MAX746CSE [MAXIM]

High-Efficiency, PWM, Step-Down, N-Channel DC-DC Controller; 高效率, PWM ,降压型, N沟道DC- DC控制器
MAX746CSE
型号: MAX746CSE
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

High-Efficiency, PWM, Step-Down, N-Channel DC-DC Controller
高效率, PWM ,降压型, N沟道DC- DC控制器

稳压器 开关式稳压器或控制器 电源电路 开关式控制器 光电二极管
文件: 总16页 (文件大小:158K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-0192; Rev 1; 11/93  
Hig h -Effic ie n c y, P WM, S t e p -Do w n ,  
N-Ch a n n e l DC-DC Co n t ro lle r  
MAX746  
_______________Ge n e ra l De s c rip t io n  
____________________________Fe a t u re s  
The MAX746 is a high-efficiency, high-current, step-down  
DC-DC power-supply controller that drives external N-chan-  
nel FETs. It provides 93% to 96% efficiency from a 6V supply  
voltage with load currents ranging from 50mA up to 3A. It  
uses a pulse-width-modulating (PWM) current-mode control  
scheme to provide precise output regulation and low output  
noise. The MAX746's 4V to 15V input voltage range, fixed  
93% to 96% Efficiency for 50mA to 3A  
Output Currents  
4V to 15V Input Voltage Range  
Low 950µA Supply Current  
1.4µA Shutdown Current  
Drives External N-Channel FETs  
Fixed-Frequency Current-Mode PWM (Heavy Loads)  
Idle-Mode PFM (Light Loads)  
TM  
5V/adjustable (Dual-Mode ) output, and adjustable current  
limit make this device ideal for a wide range of applications.  
High efficiency is maintained with light loads due to a propri-  
TM  
etary automatic pulse-skipping control (Idle-Mode ) scheme  
Cycle-by-Cycle Current Limiting  
2V ±1.5% Accurate Reference Output  
Adjustable Soft-Start  
that minimizes switching losses by reducing the switching fre-  
quency at light loads. The low 950µA quiescent current and  
ultra-low 1.4µA shutdown current further extend battery life.  
Undervoltage Lockout  
External components are protected by the MAX746's cycle-  
by-cycle current limit. The MAX746 also features a 2V ±1.5%  
reference, a comparator for low-battery detection or level  
translating, and soft-start and shutdown capability.  
Precision Comparator for Power-Fail or  
Low-Battery Warning  
______________Ord e rin g In fo rm a t io n  
The MAX747d is c us s e d in a s e p a ra te d a ta s he e t—  
functions similarly to the MAX746, but drives P-channel logic  
level FETs.  
PART  
TEMP. RANGE  
0°C to +70°C  
PIN-PACKAGE  
16 Plastic DIP  
16 Narrow SO  
Dice*  
MAX746CPE  
MAX746CSE  
MAX746C/D  
MAX746EPE  
MAX746ESE  
MAX746MJE  
________________________Ap p lic a t io n s  
0°C to +70°C  
5V-to-3.3V Green PC Applications  
Notebook/Laptop Computers  
Personal Digital Assistants  
Battery-Operated Equipment  
Cellular Phones  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
-55°C to +125°C  
16 Plastic DIP  
16 Narrow SO  
16 CERDIP  
* Contact factory for dice specifications.  
__________Typ ic a l Op e ra t in g Circ u it  
__________________P in Co n fig u ra t io n  
INPUT 6V TO 15V  
TOP VIEW  
V+  
AV+  
40m  
LBO  
LBI  
SS  
GND  
V+  
CP  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
MAX746  
CS  
HIGH  
CP  
SHDN  
EXT  
OUTPUT  
5V  
ON/OFF  
39µH  
REF  
HIGH  
EXT  
AGND  
CS  
MAX746  
SHDN  
FB  
LOW-BATTERY  
DETECTOR INPUT  
440µF  
LBI  
OUT  
CC  
LOW-BATTERY  
DETECTOR OUTPUT  
LBO  
REF  
SS CC  
AGND  
GND  
FB  
AV+  
OUT  
DIP/SO  
™Dual-Mode and Idle-Mode are trademarks of Maxim Integrated Products.  
________________________________________________________________ Maxim Integrated Products  
1
Ca ll t o ll fre e 1 -8 0 0 -9 9 8 -8 8 0 0 fo r fre e s a m p le s o r lit e ra t u re .  
Hig h -Effic ie n c y, P WM, S t e p -Do w n ,  
N-Ch a n n e l DC-DC Co n t ro lle r  
ABSOLUTE MAXIMUM RATINGS  
Operating Temperature Ranges:  
Supply Voltage V+, AV+ to GND..............................-0.3V to 17V  
HIGH, EXT to GND....................................................-0.3V to 21V  
AGND to GND..........................................................-0.3V to 0.3V  
All Other Pins ................................................-0.3V to (V+ + 0.3V)  
MAX746C_E........................................................0°C to +70°C  
MAX746E_E .....................................................-40°C to +85°C  
MAX746MJE ..................................................-55°C to +125°C  
Junction Temperatures:  
Reference Current (I  
) ....................................................±2mA  
REF  
MAX746C_E/E_E..........................................................+150°C  
MAX746MJE.................................................................+175°C  
Storage Temperature Range .............................-65°C to +160°C  
Lead Temperature (soldering, 10sec) .............................+300°C  
Continuous Power Dissipation (T = +70°C)  
A
Plastic DIP (derate 10.53mW/°C above +70°C) ..........842mW  
Narrow SO (derate 8.70mW/°C above +70°C) ............696mW  
CERDIP (derate 10.00mW/°C above +70°C)...............800mW  
MAX746  
Stresses beyond those listed under Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V+ = 10V, I  
= 0A, I  
= 0µA, T = T  
to T , unless otherwise noted.)  
MAX  
LOAD  
REF  
A
MIN  
PARAMETER  
Input Voltage  
SYMBOL  
V+  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
4
15  
V
V+ = 6V to 15V, 0V < (V+ - CS) < 0.125V,  
FB = 0V (includes line and load regulation)  
Output Voltage  
V
4.85  
5.08  
5.25  
V
V
OUT  
MAX746C  
1.96  
1.95  
2.00  
2.00  
0.05  
2.04  
2.05  
(V+ - CS) = 0V,  
Feedback Voltage  
V
FB  
external feedback mode  
MAX746E/M  
V+ = 6V to 15V, FB = 0V  
Line Regulation  
Load Regulation  
Efficiency  
%/V  
%
V+ = 4V to 15V, external feedback mode  
0V < (V+ - CS) < 0.125V  
0.1  
2.5  
1.3  
94  
50  
Circuit of Figure 1, I  
V+ = 6V  
= 0.5A to 2.5A,  
LOAD  
%
µA  
mV  
nA  
OUT Leakage Current  
FB Input Logic Low  
V
OUT  
= 5V  
80  
40  
For dual-mode switchover  
FB = 2V  
FB Input Leakage Current  
1
100  
2.03  
2.04  
20  
MAX746C  
1.97  
1.96  
2.00  
2.00  
9
I
= 0µA  
Reference Voltage  
V
V
REF  
REF  
MAX746E/M  
I
= 0µA to 100µA  
Reference Load Regulation  
Soft-Start Source Current  
mV  
µA  
µA  
REF  
SS = 0V  
SS = 2V  
0.5  
1.0  
500  
1.1  
1.5  
Soft-Start Fault Current (Note 1)  
100  
MAX746C  
1.4  
1.7  
Operating, V+ = 15V  
MAX746E/M  
mA  
Supply Current (Note 2)  
Oscillator Frequency  
I
SUPP  
Operating, V+ = 10V  
Shutdown mode  
0.95  
1.4  
µA  
20  
MAX746C  
85  
80  
100  
100  
115  
120  
f
kHz  
OSC  
MAX746E/M  
2
_______________________________________________________________________________________  
Hig h -Effic ie n c y, P WM, S t e p -Do w n ,  
N-Ch a n n e l DC-DC Co n t ro lle r  
MAX746  
ELECTRICAL CHARACTERISTICS (continued)  
(V+ = 10V, I  
= 0A, I  
= 0µA, T = T  
to T , unless otherwise noted.)  
MAX  
LOAD  
REF  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Maximum Duty Cycle  
V+ = 6V  
91  
96  
%
V
Charge-Pump Output Voltage  
V
HIGH  
I
= 0mA to 10mA  
V+ + 4 V+ + 5 V+ + 6  
HIGH  
Current-Sense Amplifier  
Current-Limit Threshold  
V
LIMIT  
V+ – CS  
forced to 15V, I  
125  
150  
175  
mV  
EXT Output High  
V
= -1mA  
V
- 0.1  
V
V
HIGH  
EXT  
EXT  
HIGH  
EXT Output Low  
V
forced to 15V, I  
= 1mA  
0.25  
HIGH  
EXT Sink Current  
V
= 15V, V  
= 12.5V  
= 2.5V  
160  
270  
24  
mA  
mA  
kΩ  
HIGH  
EXT  
EXT Source Current  
Compensation Pin Impedance  
V
HIGH  
= 15V, V  
EXT  
MAX746C  
1.97  
1.96  
2.00  
2.00  
2.03  
2.04  
0.4  
100  
1
LBI Threshold Voltage  
LBI falling  
= 0.5mA  
V
MAX746E/M  
LBO Output Voltage Low  
LBI Input Leakage Current  
LBO Output Leakage Current  
SHDN Input Voltage Low  
SHDN Input Voltage High  
SHDN Input Leakage Current  
V
I
V
nA  
µA  
V
OL  
SINK  
LBI = 2.5V  
V+ = 15V, LBO = 15V, LBI = 2.5V  
V
0.4  
IL  
V
2.0  
V
IH  
SHDN = 10V  
0.1  
100  
nA  
Note 1: The soft-start fault current is the current sink capability of SS when V  
< 1V or when the device is in shutdown.  
REF  
Note 2:  
I
is the supply current drawn by V+, which includes the current drawn by the charge pump. The charge pump  
SUPP  
doubles the current drawn by HIGH from the V+ input, so I  
= I + 2I  
.
SUPP  
V+  
HIGH  
_______________________________________________________________________________________  
3
Hig h -Effic ie n c y, P WM, S t e p -Do w n ,  
N-Ch a n n e l DC-DC Co n t ro lle r  
__________________________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s  
(Circuit of Figure 1a, T = +25°C, unless otherwise noted.)  
A
CONTINUOUS-CONDUCTION MODE  
BOUNDARY AND CORRESPONDING  
PEAK INDUCTOR CURRENT  
N0-LOAD SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
NO-LOAD SUPPLY CURRENT  
vs. TEMPERATURE  
15  
13  
1.2  
1.1  
4
3
DISCONTINUOUS-  
CONDUCTION REGION  
V+ = 9V  
= 5V  
V
OUT  
MAX746  
PEAK  
INDUCTOR  
CURRENT  
11  
2
1
0
1.0  
0.9  
ENTIRE  
CIRCUIT  
9
7
CONTINUOUS-  
CONDUCTION  
REGION  
SCHOTTKY DIODE  
LEAKAGE EXCLUDED  
5
0.8  
0.7  
0.9  
1.1  
1.3  
1.5  
1.7  
-75 -50 -25  
0
25 50 75 100 125  
5
7
9
11  
13  
15  
OUTPUT CURRENT (A)  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
EFFICIENCY vs. OUTPUT CURRENT  
EFFICIENCY vs. OUTPUT CURRENT  
EFFICIENCY vs. OUTPUT CURRENT  
100  
100  
100  
CIRCUIT OF FIGURE 1c  
= 5V  
CIRCUIT OF FIGURE 1b  
V
V
= 3.3V  
OUT  
OUT  
V+ = 5V  
V
= 6V  
IN  
90  
90  
90  
V
IN  
= 6V  
V
IN  
= 12V  
V
IN  
= 9V  
V
IN  
= 12V  
80  
70  
80  
70  
80  
70  
CIRCUIT OF FIGURE 1a  
= 5V  
V
OUT  
0.01  
0.1  
1
10  
0.01  
0.1  
1
10  
0.01  
0.1  
1
10  
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
PEAK INDUCTOR CURRENT  
vs. OUTPUT CURRENT  
PEAK INDUCTOR CURRENT  
vs. OUTPUT CURRENT  
PEAK INDUCTOR CURRENT  
vs. OUTPUT CURRENT  
1.5  
1.0  
4
4
3
2
1
CIRCUIT OF FIGURE 1a  
CIRCUIT OF FIGURE 1c  
= 5V  
CIRCUIT OF FIGURE 1b  
V
OUT  
= 5V  
V
= 3.3V  
V
OUT  
OUT  
V+ = 5V  
3
2
1
V
IN  
= 12V  
V
IN  
= 12V  
0.5  
0
V
IN  
= 9V  
V
IN  
= 6V  
V
IN  
= 6V  
0
0
0.01  
0.1  
1
10  
0.01  
0.1  
1
10  
0.01  
0.1  
1
10  
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
4
_______________________________________________________________________________________  
Hig h -Effic ie n c y, P WM, S t e p -Do w n ,  
N-Ch a n n e l DC-DC Co n t ro lle r  
MAX746  
____________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(Circuit of Figure 1a, T = +25°C, unless otherwise noted.)  
A
LOAD-TRANSIENT RESPONSE  
LINE-TRANSIENT RESPONSE  
LOAD-TRANSIENT RESPONSE  
10V  
A
8V  
A
B
A
B
B
200µs/div  
500ms/div  
1ms/div  
A: LOAD CURRENT, 0.1A TO 1.5A, 1A/div  
A: V+ = 8V TO 10V, 2V/div  
A: LOAD CURRENT, 0.1A TO 1.5A, 1A/div  
B: V RIPPLE, 50mV/div, AC-COUPLED  
OUT  
B: V RIPPLE, 100mV/div  
OUT  
B: V RIPPLE, 50mV/div, AC COUPLED  
OUT  
V+ = 10V  
I
= 3A  
V+ = 10V  
OUT  
MODERATE-LOAD, IDLE-MODE  
WAVEFORMS  
CONTINUOUS-CONDUCTION MODE  
WAVEFORMS  
DISCONTINUOUS-CONDUCTION  
IDLE-MODE WAVEFORMS  
A
A
B
A
B
C
B
C
0V  
C
20µs/div  
20µs/div  
5µs/div  
A: EXT VOLTAGE, 10V/div  
A: EXT VOLTAGE, 10V/div  
A : EXT VOLTAGE, 20V/div  
B: INDUCTOR CURRENT, 500mA/div  
B: INDUCTOR CURRENT, 500mA/div  
B : INDUCTOR CURRENT 1A/div  
C: V RIPPLE, 50mV/div, AC-COUPLED  
OUT  
C: V RIPPLE, 50mV/div, AC-COUPLED  
OUT  
C : V RIPPLE, 50mV/div  
OUT  
V+ = 6V, I = 480mA  
OUT  
V+ = 10V, I = 75mA  
OUT  
V+ = 10V, I = 3A  
OUT  
_______________________________________________________________________________________  
5
Hig h -Effic ie n c y, P WM, S t e p -Do w n ,  
N-Ch a n n e l DC-DC Co n t ro lle r  
______________________________________________________________P in De s c rip t io n  
PIN  
1
NAME  
LBO  
LBI  
FUNCTION  
Low-battery output is an open-drain output that goes low when LBI is less than 2V. Connect to V+ through a  
pull-up resistor. Leave floating if not used. LBO is disabled in shutdown mode.  
2
Input to the low-battery comparator. Tie to V+ or GND if not used.  
MAX746  
Soft-start limits start-up surge currents. On power-up, it charges the soft-start capacitor, slowly raising the peak  
current limit to the level set by the sense resistor.  
3
SS  
2V reference output can source 100µA for external loads. Bypass with 1µF. The reference is disabled in shutdown mode.  
4
REF  
Active-high logic input. In shutdown mode, V  
Connect to GND for normal operation.  
= 0V and the supply current is reduced to less than 20µA.  
OUT  
5
SHDN  
Feedback input for adjustable-output operation. Connect to GND for fixed 5V output. Use a resistor-divider net-  
work to adjust the output voltage (see Setting the Output Voltage section).  
6
7
8
9
FB  
CC  
AC compensation input for the error amplifier. Connect a capacitor between CC and GND for fixed 5V-output  
operation (see Compensation Capacitor section).  
Quiet supply voltage for sensitive analog circuitry. Also the noninverting input to the current-sense amplifier. A  
separate bypass capacitor is not recommended for AV+.  
AV+  
OUT  
Output voltage sense that connects to the internal resistor divider. Bypass with 0.1µF to AGND, close to the IC  
for fixed output operation. Leave unconnected for adjustable-output operation.  
10  
11  
CS  
Inverting input to the current-sense amplifier. Connect the current-sense resistor (R  
) from AV+ to CS.  
SENSE  
AGND  
Quiet analog ground.  
Power MOSFET gate-drive output that swings between HIGH and GND. EXT is not protected against short cir-  
cuits to V+ or AGND.  
12  
EXT  
13  
14  
15  
16  
HIGH  
CP  
Regulated high-side voltage, 5V above the V+ supply voltage.  
Charge-pump output that generates a 0V to V+, 50kHz square wave (see Charge Pump section).  
High-current supply voltage for the charge pump.  
V+  
GND  
High-current ground return for the output driver and charge pump.  
current-mode pulse-width-modulating (PWM) control  
____________________Ge t t in g S t a rt e d  
scheme that results in tight output-voltage regulation,  
excellent load- and line-transient response, low noise,  
and high efficiency over a wide range of load currents.  
Efficiency at light loads is further enhanced by a propri-  
etary idle-mode switching control scheme that skips  
oscillator cycles in order to reduce switching losses.  
Other features include undervoltage lockout, shutdown,  
and a low-battery detection comparator.  
Figure 1a shows the 5V-output 3A standard application  
circuit, Figure 1b shows the 3.3V-output 3A standard  
application circuit, and Figure 1c shows the 5V-output  
1.5A standard application circuit. Most applications will  
be served by these circuits. To learn more about compo-  
nent selection for particular applications, refer to the  
Design Procedure section. To learn more about the oper-  
ation of the MAX746, refer to the Detailed Description.  
Op e ra t in g P rin c ip le  
Figure 2 is the MAX746 block diagram. The MAX746  
regulates using an inner current-feedback loop and an  
outer voltage-feedback loop. A slope-compensation  
scheme stabilizes the current loop; the dominant pole,  
forme d b y the outp ut filte r c a p a c itor a nd the loa d ,  
stabilizes the voltage loop.  
_______________De t a ile d De s c rip t io n  
The MAX746 monolithic, CMOS, step-down, switch-  
mode power-supply controller provides high-side drive  
for external logic-level N-channel FETs. A charge pump  
generates a voltage 5V above the supply voltage for  
high-side drive capability. The MAX746 uses a unique  
6
_______________________________________________________________________________________  
Hig h -Effic ie n c y, P WM, S t e p -Do w n ,  
N-Ch a n n e l DC-DC Co n t ro lle r  
MAX746  
V
IN  
6V TO 15V  
C9  
4.7µF  
C3  
0.1µF  
C2  
100µF  
D4  
1N5817  
D3  
1N914  
D2  
1N914  
R2  
R1  
15  
V+  
*
*
C8  
0.1µF  
2
3
14  
13  
8
LBI  
CP  
HIGH  
AV+  
C5  
0.1µF  
SS  
R
SENSE  
40mΩ  
C6  
10  
1.0µF  
4
6
MAX746  
CS  
REF  
Q1  
Si9410DY  
12  
7
L1  
39µH  
EXT  
N
FB  
5V  
AT 3A  
5
CC  
SHDN  
AGND  
D1  
NSQ03A03  
C7  
2.7nF  
C1  
430µF  
11  
9
1
OUT  
C4  
0.1µF  
R3  
100k  
LB0  
GND  
16  
SEE TABLE 2 FOR DIODE SELECTION.  
*
Figure 1a. 5V Standard Application Circuit (15W)  
Under these conditions, the inductor must be scaled to the  
current-sense resistor value.  
Dis c o n t in u o u s -/Co n t in u o u s -  
Co n d u c t io n Mo d e s  
The MAX746 is designed to operate in continuous-con-  
duction mode (CCM) but can also operate in discontinu-  
ous-conduction mode (DCM), making it ideal for variable-  
load applications. In DCM, the current starts at zero and  
returns to zero on each cycle. In CCM, the inductor current  
never returns to zero; it consists of a small AC component  
superimposed on a DC offset. This results in higher current  
capability because the AC component in the inductor cur-  
rent waveform is small. It also results in lower output noise,  
since the inductor does not exhibit the ringing that would  
occur if the current reached zero (see inductor waveforms  
in the Typical Operating Characteristics). To transfer equal  
amounts of energy to the load in one cycle, the peak cur-  
rent level for the discontinuous waveform must be much  
larger than the peak current for the continuous waveform.  
Overcompensation adds a pole to the outer voltage feed-  
back-loop response, degrading loop stability. This may cause  
voltage-mode pulse-frequency-modulation instead of PWM  
operation. Undercompensation results in inner current feed-  
back-loop instability, and may cause the inductor current to  
staircase. Ideal matching between the sense resistor and  
inductor is not required; it can differ by ±30% or more.  
Os c illa t o r a n d EXT Co n t ro l  
The oscillator frequency is nominally 100kHz, and the duty  
cycle varies from 5% to 96%, depending on the input/out-  
put voltage ratio. EXT, which provides the gate drive for the  
external logic-level N-FET, is switched between HIGH and  
GND at the switching frequency. EXT is controlled by a  
unique two-comparator control scheme consisting of a PWM  
comparator and an idle-mode comparator (Figure 2). The  
PWM comparator determines the cycle-by-cycle peak cur-  
rent with heavy loads, and the idle-mode comparator sets  
S lo p e Co m p e n s a t io n  
Slope compensation stabilizes the inner current-feedback  
loop by adding a ramp signal to the current-sense amplifier  
output. Ideal slope compensation can be achieved by  
adding a linear ramp, with the same slope as the declining  
inductor current, to the rising inductor current-sense voltage.  
the light-load peak current. As V  
begins to drop, EXT  
OUT  
goes high and remains high until both comparators trip.  
With heavy loads, the idle-mode comparator trips first and  
the PWM control comparator determines the EXT on-time;  
_______________________________________________________________________________________  
7
Hig h -Effic ie n c y, P WM, S t e p -Do w n ,  
N-Ch a n n e l DC-DC Co n t ro lle r  
V
IN  
4.5V TO 6V  
C11  
1µF  
C3  
0.1µF  
C2  
100µF  
D2  
D3  
D5  
D6  
D4  
1N5817  
1N914 1N914 1N914 1N914  
R2  
R1  
15  
V+  
C8  
0.1µF  
C9  
1µF  
C10  
0.1µF  
MAX746  
2
14  
13  
8
LBI  
CP  
HIGH  
AV+  
C5  
0.1µF  
3
4
SS  
R
SENSE  
C6  
1µF  
40mΩ  
10  
MAX746  
CS  
REF  
Q1  
Si9410DY  
12  
7
L1  
22µH  
EXT  
N
*
3.3V  
AT 3A  
CC  
5
SHDN  
AGND  
D1  
C4  
0.1µF  
C3  
660µF  
9
6
NSQ03A03  
R5  
13k (1%)  
OUT  
11  
FB  
C7  
2nF  
R4  
20k (1%)  
R3  
100k  
1
LB0  
GND  
16  
SUMIDA CDR125 22µH SURFACE-MOUNT INDUCTOR  
*
Figure 1b. 3.3V Standard Application Circuit (9.9W)  
with light loads, the PWM comparator trips quickly and the  
idle-mode comparator sets the EXT on-time.  
quency. When the voltage at HIGH exceeds AV+ by  
5V, the charge-pump oscillator is inhibited (Figure 2).  
When the voltage at HIGH is less than 4.3V below V+,  
undervoltage lockout occurs. Use the voltage tripler  
(Figure 3b) when V+ 6V; otherwise, use the voltage  
doubler (Figure 3a).  
Traditional PWM converters continue to switch on every  
cycle, even when the inductor current is discontinuous  
due to smaller loads, decreasing light-load efficiency.  
In contrast, the MAX746s idle-mode comparator increas-  
es the switch on-time, allowing more energy to be trans-  
ferred per cycle. Since fewer cycles are required, the  
switching frequency is reduced, resulting in minimal  
switching losses and increased efficiency.  
S o ft -S t a rt a n d Cu rre n t Lim it in g  
The MAX746 draws its highest current at power-up. If  
the power source to the MAX746 cannot provide this  
initial elevated current, the circuit may not function cor-  
rectly. For example, after prolonged use the increased  
series resistance of a battery may prevent it from pro-  
vid ing a d e q ua te initia l s urg e c urre nts whe n the  
MAX746 is brought out of shutdown. Using soft-start  
(SS) minimizes the possibility of overloading the incom-  
ing supply at power-up by gradually increasing the  
peak current limit. Connect an external capacitor from  
SS to AGND to reduce the initial peak currents drawn  
from the supply.  
The light-load output noise spectrum widens due to the  
variable switching frequency in idle-mode, but output  
ripple remains low. Using the Typical Operating Circuit,  
with a 9V input and a 125mA load current, output ripple  
is less than 40mV.  
Ch a rg e P u m p  
The MAX746 contains all the control circuitry required  
to p rovid e a re g ula te d c ha rg e -p ump volta g e 5V  
above V+ for high-side driving N-channel logic FETs.  
The charge pump operates with a nominal 50kHz fre-  
8
_______________________________________________________________________________________  
Hig h -Effic ie n c y, P WM, S t e p -Do w n ,  
N-Ch a n n e l DC-DC Co n t ro lle r  
MAX746  
V
IN  
6V TO 15V  
C9  
4.7µF  
C3  
0.1µF  
C2  
47µF  
D4  
1N5817  
D3  
1N914  
D2  
1N914  
R2  
R1  
15  
V+  
*
*
C8  
0.1µF  
2
3
14  
13  
8
LBI  
CP  
HIGH  
AV+  
C5  
0.1µF  
SS  
R
SENSE  
C6  
75mΩ  
10  
1µF  
4
6
MAX746  
CS  
REF  
Q1  
Si9410DY  
12  
7
L1  
N
82µH  
EXT  
**  
FB  
5V  
AT 1.5A  
5
CC  
SHDN  
AGND  
D1  
NSQ03A03  
C7  
1nF  
C1  
220µF  
11  
9
1
OUT  
C4  
0.1µF  
R3  
100k  
LB0  
GND  
16  
SEE TABLE 2 FOR DIODE SELECTION.  
*
SUMIDA CDR125 SURFACE-MOUNT INDUCTOR.  
**  
Figure 1c. 5V Standard Application Circuit (7.5W)  
The steady-state SS pin voltage is typically 3.8V. On  
power-up, SS sources 1µA until its voltage reaches  
3.8V. The current-limit comparator inhibits EXT switch-  
ing until the SS voltage reaches 1.8V. The peak current  
limit is set by:  
S h u t d o w n Mo d e  
When SHDN is high, the MAX746 is shut down. In this  
mode, the internal biasing circuitry (including EXT) is  
turned off, V  
drops to 0V, and the supply current  
OUT  
drops to 1.4µA (20µA max). This excludes external  
c o m p o n e n t le a ka g e , wh ic h m a y a d d s e ve ra l  
mic roa mp s to the s hutd own s up p ly c urre nt for the  
entire circuit. SHDN is a logic input. Connect SHDN to  
GND for normal operation.  
V
LIMIT  
150mV (typ)  
___________  
_________  
I
PK  
=
=
R
R
SENSE  
SENSE  
where V  
is the differential voltage across the current-  
LIMIT  
sense amplifier inputs. Figure 4 shows how the SS peak  
current limit increases as the voltage on SS rises for two  
Lo w -Ba t t e ry De t e c t o r  
The MAX746 provides a low-battery comparator that  
compares the voltage on LBI to the reference voltage.  
LBO, an open-drain output, goes low when the LBI volt-  
R
values.  
SENSE  
Un d e rvo lt a g e Lo c k o u t  
age is below V  
. Use a resistor-divider network, as  
REF  
Undervoltage lockout inhibits operation of EXT until the  
charge pump is capable of generating a voltage greater  
than 4.3V above the supply voltage (Figure 2). When  
the undervoltage-lockout comparator detects an under-  
voltage condition, the switching action at EXT is halted.  
shown in the Input Voltage Monitor Circuit (Figure 5),  
to set the trip voltage (V ) at the desired level. In  
TRIP  
this circuit, LBO goes low when V+ V  
. LBO is high  
TRIP  
impedance in shutdown mode.  
_______________________________________________________________________________________  
9
Hig h -Effic ie n c y, P WM, S t e p -Do w n ,  
N-Ch a n n e l DC-DC Co n t ro lle r  
LBO  
EXT  
HIGH  
V+  
PUMP  
FROM AV+  
LBI  
CHARGE-PUMP CONTROL  
COMPARATOR  
4.3V  
N
MAX746  
LOW-BATTERY  
COMPARATOR  
T
T FLIP-  
FLOP  
5V  
Q
+2V  
REFERENCE  
UNDERVOLTAGE-  
LOCKOUT  
COMPARATOR  
REF  
100kHz  
OSCILLATOR  
OUT  
EXT  
CONTROL  
SHDN  
CC  
FB  
PWM  
COMPARATOR  
ERROR  
AMPLIFIER  
DUAL-MODE  
COMPARATOR  
100mV  
CURRENT-SENSE  
AMPLIFIER  
AV+  
CS  
LIGHT-LOAD  
COMPARATOR  
Σ
SLOPE-  
COMPENSATION  
RAMP  
V
RAMP  
50mV  
SOFT-START  
CIRCUITRY  
SS  
CURRENT-LIMIT  
COMPARATOR  
AGND  
GND  
Figure 2. Block Diagram  
10 ______________________________________________________________________________________  
Hig h -Effic ie n c y, P WM, S t e p -Do w n ,  
N-Ch a n n e l DC-DC Co n t ro lle r  
MAX746  
3a. CHARGE-PUMP  
VOLTAGE DOUBLER  
PEAK CURRENT LIMIT  
vs. SOFT-START VOLTAGE  
3
2
D2  
D3  
D4  
V
IN  
1N914 1N914 1N5817  
R
SENSE  
= 50m  
15  
C8  
0.1µF  
C9  
1µF  
V+  
V+ - V = 150mV  
CS  
MAX746  
T FLIP-  
CP 14  
1
0
T
Q
FLOP  
CLK  
HIGH 13  
R
SENSE  
= 100mΩ  
100kHz  
OSCILLATOR  
0
1
2
3
4
SOFT-START VOLTAGE (V)  
5V  
3b. CHARGE-PUMP  
VOLTAGE TRIPLER  
Figure 4. Peak Current Limit vs. Soft-Start Voltage  
AV+  
GND  
16  
D4  
1N5817  
V
IN  
D2  
D3  
D5  
D6  
V
IN  
15  
1N914 1N914  
1N914 1N914  
TO V OR V  
OUT IN  
V+  
C8  
0.1µF  
C9  
1µF  
C10  
0.1µF 1µF  
C11  
R2  
R1  
R3  
100k  
15  
V+  
MAX746  
14  
13  
2
1
CP  
LBO  
LBI  
LOW-BATTERY  
OUTPUT  
MAX746  
HIGH  
GND  
16  
GND  
16  
V
TRIP  
(
)
R = R1  
-1  
2
V
REF  
V
REF  
= 2.0V  
Figure 3. Charge-Pump Configurations  
Figure 5. Input Voltage Monitor Circuit  
the two modes while operating. If two different output  
voltages are required, use external feedback mode  
with a resistor network similar to the 3.3V/5V adjustable  
output circuit shown in Figure 7.  
__________________De s ig n P ro c e d u r e  
S e t t in g t h e Ou t p u t Vo lt a g e  
The MAX746s dual-mode output voltage can be set  
to 5V by grounding FB, or it can be adjusted from  
2V to 14V using external resistors R4 and R5 config -  
ured as shown in Figure 6. Select feedback resistor  
R4 in the 10kto 60krange. R5 is given by:  
S e le c t in g R  
S ENS E  
), firs t  
To s e le c t the s e ns e -re s is tor va lue (R  
SENSE  
a p p roxima te the p e a k c urre nt a s s uming  
I
is  
PK  
(1.1) (I ), where I is the maximum load cur-  
LOAD  
LOAD  
rent. Once all component values have been deter-  
mined, the actual peak current is given by:  
V
OUT  
_______  
2V  
R5 = (R4)  
– 1  
)
(
V
V
OUT  
OUT  
___________  
_______  
The MAX746 is designed to use either internal or exter-  
nal feedback mode, but should not be toggled between  
I
PK  
= I  
LOAD  
+
1–  
)(  
(
)
(2L) (f  
)
V
IN  
OSC  
______________________________________________________________________________________ 11  
Hig h -Effic ie n c y, P WM, S t e p -Do w n ,  
N-Ch a n n e l DC-DC Co n t ro lle r  
V
IN  
12  
15  
N
EXT  
L
V+  
R5  
V
OUT  
6
9
V
FB  
OUT  
C1  
MAX746  
D1  
R5  
C7*  
26.1k (1%)  
R4  
6
9
FB  
MAX746  
C7  
MAX746  
R4a  
OUT  
17.4k (1%)  
OUT  
SELECT WITH FET OFF:  
R5  
R4 = 10kTO 60kΩ  
5V/3.3V  
R4b  
22.6k (1%)  
GND  
16  
V
= V  
+1  
R5  
OUT REF  
N
(
(
)
V
R4a  
OUT  
R5 = R4  
-1  
(
)
V
REF  
SELECT WITH FET OFF:  
V
= V  
OUT REF  
V
= 2.0V NOMINAL  
+1  
REF  
)
R4a + R4b  
*SEE COMPENSATION CAPACITOR SECTION.  
V
REF  
= 2.0V NOMINAL  
Figure 6. Adjustable Output Circuit  
Figure 7. 3.3V/5V Ajustable Output Circuit  
where V  
compensation linear ramp signal.  
is the 50mV peak value of the slope-  
RAMP(max)  
Next, determine the value of R  
such that:  
SENSE  
V
125mV  
LIMIT(min)  
_____________  
________  
Although 38µH is the calculated value, the component  
used may have a tolerance of ±30% or more.  
R
=
=
SENSE  
I
I
PK  
PK  
Inductors with molypermalloy powder (MPP), Kool Mµ,  
or ferrite are recommended. Inexpensive iron-powder  
core inductors are not suitable, due to their increased  
core losses, especially at switching frequencies in the  
100kHz range. MPP and Kool Mµ cores have low per-  
meability, allowing larger currents.  
For e xa mp le , to ob ta in 5V a t 3A, I  
= 3.3A a nd  
PK  
R
= 125mV/3.3A = 38m.  
SENSE  
The sense resistor should have a power rating greater  
2)  
than (I  
(R  
) with an adequate safety margin.  
PK  
SENSE  
With a 3A load current, I = 3.3A and R  
= 38m.  
SENSE  
PK  
The power dissipated by the resistor (assuming an 80%  
duty cycle) is 331mW. Metal-film resistors are recom-  
me nd e d . Do not us e wire -wound re s is tors b e c a us e  
their inductance will adversely affect circuit operation.  
For highest efficiency, use a coil with low DC resis-  
tance. To minimize radiated noise, use a toroid, a pot  
core, or a shielded coil.  
The duty cycle (for continuous conduction) is determined  
from the following equation:  
It is customary to select an inductor with a saturation  
rating that exceeds the peak current set by R  
,
SENSE  
V
V
but inductors are often specified very conservatively.  
If the inductors core losses do not cause excessive  
temperature rise (inductor wire insulation is usually  
rated for +125°C) and the associated efficiency loss-  
es are minimal, inductors with lower current ratings  
are acceptable.  
OUT  
DIODE  
+
_____________________  
Duty Cycle (%) =  
x 100%  
V+ - V + V  
SW  
DIODE  
where V is the voltage drop across the external  
N-FET and sense resistor. V  
SW  
can be approximated  
SW  
as [I  
x (r  
+ R  
)].  
LOAD  
DS(ON)  
SENSE  
In the 3.3V Standard Application Circuit (Figure 1b), the  
ind uc tor s e le c te d ha s a 2.2A c urre nt ra ting e ve n  
though the peak current is 3.3A. This inductor was  
selected for two reasons: it is the highest-rated readily  
available surface-mount inductor of its size, and lab  
tests have verified that the core-loss increase is mini-  
mal. With a 3A load current, the inductor current does  
not begin showing significant losses due to saturation  
until the supply voltage increases to 10V (the maximum  
supply for this circuit is 6V).  
In d u c t o r S e le c t io n  
Once the sense-resistor value is determined, calculate  
the inductor value (L) using the following equation. The  
correct inductor value ensures proper slope compen-  
sation. Continuing from the equations above:  
(
) (  
)
OUT  
R
V
SENSE  
______________________  
L =  
(VRAMP(max)) (f  
)
OSC  
(
) (  
)
38m5V  
_____________________  
(50mV) (100kHz)  
=
= 38µH  
12 ______________________________________________________________________________________  
Hig h -Effic ie n c y, P WM, S t e p -Do w n ,  
N-Ch a n n e l DC-DC Co n t ro lle r  
MAX746  
To ensure stability, the minimum capacitance and max-  
imum ESR values are:  
Ex t e rn a l Lo g ic -Le ve l N-FET S e le c t io n  
To ensure the external N-FET is turned on hard, use  
logic-level or low-threshold N-FETs. Three important  
parameters to note when selecting the N-FET are the  
(5) (V  
)
REF  
______________________________  
C1  
>
(min)  
(2π) (GBW) (VOUT) (R  
)
SENSE  
total gate charge (Q ), on resistance (r  
), and  
g
DS(ON)  
and,  
reverse transfer capacitance (C  
).  
RSS  
(VOUT ) (R  
)
SENSE  
___________________  
Q
includes all capacitances associated with charging  
g
ESR  
<
C1  
the gate. Use the typical Q value for best results; the  
(V  
REF  
)
g
maximum value is usually grossly overspecified, since  
it is a guaranteed limit and not the measured value.  
The typical total gate charge should be 50nC or less;  
with la rg e r numbe rs, EXT ma y not be a b le to a de-  
q ua te ly d rive the g a te . EXT s ink/s ourc e c a p a b ility  
where GBW = the loop gain-bandwidth product, 15kHz.  
Sprague 595D surface-mount solid tantalum capacitors  
and Sanyo OS-CON through-hole capacitors are rec-  
ommended due to their extremely low ESR. OS-CON  
capacitors are particularly useful at low temperatures.  
For best results when using other capacitors, increase  
the output filter capacitors size or use capacitors in  
parallel to reduce the ESR.  
(I ) is typically 210mA.  
EXT  
The two mos t s ig nific a nt los s e s c ontrib uting to the  
2
N-FETs power dissipation are I R losses and switching  
losses. CCM power dissipation (P ), is approximated by:  
D
Bypass OUT with a 0.1µF (C4) capacitor to GND when using  
a fixed 5V output (Figures 1a and 1c). With adjustable-output  
operation, place C4 between the output voltage and AGND  
as close to the IC as possible (Figure 1b).  
P
= (Duty Cycle) (I 2) (rDS(ON)) +  
D
PK  
2
(V+ ) (CRSS) (IPK) (f  
)
OSC  
__________________________  
(I  
)
EXT  
The circuit load-step response is improved by using a  
larger output filter capacitor or by placing a low-cost  
bulk capacitor in parallel with the required low-ESR  
output filter capacitor. The output voltage sag under a  
whe re the d uty c yc le is a p p roxima te ly V  
/V+ ,  
are given in the  
OUT  
f
= 100kHz, and r  
and C  
OSC  
DS(ON)  
RSS  
d a ta s he e t of the c hos e n N-FET. In the e q ua tion,  
is assumed constant, but is actually a function  
load step (I  
) is approximated by:  
STEP  
r
DS(ON)  
of temperature. The equation given does not account  
for losses incurred by charging and discharging the  
gate capacitance, because that energy is dissipated  
by the gate-drive circuitry, not the N-FET.  
2
(I  
) (L)  
STEP  
_____________________________________  
V
=
SAG  
(2) (C1) (VIN(MIN) (D  
- V  
)
MAX  
OUT  
where DMAX is the maximum duty cycle (91% worst  
case). The equation assumes an input/output voltage  
differential of 2V or more. Table 1 gives measured val-  
ues of output voltage sag with a 30mA to 3A load step  
for various input voltages and output filter capacitors.  
Refer also to the AC Stability with Low Input/Output  
Differentials section.  
The Standard Application Circuits (Figure 1) use an  
8-pin, Si9410DY, surface-mount N-FET that has 0.05Ω  
on resistance with a 4.5V V . Optimum efficiency is  
GS  
obtained when the voltage at the source swings between  
the supply rails (within a few hundred millivolts).  
Dio d e S e le c t io n  
The MAX746s high switching frequency demands a  
high-speed rectifier. Schottky diodes are recommend-  
ed. Ensure that the Schottky diode average current  
rating exceeds the maximum load current.  
Input Bypass Capacitor  
The input bypass capacitor C2 reduces peak currents  
drawn from the voltage source, and also reduces the  
amount of noise at the voltage source caused by the  
MAX746s fa s t s witc hing a c tion (this is e s p e c ia lly  
important when other circuitry is operated from the  
same source). The input capacitor ripple current rating  
must exceed the RMS input ripple current.  
Ca p a c it o r S e le c t io n  
Output Filter Capacitor  
The output filter capacitor C1 should have a low effec-  
tive series resistance (ESR), and its capacitance should  
remain fairly constant over temperature. This is espe-  
cially true when in CCM, since the output filter capaci-  
tor a nd the loa d form the d omina nt p ole tha t  
stabilizes the voltage loop.  
I
= RMS AC input current  
RMS  
(
) (  
)
V
V
V
OUT  
IN - OUT  
_______________________  
= I  
(
)
LOAD  
V
IN  
______________________________________________________________________________________ 13  
Hig h -Effic ie n c y, P WM, S t e p -Do w n ,  
N-Ch a n n e l DC-DC Co n t ro lle r  
Table 1. Measured Output Voltage Sag  
with 30mA to 3A Load Step*  
Table 2. Charge-Pump Configuration  
V+  
CHARGE-PUMP CONFIGURATION  
OUTPUT  
FILTER  
CAPACITOR  
C1 (µF)  
OUTPUT VOLTAGE SAG (mV)  
FOR VARIOUS INPUT VOLTAGES  
Voltage tripler with 1N914 diodes for D2,  
D3, D5, and D6  
V+ 6V  
V
IN  
=6V  
V
IN  
=6.5V  
V
=7V  
IN  
V =9V  
IN  
V =10V  
IN  
Voltage doubler with 1N5817 Schottky  
diodes for D2 and D3  
6V < V+ < 6.5V*  
MAX746  
440  
660  
880  
400  
260  
200  
250  
190  
100  
210  
160  
90  
140  
70  
90  
50  
25  
Voltage doubler with 1N914 diodes for  
D2 and D3  
V+ 6.5V*  
40  
* When using the voltage-doubler circuit over the military  
temperature range, increase the 6.5V limit to 7V.  
*Circuit of Figure 1a.  
For load currents up to 3A, 100µF (C2) in parallel with  
0.1µF (C3) is adequate. Smaller bypass capacitors may  
also be acceptable for lighter loads. The input voltage  
source impedance determines the size of the capacitor  
required at the V+ input. As with the output filter capaci-  
tor, a low-ESR capacitor (Sanyo OS-CON, Sprague 595D  
or equivalent) is recommended for input bypassing.  
voltage and load current. With a 3A load current, a 10V  
input voltage, and a 0.1µF soft-start capacitor, it typi-  
cally takes 240ms for the MAX746 to power up.  
A
0.47µF soft-start capacitor increases the start-up time  
to approximately 2.3sec.  
Bypass REF with a 1µF capacitor (C6).  
Compensation Capacitor  
With a fixed 5V output, connect a compensation capac-  
itor (C7) between CC and AGND to optimize transient  
response. Appropriate compensation is determined by  
the size and ESR of the output filter capacitor (C1), and  
by the load current.  
Charge-Pump Capacitors  
Figure 3a shows the charge-pump doubler circuit con-  
figured with a 0.1µF charge-pump capacitor C8 and a  
1.0µF reservoir capacitor C9. The ratio of the capaci-  
tors , a long with the inp ut volta g e , d e te rmine s the  
amount of ripple on HIGH. If the input supply range  
e xc e e d s 12V, inc re a s e C9 to 4.7µF to re d uc e the  
c ha rg e -p ump rip p le . C9 s hould b e 10µF for le s s .  
Figure 3b shows the charge-pump tripler circuit.  
In the standard 5V application circuit, 2.7nF is appro-  
priate for load currents up to 3A; for lighter loads,  
C7s value can be reduced. If 2.7nF does not com-  
pensate adequately, use the following equations to  
determine C7.  
Refer to Table 2 to determine the proper charge-pump  
configuration (which is based on the minimum expect-  
ed supply voltage at V+).  
For fixed 5V-output operation:  
(
) (  
)
C1 ESR  
C1  
_____________  
Some interaction occurs between the switch oscillator  
and the charge-pump oscillator. This interaction modu-  
lates the inductor-current waveform, but has negligible  
impact on the output.  
C7 =  
12kΩ  
For adjustable-output operation, FB becomes the  
compensation input pin, and CC and OUT are left  
unconnected. Connect C7 between FB and GND in  
parallel with R4 (Figure 6). C7 is determined by:  
Soft-Start and Reference Capacitors  
Soft-start provides a ramp to the full current limit. A typi-  
c a l va lue for the s oft-s ta rt c a p a c itor (C5) is 0.1µF,  
which provides a 380ms soft-start time. Use values in  
the 0.001µF to 1µF range. The nominal time for C5 to  
reach its steady-state value is given by:  
(2) (C1) (ESR  
)
C1  
___________________  
C7 =  
R4  
For example, with a fixed 5V output with C1 = 470µF  
and an ESR of 0.04(at a frequency of 100kHz):  
R5  
6
t
SS  
(sec) = (C5) (3.8 x 10 )  
C1  
Note that t does NOT equal the time it takes for the  
SS  
MAX746 to power-up, although it does affect the start-  
up time. The start-up time is also a function of the input  
(
) (  
12kΩ  
)
C1 ESR  
C1  
_____________  
C7 =  
= 1560pF  
14 ______________________________________________________________________________________  
Hig h -Effic ie n c y, P WM, S t e p -Do w n ,  
N-Ch a n n e l DC-DC Co n t ro lle r  
MAX746  
Inc re a s ing C7 b y up to 50% e nha nc e s oute r-loop  
s ta b ility b y a d d ing s ta b ility to the ind uc tor c urre nt  
wa ve form. But inc re a s ing C7 too muc h c a us e s  
FBs response time to decrease (due to the larger  
RC time constant caused by the feedback resistors  
a nd the c omp e ns a tion c a p a c itor), whic h re d uc e s  
load-transient stability.  
V
IN  
V+  
AV+  
KELVIN SENSE  
CONNECTION  
R
SENSE  
MAX746  
S e t t in g t h e Lo w -Ba t t e ry  
De t e c t o r Vo lt a g e  
CS  
Select R1 between 10kand 1M. Determine R2 using  
the following equation:  
N
EXT  
(V  
- V  
)
TRIP  
REF  
L1  
V
OUT  
________________  
R2 = R1  
(
)
V
REF  
where V  
is typically 2.0V. Connect a pull-up resistor  
REF  
(e.g., 100k) between LBO and V  
(Figure 5).  
OUT  
Figure 8. Kelvin Connection for Current-Sense Amplifier  
Us in g a S e c o n d S u p p ly in  
P la c e o f t h e Ch a rg e P u m p  
If a secondary power supply (a minimum of 5V above  
the main supply) is available, it can be substituted for  
the c ha rg e -p ump hig h-s id e s up p ly. In this c a s e ,  
b yp a s s HIGH with a 1µF c a p a c itor a nd le a ve CP  
unc onne c te d. Sinc e this se c ond a ry sup ply volta ge  
tor, any noise at the CS input will also appear at the  
AV+ inp ut, a nd will b e inte rp re te d b y the c urre nt-  
sense amplifier as a common-mode signal . A sepa-  
rate AV+ capacitor causes the noise to appear on  
only one inp ut, a nd this d iffe re ntia l nois e will b e  
amplified, adversely affecting circuit operation.  
is a p p lie d to the g a te , V  
mus t not e xc e e d the  
GS  
gate-source breakdown voltage of the external N-FET.  
Also, the voltage at HIGH must not exceed 20V. If  
a secondary supply is used, the shutdown function  
cannot be used because HIGH is internally tied to  
V+ in shutdown mode. In this case, SHDN must be  
tied low. With the main supply off and HIGH at 12V,  
HIGH will typically sink 130µA.  
Ad d it io n a l No t e s  
Whe n p rob ing the MAX746 c irc uit, a void s horting  
V+ to GND (the two pins are adjacent) as this may  
cause the IC to malfunction because of large ground  
currents. Because of its fast switching and high drive-  
capability requirements, EXT is a low-impedance point  
that is not short-circuit protected. Therefore, do not  
short EXT to any node (including AGND and V+, which  
are adjacent to EXT).  
La yo u t Co n s id e ra t io n s  
Because high current levels and fast switching wave-  
forms radiate noise, proper PC board layout is essen-  
tial. Use a ground plane, and minimize ground noise by  
connecting GND, the anode of the steering Schottky  
diode, the input bypass-capacitor ground lead, and the  
output filter capacitor ground lead to a single point (star  
ground configuration). Also minimize lead lengths to  
reduce stray capacitance, trace resistance, and radiat-  
ed noise. Place bypass capacitor C3 as close to V+  
and GND as possible.  
Similarly, CC (or FB in adjustable-output operation) is a  
sensitive input that should not be shorted to any node.  
Avoid shorting CC when probing the circuit, as this may  
damage the device.  
The MAX746 may continue to operate with AV+ discon-  
nected, but erratic switching waveforms will appear at EXT.  
Switching Waveforms  
There is a region between CCM and DCM where the  
ind uc tor c urre nt op e ra te s in b oth mod e s , a s s hown  
in the Idle-Mode Moderate Current EXT waveform in  
the Typ ic a l Op e ra ting Cha ra c te ris tic s . As the out-  
p ut volta g e va rie s , it is fe d b a c k into CC a nd the  
d uty c yc le a d jus ts to c omp e ns a te for this c ha ng e .  
AV+ and CS are the inputs to the differential-input  
c urre nt-s e ns e a mp lifie r. Us e a Ke lvin c onne c tion  
a c ros s the s e ns e re s is tor, a s s hown in Fig ure 8.  
Although AV+ also functions as the supply voltage  
for sensitive analog circuitry, a separate AV+ bypass  
capacitor should not be used. By not using a capaci-  
The switch is considered off when V  
is less than  
EXT  
______________________________________________________________________________________ 15  
Hig h -Effic ie n c y, P WM, S t e p -Do w n ,  
N-Ch a n n e l DC-DC Co n t ro lle r  
or equal to the N-FET’s V  
threshold voltage. Once  
AC Stability with Low Input/Output Differentials  
At low input/output differentials, the inductor current  
c a nnot s le w q uic kly e noug h to re s p ond to loa d  
changes, so the output filter capacitor must hold up the  
voltage as the load transient is applied. In Figure 1as  
circuit, for V+ = 6V, increase the output filter capacitor  
to 900µF (Sprague 595D low-ESR capacitors) to obtain  
a transient response less than 250mV with a load step  
from 0.1A to 3A. As V+ increases, the inductor current  
slews faster, so the size of the output filter capacitor can  
be reduced (see Table 1).  
GS  
the switch is off, the voltage at EXT is pulled to GND  
a nd the N-FET s ourc e volta g e is a Sc hottky d iod e  
drop below GND. However, this is not always the case  
in the “in-between” mode, due to the changing duty  
cycle inherent with DCM. When the device is at maxi-  
mum duty cycle, EXT turns off at V , but the switch  
GS  
sometimes turns on again after the minimum off-time  
before EXT can be pulled to GND. This results in short  
spikes, which can be seen on the EXT waveform in the  
Typical Operating Characteristics .  
MAX746  
___________________Ch ip To p o g ra p h y  
Table 3. Component Suppliers  
SUPPLIER  
INDUCTORS  
PHONE  
FAX  
LBI LBO GND  
V+  
Coiltronics  
(305) 781-8900  
(716) 532-2234  
(708) 956-0666  
81-3-3607-511  
(305) 782-4163  
(716) 532-2702  
(708) 956-0702  
81-3-3607-5428  
SS  
CP  
Gowanda  
Sumida USA  
Sumida Japan  
CAPACITORS  
Kemet  
HIGH  
EXT  
(803) 963-6300  
(714) 969-2491  
(708) 843-7500  
(603) 224-1961  
(619) 661-6322  
81-3-3837-6242  
(714) 255-9500  
(803) 963-6322  
(714) 960-6492  
(708) 843-2798  
(603) 224-1430  
REF  
Matsuo  
SHDN  
0. 130"  
(3. 30mm)  
Nichicon  
Sprague  
Sanyo USA  
Sanyo Japan  
United Chemi-Con  
DIODES  
(714) 255-9400  
(805) 867-2698  
AGND  
Motorola  
(800) 521-6274  
(805) 867-2555  
Nihon USA  
Nihon Japan  
POWER TRANSISTORS  
Harris  
CC  
OUT CS  
FB  
AV+  
81-3-3494-7411 81-3-3494-7414  
0. 080"  
(2. 03mm)  
(407) 724-3739  
(213) 772-2000  
(408) 988-8000  
(407) 724-3937  
(213) 772-9028  
(408) 727-5414  
International Rectifier  
Siliconix  
TRANSISTOR COUNT: 508;  
SUBSTRATE CONNECTED TO HIGH.  
RESISTORS  
IRC  
(512) 992-7900  
(512) 992-3377  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
16 __________________Ma x im In t e g ra t e d P ro d u c t s , 1 2 0 S a n Ga b rie l Drive , S u n n yva le , CA 9 4 0 8 6 (4 0 8 ) 7 3 7 -7 6 0 0  
© 1993 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX746CSE-T

暂无描述
MAXIM

MAX746EPE

High-Efficiency, PWM, Step-Down, N-Channel DC-DC Controller
MAXIM

MAX746ESE

High-Efficiency, PWM, Step-Down, N-Channel DC-DC Controller
MAXIM

MAX746MJE

High-Efficiency, PWM, Step-Down, N-Channel DC-DC Controller
MAXIM

MAX747

High-Efficiency PWM, Step-Down P-Channel DC-DC Controller
MAXIM

MAX7470

HDTV Continuously Variable Anti-Aliasing Filters
MAXIM

MAX7470UTP

HDTV Continuously Variable Anti-Aliasing Filters
MAXIM

MAX7470UTP+

HDTV Continuously Variable Anti-Aliasing Filters
MAXIM

MAX7472

HDTV Anti-Aliasing Filters with Triple-Input Mux
MINILOGIC

MAX7472UTI

Switched Capacitor Filter, 1 Func, Lowpass, BICMOS, 4 X 4 MM, 0.80 MM HEIGHT, MO-220WGGE, TQFN-28,
MAXIM

MAX7472UTI+

HDTV Anti-Aliasing Filters with Triple-Input Mux
MINILOGIC

MAX7472UTI+

Switched Capacitor Filter, 1 Func, Lowpass, BICMOS, 4 X 4 MM, 0.80 MM HEIGHT, ROHS COMPLIANT, MO-220WGGE, TQFN-28,
MAXIM