude to drop to a minimum level.  
Beyond this zero, the response rises as the frequency  
increases until the next transmission zero. The stop-  
082/MAX7415  
A switched-capacitor filter that emulates a passive lad-  
der filter retains many of the same advantages. The  
component sensitivity of a passive ladder filter is low  
when compared to a cascaded biquadratic design,  
band begins at the stopband frequency, f . At frequen-  
S
cies above f , the filters gain does not exceed the gain  
S
at f . The corner frequency, f , is defined as the point  
S
C
where the filter output attenuation falls just below the  
passband ripple. The transition ratio (r) is defined as  
the ratio of the stopband frequency to the corner fre-  
quency:  
C2  
L2  
C4  
L4  
R
S
r = f / f  
S
C
+
-
The MAX7408/MAX7412 have a translation ratio of 1.6  
a nd typ ic a lly 53d B of s top b a nd re je c tion. The  
MAX7411/MAX7415 have a transition ratio of 1.25 (pro-  
viding a steeper rolloff) and typically 37dB of stopband  
rejection.  
V
IN  
C1  
C3  
C5  
R
L
Figure 1. 5th-Order Ladder Elliptic Filter Network  
8
_______________________________________________________________________________________  
5 t h -Ord e r, Lo w p a s s , Ellip t ic ,  
S w it c h e d -Ca p a c it o r Filt e rs  
082/MAX7415  
V
SUPPLY  
RIPPLE  
0.1µF  
V
DD  
f
C
SHDN  
OUT  
f
f
C
S
TRANSITION RATIO =  
OUTPUT  
INPUT  
IN  
COM  
0.1µF  
0.1µF  
50k  
f
S
MAX7408  
MAX7411  
MAX7412  
MAX7415  
50k  
50k  
CLOCK  
CLK  
OS  
GND  
PASSBAND  
STOPBAND  
FREQUENCY  
f
C
f
S
Figure 2. Elliptic Filter Response  
Figure 3. Offset Adjustment Circuit  
Estimate the input impedance of the filter by using the  
following formula:  
Clo c k S ig n a l  
External Clock  
These SCFs are designed for use with external clocks  
that have a 40% to 60% duty cycle. When using an  
external clock, drive the CLK pin with a CMOS gate  
1
Z
=
IN  
(f  
C )  
IN  
CLK  
powered from 0 to V . Varying the rate of the external  
clock adjusts the corner frequency of the filter:  
DD  
where f  
= clock frequency and C = 1pF.  
IN  
CLK  
Lo w -P o w e r S h u t d o w n Mo d e  
f
CLK  
The MAX7408/MAX7411/MAX7412/MAX7415 have a  
shutdown mode that is activated by driving SHDN low.  
In shutdown mode, the filter supply current reduces to  
0.2µA, and the output of the filter becomes high imped-  
ance. For normal operation, drive SHDN high or con-  
f
=
C
100  
Internal Clock  
When using the internal oscillator, the capacitance  
(C  
) on CLK determines the oscillator frequency:  
nect to V  
.
OSC  
DD  
3
27 10  
Ap p lic a t io n s In fo rm a t io n  
Offs e t (OS ) a n d Co m m o n -Mo d e (COM)  
In p u t Ad ju s t m e n t  
f
(kHz) =  
OSC  
C
(pF)  
OSC  
Since C  
is in the low picofarads, minimize the stray  
OSC  
COM s e ts the c ommon-mod e inp ut volta g e a nd is  
biased at mid-supply with an internal resistor-divider. If  
the application does not require offset adjustment, con-  
nect OS to COM. For applications where offset adjust-  
me nt is re q uire d , a p p ly a n e xte rna l b ia s volta g e  
through a resistor-divider network to OS, as shown in  
Figure 3. For applications that require DC level shifting,  
adjust OS with respect to COM. (Note: Do not leave OS  
unconnected.) The output voltage is represented by  
these equations:  
capacitance at CLK so that it does not affect the inter-  
nal oscillator frequency. Varying the rate of the internal  
osc illa tor a d justs the filte r’s c orne r fre q ue nc y by a  
100:1 clock-to-corner frequency ratio. For example, an  
internal oscillator frequency of 100kHz produces a  
nominal corner frequency of 1kHz.  
In p u t Im p e d a n c e vs . Clo c k Fre q u e n c ie s  
The MAX7408/MAX7411/MAX7412/MAX7415s input  
impedance is effectively that of a switched-capacitor  
resistor (see the following equation), and is inversely  
proportional to frequency. The input impedance values  
determined by the equation represent the average input  
impedance, since the input current is not continuous. As  
a rule, use a driver with an output resistance less than  
10% of the filters input impedance.  
