MAX7490_09 [MAXIM]

Dual Universal Switched-Capacitor Filters; 双路,通用开关电容滤波器
MAX7490_09
型号: MAX7490_09
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Dual Universal Switched-Capacitor Filters
双路,通用开关电容滤波器

开关 通用开关
文件: 总18页 (文件大小:240K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1768; Rev 1; 4/09  
Dual Universal Switched-Capacitor Filters  
0/MAX7491  
General Description  
Features  
The MAX7490/MAX7491 consist of two identical low-  
power, low-voltage, wide dynamic range, rail-to-rail,  
2nd-order switched-capacitor building blocks. Each of  
the two filter sections, together with two to four external  
resistors, can generate all standard 2nd-order func-  
tions: bandpass, lowpass, highpass, and notch (band  
reject). Three of these functions are simultaneously  
available. Fourth-order filters can be obtained by cas-  
cading the two 2nd-order filter sections. Similarly, high-  
er order filters can easily be created by cascading  
multiple MAX7490/MAX7491s.  
o Dual 2nd-Order Filter in a 16-Pin QSOP Package  
o High Accuracy  
Q Accuracy: 0.2%  
Clock-to-Center Frequency Error: 0.2%  
o Rail-to-Rail Input and Output Operation  
o Single-Supply Operation: +5V (MAX7490)  
or +3V (MAX7491)  
o Internal or External Clock  
o Highpass, Lowpass, Bandpass, and Notch Filters  
o Clock-to-Center Frequency Ratio of 100:1  
Two clocking options are available: self-clocking  
(through the use of an external capacitor) or external  
clocking for tighter cutoff frequency control. The clock-  
to-center frequency ratio is 100:1. Sampling is done at  
twice the clock frequency, further separating the cutoff  
frequency and Nyquist frequency.  
o Internal Sampling-to-Center Frequency Ratio  
of 200:1  
o Center Frequency up to 40kHz  
The MAX7490/MAX7491 have an internal rail splitter  
that establishes a precise common voltage needed for  
single-supply operation. The MAX7490 operates from a  
single +5V supply and the MAX7491 operates from a  
single +3V supply. Both devices feature a low-power  
shutdown mode and come in a 16-pin QSOP package.  
o Easily Cascaded for Multipole Filters  
o Low-Power Shutdown: < 1µA Supply Current  
Ordering Information  
SUPPLY  
VOLTAGE  
(+V)  
________________________Applications  
PIN-  
PACKAGE  
PART  
TEMP RANGE  
Tunable Active Filters  
Multipole Filters  
MAX7490CEE+  
MAX7490EEE+  
MAX7491CEE+  
MAX7491EEE+  
0°C to +70°C 16 QSOP  
-40°C to +85°C 16 QSOP  
0°C to +70°C 16 QSOP  
-40°C to +85°C 16 QSOP  
5
5
3
3
ADC Anti-Aliasing  
Post-DAC Filtering  
Adaptive Filtering  
Phase-Locked Loops (PLLs)  
Set-Top Boxes  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
Pin Configuration  
TOP VIEW  
+
LPA  
BPA  
1
2
3
4
5
6
7
8
16 LPB  
15 BPB  
NA/HPA  
INVA  
14 NB/HPB  
Typical Application Circuit appears at end of data sheet.  
MAX7490  
MAX7491  
13 INVB  
12 SB  
SA  
SHDN  
GND  
11 COM  
10 EXTCLK  
V
9
CLK  
DD  
QSOP  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,  
or visit Maxim’s website at www.maxim-ic.com.  
Dual Universal Switched-Capacitor Filters  
ABSOLUTE MAXIMUM RATINGS  
V
DD  
to GND..............................................................-0.3V to +6V  
Operating Temperature Range  
EXTCLK, SHDN to GND ...........................................-0.3V to +6V  
MAX749_CEE .....................................................0°C to +70°C  
MAX749_EEE...................................................-40°C to +85°C  
Die Temperature ..............................................................+150°C  
Storage Temperature.........................................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
INV_, LP_, BP_, N_/HP_, S_, COM,  
CLK to GND............................................-0.3V to (V  
+ 0.3V)  
DD  
Maximum Current into Any Pin ...........................................50mA  
Continuous Power Dissipation (T = +70°C)  
A
16-Pin QSOP (derate 8.30mW/°C above +70°C).........667mW  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS—MAX7490  
(V  
= V  
= +5V; f  
= 625kHz; 10kΩ || 50pF load to V /2 at LP_, BP_, and N_/HP_; V  
= V ; 0.1µF from COM to  
SHDN DD  
EXTCLK  
DD  
CLK  
DD  
GND; 50% duty-cycle clock input; COM = V /2; T = T  
to T  
. Typical values are at T = +25°C, unless otherwise noted.)  
MAX A  
DD  
A
MIN  
(Note 1)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
FILTER  
0/MAX7491  
0.001 to  
40  
Center Frequency Range  
f
Mode 1  
kHz  
%
O
Clock-to-Center Frequency  
Accuracy  
Mode 1, R1 = R3 = 50kΩ , R2 = 10kΩ,  
Q = 5, deviation from 100:1  
f
/f  
0.2  
0.7  
2
CLK O  
Q Accuracy  
Mode 1, R1 = R3 = 50kΩ, R2 = 10kΩ, Q = 5  
0.2  
1
%
f
O
Temperature Coefficient  
ppm/°C  
ppm/°C  
%
Q Temperature Coefficient  
DC Lowpass Gain Accuracy  
5
Mode 1, R1 = R2 = 10kΩ  
DC offset of input inverter  
DC offset of 1st integrator  
DC offset of 2nd integrator  
0.1  
3
0.5  
12.5  
15  
V
V
V
OS1  
OS2  
OS3  
DC Offset Voltage (Figure 8)  
Crosstalk (Note 2)  
4
mV  
dB  
4
30  
f
= 10kHz  
-60  
IN  
V
- 0.5  
/2  
V
+ 0.5  
/2  
DD  
DD  
Input: COM externally driven  
Output: COM internally driven  
V
V
/2  
DD  
DD  
COM Voltage Range  
V
V
COM  
V
- 0.2  
/2  
DD  
V
+ 0.2  
/2  
DD  
/2  
Input Resistance at COM  
Clock Feedthrough  
R
140  
250  
200  
325  
kΩ  
COM  
Up to 5th harmonic of f  
μV  
CLK  
RMS  
RMS  
V
Mode 1, R1 = R2 = R3 =10kΩ, LP output,  
Q = 1  
Noise (Note 3)  
60  
μV  
Output Voltage Swing  
Input Leakage Current at COM  
CLOCK  
0.2  
V
- 0.2  
DD  
SHDN = GND, V  
= 0 to V  
0.1  
10  
μA  
COM  
DD  
Maximum Clock Frequency  
f
4
MHz  
kHz  
MHz  
V
CLK  
EXTCLK = GND, C  
EXTCLK = GND, C  
= 1000pF  
= 100pF  
95  
135  
1.35  
175  
OSC  
Internal Oscillator Frequency  
(Note 4)  
f
OSC  
OSC  
Clock Input High  
V
- 0.5  
DD  
2
_______________________________________________________________________________________  
Dual Universal Switched-Capacitor Filters  
0/MAX7491  
ELECTRICAL CHARACTERISTICS—MAX7490 (continued)  
(V  
= V  
= +5V; f  
= 625kHz; 10kΩ || 50pF load to V /2 at LP_, BP_, and N_/HP_; V  
= V ; 0.1µF from COM to  
SHDN DD  
EXTCLK  
DD  
CLK  
DD  
GND; 50% duty-cycle clock input; COM = V /2; T = T  
to T  
. Typical values are at T = +25°C, unless otherwise noted.)  
MAX A  
DD  
A
MIN  
(Note 1)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Clock Input Low  
Clock Duty Cycle  
SHDN AND EXTCLK  
Input High  
0.5  
V
50  
5
%
V
V
- 0.5  
DD  
V
V
IH  
Input Low  
V
0.5  
10  
IL  
Input Leakage Current  
POWER REQUIREMENTS  
Supply Voltage  
V
= 0 to V  
0.4  
3.5  
μA  
INPUT  
DD  
V
4.5  
5.5  
4.0  
1
V
DD  
No external load, mode 1, R1 = R3 = 50kΩ,  
R2 = 10kΩ, Q = 5  
Power-Supply Current  
I
mA  
μA  
DD  
Shutdown Current  
I
SHDN = GND  
SHDN  
INTERNAL OP AMPS CHARACTERISTICS  
Output Short-Circuit Current  
18  
130  
7
mA  
dB  
DC Open-Loop Gain  
R
L
R
L
R
L
10kΩ, C 50pF  
L
Gain Bandwidth Product  
Slew Rate  
GBW  
SR  
10kΩ, C 50pF  
MHz  
V/μs  
L
10kΩ, C 50pF  
6.4  
L
_______________________________________________________________________________________  
3
Dual Universal Switched-Capacitor Filters  
ELECTRICAL CHARACTERISTICS—MAX7491  
(V  
= V  
= +3V; f  
= 625kHz; 10kΩ || 50pF load to V /2 at LP_, BP_, and N_/HP_; V  
= V ; 0.1µF from COM to  
SHDN DD  
EXTCLK  
DD  
CLK  
DD  
GND; 50% duty-cycle clock input; COM = V /2; T = T  
to T  
. Typical values are at T = +25°C, unless otherwise noted.)  
MAX A  
DD  
A
MIN  
(Note 1)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
FILTER  
0.001 to  
40  
Center Frequency Range  
f
Mode 1  
kHz  
%
O
Clock-to-Center Frequency  
Accuracy  
Mode 1, R1 = R3 = 50kΩ , R2 = 10kΩ,  
Q = 5, deviation from 100:1  
f
/f  
0.2  
0.2  
0.7  
2
CLK O  
Mode 1, R1 = R3 = 50kΩ, R2 = 10kΩ,  
Q = 5  
Q Accuracy  
%
f
Temperature Coefficient  
1
5
ppm/°C  
ppm/°C  
%
O
Q Temperature Coefficient  
DC Lowpass Gain Accuracy  
Mode 1, R1 = R2 = 10kΩ  
DC offset of input inverter  
DC offset of 1st integrator  
DC offset of 2nd integrator  
0.1  
3
0.5  
12.5  
15  
0/MAX7491  
V
V
V
OS1  
OS2  
OS3  
DC Offset Voltage  
(Figure 8)  
4
mV  
dB  
4
25  
Crosstalk (Note 2)  
f
= 10kHz  
-60  
IN  
V
- 0.1  
/2  
V
+ 0.1  
/2  
DD  
DD  
Input: COM externally driven  
Output: COM internally driven  
V
V
/2  
DD  
COM Voltage Range  
V
V
COM  
V
- 0.1  
/2  
DD  
V
+ 0.1  
/2  
DD  
/2  
DD  
80  
Input Resistance at COM  
Clock Feedthrough  
R
60  
0.2  
95  
120  
kΩ  
COM  
Up to 5th harmonic of f  
200  
μV  
RMS  
CLK  
Mode 1, R1= R2 = R3 = 10kΩ,  
LP output, Q = 1  
Noise (Note 3)  
60  
μV  
RMS  
V
Output Voltage Swing  
Input Leakage Current at COM  
CLOCK  
V
DD  
- 0.2  
SHDN = GND, V  
= 0 to V  
0.1  
10  
μA  
COM  
DD  
Maximum Clock Frequency  
f
4
MHz  
kHz  
MHz  
V
CLK  
EXTCLK = GND, C  
EXTCLK = GND, C  
= 1000pF  
= 100pF  
135  
1.35  
175  
0.5  
OSC  
Internal Oscillator Frequency  
(Note 4)  
f
OSC  
OSC  
Clock Input High  
Clock Input Low  
Clock Duty Cycle  
SHDN AND EXTCLK  
Input High  
V
V
- 0.5  
DD  
V
50  
5
%
V
- 0.5  
V
V
IH  
DD  
Input Low  
V
0.5  
10  
IL  
Input Leakage Current  
V
= 0 to V  
0.4  
μA  
INPUT  
DD  
4
_______________________________________________________________________________________  
Dual Universal Switched-Capacitor Filters  
0/MAX7491  
ELECTRICAL CHARACTERISTICS—MAX7491 (continued)  
(V  
= V  
= +3V; f  
= 625kHz; 10kΩ || 50pF load to V /2 at LP_, BP_, and N_/HP_; V  
= V ; 0.1µF from COM to  
SHDN DD  
EXTCLK  
DD  
CLK  
DD  
GND; 50% duty-cycle clock input; COM = V /2; T = T  
to T  
. Typical values are at T = +25°C, unless otherwise noted.)  
MAX A  
DD  
A
MIN  
(Note 1)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
POWER REQUIREMENTS  
Supply Voltage  
V
2.7  
3.6  
4.0  
1
V
DD  
No load, mode 1, R1 = R3 = 50kΩ,  
R2 = 10kΩ, Q = 5  
Power-Supply Current  
I
3.5  
mA  
μA  
DD  
Shutdown Current  
I
SHDN = GND  
SHDN  
INTERNAL OP AMPS CHARACTERISTICS  
Output Short-Circuit Current  
11  
130  
7
mA  
dB  
DC Open-Loop Gain  
R 10kΩ, C 50pF  
L L  
Gain Bandwidth Product  
Slew Rate  
GBW  
SR  
R 10kΩ, C 50pF  
MHz  
V/μs  
L
L
L
R
10kΩ, C 50pF  
6
L
Note 1: Resistive loading of the N_/HP_, LP_, BP_ outputs includes the resistors used for the filter implementation.  
Note 2: Crosstalk between internal filter sections is measured by applying a 1V 10kHz signal to one bandpass filter section input  
RMS  
and grounding the input of the other bandpass filter section. The crosstalk is the ratio between the output of the grounded  
filter section and the 1V input signal of the other section.  
RMS  
Note 3: Bandwidth of noise measurement is 80kHz.  
3
Note 4: f  
(kHz) = 135 x 10 / C  
(C  
in pF)  
OSC  
OSC  
OSC  
Typical Operating Characteristics  
(V = +5V for MAX7490, V = +3V for MAX7491, f  
= 625kHz, V  
= V  
= V , COM = V /2, Mode 1, R3 = R1 = 50kΩ,  
DD  
DD  
CLK  
SHDN  
EXTCLK DD DD  
R2 = 10kΩ, Q = 5, T = +25°C, unless otherwise noted.)  
A
2ND-ORDER BANDPASS FILTER  
FREQUENCY RESPONSE  
2ND-ORDER BANDPASS FILTER  
PHASE RESPONSE  
CLOCK-TO-CENTER FREQUENCY  
DEVIATION vs. CLOCK FREQUENCY  
10  
300  
250  
200  
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.6  
0
-10  
-20  
-30  
-40  
V
= 5V  
DD  
V
= 3V  
DD  
150  
100  
50  
V
f
= +5V  
DD  
-50  
-60  
-0.7  
-0.8  
= 625kHz  
CLK  
Q = 5  
0
1
10  
100  
1
10  
100  
100  
1000  
f (kHz)  
CLK  
10,000  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
_______________________________________________________________________________________  
5
Dual Universal Switched-Capacitor Filters  
Typical Operating Characteristics (continued)  
(V = +5V for MAX7490, V = +3V for MAX7491, f  
= 625kHz, V  
= V  
= V , COM = V /2, Mode 1, R3 = R1 = 50kΩ,  
DD  
DD  
CLK  
SHDN  
EXTCLK DD DD  
R2 = 10kΩ, Q = 5, T = +25°C, unless otherwise noted.)  
A
CLOCK-TO-CENTER FREQUENCY  
DEVIATION vs. Q  
CLOCK-TO-CENTER FREQUENCY  
DEVIATION vs. TEMPERATURE  
Q DEVIATION vs. CLOCK FREQUENCY  
1
0
0.2  
0.1  
0.7  
0.6  
0.5  
0.4  
0.3  
V
= 5V  
DD  
V
= 5V  
DD  
0
-1  
V
= 3V  
DD  
0.2  
0.1  
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.6  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.6  
V
= 3V  
DD  
-2  
-3  
-4  
-5  
-6  
-0.7  
100  
1000  
(kHz)  
10,000  
0
20  
40  
60  
80  
100  
-40  
-15  
10  
35  
60  
85  
0/MAX7491  
f
CLK  
Q
TEMPERATURE (°C)  
Q DEVIATION vs. TEMPERATURE  
NOISE vs. Q  
SUPPLY CURRENT vs. TEMPERATURE  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
2.0  
1.5  
3.7  
3.6  
3.5  
3.4  
3.3  
3.2  
3.1  
3.0  
1.0  
0.5  
0
V
= 3V  
DD  
V
= 5V  
DD  
-0.5  
-1.0  
-1.5  
-2.0  
0
-40  
-15  
10  
35  
60  
85  
0
20  
40  
60  
80  
100  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
Q
TEMPERATURE (°C)  
MAX7491  
THD + NOISE vs. FREQUENCY  
SUPPLY CURRENT vs. SUPPLY VOLTAGE  
SUPPLY CURRENT vs. SUPPLY VOLTAGE  
4.0  
3.9  
3.8  
3.7  
3.6  
3.5  
3.4  
3.3  
3.2  
3.1  
3.0  
-20  
-30  
3.41  
3.40  
3.39  
3.38  
3.37  
3.36  
3.35  
3.34  
3.33  
3.32  
A = MODE 1  
B = MODE 3  
-40  
+85°C  
-50  
f
= 3MHz  
CLK  
-60  
B
A
f
= 625kHz  
-70  
CLK  
+25°C  
-40°C  
-80  
-90  
f
= 2kHz  
CLK  
-100  
-110  
-120  
3.0  
3.5  
4.0  
4.5  
(V)  
5.0  
5.5  
3.0  
3.5  
4.0  
4.5  
(V)  
5.0  
5.5  
1k  
10k  
V
V
INPUT FREQUENCY (Hz)  
DD  
DD  
6
_______________________________________________________________________________________  
Dual Universal Switched-Capacitor Filters  
0/MAX7491  
Typical Operating Characteristics (continued)  
(V = +5V for MAX7490, V = +3V for MAX7491, f  
= 625kHz, V  
= V  
= V , COM = V /2, Mode 1, R3 = R1 = 50kΩ,  
DD  
DD  
CLK  
SHDN  
EXTCLK DD DD  
R2 = 10kΩ, Q = 5, T = +25°C, unless otherwise noted.)  
A
MAX7490  
MAX7491  
MAX7490  
THD + NOISE vs. FREQUENCY  
THD + NOISE vs. INPUT VOLTAGE  
THD + NOISE vs. INPUT VOLTAGE  
-20  
-30  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
A = MODE 1  
B = MODE 3  
A = MODE 1  
B = MODE 3  
A = MODE 1  
B = MODE 3  
-40  
-50  
-60  
B
A
-70  
-80  
B
A
-90  
B
-100  
-110  
-120  
A
1k  
10k  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0
1
2
3
4
5
INPUT FREQUENCY (Hz)  
INPUT VOLTAGE (Vp-p)  
INPUT VOLTAGE (Vp-p)  
OUTPUT VOLTAGE SWING  
vs. LOAD RESISTANCE  
INTERNAL OSCILLATOR PERIOD  
vs. LARGE CAPACITANCE  
INTERNAL OSCILLATOR PERIOD  
vs. SMALL CAPACITANCE  
5.0  
160  
140  
120  
100  
80  
2500  
2000  
1500  
1000  
500  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
V
= 5V  
= 3V  
DD  
DD  
V
V
= 3V  
DD  
60  
V
= 3V  
DD  
40  
V
= 5V  
2
DD  
20  
V
= 5V  
DD  
0
0
0
4
8
12  
16  
20  
1
3
4
5
6
7
0
200  
400  
600  
800  
1000  
R
(kΩ) TO COM  
CAPACITANCE (nF)  
CAPACITANCE (pF)  
LOAD  
INTERNAL OSCILLATOR FREQUENCY  
vs. TEMPERATURE  
INTERNAL OSCILLATOR FREQUENCY  
vs. SUPPLY VOLTAGE  
144  
142  
140  
138  
136  
134  
132  
130  
128  
126  
124  
133  
132  
131  
130  
129  
128  
127  
126  
C
= 1000pF  
C
= 1000pF  
OSC  
OSC  
V
= 3V  
DD  
V
= 5V  
DD  
-40  
-15  
10  
35  
60  
85  
3.0  
3.5  
4.0  
4.5  
(V)  
5.0  
5.5  
TEMPERATURE (°C)  
V
DD  
_______________________________________________________________________________________  
7
Dual Universal Switched-Capacitor Filters  
Pin Description  
NAME  
PIN  
FUNCTION  
FILTER A  
FILTER B  
LP_  
BP_  
1
2
3
4
16  
15  
14  
13  
2nd-Order Lowpass Filter Output  
2nd-Order Bandpass Filter Output  
N_/HP_  
INV_  
2nd-Order Notch/Highpass Filter Output  
Inverting Input of Filter Summing Op Amp  
Summing Input. The connection of the summing input, along with the other  
resistor connections, determine the circuit topology (mode) of each 2nd-  
order section. S_ must never be left unconnected.  
S_  
5
12  
Shutdown Input. Drive SHDN low to enable shutdown mode; drive SHDN  
SHDN  
6
7
high or connect to V  
for normal operation.  
DD  
GND  
Ground Pin  
0/MAX7491  
Positive Supply. Bypass V  
supply is recommended. Input +5V for MAX7490 or +3V for MAX7491.  
with a 0.1µF capacitor to GND. A low-noise  
DD  
V
8
9
DD  
Clock Input. Connect CLK to an external capacitor (C ) between CLK and  
OSC  
ground to set the internal oscillator frequency. For external clock operation,  
drive CLK with a CMOS-level clock. The duty cycle of the external clock  
should be between 45% and 55% for best performance.  
CLK  
External/Internal Clock Select Input. Connect EXTCLK to V  
CLK externally. Connect EXTCLK to GND when using the internal oscillator.  
when driving  
DD  
EXTCLK  
COM  
10  
11  
Common Pin. Biased internally at V /2. Bypass externally to GND with  
DD  
0.1µF capacitor. To override the internal biasing, drive COM with an external  
low-impedance source.  
the external clock adjusts the center frequency of the  
_______________Detailed Description  
filter:  
The MAX7490/MAX7491 are universal switched-capaci-  
f
O
= f  
/100  
CLK  
tor filters designed with a fixed internal f /f ratio of  
CLK O  
100:1. Operating modes use external resistors connect-  
ed in different arrangements to realize different filter  
functions (highpass, lowpass, bandpass, notch) in all of  
the classical filter topologies (Butterworth, Bessel, ellip-  
tic, Chebyshev). Figure 1 shows a block diagram.  
Internal Clock  
When using the internal oscillator, drive the EXTCLK pin  
low or connect to GND and connect a capacitor (C  
)
OSC  
between CLK and GND. The value of the capacitor  
(C  
) determines the oscillator frequency as follows:  
3
OSC  
Clock Signal  
f
(kHz) = 135 x 10 / C  
(pF)  
OSC  
OSC  
External Clock  
The MAX7490/MAX7491 switched-capacitor filters are  
designed for use with external clocks that have a 50%  
5% duty cycle. When using an external clock, drive  
Since C  
is in the low picofarads, minimize the stray  
OSC  
capacitance at CLK so that it does not affect the inter-  
nal oscillator frequency. Varying the frequency of the  
internal oscillator adjusts the filter’s center frequency by  
a 100:1 clock-to-center frequency ratio. For example,  
an internal oscillator frequency of 135kHz produces a  
nominal center frequency of 1.35kHz.  
the EXTCLK pin high or connect to V . Drive CLK with  
DD  
CMOS logic levels (GND and V ). Varying the rate of  
DD  
8
_______________________________________________________________________________________  
Dual Universal Switched-Capacitor Filters  
0/MAX7491  
(6)  
SHDN  
V
DD  
(8)  
BPA (2)  
LPA (1)  
NA/HPA (3)  
INVA (4)  
+
R
R
Σ
-
COM (11)  
NB/HPB (14)  
BPB (15)  
LPB (16)  
SA (5)  
+
Σ
INVB (13)  
-
GND (7)  
CLK (9)  
SB (12)  
EXTCLK (10)  
Figure 1. Block Diagram  
notch (band-reject) functions. Three of these functions  
are simultaneously available. The maximum signal  
swing is limited by the power-supply voltages used.  
The amplifiers’ outputs in the MAX7490/MAX7491 are  
able to swing to within approximately 0.2V of either  
supply.  
2nd-Order Filter Stage  
The MAX7490/MAX7491 are dual biquad filters. The  
biquad topology allows the use of standard filter tables  
and equations to implement simultaneous lowpass,  
bandpass, and notch or highpass filters. Topologies  
such as Butterworth, Chebyshev, Bessel, elliptic, as  
well as custom algorithms are possible.  
Driving coaxial cable, large capacitive loads, or total  
resistive loads less than 10kΩ will degrade the total  
harmonic distortion (THD) performance. Note that the  
effective resistive load at the output must include both  
the feedback resistors and any external load resistors.  
Internal Common Voltage  
The COM pin sets the common-mode input voltage and  
is internally biased to V /2 with a resistor-divider. The  
DD  
resistors used are typically 250kΩ for the MAX7490,  
and typically 80kΩ for the MAX7491. The common-  
mode voltage is easily overdriven by an external volt-  
age supply if desired. Bypass COM to the analog  
ground with at least a 0.1µF capacitor.  
Low-Power Shutdown Mode  
The MAX7490/MAX7491 have a shutdown mode that is  
activated by driving SHDN low. In shutdown mode, the  
filter supply current reduces to < 1µA (max), and the fil-  
ter outputs become high impedance. The COM input  
also becomes high impedance during shutdown. For  
Inverting Inputs  
Locate resistors that are connected to INV_ as close as  
possible to INV_ to reduce stray capacitance and noise  
pickup. INV_ are inverting inputs to continuous-time op  
amps, and behave like a virtual ground. There is no  
sampling energy present on these inputs.  
normal operation, drive SHDN high or connect to V  
.
DD  
__________Applications Information  
Designing with the MAX7490/MAX7491 begins by  
selecting the mode that best fits the desired circuit  
requirements. Table 1 lists the available modes and  
their relative advantages and disadvantages. Table 2  
lists the different nomenclature used in the explanations  
that follow.  
Outputs  
Each switched-capacitor section, together with two to  
four external resistors, can generate all standard 2nd-  
order functions: bandpass, lowpass, highpass, and  
_______________________________________________________________________________________  
9
Dual Universal Switched-Capacitor Filters  
Table 1. Filter Operating Modes  
MODE  
LP  
HP  
BP  
N
LP-N  
*
HP-N  
*
COMMENTS  
/f ratio is the nominal value. Good for bandpass filters  
f
CLK O  
1
with identical sections cascaded, higher order Butterworth filters,  
high-Q bandpass, low-Q notches.  
Same as Mode 1 with f  
value.  
/f ratios greater than the nominal  
CLK O  
1B  
2
Combination of Mode 1 and Mode 3; f  
less than the nominal value. Less sensitivity to resistor tolerances  
than Mode 3.  
/f ratios always  
CLK O  
Extension of Mode 2 that allows higher frequencies. Highpass  
and lowpass outputs are summed with external op amp and  
two resistors. Good for lowpass elliptic filters.  
2N  
3
Adjustable f above and below the nominal frequency.  
O
Commonly used for multiple-pole Chebyshev filters, all-pole  
higher order bandpass, lowpass, and highpass filters.  
0/MAX7491  
Extension of Mode 3 that needs an external op amp and  
two additional resistors. Commonly used for lowpass or higher  
elliptic or Cauer filters.  
3A  
*LP-N = lowpass notch, HP-N = highpass notch. Both require an external op amp. See Definition of Terms (Table 2).  
Table 2. Definition of Terms  
TERM  
DEFINITION  
f
The clock frequency applied to the switched-capacitor filter.  
CLK  
The center frequency of the 2nd-order complex pole pair, f , is determined by measuring the peak response  
O
frequency at the bandpass output.  
f
O
f
The frequency of minimum amplitude response at the notch output.  
NOTCH  
Quality factor, or Q, is the ratio of f to the -3dB bandwidth of the 2nd-order bandpass filter. Q also determines  
O
the amount of amplitude peaking at the lowpass and highpass outputs, but is not measured at these outputs.  
Q
H
H
The gain in V/V of the bandpass output at f = f .  
O
OBP  
OLP  
OHP  
ON1  
ON2  
The gain in V/V of the lowpass output at f0Hz.  
H
H
H
The gain in V/V of the highpass output at ff  
/2.  
CLK  
The notch output gain as f0Hz.  
The notch output gain at f = f  
/2.  
CLK  
LP-N  
HP-N  
A notch output with H  
A notch output with H  
> H  
ON1  
ON1  
ON2.  
ON2.  
< H  
10 ______________________________________________________________________________________  
Dual Universal Switched-Capacitor Filters  
0/MAX7491  
C
C
C
C
R6  
R5  
R3  
R2  
R3  
R2  
COM  
N
S
BP  
LP  
N
S
BP  
LP  
R1  
R1  
V
IN  
-
V
IN  
-
+
+
Σ
Σ
COM  
COM  
Figure 2. Mode 1, 2nd-Order Filter Providing Notch, Bandpass,  
and Lowpass Outputs  
Figure 3. Mode 1B, 2nd-Order Filter Providing Notch, Bandpass,  
and Lowpass Outputs  
Mode 1  
Figure 2 shows the MAX7490/MAX7491s’ configuration  
of Mode 1. This mode provides 2nd-order notch, low-  
pass, and bandpass filter functions. The gain at all  
three outputs is inversely proportional to the value of  
Mode 1B  
Figure 3 shows the configuration of Mode 1B. R5 and  
R6 are added to lower the feedback voltage from the  
lowpass output to the summing input. This allows the  
clock-to-center frequency to be adjusted beyond the  
nominal value. This mode essentially has the same  
functions and speed as Mode 1 while providing a high-  
R1. The center frequency, f , is fixed at f  
/100. High-  
O
CLK  
Q bandpass filters can be built without exceeding the  
bandpass amplifier’s output swing (i.e., H does not  
OBP  
Q with f  
/f ratios greater than the nominal value.  
CLK O  
have to track Q). The notch and bandpass center fre-  
quencies are identical. The notch output gain is the  
same above and below the notch center frequency.  
Mode 1 can also be used to make high-order Butter-  
worth lowpass filters, low Q notches, and multiple-order  
bandpass filters obtained by cascading identical  
switched-capacitor sections.  
Mode 1B Design Equations  
f
R6  
CLK  
f
=
O
100 R6 + R5  
f
= f  
n
O
Mode 1 Design Equations  
R3  
R6  
Q =  
R2 R6 + R5  
f
CLK  
f
=
O
R2 R6 + R5  
100  
= f  
H
H
H
H
=
=
OLP  
OBP  
ON1  
ON2  
R1  
R6  
f
notch  
O
R3  
R3  
Q =  
R1  
R2  
R2  
R2  
(as f 0Hz) =  
H
H
H
H
=
OLP  
OBP  
ON1  
ON2  
R1  
R2  
R1  
R3  
(at f = f  
/2) =  
CLK  
=
R1  
R1  
R2  
Mode 2  
(as f 0Hz) =  
R1  
Figure 4 shows the configuration of Mode 2. Mode 2 is  
a combination of Mode 1 and Mode 3. In this mode,  
R2  
(at f = f  
/2) =  
CLK  
f
/f is always less than the part’s nominal ratio.  
CLK O  
R1  
However, it provides less sensitivity to resistor toler-  
ances than does Mode 3. It has a highpass notch out-  
put where the notch frequency depends solely on the  
clock frequency.  
______________________________________________________________________________________ 11  
Dual Universal Switched-Capacitor Filters  
Mode 2 Design Equations  
C
C
f
R2  
R4  
R4  
R3  
R2  
CLK  
f
=
=
1+  
O
100  
f
CLK  
100  
f
n
HP/N  
S
BP  
LP  
R1  
V
IN  
R3  
R2  
-
Q =  
1+  
+
R2  
R4  
Σ
R2  
R4  
H
=
OLP  
R1 R4 + R2  
COM  
R3  
H
H
=
OBP  
Figure 4. Mode 2, 2nd-Order Filter Providing a Highpass  
Notch, Bandpass, and Lowpass Outputs  
R1  
R2  
R4  
(f 0Hz) =  
ON1  
Mode 2N Design Equations  
R1 R4 + R2  
0/MAX7491  
R2  
H
(at f = f  
/2) =  
ON2  
CLK  
f
R2  
R4  
CLK  
R1  
f
=
=
1+  
1+  
O
100  
Mode 2N  
f
R
H
CLK  
100  
Figure 5 shows the configuration of Mode 2N. This  
mode extends the topology of Mode 3A to Mode 2,  
where the highpass and lowpass outputs are summed  
f
n
R
L
R3  
R2  
through two external resistors, R and R , to create a  
H
L
Q =  
1+  
lowpass notch filter that has higher frequency than the  
one in Mode 2. Mode 2 is most useful in lowpass elliptic  
designs. When cascading the sections of the  
MAX7490/MAX7491, the highpass and lowpass outputs  
can be summed directly into the inverting input of the  
next section. Only one external op amp is needed.  
R2  
R4  
⎞ ⎛  
⎟ ⎜  
R
R
G
R2  
R4  
G
H
(f 0Hz) =  
+
ON1  
R
R
R1 R4 + R2  
⎠ ⎝  
H
L
C
C
R4  
R3  
R2  
HP/N  
S
BP  
LP  
R1  
V
IN  
-
+
Σ
R
G
R
L
LOWPASS  
NOTCH  
COM  
R
H
OUTPUT  
COM  
Figure 5. Mode 2N, 2nd-Order Filter Providing a Lowpass Notch Output  
12 ______________________________________________________________________________________  
Dual Universal Switched-Capacitor Filters  
0/MAX7491  
Mode 3  
C
C
Figure 6 shows the configuration of Mode 3. This mode  
is a sampled time (Z transform) equivalent of the classi-  
cal 2nd-order state variable filter. In this versatile mode,  
the ratio of resistors R2 and R4 can move the center  
frequency both above and below the nominal ratio.  
Mode 3 is commonly used to make multiple-pole  
Chebyshev filters with a single clock frequency. This  
mode can also be used to make high-order all-pole  
bandpass, lowpass, and highpass filters.  
R4  
R3  
R2  
HP  
S
BP  
LP  
COM  
R1  
V
IN  
-
+
Σ
Mode 3 Design Equations  
COM  
f
R2  
CLK  
f
=
O
Figure 6. Mode 3, 2nd-Order Section Providing Highpass,  
Bandpass, and Lowpass Outputs  
100 R4  
R3 R2  
R2 R4  
R2  
Q =  
the highpass and lowpass outputs through two external  
resistors, R and R . The ratio of resistors R and R  
H
L
H
L
H
=
OHP  
adjusts the notch frequency, while R2 and R4 adjust  
the bandpass center frequency, since the notch (zero  
pair) frequency can be adjusted to both above and  
R1  
R4  
R1  
H
=
OLP  
below f . Mode 3A is suitable for both lowpass and  
O
R3  
R1  
highpass elliptic or Cauer filters. In multipole elliptic fil-  
ters, only one external op amp is needed. Use the  
inverting input of the internal op amp as the summing  
node for all but the final section of the filter.  
H
=
OBP  
Mode 3A  
Figure 7 shows the configuration of Mode 3A. Similar to  
Mode 2, this mode adds an external op amp. See  
Table 3 for op amp selection ideas. This op amp cre-  
ates a highpass notch and lowpass notch by summing  
C
C
R4  
R3  
R2  
S
N/HP  
BP  
LP  
COM  
R1  
V
IN  
-
+
Σ
R
G
R
L
LOWPASS  
NOTCH  
COM  
R
H
OUTPUT  
COM  
Figure 7. Mode 3A, 2nd-Order Filter Providing Highpass Notch or Lowpass Notch Outputs  
______________________________________________________________________________________ 13  
Dual Universal Switched-Capacitor Filters  
Table 3. Suggested External Op Amps  
PART  
GBW (MHz)  
SLEW RATE (V/μs)  
I
(mA)  
PIN-PACKAGE  
5 SOT23  
SUPPLY/AMP  
MAX4281  
MAX4322  
MAX4130  
MAX4490  
2
5
0.7  
2.0  
0.5  
1.1  
5 SOT23  
10  
10  
4.0  
1.15  
2.0  
5 SOT23  
10.0  
5 SOT23  
Mode 3A Design Equations  
Offset Voltage  
Switched-capacitor integrators generally exhibit higher  
input offsets than discrete RC integrators. The larger  
offset is mainly due to the charge injection of the CMOS  
switches into the integrating capacitors. The internal op  
amp offset also adds to the overall offset value. Figure  
8 shows the input offsets from a single 2nd-order sec-  
tion. Table 4 lists the formula for the output offset volt-  
age for various modes and output pins.  
f
R2  
CLK  
f
=
=
O
100 R4  
f
R
H
CLK  
f
n
100  
R
L
0/MAX7491  
R3 R2  
R2 R4  
Q =  
Power Supplies  
The MAX7490 operates from a single +5V supply, and  
the MAX7491 operates from a single +3V supply.  
R2  
H
=
OHP  
R1  
Bypass V  
DD  
to GND with at least a 0.1µF capacitor.  
DD  
R4  
V
should be isolated from other digital or high-volt-  
H
H
H
=
=
OLP  
OBP  
ON1  
age analog supplies. If dual supplies are required, con-  
nect the COM pin to the system ground and the GND  
pin to the negative supply. Figure 9 shows an example  
of dual-supply operation. Single-supply and dual-sup-  
ply performances are equivalent. For dual-supply oper-  
ation, drive CLK, SHDN, and EXTCLK from GND (which  
R1  
R3  
R1  
R
R4  
R1  
R
G
(f 0Hz) =  
R
L
is now V-) to V . If using the internal oscillator in dual-  
DD  
R2  
R1  
supply mode, C  
can be returned to either GND or  
G
OSC  
H
(at f = f  
/2) =  
ON2  
CLK  
the actual ground voltage. Use the MAX7490 for 2.5V  
and use the MAX7491 for 1.5V.  
R
H
Note: When the passband gain error exceeds 1dB, the  
For most applications, a 0.1µF bypass capacitor from  
use of capacitor C between the lowpass output and  
C
COM to GND is sufficient. If the V  
supply has signifi-  
DD  
the inverting input will reduce the gain error. The value  
can best be determined experimentally. Typically, it  
cant 60Hz energy, increase this capacitor to 1µF or  
greater to provide better power-supply rejection.  
should be about 5pF/dB (C  
= 15pF).  
C-MAX  
BP  
LP  
N/HP  
INV  
V
OS1  
+
V
OS2  
V
OS3  
Σ
COM  
-
S
Figure 8. Block Diagram of a 2nd-Order Section Showing the Input Offsets  
14 ______________________________________________________________________________________  
Dual Universal Switched-Capacitor Filters  
0/MAX7491  
Table 4. Output DC Offsets for a 2nd-Order Section  
MODE  
V
V
V
OSLP  
OSN/HP  
OSBP  
V
[1 + (R2 / R3) + (R2 / R1)] - (V  
)
OS1  
OS3  
1
V
V
V
- V  
OSN/HP OS2  
OS3  
OS3  
(R2 / R3)  
V
[1 + (R2 / R3) + (R2 / R1)] - (V  
)
OS1  
OS3  
1b  
2
(V  
- V  
)[1 + R5 / R6)]  
OSN/HP  
OS2  
(R2 / R3)  
V
(V  
(V  
[1 + (R2 / R3) + (R2 / R1) + (R2 / R4) -  
OS1  
)(R2 / R3)][R4 / R2 + R4] +  
)[R2 / R2 + R4]  
V
V
V
V
- V  
OSN/HP  
OS3  
OS2  
OS3  
OS3  
OS2  
[1 + (R4 / R1) + (R4 / R2) + (R4 / R3)] - (V  
)
OS1  
OS2  
3
V
OS2  
(R4 / R2) - (V  
)(R4 / R3)  
OS3  
Aliasing  
V+  
Aliasing is an inherent phenomenon of most switched-  
capacitor filters. As with all sampled systems, frequen-  
cy components of the input signal above one half the  
sampling rate will be aliased. The MAX7490/MAX7491  
sample at twice the clock frequency, yielding a 200:1  
sampling to cutoff frequency ratio.  
*
V
DD  
SHDN  
0.1μF  
COM  
In particular, input signal components (f ) near the  
IN  
sampling rate generate a difference frequency  
SAMPLING IN  
MAX7490  
MAX7491  
(f  
- f ) that often falls within the passband of  
V+  
V-  
CLOCK  
CLK  
the filter. Such aliased signals, when they appear at the  
output, are indistinguishable from real input informa-  
tion. For example, the aliased output signal generated  
when a 99kHz waveform is applied to a filter sampling  
0.1μF  
GND  
V-  
at 100kHz, (f  
= 50kHz) is 1kHz. This waveform is an  
CLK  
*DRIVE SHDN TO V- FOR LOW-POWER  
SHUTDOWN MODE.  
attenuated version of the output that would result from  
a true 1kHz input. Since sampling is done at twice the  
clock frequency, the Nyquist frequency is the same as  
the clock frequency.  
Figure 9. Dual-Supply Operation  
A simple passive RC lowpass input filter is usually suffi-  
cient to remove input frequencies that can be aliased.  
In many cases, the input signal itself may be band limit-  
ed and require no special anti-alias filtering. Selecting  
Input Signal Amplitude Range  
The optimal input signal range is determined by  
observing the voltage level at which the signal-to-noise  
plus distortion (SINAD) ratio is maximized for a given  
corner frequency. The Typical Operating Character-  
istics show the THD + Noise response as the input sig-  
nal’s peak-to-peak amplitude is varied. In most  
systems, the input signal should be kept as large as  
possible to maximize the signal-to-noise ratio (SNR).  
Allow sufficient headroom to ensure no signal clipping  
under expected operating conditions.  
a passive filter cutoff frequency equal to f /2 gives  
C
12dB rejection at the Nyquist frequency.  
Clock Feedthrough  
Clock feedthrough is defined as the RMS value of the  
clock frequency and its harmonics that are present at  
the filter’s output pins, even without input signal. The  
clock feedthrough can be greatly reduced by adding a  
simple RC lowpass network at the final filter output.  
Choose a cutoff frequency as low as possible to pro-  
vide maximum noise attenuation. The attenuation and  
phase shift of the external filter will limit the actual fre-  
quency selected.  
Anti-Aliasing and Post-DAC Filtering  
When using the MAX7490/MAX7491 for anti-aliasing or  
post-DAC filtering, synchronize the DAC (or ADC) and  
the filter clocks. If the clocks are not synchronized,  
beat frequencies may alias into the desired passband.  
______________________________________________________________________________________ 15  
Dual Universal Switched-Capacitor Filters  
Multiple Filter Stages  
In some designs, such as very narrow band filters, or in  
Table 5. Cascading Identical Bandpass  
Filter Sections  
modes where f cannot be tuned with resistors, several  
O
2nd-order sections with identical f may be cascaded  
O
TOTAL SECTIONS  
TOTAL BW  
1.000 B  
0.644 B  
0.510 B  
0.435 B  
0.386 B  
TOTAL Q  
1.00 Q  
1.55 Q  
1.96 Q  
2.30 Q  
2.60 Q  
without multiple feedback. The total Q of the resultant  
1
2
3
4
5
filter (Q ) is:  
T
1/N  
1/2  
Total Q = Q / 2  
1  
(
)
T
Q is the Q of each individual filter section, and N is the  
number of 2nd-order sections. In Table 5, the total Q and  
total bandwidth (BW) are listed for up to five identical  
2nd-order sections. B is the bandwidth of each section.  
Wideband Noise  
The wideband noise of the filter is the total RMS value  
of the device’s noise spectral density and is used to  
determine the operating SNR. Most of its frequency  
contents lie within the filter’s passband and cannot be  
reduced with postfiltering. The total noise depends  
mainly on the Q of each filter section and the cascade  
sequence. Therefore, in multistage filters, place the  
section with the highest Q first for lower output noise.  
Chip Information  
0/MAX7491  
PROCESS: BiCMOS  
16 ______________________________________________________________________________________  
Dual Universal Switched-Capacitor Filters  
0/MAX7491  
Typical Application Circuit  
4TH-ORDER 10kHz  
R1B  
BANDPASS FILTER  
200k  
4TH-ORDER 10kHz BANDPASS FILTER  
FREQUENCY RESPONSE  
OUT  
LPB  
BPB  
LPA  
BPA  
R3A  
R3B  
5
0
200k  
200k  
R2A  
10k  
R2B  
10k  
MAX7490  
MAX7491  
-5  
NB/HPB  
INVB  
NA/HPA  
INVA  
R1  
200k  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
V
IN  
SB  
COM  
SA  
SHDN  
GND  
C2  
0.1μF  
EXTCLK  
CLK  
8
9
10  
11  
12  
f
= 1MHz  
V
V
DD  
CLK  
DD  
FREQUENCY (kHz)  
C1  
0.1μF  
Package Information  
For the latest package outline information and land patterns, go  
to www.maxim-ic.com/packages.  
PACKAGE TYPE PACKAGE CODE DOCUMENT NO.  
16 QSOP  
E16+4  
21-0055  
______________________________________________________________________________________ 17  
Dual Universal Switched-Capacitor Filters  
Revision History  
REVISION REVISION  
PAGES  
CHANGED  
DESCRIPTION  
NUMBER  
DATE  
0
1
7/00  
4/09  
Initial release  
Changes to add lead-free packages, style edits  
1–10, 16, 17, 18  
0/MAX7491  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
18 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2009 Maxim Integrated Products  
Maxim is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY