MAX765ESA-T [MAXIM]

Switching Regulator, Current-mode, 1.5A, 300kHz Switching Freq-Max, BICMOS, PDSO8, 0.150 INCH, PLASTIC, SOIC-8;
MAX765ESA-T
型号: MAX765ESA-T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Switching Regulator, Current-mode, 1.5A, 300kHz Switching Freq-Max, BICMOS, PDSO8, 0.150 INCH, PLASTIC, SOIC-8

文件: 总12页 (文件大小:134K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-0176; Rev 0; 6/94  
-5 V/-1 2 V/-1 5 V o r Ad ju s t a b le ,  
Hig h -Effic ie n c y, Lo w I DC-DC In ve rt e rs  
Q
45/MAX76  
_______________Ge n e ra l De s c rip t io n  
____________________________Fe a t u re s  
High Efficiency for a Wide Range of Load Currents  
250mA Output Current  
The MAX764/MAX765/MAX766 inverting switching regu-  
lators are highly efficient over a wide range of load cur-  
rents, delivering up to 1.5W. A unique, current-limited,  
pulse-frequency-modulated (PFM) control scheme com-  
bines the benefits of traditional PFM converters with the  
benefits of pulse-width-modulated (PWM) converters.  
Like PWM converters, the MAX764/MAX765/MAX766 are  
highly efficient at heavy loads. Yet because they are PFM  
devices, they use less than 120µA of supply current (vs.  
2mA to 10mA for a PWM device).  
120µA Max Supply Current  
5µA Max Shutdown Current  
3V to 16V Input Voltage Range  
-5V (MAX764), -12V (MAX765), -15V (MAX766),  
or Adjustable Output from -1V to -16V  
The input voltage range is 3V to 16V. The output volt-  
age is preset at -5V (MAX764), -12V (MAX765), or -15V  
(MAX766); it can also be adjusted from -1V to -16V  
using two external resistors (Dual ModeTM). The maxi-  
Current-Limited PFM Control Scheme  
300kHz Switching Frequency  
Internal, P-Channel Power MOSFET  
mum operating V - V  
differential is 20V.  
IN  
OUT  
These devices use miniature external components; their  
high switching frequencies (up to 300kHz) allow for less  
than 5mm diameter surface-mount magnetics. A stan-  
dard 47µH inductor is ideal for most applications, so no  
magnetics design is necessary.  
______________Ord e rin g In fo rm a t io n  
PART  
TEMP. RANGE  
0°C to +70°C  
PIN-PACKAGE  
8 Plastic DIP  
8 SO  
MAX764CPA  
MAX764CSA  
MAX764C/D  
MAX764EPA  
MAX764ESA  
MAX764MJA  
MAX765CPA  
MAX765CSA  
MAX765C/D  
MAX765EPA  
MAX765ESA  
MAX765MJA  
0°C to +70°C  
0°C to +70°C  
Dice*  
An internal power MOSFET makes the MAX764/MAX765/  
MAX766 ideal for minimum component count, low- and  
medium-power applications. For increased output drive  
c a p a b ility or hig he r outp ut volta g e s , us e the  
MAX774/MAX775/MAX776 or MAX1774, which drive an  
external power P-channel MOSFET for loads up to 5W.  
-40°C to +85°C  
-40°C to +85°C  
-55°C to +125°C  
0°C to +70°C  
8 Plastic DIP  
8 SO  
8 CERDIP**  
8 Plastic DIP  
8 SO  
0°C to +70°C  
________________________Ap p lic a t io n s  
LCD-Bias Generators  
0°C to +70°C  
Dice*  
-40°C to +85°C  
-40°C to +85°C  
-55°C to +125°C  
8 Plastic DIP  
8 SO  
Portable Instruments  
LAN Adapters  
8 CERDIP**  
Remote Data-Acquisition Systems  
Battery-Powered Applications  
Ordering Information continued on last page.  
* Dice are tested at T = +25°C, DC parameters only.  
A
**Contact factory for availability and processing to MIL-STD-883.  
__________________P in Co n fig u ra t io n  
__________Typ ic a l Op e ra t in g Circ u it  
INPUT  
3V TO 15V  
TOP VIEW  
V+  
OUTPUT  
-5V  
LX  
OUT  
FB  
LX  
1
2
3
4
8
7
6
5
MAX764  
47µH  
V+  
MAX764  
MAX765  
MAX766  
SHDN  
ON/OFF  
SHDN  
REF  
V+  
GND  
OUT  
REF  
FB  
DIP/SO  
GND  
________________________________________________________________ Maxim Integrated Products  
1
Ca ll t o ll fre e 1 -8 0 0 -9 9 8 -8 8 0 0 fo r fre e s a m p le s o r lit e ra t u re .  
-5 V/-1 2 V/-1 5 V o r Ad ju s t a b le ,  
Hig h -Effic ie n c y, Lo w I DC-DC In ve rt e rs  
Q
ABSOLUTE MAXIMUM RATINGS  
V+ to GND..............................................................-0.3V to +17V  
OUT to GND ...........................................................+0.5V to -17V  
Maximum Differential (V+ to OUT) ......................................+21V  
REF, SHDN, FB to GND ...............................-0.3V to (V+ + 0.3V)  
LX to V+ ..................................................................+0.3V to -21V  
LX Peak Current ...................................................................1.5A  
Operating Temperature Ranges  
MAX76_C_A ........................................................0°C to +70°C  
MAX76_E_A .....................................................-40°C to +85°C  
MAX76_MJA ..................................................-55°C to +125°C  
Maximum Junction Temperatures  
MAX76_C_A/E_A ..........................................................+150°C  
MAX76_MJA .................................................................+175°C  
Storage Temperature Range ............................-65°C to +160°C  
Lead Temperature (soldering, 10sec) ............................+300°C  
Continuous Power Dissipation (T = +70°C)  
A
Plastic DIP (derate 9.09mW/°C above +70°C) ............727mW  
SO (derate 5.88mW/°C above +70°C) .........................471mW  
CERDIP (derate 8.00mW/°C above +70°C) .................640mW  
Stresses beyond those listed under Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V+ = 5V, I  
= 0mA, C  
= 0.1µF, T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
LOAD  
REF  
A
MIN  
PARAMETER  
V+ Input Voltage Range  
Supply Current  
SYMBOL  
CONDITIONS  
MIN  
3.0  
TYP  
MAX UNITS  
MAX76_C/E  
MAX76_M  
16.0  
V
V+  
3.5  
I
S
V+ = 16V, SHDN < 0.4V  
V+ = 16V, SHDN > 1.6V  
V+ = 10V, SHDN > 1.6V  
3V V+ 16V  
90  
2
120  
µA  
5
Shutdown Current  
FB Trip Point  
I
SHDN  
45/MAX76  
1
-10  
10  
mV  
MAX76_C  
±50  
±70  
±90  
FB Input Current  
I
FB  
MAX76_E  
nA  
MAX76_M  
MAX764, -4.8V V  
5.2V  
150  
68  
260  
120  
120  
105  
1.5  
1.5  
1.5  
4
OUT  
MAX765C/E, -11.52V V  
12.48V  
12.48V  
OUT  
Output Current and Voltage  
(Note 1)  
I
mA  
OUT  
MAX765M, -11.52V V  
50  
OUT  
MAX766, -14.40V V  
-15.60V  
35  
OUT  
MAX76_C  
MAX76_E  
MAX76_M  
1.4700  
1.4625  
1.4550  
1.5300  
1.5375  
1.5450  
10  
Reference Voltage  
V
REF  
V
MAX76_C/E  
MAX76_M  
REF Load Regulation  
0µA I  
100µA  
mV  
REF  
4
15  
REF Line Regulation  
3V V+ 16V  
0mA I  
40  
100  
µV/V  
%/mA  
%/V  
Load Regulation (Note 2)  
Line Regulation (Note 2)  
100mA  
0.008  
0.12  
80  
LOAD  
4V V+ 6V  
V
= -5V  
OUT  
10mA I  
100mA,  
LOAD  
Efficiency (Note 2)  
%
V
IN  
= 5V  
V
OUT  
= -15V  
82  
SHDN Leakage Current  
SHDN Input Voltage High  
SHDN Input Voltage Low  
V+ = 16V, SHDN = 0V or V+  
3V V+ 16V  
±1  
µA  
V
V
1.6  
IH  
V
IL  
3V V+ 16V  
0.4  
V
2
_______________________________________________________________________________________  
-5 V/-1 2 V/-1 5 V o r Ad ju s t a b le ,  
Hig h -Effic ie n c y, Lo w I DC-DC In ve rt e rs  
Q
45/MAX76  
ELECTRICAL CHARACTERISTICS (continued)  
(V+ = 5V, I  
= 0mA, C  
= 0.1µF, T = T  
to T , unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
LOAD  
REF  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MAX76_C  
MIN  
TYP  
MAX UNITS  
±5  
LX Leakage Current  
MAX76_E  
MAX76_M  
±10  
±30  
2.5  
µA  
ILX + (V+) 20V  
I
LX On-Resistance  
Peak Current at LX  
1.4  
0.75  
16  
A
IV  
I
+ (V+) 10V  
+ (V+) 10V  
OUT  
I
0.5  
12  
IV  
I
PEAK  
OUT  
Maximum Switch On-Time  
Minimum Switch Off-Time  
t
20  
µs  
µs  
ON  
t
1.8  
2.3  
2.8  
OFF  
Note 1: See Maximum Output Current vs. Supply Voltage graph in the Typical Operating Characteristics. Guarantees are based on  
correlation to switch on-time, switch off-time, on-resistance, and peak current rating.  
Note 2: Circuit of Figure 2.  
__________________________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s  
(V+ = 5V, V  
= -5V, T = +25°C, unless otherwise noted.)  
A
OUT  
MAX764  
MAX765  
MAX766  
EFFICIENCY vs. LOAD CURRENT  
EFFICIENCY vs. LOAD CURRENT  
EFFICIENCY vs. LOAD CURRENT  
100  
90  
100  
90  
100  
90  
V+ = 8V  
V+ = 5V  
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
V+ = 5V  
V+ = 5V  
V+ = 10V  
V+ = 15V  
CIRCUIT OF FIGURE 2  
V
OUT  
CIRCUIT OF FIGURE 2  
±
CIRCUIT OF FIGURE 2  
±
±
= -5V 4%  
V
OUT  
= -12V 4%  
V
= -15V 4%  
OUT  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
_______________________________________________________________________________________  
3
-5 V/-1 2 V/-1 5 V o r Ad ju s t a b le ,  
Hig h -Effic ie n c y, Lo w I DC-DC In ve rt e rs  
Q
____________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(V+ = 5V, V  
= -5V, T = +25°C, unless otherwise noted.)  
A
OUT  
MAXIMUM OUTPUT CURRENT  
vs. SUPPLY VOLTAGE  
NO-LOAD SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
NO-LOAD SUPPLY CURRENT  
vs. TEMPERATURE  
110  
105  
600  
100  
95  
CIRCUIT OF FIGURE 2  
= -5V  
100  
95  
500  
400  
300  
V+ = 15V  
V+ = 5V  
V
OUT  
90  
85  
80  
75  
70  
90  
85  
80  
75  
70  
65  
200  
100  
0
V
OUT  
= -12V  
60  
55  
50  
65  
60  
V
OUT  
= -15V  
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
-60 -40 -20  
0
20 40 60 80 100 120 140  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
SHUTDOWN CURRENT  
vs. TEMPERATURE  
MINIMUM SWITCH OFF-TIME  
vs. TEMPERATURE  
MAXIMUM SWITCH ON-TIME  
vs. TEMPERATURE  
4.0  
3.5  
2.60  
2.55  
17.0  
16.8  
16.6  
16.4  
16.2  
16.0  
15.8  
15.6  
15.4  
15.2  
15.0  
45/MAX76  
3.0  
2.5  
2.0  
1.5  
1.0  
2.50  
2.45  
2.40  
2.35  
2.30  
V+ = 15V  
V+ = 15V  
V+ = 15V  
V+ = 8V  
V+ = 5V  
V+ = 5V  
0.5  
0
2.25  
2.20  
V+ = 4V  
-60 -40 -20  
0
20 40 60 80 100 120 140  
-60 -40 -20  
0 20 40 60 80 100 120 140  
-60 -40 -20  
0
20 40 60 80 100 120 140  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
SWITCH ON/OFF-TIME RATIO  
vs. TEMPERATURE  
START-UP SUPPLY VOLTAGE  
vs. OUTPUT CURRENT  
LX LEAKAGE CURRENT  
vs. TEMPERATURE  
10,000  
1000  
100  
8
7
7.2  
7.1  
7.0  
6.9  
6.8  
6.7  
6.6  
6.5  
6.4  
6.3  
6.2  
CIRCUIT OF FIGURE 2  
IVOUTI + (V+) = 20V  
6
5
4
3
2
V+ = 5V  
10  
1
0
1
-60 -40 -20  
0
20 40 60 80 100 120 140  
0
50  
100 150  
200 250  
300  
20 30 40 50 60 70 80 90 100 110 120 130  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
OUTPUT CURRENT (mA)  
4
_______________________________________________________________________________________  
-5 V/-1 2 V/-1 5 V o r Ad ju s t a b le ,  
Hig h -Effic ie n c y, Lo w I DC-DC In ve rt e rs  
Q
45/MAX76  
____________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(V+ = 5V, V  
= -5V, T = +25°C, unless otherwise noted.)  
A
OUT  
LX ON-RESISTANCE  
vs. TEMPERATURE  
PEAK CURRENT AT LX  
vs. TEMPERATURE  
REFERENCE OUTPUT RESISTANCE  
vs. TEMPERATURE  
2.2  
2.0  
250  
200  
0.95  
0.90  
IVOUTI + (V+) = 10V  
I
= 10µA  
IVOUTI + (V+) = 20V  
REF  
1.8  
1.6  
0.85  
150  
100  
50  
IVOUTI + (V+) = 15V  
IVOUTI + (V+) = 15V  
0.80  
0.75  
I
= 50µA  
REF  
1.4  
1.2  
0.70  
0.65  
1.0  
0.8  
IVOUTI + (V+) = 10V  
I
= 100µA  
REF  
IVOUTI + (V+) = 20V  
0
-60 -40 -20  
0
20 40 60 80 100 120 140  
-60 -40 -20  
0
20 40 60 80 100 120 140  
-60 -40 -20  
0
20 40 60 80 100 120 140  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
REFERENCE OUTPUT  
vs. TEMPERATURE  
SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
1.506  
1.504  
1.502  
1.500  
1000  
I
= 100mA  
LOAD  
100  
10  
1
1.498  
1.496  
I
= 0mA  
LOAD  
0.1  
1.494  
CIRCUIT OF FIGURE 2  
1.492  
0.01  
-60 -40 -20  
0
20 40 60 80 100 120 140  
0
2
4
6
8
10 12 14 16  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
_______________________________________________________________________________________  
5
-5 V/-1 2 V/-1 5 V o r Ad ju s t a b le ,  
Hig h -Effic ie n c y, Lo w I DC-DC In ve rt e rs  
Q
____________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(V+ = 5V, V  
= -5V, T = +25°C, unless otherwise noted.)  
A
OUT  
TIME TO ENTER/EXIT SHUTDOWN  
LOAD-TRANSIENT RESPONSE  
0V  
A
A
B
B
0mA  
0V  
2ms/div  
5ms/div  
CIRCUIT OF FIGURE 2, V+ = 5V, I  
= 100mA, V = -5V  
CIRCUIT OF FIGURE 2, V+ = 5V, V = -5V  
OUT  
LOAD  
OUT  
A: V , 2V/div  
OUT  
A: V , 50mV/div, AC-COUPLED  
OUT  
B: SHUTDOWN PULSE, 0V TO 5V, 5V/div  
B: I , 0mA TO 100mA, 100mA/div  
LOAD  
45/MAX76  
DISCONTINUOUS CONDUCTION AT  
HALF AND FULL CURRENT LIMIT  
LINE-TRANSIENT RESPONSE  
A
A
B
B
C
0A  
0V  
0V  
5µs/div  
5ms/div  
CIRCUIT OF FIGURE 2, V = -5V, I  
CIRCUIT OF FIGURE 2, V+ = 5V, V = -5V, I = 140mA  
LOAD  
= 100mA  
LOAD  
OUT  
OUT  
A: OUTPUT RIPPLE, 100mV/div  
A: V , 50mV/div, AC-COUPLED  
OUT  
B: INDUCTOR CURRENT, 500mA/div  
C: LX WAVEFORM, 10V/div  
B: V+, 5V TO 10V, 5V/div  
6
_______________________________________________________________________________________  
-5 V/-1 2 V/-1 5 V o r Ad ju s t a b le ,  
Hig h -Effic ie n c y, Lo w I DC-DC In ve rt e rs  
Q
45/MAX76  
____________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(V+ = 5V, V  
= -5V, T = +25°C, unless otherwise noted.)  
A
OUT  
DISCONTINUOUS CONDUCTION AT  
HALF CURRENT LIMIT  
CONTINUOUS CONDUCTION AT  
FULL CURRENT LIMIT  
A
B
A
B
0A  
0V  
0A  
0V  
C
C
5µs/div  
5µs/div  
CIRCUIT OF FIGURE 2, V+ = 5V, V = -5V, I  
= 80mA  
CIRCUIT OF FIGURE 2, V+ = 5V, V = -5V, I  
= 240mA  
OUT  
LOAD  
OUT  
LOAD  
A: OUTPUT RIPPLE, 100mV/div  
A: OUTPUT RIPPLE, 100mV/div  
B: INDUCTOR CURRENT, 500mA/div  
C: LX WAVEFORM, 10V/div  
B: INDUCTOR CURRENT, 500mA/div  
C: LX WAVEFORM, 10V/div  
______________________________________________________________P in De s c rip t io n  
PIN  
NAME  
FUNCTION  
Sense Input for Fixed-Output Operation (V = V ). OUT must be connected to V  
1
OUT  
.
OUT  
FB  
REF  
Feedback Input. Connect FB to REF to use the internal voltage divider for a preset output. For adjustable-  
output operation, use an external voltage divider, as described in the section Setting the Output Voltage.  
2
3
FB  
Active-High Shutdown Input. With SHDN high, the part is in shutdown mode and the supply current is less  
than 5µA. Connect to ground for normal operation.  
SHDN  
4
5
REF  
1.5V Reference Output that can source 100µA for external loads. Bypass to ground with a 0.1µF capacitor.  
Ground  
GND  
Positive Power-Supply Input. Must be tied together. Place a 0.1µF input bypass capacitor as close to  
the V+ and GND pins as possible.  
6, 7  
8
V+  
LX  
Drain of the Internal P-Channel Power MOSFET. LX has a peak current limit of 0.75A.  
_______________________________________________________________________________________  
7
-5 V/-1 2 V/-1 5 V o r Ad ju s t a b le ,  
Hig h -Effic ie n c y, Lo w I DC-DC In ve rt e rs  
Q
FB  
COMPARATOR  
MAX764  
MAX765  
REF  
MAX766  
SHDN  
ERROR  
COMPARATOR  
OUT  
V+  
V+  
N
1.5V  
REFERENCE  
Q
TRIG  
ONE-SHOT  
FROM V+  
S
Q
P
CURRENT  
COMPARATOR  
FROM OUT  
TRIG  
ONE-SHOT  
Q
R
LX  
45/MAX76  
0.2V  
0.1V  
(FULL  
CURRENT)  
(HALF  
CURRENT)  
CURRENT  
CONTROL CIRCUITS  
FROM V+  
GND  
Figure 1. Block Diagram  
1) They can operate with miniature (less than 5mm  
diameter) surface-mount inductors, because of their  
300kHz switching frequency.  
_______________De t a ile d De s c rip t io n  
Op e ra t in g P rin c ip le  
The MAX764/MAX765/MAX766 are BiCMOS, inverting,  
switch-mode power supplies that provide fixed outputs  
of -5V, -12V, and -15V, respectively; they can also be  
set to any desired output voltage using an external  
resistor divider. Their unique control scheme combines  
the advantages of pulse-frequency modulation (pulse  
skipping) and pulse-width modulation (continuous puls-  
ing). The internal P-channel power MOSFET allows  
peak currents of 0.75A, increasing the output current  
capability over previous pulse-frequency-modulation  
(PFM) devices. Figure 1 shows the MAX764/MAX765/  
MAX766 block diagram.  
2) The current-limited PFM control scheme allows efficien-  
cies exceeding 80% over a wide range of load currents.  
3) Maximum quiescent supply current is only 120µA.  
Figures 2 and 3 show the standard application circuits  
for these devices. In these configurations, the IC is  
powered from the total differential voltage between the  
input (V+) and output (V ). The principal benefit of  
OUT  
this arrangement is that it applies the largest available  
signal to the gate of the internal P-channel power MOS-  
FET. This increased gate drive lowers switch on-resis-  
tance and increases DC-DC converter efficiency.  
The MAX764/MAX765/MAX766 offe r thre e ma in  
improvements over prior solutions:  
Since the voltage on the LX pin swings from V+ (when the  
switch is ON) to  
V
plus a diode drop (when the  
I OUTI  
8
_______________________________________________________________________________________  
-5 V/-1 2 V/-1 5 V o r Ad ju s t a b le ,  
Hig h -Effic ie n c y, Lo w I DC-DC In ve rt e rs  
Q
45/MAX76  
switch is OFF), the range of input and output voltages is  
limited to a 21V absolute maximum differential voltage.  
P FM Co n t ro l S c h e m e  
The MAX764/MAX765/MAX766 use a proprietary, cur-  
rent-limited PFM control scheme that blends the best  
features of PFM and PWM devices. It combines the  
ultra-low supply currents of traditional pulse-skipping  
PFM converters with the high full-load efficiencies of  
current-mode pulse-width modulation (PWM) convert-  
ers. This control scheme allows the devices to achieve  
high efficiencies over a wide range of loads, while the  
current-sense function and high operating frequency  
allow the use of miniature external components.  
When output voltages more negative than -16V are  
required, substitute the MAX764/MAX765/MAX766 with  
Maxims MAX774/MAX775/MAX776 or MAX1774, which  
use an external switch.  
V
IN  
7
1
3
V+  
OUT  
As with traditional PFM converters, the internal power  
MOSFET is turned on when the voltage comparator  
senses that the output is out of regulation (Figure 1).  
However, unlike traditional PFM converters, switching is  
accomplished through the combination of a peak cur-  
rent limit and a pair of one-shots that set the maximum  
on-time (16µs) and minimum off-time (2.3µs) for the  
switch. Once off, the minimum off-time one-shot holds  
the switch off for 2.3µs. After this minimum time, the  
switch either 1) stays off if the output is in regulation, or  
2) turns on again if the output is out of regulation.  
C2  
0.1µF  
C1  
120µF  
20V  
MAX764  
MAX765  
MAX766  
6
8
SHDN  
V+  
LX  
2
4
D1  
FB  
1N5817  
V
OUT  
REF  
C4  
68µF  
20V  
GND  
5
L1  
47µH  
C3  
0.1µF  
The MAX764/MAX765/MAX766 limit the peak inductor  
current, which allows them to run in continuous-con-  
duction mode and maintain high efficiency with heavy  
loads. (See the photo Continuous Conduction at Full  
Current Limit in the Typical Operating Characteristics.)  
This current-limiting feature is a key component of the  
control circuitry. Once turned on, the switch stays on  
until either 1) the maximum on-time one shot turns it off  
(16µs later), or 2) the current limit is reached.  
OUTPUT  
VOLTAGE (V)  
INPUT  
VOLTAGE (V)  
PRODUCT  
MAX764  
MAX765  
MAX766  
-5  
3 to 15  
3 to 8  
3 to 5  
-12  
-15  
Figure 2. Fixed Output Voltage Operation  
To increase light-load efficiency, the current limit is set to  
half the peak current limit for the first two pulses. If those  
pulses bring the output voltage into regulation, the volt-  
age comparator holds the MOSFET off and the current  
limit remains at half the peak current limit. If the output  
voltage is still out of regulation after two pulses, the cur-  
rent limit is raised to its 0.75A peak for the next pulse.  
(See the photo Discontinuous Conduction at Half and Full  
Current Limit in the Typical Operating Characteristics.)  
V
IN  
C1  
C2  
0.1µF  
120µF  
20V  
7
6
1
3
2
V+  
OUT  
SHDN  
FB  
R2  
MAX764  
MAX765  
MAX766  
V+  
LX  
V
-1V to  
-16V  
OUT  
S h u t d o w n Mo d e  
When SHDN is high, the MAX764/MAX765/MAX766  
enter a shutdown mode in which the supply current  
drops to less than 5µA. In this mode, the internal biasing  
circuitry (including the reference) is turned off and OUT  
discharges to ground. SHDN is a TTL/CMOS-logic level  
input. Connect SHDN to GND for normal operation.  
With a current-limited supply, power-up the device while  
unloaded or in shutdown mode (hold SHDN high until V+  
exceeds 3.0V) to save power and reduce power-up cur-  
rent surges. (See the Supply Current vs. Supply Voltage  
graph in the Typical Operating Characteristics.)  
8
D1  
1N5817  
R1  
C3  
4
REF  
C4  
GND  
5
L1  
47µH  
68µF  
20V  
0.1µF  
Figure 3. Adjustable Output Voltage Operation  
_______________________________________________________________________________________  
9
-5 V/-1 2 V/-1 5 V o r Ad ju s t a b le ,  
Hig h -Effic ie n c y, Lo w I DC-DC In ve rt e rs  
Q
Mo d e s o f Op e ra t io n  
Dio d e S e le c t io n  
When delivering high output currents, the MAX764/  
MAX765/MAX766 operate in continuous-conduction  
mode. In this mode, current always flows in the induc-  
tor, and the control circuit adjusts the duty-cycle of the  
switch on a cycle-by-cycle basis to maintain regulation  
without exceeding the switch-current capability. This  
provides excellent load-transient response and high  
efficiency.  
The MAX764/MAX765/MAX766s high switching fre-  
q ue nc y d e ma nd s a hig h-s p e e d re c tifie r. Us e a  
Schottky diode with a 0.75A average current rating,  
such as the 1N5817 or 1N5818. High leakage currents  
may make Schottky diodes inadequate for high-temper-  
ature and light-load applications. In these cases you  
c a n us e hig h-s p e e d s ilic on d iod e s , s uc h a s the  
MUR105 or the EC11FS1. At heavy loads and high  
temperatures, the benefits of a Schottky diodes low for-  
ward voltage may outweigh the disadvantages of its  
high leakage current.  
In discontinuous-conduction mode, current through the  
ind uc tor s ta rts a t ze ro, ris e s to a p e a k va lue , the n  
ramps down to zero on each cycle. Although efficiency  
is still excellent, the output ripple may increase slightly.  
Ca p a c it o r S e le c t io n  
__________________De s ig n P ro c e d u re  
Output Filter Capacitor  
The p rima ry c rite rion for s e le c ting the outp ut filte r  
capacitor (C4) is low effective series resistance (ESR).  
The product of the inductor-current variation and the  
output filter capacitors ESR determines the amplitude  
of the high-frequency ripple seen on the output voltage.  
A 68µF, 20V Sa nyo OS-CON c a p a c itor with ESR =  
45m(SA series) typically provides 50mV ripple when  
converting from 5V to -5V at 150mA.  
S e t t in g t h e Ou t p u t Vo lt a g e  
The MAX764/MAX765/MAX766s output voltage can be  
adjusted from -1.0V to -16V using external resistors R1  
a nd R2, c onfig ure d a s s hown in Fig ure 3. For  
adjustable-output operation, select feedback resistor  
R1 = 150k. R2 is given by:  
V
OUT  
R2 = (R1) ———  
Output filter capacitor ESR also affects efficiency. To  
obtain optimum performance, use a 68µF or larger,  
low-ESR capacitor with a voltage rating of at least  
20V. The smallest low-ESR surface-mount tantalum  
capacitors currently available are from the Sprague  
595D series. Sanyo OS-CON series organic semi-  
conductors and AVX TPS series tantalum capacitors  
also exhibit very low ESR. OS-CON capacitors are  
particularly useful at low temperatures. Table 1 lists  
some suppliers of low-ESR capacitors.  
V
REF  
I
I
45/MAX76  
where V  
= 1.5V.  
REF  
For fixed-output operation, tie FB to REF.  
In d u c t o r S e le c t io n  
In b oth c ontinuous - a nd d is c ontinuous -c ond uc tion  
modes, practical inductor values range from 22µH to  
68µH. If the inductor value is too low, the current in the  
coil will ramp up to a high level before the current-limit  
comparator can turn off the switch, wasting power and  
reducing efficiency. The maximum inductor value is not  
critical. A 47µH inductor is ideal for most applications.  
For best results when using capacitors other than those  
suggested in Table 1 (or their equivalents), increase  
the output filter capacitors size or use capacitators in  
parallel to reduce ESR.  
For highest efficiency, use a coil with low DC resis-  
tance, preferably under 100m. To minimize radiated  
nois e , us e a toroid , p ot c ore , or s hie ld e d c oil.  
Inductors with a ferrite core or equivalent are recom-  
mended. The inductors incremental saturation-current  
rating should be greater than the 0.75A peak current  
limit. It is generally acceptable to bias the inductor into  
saturation by approximately 20% (the point where the  
inductance is 20% below the nominal value).  
Input Bypass Capacitor  
The input bypass capacitor, C1, reduces peak currents  
drawn from the voltage source and reduces the amount  
of noise at the voltage source caused by the switching  
a c tion of the MAX764–MAX766. The inp ut volta g e  
source impedance determines the size of the capacitor  
re q uire d a t the V+ inp ut. As with the outp ut filte r  
capacitor, a low-ESR capacitor is highly recommended.  
For output currents up to 250mA, a 100µF to 120µF  
capacitor with a voltage rating of at least 20V (C1) in  
parallel with a 0.1µF capacitor (C2) is adequate in most  
applications. C2 must be placed as close as possi-  
ble to the V+ and GND pins.  
Table 1 lists inductor types and suppliers for various  
applications. The listed surface-mount inductors’ effi-  
ciencies are nearly equivalent to those of the larger-  
size through-hole inductors.  
10 ______________________________________________________________________________________  
-5 V/-1 2 V/-1 5 V o r Ad ju s t a b le ,  
Hig h -Effic ie n c y, Lo w I DC-DC In ve rt e rs  
Q
45/MAX76  
Reference Capacitor  
Bypass REF with a 0.1µF capacitor (C3). The REF out-  
put can source up to 100µA for external loads.  
output filter capacitor ground lead to a single point (star  
ground configuration). Also minimize lead lengths to  
reduce stray capacitance, trace resistance, and radiat-  
ed noise. In particular, keep the traces connected to  
FB and LX short. C2 must be placed as close as pos-  
sible to the V+ and GND pins. If an external resistor  
divider is used (Figure 3), the trace from FB to the resis-  
tors must be extremely short.  
La yo u t Co n s id e ra t io n s  
Proper PC board layout is essential to reduce noise  
generated by high current levels and fast switching  
wa ve forms . Minimize g round nois e b y c onne c ting  
GND, the input bypass capacitor ground lead, and the  
Table 1. Component Suppliers  
PRODUCTION METHOD  
INDUCTORS  
CAPACITORS  
DIODES  
Matsuo  
267 series  
Sumida  
CD75/105 series  
Nihon  
Coiltronics  
CTX series  
Sprague  
595D/293D series  
EC10QS02L (Schottky)  
Surface Mount  
EC11FS1 (high-speed silicon)  
Coilcraft  
DT/D03316 series  
AVX  
TPS series  
Sumida  
RCH895 series  
Sanyo  
Miniature Through-Hole  
Low-Cost Through-Hole  
Motorola  
1N5817, 1N5818, (Schottky)  
MUR105 (high-speed silicon)  
OS-CON series (very low ESR)  
Renco  
RL1284 series  
Nichicon  
PL series  
SUPPLIER  
AVX  
PHONE  
FAX  
USA:  
USA:  
USA:  
USA:  
(803) 448-9411  
(708) 639-6400  
(407) 241-7876  
(714) 969-2491  
(803) 448-1943  
(708) 639-1469  
(407) 241-9339  
Coilcraft  
Coiltronics  
(714) 960-6492  
81-6-337-6456  
Matsuo  
Japan: 81-6-337-6450  
Motorola  
Nichicon  
USA:  
(800) 521-6274  
(602) 952-4190  
(708) 843-2798  
81-7-5256-4158  
USA:  
(708) 843-7500  
Japan: 81-7-5231-8461  
USA: (805) 867-2555  
(805) 867-2556  
81-3-3494-7414  
Nihon  
Japan: 81-3-3494-7411  
Renco  
USA:  
(516) 586-5566  
(516) 586-5562  
(619) 661-1055  
81-7-2070-1174  
USA:  
(619) 661-6835  
Sanyo OS-CON  
Sprague Electric Co.  
Sumida  
Japan: 81-7-2070-1005  
USA:  
USA:  
(603) 224-1961  
(708) 956-0666  
(603) 224-1430  
(708) 956-0702  
81-3-3607-5144  
Japan: 81-3-3607-5111  
______________________________________________________________________________________ 11  
-5 V/-1 2 V/-1 5 V o r Ad ju s t a b le ,  
Hig h -Effic ie n c y, Lo w I DC-DC In ve rt e rs  
Q
_Ord e rin g In fo rm a t io n (c o n t in u e d )  
___________________Ch ip To p o g ra p h y  
PART  
TEMP. RANGE  
0°C to +70°C  
PIN-PACKAGE  
8 Plastic DIP  
8 SO  
LX  
MAX766CPA  
MAX766CSA  
MAX766C/D  
MAX766EPA  
MAX766ESA  
MAX766MJA  
0°C to +70°C  
0°C to +70°C  
Dice*  
OUT  
-40°C to +85°C  
-40°C to +85°C  
-55°C to +125°C  
8 Plastic DIP  
8 SO  
8 CERDIP**  
* Dice are tested at T = +25°C, DC parameters only.  
A
**Contact factory for availability and processing to MIL-STD-883.  
0. 145"  
(3683µm)  
V+  
FB  
V+  
SHDN  
REF  
45/MAX76  
GND  
0. 080"  
(2032µm)  
TRANSISTOR COUNT: 443  
SUBSTRATE CONNECTED TO V+  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
12 __________________Ma x im In t e g ra t e d P ro d u c t s , 1 2 0 S a n Ga b rie l Drive , S u n n yva le , CA 9 4 0 8 6 (4 0 8 ) 7 3 7 -7 6 0 0  
© 1994 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX765MJA

-5V/-12V/-15V or Adjustable, High-Efficiency, Low IQ DC-DC Inverters
MAXIM

MAX766

8-Channel.Multi-Range.5V.12-Bit DAS with 8+4 Bus Interface and Fault Protection[MAX199]
MAXIM

MAX7665ACPA

Power Supply Support Circuit, Fixed, 2 Channel, CMOS, PDIP8, PLASTIC, DIP-8
MAXIM

MAX7665ACTV

Power Supply Support Circuit, Fixed, 2 Channel, CMOS, MBCY8, TO-99, 8 PIN
MAXIM

MAX7665BCJA

Power Supply Support Circuit, Fixed, 2 Channel, CMOS, CDIP8, CERDIP-8
MAXIM

MAX7665BCTV

Power Supply Support Circuit, Fixed, 2 Channel, CMOS, MBCY8, TO-99, 8 PIN
MAXIM

MAX7665C/D

Power Supply Support Circuit, Fixed, 2 Channel, CMOS, DIE-8
MAXIM

MAX7665CJA

Power Supply Support Circuit, Fixed, 2 Channel, CMOS, CDIP8, CERDIP-8
MAXIM

MAX7665CSA

Power Supply Support Circuit, Fixed, 2 Channel, CMOS, PDSO8, 0.150 INCH, SO-8
MAXIM

MAX7665CTV

Power Supply Support Circuit, Fixed, 2 Channel, CMOS, MBCY8, TO-99, 8 PIN
MAXIM

MAX766C/D

-5V/-12V/-15V or Adjustable, High-Efficiency, Low IQ DC-DC Inverters
MAXIM

MAX766CPA

-5V/-12V/-15V or Adjustable, High-Efficiency, Low IQ DC-DC Inverters
MAXIM