V
= (V V  
) + V  
OUT  
IN  
COM OS  
V
DD  
V
=
(typical)  
) is lowpass filtered by the SCF and  
COM  
COM  
2
where (V - V  
IN  
OS is added at the output stage. See the Electrical  
_______________________________________________________________________________________  
9
5 t h -Ord e r, Lo w p a s s , Ellip t ic ,  
S w it c h e d -Ca p a c it o r Filt e rs  
to the system ground and GND to the negative supply.  
V+  
Figure 4 shows an example of dual-supply operation.  
Single-supply and dual-supply performance are equiv-  
alent. For either single-supply or dual-supply operation,  
drive CLK and SHDN from GND (V- in dual supply  
*
V
DD  
SHDN  
OUT  
op e ra tion) to V . Us e the MAX7408/MAX7411 for  
DD  
OUTPUT  
±2.5, and use the MAX7412/MAX7415 for ±1.5V. For  
± 5V d ua l-s up p ly a p p lic a tions , s e e the MAX291/  
MAX292/MAX295/MAX296 a nd MAX293/MAX294/  
MAX297 data sheets.  
INPUT  
IN  
COM  
MAX7408  
MAX7411  
MAX7412  
MAX7415  
V+  
V-  
In p u t S ig n a l Am p lit u d e Ra n g e  
The optimal input signal range is determined by observ-  
ing the voltage level at which the signal-to-noise plus  
distortion (SINAD) ratio is maximized for a given corner  
frequency. The Typical Operating Characteristics show  
the THD+Noise response as the input signal’s peak-to-  
peak amplitude is varied.  
CLOCK  
CLK  
OS  
0.1µF  
0.1µF  
GND  
V-  
An t i-Alia s in g a n d P o s t -DAC Filt e rin g  
Whe n us ing the MAX7408/MAX7411/MAX7412/  
MAX7415 for anti-aliasing or post-DAC filtering, syn-  
chronize the DAC (or ADC) and the filter clocks. If the  
clocks are not synchronized, beat frequencies may  
alias into the desired passband.  
*CONNECT SHDN TO V- FOR LOW-POWER SHUTDOWN MODE.  
Figure 4. Dual-Supply Operation  
Characteristics table for the input voltage range of COM  
and OS. Changing the voltage on COM or OS signifi-  
cantly from mid-supply reduces the dynamic range.  
Ha rm o n ic Dis t o rt io n  
Harmonic distortion arises from nonlinearities within the  
filter. These nonlinearities generate harmonics when a  
pure sine wave is applied to the filter input. Table 1 lists  
typical harmonic distortion values with a 10kload at  
P o w e r S u p p lie s  
The MAX7408/MAX7411 operate from a single +5V  
supply and the MAX7412/MAX7415 operate from a sin-  
g le +3V s up p ly. Byp a s s V  
to GND with a 0.1µF  
DD  
capacitor. If dual supplies are required, connect COM  
T = +25°C.  
A
Table 1. Typical Harmonic Distortion  
TYPICAL HARMONIC DISTORTION (dB)  
f
f
V
CLK  
IN  
IN  
FILTER  
MAX7408  
MAX7411  
MAX7412  
MAX7415  
(kHz)  
(Hz)  
(Vp-p)  
2nd  
-85.5  
-88.2  
-90  
3rd  
-78.4  
-83.1  
-80  
4th  
-92.8  
-93  
5th  
-86.9  
-89.5  
-88  
500  
100  
500  
100  
500  
100  
500  
100  
1k  
200  
1k  
082/MAX7415  
4
4
2
2
-92  
200  
1k  
-88  
-86  
-92  
-88  
-86.6  
-88.2  
-87  
-93.1  
-85.1  
-86  
-90  
-85.6  
-85.7  
-90  
200  
1k  
-88.9  
-90  
200  
-90  
-87  
-90  
-90  
10 ______________________________________________________________________________________  
5 t h -Ord e r, Lo w p a s s , Ellip t ic ,  
S w it c h e d -Ca p a c it o r Filt e rs  
082/MAX7415  
Ch ip In fo rm a t io n  
TRANSISTOR COUNT: 1457  
________________________________________________________P a c k a g e In fo rm a t io n  
______________________________________________________________________________________ 11  
5 t h -Ord e r, Lo w p a s s , Ellip t ic ,  
S w it c h e d -Ca p a c it o r Filt e rs  
P a c k a g e In fo rm a t io n (c o n t in u e d )  
082/MAX7415  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
12 ____________________Ma x im In t e g ra t e d P ro d u c t s , 1 2 0 S a n Ga b rie l Drive , S u n n yva le , CA 9 4 0 8 6 4 0 8 -7 3 7 -7 6 0 0  
© 1998 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY