MAX77812BEWB+T [MAXIM]

20A User-Configurable Quad-Phase Buck Converter;
MAX77812BEWB+T
型号: MAX77812BEWB+T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

20A User-Configurable Quad-Phase Buck Converter

文件: 总69页 (文件大小:2886K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EVALUATION KIT AVAILABLE  
Click here to ask about the production status of specific part numbers.  
MAX77812  
20A User-Configurable  
Quad-Phase Buck Converter  
General Description  
Benefits and Features  
20A Maximum Output Current (5A per Phase)  
The MAX77812 is a quad-phase high-efficiency step-  
down (buck) converter capable of delivering up to 20A  
of maximum current. Programmable startup/shutdown  
sequence and user-selectable phase configurations make  
the MAX77812 ideal for powering the latest generations  
of processors. With high-efficiency and small solution  
size, the MAX77812 is optimized for space constrained  
single-cell battery powered applications.  
V Range: 2.5V to 5.5V  
IN  
V  
Range: 0.250V to 1.525V with 5mV Steps  
OUT  
±0.5% Initial Output Accuracy with Differential Sensing  
5 User-Selectable Phase Configurations  
91% Peak Efficiency (V = 3.8V, V  
= 1.1V)  
OUT  
IN  
Auto (SKIP/PWM) and Forced PWM Modes  
Enhanced Load Transient Response  
The MAX77812 uses an adaptive on-time PWM control  
scheme and it has SKIP and low-power SKIP modes for  
improved light-load efficiency. A programmable current  
limit reduces the overall solution footprint by optimizing  
inductors size. Differential sensing provides high output  
voltage accuracy, while enhanced transient response  
(ETR) allows fast output voltage adjustments to load tran-  
sients. Programmable soft-start/stop and ramp-up/down  
slew rate provides control over an inrush current as the  
regulator transitions between operating states.  
Programmable Ramp-Up/Down Slew Rates  
Programmable Startup/Shutdown Sequence  
UVLO, Short-Circuit, and Thermal Protections  
2 User-Programmable General-Purpose Inputs  
2
3.4MHz High Speed I C and 30MHz SPI Interface  
3.408mm x 3.368mm, 64-Bump WLP Package  
2
A 3.4MHz high-speed I C or 30MHz SPI interface with  
Applications  
CPU/GPU, FPGAs, and DSPs Power Supply  
AR/VR Headsets and Game Consoles  
Li-ion Battery Powered Equipment  
dedicated logic inputs provide full configurability and  
control for system power optimization.  
The MAX77812 is available in 3.408mm x 3.368mm,  
64-bump 0.4mm pitch wafer-level package (WLP).  
Space Constrained Portable Electronics  
Ordering Information appears at end of data sheet.  
Typical Application Circuit  
V
V
SYS  
2.5V to 5.5V  
SYS  
SYS  
DGND  
AGND  
IN12  
1Φ  
+
1Φ  
+
1Φ  
+
1Φ  
5A  
5A  
2.5V to 5.5V  
0.25V to 1.525V  
10A  
LX1  
SNS1P  
SNS1N  
PGND1  
5A  
5A  
2Φ  
+
1Φ  
+
MAX77812  
MULTI-PHASE  
BUCK  
CE  
10A  
V
VIO  
VIO  
5A  
5A  
LX2  
SNS2P  
SNS2N  
PGND2  
1Φ  
2Φ  
+
10A  
10A  
IRQB  
SCL  
SDA/MOSI  
MISO  
SCS  
3Φ  
+
V
SYS  
IN34  
2Φ  
15A  
5A  
2.5V to 5.5V  
I2C_SPI_SEL  
EN  
LPM  
WDTRSTB_IN  
GPI0  
GPI1  
PH_CFG0  
PH_CFG1  
PH_CFG2  
0.25V to 1.525V  
5A  
LX3  
SNS3P  
SNS3N  
PGND3  
LX4  
SNS4P  
SNS4N  
PGND4  
1Φ  
4Φ  
20A  
0.25V to 1.525V  
5A  
PHASE-CONFIGURABLE  
QUAD-OUTPUT  
V
SYS  
2.5V to 5.5V  
19-8541; Rev 11; 12/20  
MAX77812  
20A User-Configurable  
Quad-Phase Buck Converter  
Absolute Maximum Ratings  
SYS, VIO to AGND...............................................-0.3V to +6.0V  
DGND to AGND....................................................-0.3V to +0.3V  
SCL, SDA/MOSI, MISO, SCS, IRQB, CE, EN, LPM, GPI0, GPI1,  
PGND1/2/3/4 to AGND.........................................-0.3V to +0.3V  
SNS1P, SNS2P, SNS3P, SNS4P to AGND..-0.3V to (V  
+ 0.3V)  
SNS1N, SNS2N, SNS3N, SNS4N to AGND........-0.3V to +0.3V  
IN_  
WDTRSTB_IN to DGND...................... -0.3V to (V  
PH_CFG0, PH_CFG1, PH_CFG2,  
+ 0.3V)  
Continuous Power Dissipation at T = +70°C  
VIO  
A
(derate 26.17mW/°C above +70°C) ..........................2094mW  
Junction Temperature..................................................... +150°C  
Storage Temperature Range............................ -65°C to +150°C  
Soldering Temperature (reflow).......................................+260°C  
I2C_SPI_SEL to AGND ...................... -0.3V to (V  
IN12, IN34 to PGNDx............................. -0.3V to (V  
+ 0.3V)  
+ 0.3V)  
+ 0.3V)  
SYS  
SYS  
LX1/2/3/4 to PGNDx.................................-0.3V to (V  
IN_  
LX1/2/3/4 to PGNDx (Pulsed <10ns Voltage)......-3.0V to +7.0V  
Note 1: LXx node has internal clamp diodes to PGNDx and INx. Applications that give forward bias to these diodes should ensure  
that the total power loss does not exceed the power dissipation limit of IC package.  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these  
or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect  
device reliability.  
Recommended Operating Conditions  
TYPICAL  
RANGE  
PARAMETER  
SYMBOL  
CONDITION  
UNITS  
Input Voltage Range  
V
2.5 to 5.5  
V
IN  
For continuous operation at 5A (per phase), the junction  
temperature (T ) is limited to +115°C. If the junction  
temperature is higher than +115°C, the expected  
lifetime at 5A continuous operation is reduced  
J
Output Current Range  
I
0 to 5  
A
OUT  
Junction Temperature  
Range  
T
-40 to +125  
°C  
J
Note: These limits are not guaranteed.  
(Note 2)  
Package Thermal Characteristics  
WLP  
Junction-to-Ambient Thermal Resistance (θ ) .......33.2°C/W  
JA  
Note 2: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer  
board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.  
Electrical Characteristics  
Top-Level Electrical Characteristics  
(V  
= V  
= +3.8V, V  
= +1.8V, T = T = -40°C to +125°C, typical values are at T = T = +25°C)  
SYS  
INx  
VIO  
A
J
A
J
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
GLOBAL INPUT SUPPLY  
Operating Voltage Range  
Shutdown Supply Current  
V
2.5  
5.5  
5
V
SYS  
I
CE = low, T = +25°C  
A
2
µA  
SHDN  
CE = high and all outputs are off,  
Standby Current  
I
25  
µA  
STBY  
T
= +25°C  
A
Maxim Integrated  
2  
www.maximintegrated.com  
MAX77812  
20A User-Configurable  
Quad-Phase Buck Converter  
Electrical Characteristics (continued)  
Top-Level Electrical Characteristics (continued)  
(V  
= V  
= +3.8V, V  
= +1.8V, T = T = -40°C to +125°C, typical values are at T = T = +25°C)  
SYS  
INx  
VIO  
A
J
A
J
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
4-phase configuration  
(no switching)  
120  
I
I
I
I
I
LP_SKIP1  
LP_SKIP2  
LP_SKIP3  
LP_SKIP4  
LP_SKIP5  
3 + 1-phase configuration  
(no switching)  
190  
190  
265  
340  
150  
250  
250  
350  
460  
180  
310  
310  
440  
580  
No Load Supply Current in Low  
Power Skip Mode  
2 + 2-phase configuration  
(no switching)  
µA  
2 + 1 + 1-phase configuration  
(no switching)  
1 + 1 + 1 + 1-phase configuration  
(no switching)  
510  
4-phase configuration  
(no switching)  
I
I
I
I
I
SKIP1  
SKIP2  
SKIP3  
SKIP4  
SKIP5  
3 + 1-phase configuration  
(no switching)  
No Load Supply Current in Skip  
Mode  
2 + 2-phase configuration  
(no switching)  
µA  
2 + 1 + 1-phase configuration  
(no switching)  
1 + 1 + 1 + 1-phase configuration  
(no switching)  
690  
4-phase configuration  
(no switching, ETR enabled)  
I
I
I
I
I
SKIP_ETR1  
SKIP_ETR2  
SKIP_ETR3  
SKIP_ETR4  
SKIP_ETR5  
3 + 1-phase configuration  
(no switching, ETR enabled)  
No Load Supply Current in Skip  
Mode with ETR  
2 + 2-phase configuration  
(no switching, ETR enabled)  
µA  
2 + 1 + 1-phase configuration  
(no switching, ETR enabled)  
1 + 1 + 1 + 1-phase configuration  
(no switching, ETR enabled)  
870  
V
UNDERVOLTAGE LOCKOUT  
SYS  
V
V
V
rising  
2.375  
2.50  
2.15  
2.625  
V
Undervoltage Lockout  
UVLO_R  
SYS  
SYS  
V
Threshold  
V
falling (default)  
UVLO_F  
SYS  
THERMAL PROTECTION  
Thermal Protection Threshold  
Thermal Interrupt at 120°C  
Thermal Interrupt at 140°C  
T
T rising, 15°C hysteresis  
165  
120  
140  
°C  
°C  
°C  
SHDN  
INT120  
INT140  
J
T
T rising, 15°C hysteresis  
J
T
T rising, 15°C hysteresis  
J
Maxim Integrated  
3  
www.maximintegrated.com  
MAX77812  
20A User-Configurable  
Quad-Phase Buck Converter  
Electrical Characteristics (continued)  
Top-Level Electrical Characteristics (continued)  
(V  
= V  
= +3.8V, V  
= +1.8V, T = T = -40°C to +125°C, typical values are at T = T = +25°C)  
SYS  
INx  
VIO  
A
J
A
J
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
LOGIC AND CONTROL INPUTS  
PH_CFG0, PH_CFG1, PH_CFG2,  
I2C_SPI_SEL,  
0.4  
V
≤ 5.5V, T = +25°C  
A
Input Low Level  
V
SYS  
V
IL  
CE, EN, LPM, GPI0, GPI1,  
0.3 x  
WDTRSTB_IN, T = +25°C  
A
V
VIO  
PH_CFG0, PH_CFG1, PH_CFG2,  
I2C_SPI_SEL,  
1.2  
V
≤ 5.5V, T = +25°C  
A
Input High Level  
V
SYS  
V
IH  
CE, EN, LPM, GPI0, GPI1,  
0.7 x  
WDTRSTB_IN, T = +25°C  
A
V
VIO  
PH_CFG0, PH_CFG1, PH_CFG2,  
I2C_SPI_SEL, V  
CE = 1.8V, T = +25°C  
A
= 5.5V,  
-1  
+0.001  
+0.001  
0.1  
+1  
+1  
SYS  
CE, EN, LPM, GPI0, GPI1,  
CE = 1.8V, T = +25°C  
A
-1  
Logic Input Leakage Current  
I
µA  
LK  
PH_CFG0, PH_CFG1, PH_CFG2,  
I2C_SPI_SEL, V  
= 5.5V,  
SYS  
CE = 1.8V, T = +85°C (Note 4)  
A
CE, EN, LPM, GPI0, GPI1,  
0.1  
CE = 1.8V, T = +85°C (Note 4)  
A
IRQ Output Low Voltage  
IRQ Output High Leakage  
V
I
= 1mA  
SINK  
0.4  
+1  
V
OL  
T
T
= +25°C  
-1  
0.001  
0.1  
A
A
I
µA  
LK_OH  
= +85°C (Note 4)  
INTERNAL PULL-UP/DOWN RESISTANCE  
WDTRSTB_IN Pullup Resistance  
R
Pullup resistance to VIO  
400  
400  
800  
800  
1600  
1600  
kΩ  
kΩ  
PU  
PD  
GPI0, GPI1, EN, LPM Pulldown  
Resistance  
R
Pulldown resistance to DGND  
Maxim Integrated  
4  
www.maximintegrated.com  
MAX77812  
20A User-Configurable  
Quad-Phase Buck Converter  
Electrical Characteristics (continued)  
Quad-Phase Buck Electrical Characteristics  
(V  
= V  
= +3.8V, V  
= 0.85V, T = T = -40°C to +125°C, typical values are at T = T = +25°C  
SYS  
INx  
OUTx  
A
J
A
J
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
POWER SUPPLY  
Input Voltage Range  
V
2.5  
V
V
V
INx  
SYS  
Programmable with 8-bit  
resolution, 5mV/LSB  
Output Voltage Range  
V
0.25  
1.525  
OUT  
DC OUTPUT VOLTAGE ACCURACY  
Force PWM mode,  
differential remote sensing,  
V
≥ 0.65V, I  
= 0mA,  
-0.5  
+0.5  
%
OUT  
OUT  
C
= 64µF,  
OUT(EFF)  
T
= +25°C  
A
Output Voltage Accuracy  
V
ACC_INIT  
Force PWM mode,  
differential remote sensing,  
0.45V ≤ V < 0.6V, I  
=
OUT  
-6  
+6  
mV  
V/A  
V/V  
OUT  
OUT(EFF)  
0mA, C  
= +25°C  
= 64µF,  
T
A
Forced PWM mode,  
differential remote sensing,  
= 0A to 5A,  
Load Regulation  
-0.001  
I
OUT  
C
= 64µF (Note 5)  
OUT(EFF)  
Forced PWM mode,  
differential remote sensing,  
Line Regulation  
V
= 2.5V to 5.5V, V  
-0.005  
+0.005  
INx  
OUT  
= Default, I  
= 0mA,  
OUT  
C
= 64µF  
OUT(EFF)  
AC OUTPUT VOLTAGE ACCURACY  
V
= 3.4V to 2.9V to 3.4V,  
INx  
t
= t  
= 10µs, V  
= 2A,  
RISE  
FALL  
OUT  
= 1.1V, I  
OUT  
Line Transient Response  
V
L = 220nH (DCR = 9mΩ),  
= 16µF  
15  
mV  
DROOP  
C
OUT(EFF)  
(ESR = 5mΩ, ESL = 300pH)  
per phase (Note 5)  
SKIP/PWM mode, differential  
remote sensing, V  
=
OUT  
1.1V, I  
= 0.1A  
OUT  
to 4A (100A/µs), L = 220nH  
Load Transient Response  
V
45  
mV  
DROOP  
(DCR = 9mΩ), C  
=
OUT(EFF)  
16µF (ESR = 5mΩ,  
ESL = 300pH) per Phase  
(Note 5)  
Maxim Integrated  
5  
www.maximintegrated.com  
MAX77812  
20A User-Configurable  
Quad-Phase Buck Converter  
Electrical Characteristics (continued)  
Quad-Phase Buck Electrical Characteristics (continued)  
(V  
= V  
= +3.8V, V  
= 0.85V, T = T = -40°C to +125°C, typical values are at T = T = +25°C  
SYS  
INx  
OUTx  
A
J
A
J
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
RAMP RATE  
B_SS_SR[2:0] = 000b  
(Note 6)  
1.25  
2.5  
5
B_SS_SR[2:0] = 001b  
(Note 6)  
B_SS_SR[2:0] = 010b  
(Note 6)  
B_SS_SR[2:0] = 011b  
(Note 6)  
Soft-Start Slew Rate  
10  
20  
40  
60  
1.25  
2.5  
5
mV/µs  
B_SS_SR[2:0] = 100b  
(default) (Note 6)  
B_SS_SR[2:0] = 101b  
(Note 6)  
B_SS_SR[2:0] = 110b or  
111b (Note 6)  
B_SD_SR[2:0] = 000b  
(Note 6)  
B_SD_SR[2:0] = 001b  
(Note 6)  
B_SD_SR[2:0] = 010b  
(default) (Note 6)  
B_SD_SR[2:0] = 011b  
(Note 6)  
Shutdown Slew Rate  
10  
20  
40  
60  
mV/µs  
B_SD_SR[2:0] = 100b  
(Note 6)  
B_SD_SR[2:0] = 101b  
(Note 6)  
B_SD_SR[2:0] = 110b or  
111b (Note 6)  
Maxim Integrated  
6  
www.maximintegrated.com  
MAX77812  
20A User-Configurable  
Quad-Phase Buck Converter  
Electrical Characteristics (continued)  
Quad-Phase Buck Electrical Characteristics (continued)  
(V  
= V  
= +3.8V, V  
= 0.85V, T = T = -40°C to +125°C, typical values are at T = T = +25°C  
SYS  
INx  
OUTx  
A
J
A
J
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
B_RU_SR[2:0] = 000b  
(Note 6)  
1.25  
B_RU_SR[2:0] = 001b  
(Note 6)  
2.5  
5
B_RU_SR[2:0] = 010b  
(Note 6)  
B_RU_SR[2:0] = 011b  
(Note 6)  
DVS Ramp-Up Slew Rate  
10  
20  
40  
60  
1.25  
2.5  
5
mV/µs  
B_RU_SR[2:0] = 100b  
(default) (Note 6)  
B_RU_SR[2:0] = 101b  
(Note 6)  
B_RU_SR[2:0] = 110b or  
111b (Note 6)  
B_RD_SR[2:0] = 000b  
(Note 6)  
B_RD_SR[2:0] = 001b  
(Note 6)  
B_RD_SR[2:0] = 010b  
(default) (Note 6)  
B_RD_SR[2:0] = 011b  
(Note 6)  
DVS Ramp-Down Slew Rate  
10  
20  
40  
60  
mV/µs  
B_RD_SR[2:0] = 100b  
(Note 6)  
B_RD_SR[2:0] = 101b  
(Note 6)  
B_RD_SR[2:0] = 110b or  
111b (Note 6)  
From EN signal to LXB  
switching with bias on  
(Note 6)  
t
t
30  
85  
ON_DLY1  
ON_DLY2  
Turn-On Delay Time  
µs  
From EN signal to LXB  
switching with bias off  
(Note 5)  
Maxim Integrated  
7  
www.maximintegrated.com  
MAX77812  
20A User-Configurable  
Quad-Phase Buck Converter  
Electrical Characteristics (continued)  
Quad-Phase Buck Electrical Characteristics (continued)  
(V  
= V  
= +3.8V, V  
= 0.85V, T = T = -40°C to +125°C, typical values are at T = T = +25°C  
SYS  
INx  
OUTx  
A
J
A
J
PARAMETER  
POWER STAGE  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
RMS current per phase,  
I
4000  
5000  
OUT(MAX)  
OUT(MAX)  
V
< 3.2V (Note 5)  
IN  
Maximum Output Current  
mA  
RMS current per phase,  
I
3.2V ≤ V ≤ 5.5V (Note 5)  
IN  
I
I
I
I
I
Mx_ILIM[2:0] = 000b  
Mx_ILIM[2:0] = 001b  
Mx_ILIM[2:0] = 010b  
Mx_ILIM[2:0] = 011b  
Mx_ILIM[2:0] = 100b  
3000  
3600  
4200  
4800  
5400  
PLIM  
PLIM  
PLIM  
PLIM  
PLIM  
PMOS Peak Current Limit  
mA  
Mx_ILIM[2:0] = 101b  
(default)  
I
4800  
5200  
6000  
7200  
9200  
PLIM  
I
I
I
I
I
I
I
Mx_ILIM[2:0] = 110b  
Mx_ILIM[2:0] = 111b  
Mx_ILIM[2:0] = 000b  
Mx_ILIM[2:0] = 001b  
Mx_ILIM[2:0] = 010b  
Mx_ILIM[2:0] = 011b  
Mx_ILIM[2:0] = 100b  
6600  
7200  
2000  
2400  
2800  
3200  
3600  
PLIM  
PLIM  
VLIM  
VLIM  
VLIM  
VLIM  
VLIM  
NMOS Valley Current Limit  
mA  
Mx_ILIM[2:0] = 101b  
(default)  
I
3200  
4000  
4800  
VLIM  
I
I
Mx_ILIM[2:0] = 110b  
Mx_ILIM[2:0] = 111b  
Per phase  
4400  
4800  
-1500  
VLIM  
VLIM  
NLIM  
3800  
5800  
NMOS Negative Current Limit  
Switching Frequency  
I
-2000  
-1000  
mA  
V
= default, Forced  
OUT  
f
1.6  
2.0  
32  
15  
2.8  
70  
29  
MHz  
SW  
PWM mode  
High-Side PMOS  
On-Resistance  
R
R
INx to LXx, I  
= -150mA  
LXx  
mΩ  
mΩ  
DSON(PMOS)  
Low-Side NMOS  
On-Resistance  
LXx to PGNDx, I  
150mA  
=
LXx  
DSON(NMOS)  
Resistance from LXx to  
PGNDx, per phase, output  
disabled  
LX Active Discharge Resistance  
R
100  
200  
Ω
AD_LX  
Maxim Integrated  
8  
www.maximintegrated.com  
MAX77812  
20A User-Configurable  
Quad-Phase Buck Converter  
Electrical Characteristics (continued)  
Quad-Phase Buck Electrical Characteristics (continued)  
(V  
= V  
= +3.8V, V  
= 0.85V, T = T = -40°C to +125°C, typical values are at T = T = +25°C  
SYS  
INx  
OUTx  
A
J
A
J
MIN  
-1  
PARAMETER  
SYMBOL  
CONDITIONS  
TYP  
MAX  
UNITS  
V
= 0V or 5.5V,  
= +25°C  
LXx  
I
0.1  
+1  
LKG_LX  
LKG_LX  
T
A
LX Leakage Current  
µA  
V
= 0V or 5.5V,  
= +85°C (Note 4)  
LXx  
I
1
T
A
Nominal Inductance  
L
(Note 5)  
220  
16  
nH  
µF  
NOM  
Minimum Effective Output  
Capacitance  
0µA < I  
< 5000mA per  
OUT  
C
OUT(EFF_MIN)  
phase (Note 5)  
EFFICIENCY AND OUTPUT RIPPLE  
L = 220nH (DCR = 9mΩ),  
C
= 16µF  
OUT(EFF)  
Peak Efficiency  
η
90  
75  
%
%
PK  
(ESR = 5mΩ, ESL = 300pH)  
per Phase (Note 5)  
I
= 5A, L = 220nH  
OUT  
(DCR = 9mΩ), C  
=
OUT(EFF)  
Heavy Load Efficiency  
η
16µF (ESR = 5mΩ,  
ESL = 300pH) per Phase  
(Note 5)  
HEAVY  
Skip mode, I  
= 0.1A,  
OUT  
L = 220nH (DCR = 9mΩ),  
= 16µF (ESR  
Skip Mode Output Ripple  
V
C
10  
mV  
mV  
RIP_SKIP  
OUT(EFF)  
P-P  
P-P  
= 5mΩ, ESL = 300pH) per  
phase (Note 7)  
Forced PWM mode,  
differential remote sensing,  
I
= 0.1A, L = 220nH  
OUT  
(DCR = 9mΩ), C  
FPWM Mode Output Ripple  
V
5
RIP_FPWM  
OUT(EFF)  
= 16µF (ESR = 5mΩ, ESL =  
300pH) per phase (Note 7)  
POWER OK COMPARATOR  
Rising threshold  
Falling threshold  
90  
85  
Output POK Trip Level  
%
90  
Maxim Integrated  
9  
www.maximintegrated.com  
MAX77812  
20A User-Configurable  
Quad-Phase Buck Converter  
Electrical Characteristics (continued)  
2
I C Electrical Characteristics  
(V  
= V  
= +3.8V, V  
= +1.8V, T = T = -40°C to +125°C, typical values are at T = T = +25°C)  
SYS  
INx  
VIO A J A J  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
POWER SUPPLY  
VIO Supply Voltage Range  
VIO Dynamic Supply Current  
V
1.65  
1.8  
50  
5
V
V
VIO  
SYS  
I
f
= f  
= 1MHz  
µA  
µA  
VIO  
SCL  
SDA  
V
Dynamic Supply Current  
I
SYS  
SYS  
SDA AND SCL I/O STAGES  
0.7 x  
SCL, SDA Input High Voltage  
V
V
V
V
V
IH  
V
VIO  
0.3 x  
SCL, SDA Input Low Voltage  
SCL, SDA Input Hysteresis  
V
IL  
V
VIO  
0.05 x  
V
HYS  
V
VIO  
SCL, SDA Input Hysteresis in HS  
Mode  
0.1 x  
V
HYS_HS  
V
VIO  
SDA Output Low Voltage  
V
I
= 5mA  
0.4  
+1  
V
OL  
SINK  
SCL, SDA Input Capacitance  
C
10  
+0.001  
0.1  
pF  
I
T
T
= +25°C  
-1  
A
SCL, SDA Input Leakage Current  
I
µA  
LK  
= +85°C (Note 4)  
A
2
I C-COMPATIBLE INTERFACE TIMING (STANDARD, FAST AND FAST MODE PLUS) (Note 5)  
Clock Frequency  
f
0
1000  
kHz  
µs  
SCL  
Bus Free Time between STOP  
and START Condition  
t
0.5  
BUSF  
Hold Time (REPEATED) START  
Condition  
t
t
0.26  
µs  
HD_START  
SCL Low Period  
SCL High Period  
t
0.5  
µs  
µs  
LOW  
t
0.26  
HIGH  
Setup Time REPEATED START  
Condition  
0.26  
µs  
SU_START  
Data Hold Time  
t
Transmit mode  
0
450  
ns  
ns  
ns  
HD_DATA  
Data Setup Time  
t
50  
SU_DATA  
SCL, SDA Receiving Rise Time  
t
120  
120  
R_REV  
20 x  
SCL, SDA Receiving Fall Time  
t
ns  
F_REV  
V
/5.5  
VIO  
Maxim Integrated  
10  
www.maximintegrated.com  
MAX77812  
20A User-Configurable  
Quad-Phase Buck Converter  
Electrical Characteristics (continued)  
2
I C Electrical Characteristics (continued)  
(V  
= V  
= +3.8V, V  
= +1.8V, T = T = -40°C to +125°C, typical values are at T = T = +25°C)  
SYS  
INx  
VIO  
A
J
A
J
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
20 x  
SCL, SDA Transmitting Fall Time  
t
120  
ns  
F_TRA  
V
/5.5  
VIO  
Setup Time for STOP Condition  
Data Valid Time  
t
0.26  
µs  
ns  
ns  
pF  
SU_STOP  
t
450  
450  
550  
VD_DATA  
Data Valid Acknowledge Time  
Bus Capacitance  
t
VD_ACK  
C
B
Pulse Width of Suppressed  
Spikes  
t
50  
ns  
SP  
2
I C-COMPATIBLE INTERFACE TIMING (HIGH-SPEED MODE, C = 100pF) (Note 5)  
B
Clock Frequency  
f
3.4  
MHz  
ns  
SCL  
Hold Time (REPEATED) START  
Condition  
t
t
160  
HD_START  
SCL LOW Period  
SCL HIGH Period  
t
160  
60  
ns  
ns  
LOW  
t
HIGH  
Setup Time REPEATED START  
Condition  
160  
ns  
SU_START  
Data Hold Time  
Data Setup Time  
SCL Rise Time  
t
0
70  
ns  
ns  
ns  
HD_DATA  
t
10  
10  
SU_DATA  
t
T
T
= +25°C  
= +25°C  
40  
40  
R_SCL  
A
SCL Rise Time after REPEATED  
START Condition and after  
Acknowledge Bit  
t
10  
ns  
R_SCL1  
A
SCL Fall Time  
t
T
T
T
= +25°C  
= +25°C  
= +25°C  
10  
10  
40  
40  
40  
ns  
ns  
ns  
ns  
pF  
F_SCL  
A
A
A
SDA Rise Time  
t
R_SDA  
SDA Fall Time  
t
F_SDA  
Setup Time for STOP Condition  
Bus Capacitance  
t
160  
0
SU_STOP  
C
100  
10  
B
Pulse Width of Suppressed  
Spikes  
t
ns  
SP  
Maxim Integrated  
11  
www.maximintegrated.com  
MAX77812  
20A User-Configurable  
Quad-Phase Buck Converter  
Electrical Characteristics (continued)  
2
I C Electrical Characteristics (continued)  
(V  
= V  
= +3.8V, V  
= +1.8V, T = T = -40°C to +125°C, typical values are at T = T = +25°C)  
SYS  
INx  
VIO A J A J  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
2
I C-COMPATIBLE INTERFACE TIMING (HIGH-SPEED MODE, C = 400pF) (Note 5)  
B
Clock Frequency  
f
1.7  
MHz  
ns  
SCL  
Hold Time (REPEATED) START  
Condition  
t
t
160  
HD_START  
SCL Low Period  
SCL High Period  
t
320  
120  
ns  
ns  
LOW  
t
HIGH  
Setup Time REPEATED START  
Condition  
160  
ns  
SU_START  
DATA Hold Time  
DATA Setup Time  
SCL Rise Time  
t
0
150  
ns  
ns  
ns  
HD_DATA  
t
10  
20  
SU_DATA  
t
T
T
= +25°C  
= +25°C  
80  
80  
R_SCL  
A
SCL Rise Time after REPEATED  
START Condition and after  
Acknowledge Bit  
t
20  
ns  
R_SCL1  
A
SCL Fall Time  
t
T
T
T
= +25°C  
= +25°C  
= +25°C  
20  
20  
80  
80  
80  
ns  
ns  
ns  
ns  
pF  
F_SCL  
A
A
A
SDA Rise Time  
t
R_SDA  
SDA Fall Time  
t
F_SDA  
Setup Time for STOP Condition  
Bus Capacitance  
t
160  
0
SU_STOP  
C
400  
10  
B
Pulse Width of Suppressed  
Spikes  
t
ns  
SP  
Maxim Integrated  
12  
www.maximintegrated.com  
MAX77812  
20A User-Configurable  
Quad-Phase Buck Converter  
Electrical Characteristics (continued)  
SPI Electrical Characteristics  
(V  
= V  
= +3.8V, V  
= +1.8V, T = T = -40°C to +125°C, typical values are at T = T = +25°C)  
SYS  
INx  
VIO  
A
J
A
J
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
POWER SUPPLY AND I/O STAGES  
VIO Supply Voltage Range  
V
1.65  
-1  
1.8  
+0.001  
0.1  
V
V
VIO  
SYS  
T
T
= +25°C  
+1  
Input Leakage Current  
(SCS, SCL, MOSI)  
I
I
,
IH_SPI  
A
µA  
= +85°C (Note 4)  
IL_SPI  
A
Input Capacitance  
(SCS, SCL, MOSI)  
C
10  
pF  
V
I
Input LOW Voltage  
(SCS, SCL, MOSI)  
0.3 x  
V
IL  
V
VIO  
Input HIGH Voltage  
(SCS, SCL, MOSI)  
0.7 x  
V
V
IH  
V
VIO  
Input Hysteresis  
(SCS, SCL, MOSI)  
0.1 x  
V
VIO  
V
HYS  
MISO Output Low Voltage  
V
I
I
= 1mA  
0.2  
+1  
V
V
OL  
OL  
V
-
VIO  
0.2  
MISO Output High Voltage  
V
= 1mA  
OH  
OH  
High-impedance state,  
= +25°C  
-1  
+0.001  
0.1  
T
A
MISO Leakage Current  
I
µA  
LK_HIZ  
High-impedance state,  
= +85°C (Note 4)  
T
A
SPI INTERFACE TIMING (Note 5)  
SPI Operating Frequency  
f
26  
30  
MHz  
ns  
SCL  
MOSI Input Valid to SCL Rising  
Edge  
t
10  
10  
SU_MOSI  
MOSI Input Valid from SCL Rising  
Edge  
t
ns  
ns  
HD_MOSI  
MISO Valid from SCL Rising  
Edge  
t
C = 50pF  
9
D_MISO  
L
MISO Rising/Falling Time  
SCS Setup Time  
t , t  
C = 20pF  
10  
ns  
ns  
ns  
ns  
R
F
L
t
20  
20  
50  
SU_SCS  
t
HD_SCS  
SCS Hold Time  
Minimum SCS High Pulse Width  
t
SCS_H(MIN)  
Note 3: Limits are 100% production tested at T = +25°C. Limits over the operating temperature range are guaranteed through  
A
correlation using statistical quality control methods.  
Note 4: Guaranteed by ATE characterization. Not directly tested in production.  
Note 5: Guaranteed by design. Not production tested.  
Note 6: Guaranteed by design. Production tested through scan.  
Note 7: Internal design target.  
Maxim Integrated  
13  
www.maximintegrated.com  
MAX77812  
20A User-Configurable  
Quad-Phase Buck Converter  
Typical Operating Characteristics  
(V  
= 3.8V, V  
= 0.85V, I  
= 0A, CE = high, 4-Phase (1 Output), FPWM = 0, LPM = 0, ETR = 0, L = 220nH, C  
= (22µF +  
SYS  
OUT  
OUT  
OUT  
0.1µF + 2 × 4.3µF), T = +25°C, unless otherwise noted.)  
A
SHUTDOWN SUPPLY CURRENT  
vs. INPUT VOLTAGE  
STANDBY SUPPLY CURRENT  
vs. INPUT VOLTAGE  
OPERATING SUPPLY CURRENT  
vs. INPUT VOLTAGE  
toc01  
toc02  
toc03a  
6
5
4
3
2
1
0
50  
40  
30  
20  
10  
0
800  
700  
600  
500  
400  
300  
200  
100  
0
4-PHASE (1 OUTPUT)  
LPM = 0  
ETR = 0  
CE = GND  
ALL OUTPUTS OFF  
-40°C  
+85°C  
+85°C  
+25°C  
+25°C  
+25°C  
-40°C  
+85°C  
-40°C  
3
0
1
2
4
5
0
1
2
3
4
5
2.5  
3
3.5  
4
4.5  
5
5.5  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
OPERATING SUPPLY CURRENT  
vs. INPUT VOLTAGE  
OPERATING SUPPLY CURRENT  
vs. INPUT VOLTAGE  
EFFICIENCY vs. OUTPUT CURRENT  
(4-PHASE)  
toc03b  
toc03c  
toc04a  
800  
700  
600  
500  
400  
300  
200  
100  
0
800  
700  
600  
500  
400  
300  
200  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
4-PHASE (1 OUTPUT)  
LPM = 1  
VOUT = 0.6V  
1-PHASE (4 OUTPUTS ON)  
LPM = 0  
ETR = 1  
-40°C  
+85°C  
FPWM = 0  
FPWM = 1  
+25°C  
VIN = 3.4V  
+25°C  
-40°C  
VIN = 3.8V  
VIN = 4.8V  
+85°C  
0.001  
0.01  
0.1  
1
10  
2.5  
3
3.5  
4
4.5  
5
5.5  
2.5  
3
3.5  
4
4.5  
5
5.5  
OUTPUT CURRENT (A)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
EFFICIENCY vs. OUTPUT CURRENT  
(3-PHASE)  
toc04d  
EFFICIENCY vs. OUTPUT CURRENT  
(4-PHASE)  
EFFICIENCY vs. OUTPUT CURRENT  
(4-PHASE)  
toc04b  
toc04c  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
VOUT = 0.85V  
VOUT = 1.1V  
VOUT = 0.6V  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
FPWM = 0  
FPWM = 1  
FPWM = 0  
FPWM = 0  
VIN = 3V  
FPWM = 1  
VIN = 3.4V  
VIN = 3.4V  
VIN = 3.8V  
VIN = 5V  
VIN = 3.8V  
VIN = 4.8V  
VIN = 3.8V  
VIN = 4.8V  
VIN = 3.3V  
FPWM = 1  
0.001  
0.01  
0.1  
1
10  
0.001  
0.01  
0.1  
1
10  
0.001  
0.01  
0.1  
1
10  
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
Maxim Integrated  
14  
www.maximintegrated.com  
MAX77812  
20A User-Configurable  
Quad-Phase Buck Converter  
Typical Operating Characteristics (continued)  
(V  
= 3.8V, V  
= 0.85V, I  
= 0A, CE = high, 4-Phase (1 Output), FPWM = 0, LPM = 0, ETR = 0, L = 220nH, C  
= (22µF +  
SYS  
OUT  
OUT  
OUT  
0.1µF + 2 × 4.3µF), T = +25°C, unless otherwise noted.)  
A
EFFICIENCY vs. OUTPUT CURRENT  
(3-PHASE)  
EFFICIENCY vs. OUTPUT CURRENT  
EFFICIENCY vs. OUTPUT CURRENT  
(2-PHASE)  
toc04g  
(3-PHASE)  
toc04e  
toc04f  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VOUT = 0.85V  
VOUT = 1.1V  
VOUT = 0.6V  
FPWM = 0  
FPWM = 0  
FPWM = 0  
VIN = 3V  
VIN = 3V  
VIN = 3V  
VIN = 3.8V  
VIN = 5V  
VIN = 3.8V  
VIN = 3.8V  
VIN = 5V  
VIN = 3.3V  
FPWM = 1  
VIN = 3.3V  
FPWM = 1  
VIN = 3.3V  
FPWM = 1  
VIN = 5V  
0.001  
0.01  
0.1  
1
10  
0.001  
0.01  
0.1  
1
10  
0.001  
0.01  
0.1  
1
10  
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
EFFICIENCY vs. OUTPUT CURRENT  
(2-PHASE)  
EFFICIENCY vs. OUTPUT CURRENT  
(2-PHASE)  
EFFICIENCY vs. OUTPUT CURRENT  
(1-PHASE)  
toc04j  
toc04h  
toc04i  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VOUT = 0.85V  
VOUT = 1.1V  
VOUT = 0.6V  
FPWM = 0  
FPWM = 0  
FPWM = 0  
VIN = 3V  
VIN = 3V  
VIN = 3V  
VIN = 3.8V  
VIN = 3.8V  
VIN = 5V  
VIN = 3.8V  
VIN = 5V  
VIN = 3.3V  
FPWM = 1  
VIN = 3.3V  
FPWM = 1  
VIN = 3.3V  
FPWM = 1  
VIN = 5V  
0.001  
0.01  
0.1  
1
10  
0.001  
0.01  
0.1  
1
10  
0.001  
0.01  
0.1  
1
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
EFFICIENCY vs. OUTPUT CURRENT  
(1-PHASE)  
EFFICIENCY vs. OUTPUT CURRENT  
(1-PHASE)  
EFFICIENCY vs. OUTPUT CURRENT  
(3-PHASE)  
toc04m  
toc04k  
toc04l  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VOUT = 0.85V  
VOUT = 1.1V  
VIN = 3.3V  
FPWM = 1  
FPWM = 0  
VOUT = 1.5V  
VOU T = 1V  
FPWM = 0  
VIN = 3V  
VIN = 3V  
VOU T = 0.75V  
VOUT = 0.5V  
VIN = 3.8V  
VIN = 3.8V  
VIN = 3.3V  
FPWM = 1  
VIN = 3.3V  
FPWM = 1  
VIN = 5V  
VIN = 5V  
0.001  
0.01  
0.1  
1
0.001  
0.01  
0.1  
1
0.01  
0.1  
1
10  
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
Maxim Integrated  
15  
www.maximintegrated.com  
MAX77812  
20A User-Configurable  
Quad-Phase Buck Converter  
Typical Operating Characteristics (continued)  
(V  
= 3.8V, V  
= 0.85V, I  
= 0A, CE = high, 4-Phase (1 Output), FPWM = 0, LPM = 0, ETR = 0, L = 220nH, C  
= (22µF +  
SYS  
OUT  
OUT  
OUT  
0.1µF + 2 × 4.3µF), T = +25°C, unless otherwise noted.)  
A
EFFICIENCY vs. OUTPUT CURRENT  
(2-PHASE)  
EFFICIENCY vs. OUTPUT CURRENT  
(1-PHASE)  
OUTPUT VOLTAGE vs. OUTPUT CURRENT  
(4-PHASE)  
toc04n  
toc04o  
toc05a  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.30  
0.20  
VIN = 3.3V  
FPWM = 1  
VIN = 3.3V  
FPWM = 1  
VOUT = 0.6V  
FPWM = 0  
0.10  
VIN = 3.8V  
VOUT = 1.5V  
VOUT = 1.5V  
0.00  
VOU T = 1V  
VOU T = 1V  
VOU T = 0.75V  
VOUT = 0.5V  
-0.10  
-0.20  
-0.30  
-0.40  
-0.50  
-0.60  
-0.70  
-0.80  
VOU T = 0.75V  
FPWM = 1  
VIN = 3.4V  
VOUT = 0.5V  
VIN = 4.8V  
0.001  
0.01  
0.1  
1
10  
0.01  
0.1  
1
10  
0.01  
0.1  
1
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
OUTPUT VOLTAGE vs. INPUT VOLTAGE  
(4-PHASE)  
toc06a  
OUTPUT VOLTAGE vs. OUTPUT CURRENT  
OUTPUT VOLTAGE vs. OUTPUT CURRENT  
(4-PHASE)  
(4-PHASE)  
toc05b  
toc05c  
0.30  
0.20  
0.30  
0.20  
0.60  
0.40  
VOUT = 0.6V  
FPWM = 0  
VOUT = 0.85V  
FPWM = 0  
VOUT = 1.1V  
FPWM = 0  
2mA  
10mA  
1A  
0.10  
0.20  
VIN = 3.4V  
VIN = 3.4V  
0.10  
0.00  
0.00  
-0.10  
-0.20  
-0.30  
-0.40  
-0.50  
0.00  
-0.20  
-0.40  
-0.60  
-0.80  
-1.00  
FPWM = 1  
FPWM = 1  
VIN = 3.8V  
10A  
20A  
VIN = 3.8V  
VIN = 4.8V  
-0.10  
-0.20  
-0.30  
VIN = 4.8V  
0.001  
0.01  
0.1  
1
10  
2.5  
3
3.5  
4
4.5  
5
5.5  
0.001  
0.01  
0.1  
1
10  
OUTPUT CURRENT (A)  
INPUT VOLTAGE (V)  
OUTPUT CURRENT (A)  
OUTPUT VOLTAGE vs. INPUT VOLTAGE  
(4-PHASE)  
OUTPUT VOLTAGE vs. INPUT VOLTAGE  
(4-PHASE)  
OUTPUT VOLTAGE vs. INPUT VOLTAGE  
(4-PHASE)  
toc06d  
toc06b  
toc06c  
0.60  
0.40  
0.20  
0.10  
0.60  
0.40  
VOUT = 0.6V  
FPWM = 1  
VOUT = 1.1V  
FPWM = 0  
VOUT = 0.85V  
FPWM = 0  
2mA  
10mA  
1A  
2mA  
10mA  
0.00  
0.20  
0.20  
2mA  
10mA  
-0.10  
-0.20  
-0.30  
-0.40  
-0.50  
-0.60  
0.00  
0.00  
1A  
1A  
-0.20  
-0.40  
-0.60  
-0.80  
-1.00  
-0.20  
-0.40  
-0.60  
-0.80  
10A  
10A  
20A  
10A  
20A  
20A  
2.5  
3
3.5  
4
4.5  
5
5.5  
2.5  
3
3.5  
4
4.5  
5
5.5  
2.5  
3
3.5  
4
4.5  
5
5.5  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
Maxim Integrated  
16  
www.maximintegrated.com  
MAX77812  
20A User-Configurable  
Quad-Phase Buck Converter  
Typical Operating Characteristics (continued)  
(V  
= 3.8V, V  
= 0.85V, I  
= 0A, CE = high, 4-Phase (1 Output), FPWM = 0, LPM = 0, ETR = 0, L = 220nH, C  
= (22µF +  
SYS  
OUT  
OUT  
OUT  
0.1µF + 2 × 4.3µF), T = +25°C, unless otherwise noted.)  
A
OUTPUT VOLTAGE vs. INPUT VOLTAGE  
(4-PHASE)  
OUTPUT VOLTAGE vs. INPUT VOLTAGE  
VOUT vs. CODE  
(4-PHASE)  
toc06e  
toc06f  
toc07  
0.60  
0.40  
0.20  
0.10  
1.8  
1.6  
1.4  
1.2  
1
FPWM = 0  
VOUT = 0.85V  
FPWM = 1  
VOUT = 1.1V  
FPWM = 1  
0.00  
0.20  
2mA  
10mA  
-0.10  
-0.20  
-0.30  
-0.40  
-0.50  
-0.60  
2mA  
10mA  
0.00  
1A  
0.8  
0.6  
0.4  
0.2  
0
-0.20  
-0.40  
-0.60  
-0.80  
1A  
10A  
20A  
10A  
20A  
2.5  
3
3.5  
4
4.5  
5
5.5  
2.5  
3
3.5  
4
4.5  
5
5.5  
0
25 50 75 100 125 150 175 200 225 250  
M1_VOUT CODE  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
OUTPUT VOLTAGE ACCURACY  
(1-PHASE)  
STARTUP INTO LOAD  
STARTUP DELAY  
toc07a  
toc09a  
toc08  
2.0  
1.5  
1.0  
0.5  
0.0  
-0.5  
-1.0  
IOUT = 1mA  
FPWM = 1  
DEBOUNCE TIME = 64µs  
500mV/div  
VOUT  
VIN  
200mV/div  
(AC-  
COUPLED)  
VOUT  
200mV/div  
TA = -40°C  
TA = +25°C  
IOUT  
2A/div  
LX3  
LX1  
10V/div  
10V/div  
TA = +85°C  
IIN  
0.2A/div  
2V/div  
2V/div  
EN  
EN  
50µs/div  
100µs/div  
0.250  
0.500  
0.750  
1.000  
1.250  
1.500  
OUTPUT VOLTAGE (V)  
STARTUP INTO LOAD  
STARTUP INTO LOAD  
STARTUP INTO LOAD  
toc09b  
toc10a  
toc10b  
IOUT = 1A  
IOUT = 10mA  
IOUT = 5A  
500mV/div  
500mV/div  
500mV/div  
VOUT  
VIN  
VOUT  
VIN  
VOUT  
500mV/div  
(AC-  
COUPLED)  
200mV/div  
(AC-  
COUPLED)  
500mV/div  
(AC-  
COUPLED)  
VIN  
IOUT  
2A/div  
0.2A/div  
2V/div  
IOUT  
8A/div  
2A/div  
IOUT  
8A/div  
IIN  
IIN  
IIN  
2A/div  
2V/div  
2V/div  
EN  
EN  
EN  
100µs/div  
100µs/div  
100µs/div  
Maxim Integrated  
17  
www.maximintegrated.com  
MAX77812  
20A User-Configurable  
Quad-Phase Buck Converter  
Typical Operating Characteristics (continued)  
(V  
= 3.8V, V  
= 0.85V, I  
= 0A, CE = high, 4-Phase (1 Output), FPWM = 0, LPM = 0, ETR = 0, L = 220nH, C  
= (22µF +  
SYS  
OUT  
OUT  
OUT  
0.1µF + 2 × 4.3µF), T = +25°C, unless otherwise noted.)  
A
STARTUP INTO A SHORT  
SHUTDOWN DELAY  
STARTUP INTO LOAD  
toc11  
toc12  
toc10c  
IOUT = 16A  
SS = 2.5mV/µs  
500mV/div  
VOUT  
VOUT  
500mV/div  
500mV/div  
(AC-  
VOUT  
200mV/div  
VIN  
COUPLED)  
32A/div  
2A/div  
8A/div  
5A/div  
IOUT  
IOUT  
IIN  
LX3  
LX1  
10V/div  
10V/div  
IIN  
2V/div  
2V/div  
EN  
EN  
2V/div  
EN  
200µs/div  
1ms/div  
200µs/div  
SOFT-STOP  
SOFT-STOP  
SOFT-STOP  
toc13b  
toc13c  
toc13a  
IOUT = 10mA  
SOFT-STOP = ON  
ACTIVE DISCHARGE = ON  
IOUT = 10mA  
SOFT-STOP = OFF  
ACTIVE DISCHARGE = OFF  
IOUT = 10mA  
SOFT-STOP = ON  
ACTIVE DISCHARGE = OFF  
VOUT  
200mV/div  
VOUT  
VOUT  
200mV/div  
200mV/div  
LX3  
LX1  
LX3  
LX1  
LX3  
LX1  
10V/div  
10V/div  
10V/div  
10V/div  
10V/div  
10V/div  
2V/div  
2V/div  
2V/div  
EN  
EN  
EN  
50µs/div  
1s/div  
50µs/div  
SOFT-STOP  
OUTPUT RIPPLE  
OUTPUT RIPPLE  
toc14b  
toc13d  
toc14a  
IOUT = 1mA  
FPWM = 0  
IOUT = 10mA  
SOFT-STOP = OFF  
IOUT = 10mA  
FPWM = 0  
ACTIVE DISCHARGE = ON  
VOUT  
VOUT  
20mV/div  
20mV/div  
VOUT  
200mV/div  
LX3  
LX1  
10V/div  
10V/div  
5V/div  
5V/div  
5V/div  
5V/div  
LX3  
LX1  
LX3  
LX1  
EN  
2V/div  
1ms/div  
100µs/div  
50µs/div  
Maxim Integrated  
18  
www.maximintegrated.com  
MAX77812  
20A User-Configurable  
Quad-Phase Buck Converter  
Typical Operating Characteristics (continued)  
(V  
= 3.8V, V  
= 0.85V, I  
= 0A, CE = high, 4-Phase (1 Output), FPWM = 0, LPM = 0, ETR = 0, L = 220nH, C  
= (22µF +  
SYS  
OUT  
OUT  
OUT  
0.1µF + 2 × 4.3µF), T = +25°C, unless otherwise noted.)  
A
OUTPUT RIPPLE  
OUTPUT RIPPLE  
OUTPUT RIPPLE  
toc14c  
toc14d  
toc14e  
IOUT = 1A  
FPWM = 0  
IOUT = 10A  
FPWM = 0 OR 1  
IOUT = 5A  
FPWM = 0 OR 1  
VOUT  
10mV/div  
VOUT  
VOUT  
20mV/div  
10mV/div  
5V/div  
5V/div  
5V/div  
5V/div  
LX3  
LX1  
5V/div  
5V/div  
LX3  
LX1  
LX3  
LX1  
5µs/div  
2µs/div  
2µs/div  
OUTPUT RIPPLE  
OUTPUT RIPPLE  
OUTPUT RIPPLE  
toc14h  
toc14f  
toc14g  
IOUT = 1A  
FPWM = 1  
IOUT = 10mA  
FPWM = 1  
IOUT = 1mA  
FPWM = 1  
VOUT  
VOUT  
VOUT  
10mV/div  
20mV/div  
20mV/div  
5V/div  
5V/div  
LX3  
LX1  
LX3  
LX1  
5V/div  
5V/div  
5V/div  
5V/div  
LX3  
LX1  
2µs/div  
2µs/div  
2µs/div  
DYNAMIC VOLTAGE SCALING  
DYNAMIC VOLTAGE SCALING  
DYNAMIC VOLTAGE SCALING  
toc15b  
toc15a  
toc15d  
VOUT = 0.8V TO 1.12V 1.25mV/µs  
FPWM = 0  
VOUT = 0.8V TO 1.12V 10mV/µs  
FPWM = 0  
VOUT = 0.8V TO 1.12V 1.25mV/µs  
FPWM = 1  
VOUT  
VOUT  
VOUT  
200mV/div  
200mV/div  
200mV/div  
LX3  
LX1  
LX4  
10V/div  
10V/div  
10V/div  
10V/div  
10V/div  
10V/div  
10V/div  
10V/div  
LX3  
LX1  
LX4  
LX3  
LX1  
LX4  
10V/div  
50µs/div  
10µs/div  
50µs/div  
Maxim Integrated  
19  
www.maximintegrated.com  
MAX77812  
20A User-Configurable  
Quad-Phase Buck Converter  
Typical Operating Characteristics (continued)  
(V  
= 3.8V, V  
= 0.85V, I  
= 0A, CE = high, 4-Phase (1 Output), FPWM = 0, LPM = 0, ETR = 0, L = 220nH, C = (22µF +  
SYS  
OUT  
OUT  
OUT  
0.1µF + 2 × 4.3µF), T = +25°C, unless otherwise noted.)  
A
DYNAMIC VOLTAGE SCALING  
DYNAMIC VOLTAGE SCALING  
toc15f  
DYNAMIC VOLTAGE SCALING  
toc15e  
toc15g  
VOUT = 0.8V TO 1.12V 10mV/µs  
FPWM = 1  
VOUT = 1.12V TO 0.8V 1.25mV/µs  
FSREN = 1  
VOUT = 0.8V TO 1.12V 40mV/µs  
FPWM = 1  
FPWM = 0  
VOUT  
VOUT  
200mV/div  
200mV/div  
VOUT  
200mV/div  
LX3  
LX1  
LX4  
10V/div  
10V/div  
10V/div  
10V/div  
LX3  
LX1  
LX4  
10V/div  
10V/div  
10V/div  
LX3  
LX1  
LX4  
10V/div  
10V/div  
10µs/div  
10µs/div  
50µs/div  
DYNAMIC VOLTAGE SCALING  
DYNAMIC VOLTAGE SCALING  
DYNAMIC VOLTAGE SCALING  
toc15j  
toc15h  
toc15i  
VOUT = 1.12V TO 0.8V 5mV/µs  
VOUT = 1.12V TO 0.8V 5mV/µs  
FSREN = 1  
VOUT = 1.12V TO 0.8V 1.25mV/µs  
FSREN = 0  
FSREN = 0  
FPWM = 0  
FPWM = 0  
FPWM = 0  
VOUT  
VOUT  
VOUT  
200mV/div  
200mV/div  
10V/div  
200mV/div  
LX3  
LX1  
LX4  
LX3  
LX1  
LX4  
10V/div  
10V/div  
10V/div  
10V/div  
10V/div  
10V/div  
LX3  
LX1  
LX4  
10V/div  
10V/div  
500µs/div  
50µs/div  
500µs/div  
LOAD TRANSIENT  
(4-PHASE)  
DYNAMIC VOLTAGE SCALING  
DYNAMIC VOLTAGE SCALING  
toc16a  
toc15k  
toc15l  
VOUT = 1.12V TO 0.8V 40mV/µs  
FSREN = 1  
IOUT = 0A TO 5A 0.5A/µs, FPWM = 0  
VOUT = 1.12V TO 0.8V 40mV/µs  
FSREN = 0  
FPWM = 0  
FPWM = 0  
VOUT  
20mV/div  
VOUT  
200mV/div  
VOUT  
200mV/div  
LX3  
LX1  
LX4  
10V/div  
10V/div  
10V/div  
LX3  
LX1  
10V/div  
10V/div  
IOUT  
10A/div  
5V/div  
10V/div  
LX4  
LX1  
200µs/div  
20µs/div  
500µs/div  
Maxim Integrated  
20  
www.maximintegrated.com  
MAX77812  
20A User-Configurable  
Quad-Phase Buck Converter  
Typical Operating Characteristics (continued)  
(V  
= 3.8V, V  
= 0.85V, I  
= 0A, CE = high, 4-Phase (1 Output), FPWM = 0, LPM = 0, ETR = 0, L = 220nH, C  
= (22µF +  
SYS  
OUT  
OUT  
OUT  
0.1µF + 2 × 4.3µF), T = +25°C, unless otherwise noted.)  
A
LOAD TRANSIENT  
LOAD TRANSIENT  
(4-PHASE)  
LOAD TRANSIENT  
(4-PHASE)  
(4-PHASE)  
toc16c  
toc16d  
toc16b  
IOUT = 0A TO 10A 0.5A/µs, FPWM = 1  
IOUT = 0A TO 5A 0.5A/µs, FPWM = 1  
IOUT = 0A TO 10A 0.5A/µs, FPWM = 0  
VOUT  
10mV/div  
VOUT  
10mV/div  
VOUT  
20mV/div  
10A/div  
5V/div  
IOUT  
10A/div  
5V/div  
IOUT  
LX1  
10A/div  
5V/div  
IOUT  
LX1  
LX1  
20µs/div  
200µs/div  
200µs/div  
LOAD TRANSIENT  
(4-PHASE)  
LOAD TRANSIENT  
(4-PHASE)  
LOAD TRANSIENT  
(3-PHASE)  
toc16e  
toc16f  
toc16g  
IOUT = 0A TO 20A 0.5A/µs, FPWM = 0  
ETR = 0  
IOUT =0A TO 20A 0.5A/µs, FPWM = 1  
VOUT = 1.1V, IOUT = 0.1A TO 12A 100A/µs  
VOUT  
VOUT  
20mV/div  
10mV/div  
VOUT  
20mV/div  
10A/div  
5V/div  
IOUT  
10A/div  
5V/div  
IOUT  
IOUT  
10A/div  
LX1  
LX1  
200µs/div  
50µs/div  
200µs/div  
LOAD TRANSIENT  
(3-PHASE)  
LOAD TRANSIENT  
(2-PHASE)  
LOAD TRANSIENT  
(2-PHASE)  
toc16h  
toc16i  
toc16j  
ETR = 1  
ETR = 0  
ETR = 1  
V
OUT = 1.1V, IOUT = 0.1A TO 12A 100A/µs  
VOUT = 1.1V, IOUT = 0.1A TO 8A 100A/µs  
VOUT = 1.1V, IOUT = 0.1A TO 8A 100A/µs  
VOUT  
20mV/div  
10A/div  
VOUT  
VOUT  
20mV/div  
10A/div  
20mV/div  
10A/div  
IOUT  
IOUT  
IOUT  
50µs/div  
50µs/div  
50µs/div  
Maxim Integrated  
21  
www.maximintegrated.com  
MAX77812  
20A User-Configurable  
Quad-Phase Buck Converter  
Typical Operating Characteristics (continued)  
(V  
= 3.8V, V  
= 0.85V, I  
= 0A, CE = high, 4-Phase (1 Output), FPWM = 0, LPM = 0, ETR = 0, L = 220nH, C  
= (22µF +  
SYS  
OUT  
OUT  
OUT  
0.1µF + 2 × 4.3µF), T = +25°C, unless otherwise noted.)  
A
LOAD TRANSIENT  
LOAD TRANSIENT  
(1-PHASE)  
(1-PHASE)  
SHORT-CIRCUIT RESPONSE  
toc16k  
toc16l  
toc17  
ETR = 0  
ETR = 1  
VOUT = 1.1V, IOUT = 0.1A TO 4A 100A/µs  
VOUT = 1.1V, IOUT = 0.1A TO 4A 100A/µs  
VOUT  
500mV/div  
VOUT  
VOUT  
20mV/div  
10A/div  
20mV/div  
10A/div  
IOUT  
20A/div  
5V/div  
IOUT  
IOUT  
LX1  
50µs/div  
50µs/div  
50µs/div  
LINE TRANSIENT  
LINE TRANSIENT  
LINE TRANSIENT  
toc18b  
toc18a  
toc18c  
VOUT  
20mV/div  
1V/div  
VOUT  
20mV/div  
1V/div  
20mV/div  
1V/div  
VOUT  
VIN  
VIN  
VIN  
VIN = 3.2V TO 4.2V 30mV/µs  
VIN = 3.2V TO 4.2V 30mV/µs  
VIN = 3.2V TO 4.2V 30mV/µs  
IOUT = 10mA  
FPWM = 1  
IOUT = 10mA  
FPWM = 0  
IOUT = 1A  
FPWM = 0  
100µs/div  
100µs/div  
100µs/div  
LINE TRANSIENT  
LINE TRANSIENT  
toc18d  
toc18e  
VOUT  
VOUT  
20mV/div  
1V/div  
20mV/div  
1V/div  
VIN  
VIN  
VIN = 3.2V TO 4.2V 30mV/µs  
VIN = 3.2V TO 4.2V 30mV/µs  
IOUT = 1A  
FPWM = 1  
IOUT = 4A  
FPWM = 0 OR 1  
100µs/div  
100µs/div  
Maxim Integrated  
22  
www.maximintegrated.com  
MAX77812  
20A User-Configurable  
Quad-Phase Buck Converter  
Bump Configuration  
1
2
3
4
5
6
7
8
PGND  
1
IN  
12  
IN  
12  
PGND  
2
A
B
C
D
E
F
LX1  
LX1  
LX2  
LX2  
PGND  
1
PGND  
1
IN  
12  
IN  
12  
PGND  
2
PGND  
2
LX1  
IRQB  
VIO  
LX2  
EN  
SNS  
1N  
SNS  
1P  
SNS  
2P  
SNS  
2N  
AGND  
SCL  
AGND  
SYS  
I2C_SPI_  
SEL  
WDTRSTB  
_IN  
SCS  
CE  
LPM  
SDA/  
MOSI  
PH_  
CFG0  
PH_  
CFG2  
MISO  
GPI0  
GPI1  
LX4  
DGND  
AGND  
AGND  
AGND  
SNS  
4N  
SNS  
4P  
SNS  
3P  
PH_  
CFG1  
SNS  
3N  
AGND  
PGND  
4
PGND  
4
IN  
34  
IN  
34  
PGND  
3
PGND  
3
G
H
LX3  
LX3  
PGND  
4
IN  
34  
IN  
34  
PGND  
3
LX4  
LX4  
LX3  
BUCK  
BIAS  
9
DIGITAL  
15  
40  
64 WLP (8 x 8 BUMP ARRAY, 0.4MM PITCH)  
*TOP VIEW = WAFER BACK-SIDE VIEW (BUMPS ARE NOT VIEWABLE)  
Maxim Integrated  
23  
www.maximintegrated.com  
MAX77812  
20A User-Configurable  
Quad-Phase Buck Converter  
Bump Description  
BUMP  
A1, B1, B2  
A2, A3, B3  
A4, A5, B4, B5  
A6, A7, B6  
A8, B7, B8  
NAME  
FUNCTION  
PGND1  
LX1  
Phase1 Power Ground  
Phase1 Switch Node  
IN12  
Phase1/2 Input. Bypass to PGND1/2 with a 10µF capacitor.  
Phase2 Switch Node  
LX2  
PGND2  
Phase2 Power Ground  
C1, C8, E5, E8,  
F1, F8  
AGND  
SNS1N  
IRQ  
Analog Ground  
C2  
Phase1 Differential Negative Remote Sense Input  
Interrupt Output. A 100kΩ external pullup resistor to VIO is required. High impedance when  
CE = low.  
C3  
C4  
C5  
SNS1P  
SNS2P  
Phase 1 Differential Positive Remote Sense Input  
Phase 2 Differential Positive Remote Sense Input  
Global Enable Input (Active-High, Logically ORed with GLB_EN Function of GPIs). An 800kΩ  
internal pulldown resistance to DGND. If this pin is not used, leave it unconnected.  
C6  
C7  
D1  
EN  
SNS2N  
SCL  
Phase 2 Differential Negative Remote Sense Input  
2
I C Clock Input. High impedance in off state. A 1.5kΩ~2.2kΩ of pullup resistor to VIO is  
required.  
D2  
D3  
SCS  
VIO  
Active-Low SPI Chip Select  
IO Supply Voltage Input. Bypass to DGND with a 0.1µF capacitor.  
Active-High Chip Enable Input.  
2
CE = High (standby), I C interface is enabled and regulators are ready to be turned on.  
D4  
CE  
CE = Low (shutdown), all regulators are turned off and all Type-O registers are reset to their  
POR default values.  
Active-Low Watchdog Timer Reset Input. An 800kΩ internal pullup resistance to VIO. If this  
pin is not used, leave it unconnected.  
D5  
D6  
WDTRSTB_IN  
LPM  
Global Low Power Mode Input (Active-High, Logically ORed with GLB_LPM Function of  
GPIs). An 800kΩ internal pulldown resistance to DGND. If this pin is not used, leave it  
unconnected.  
Serial Interface Selection Input. Latches at V  
I2C_SPI_SEL = Low: I C  
POR.  
SYS  
2
D7  
I2C_SPI_SEL  
I2C_SPI_SEL = High (V  
): SPI  
SYS  
D8  
E1  
E2  
E3  
E4  
SYS  
SDA/MOSI  
MISO  
System (Battery) Voltage Input. Bypass to AGND with a 1µF capacitor.  
2
I C Data I/O. High Impedance in Off State. A 1.5kΩ~2.2kΩ of pullup resistor to VIO is  
required. Configured as MOSI when SPI mode is selected.  
SPI Data Output. High impedance in off state.  
Active-High, General-Purpose Input. An 800kΩ internal pulldown resistance to DGND. If this  
pin is not used, leave it unconnected.  
GPI0  
DGND  
Digital Ground  
Maxim Integrated  
24  
www.maximintegrated.com  
MAX77812  
20A User-Configurable  
Quad-Phase Buck Converter  
Bump Description (continued)  
BUMP  
NAME  
FUNCTION  
Phase Configuration Selection Input. Latches at V  
POR.  
SYS  
PH_CFG2 = low, PH_CFG1 = low, PH_CFG0 = low: 4 phase  
PH_CFG2 = low, PH_CFG1 = low, PH_CFG0 = high (V ): 3 + 1 phase  
SYS  
E6  
PH_CFG0  
PH_CFG2 = low, PH_CFG1 = high (V  
PH_CFG2 = low, PH_CFG1 = high (V  
), PH_CFG0 = low: 2 + 2 phase  
SYS  
), PH_CFG0 = high (V  
): 2 + 1 + 1 phase  
SYS  
SYS  
PH_CFG2 = high (V  
), PH_CFG1 = X, PH_CFG0 = X: 1 + 1 + 1 + 1 phase  
SYS  
Phase Configuration Selection Input. Latches at V  
POR.  
SYS  
PH_CFG2 = low, PH_CFG1 = low, PH_CFG0 = low: 4 phase  
PH_CFG2 = low, PH_CFG1 = low, PH_CFG0 = high (V ): 3 + 1 phase  
SYS  
E7  
PH_CFG2  
PH_CFG2 = low, PH_CFG1 = high (V  
), PH_CFG0 = low: 2 + 2 phase  
SYS  
PH_CFG2 = low PH_CFG1 = high (V  
), PH_CFG0 = high (V  
): 2 + 1 + 1 phase  
SYS  
SYS  
PH_CFG2 = high (V  
), PH_CFG1 = X, PH_CFG0 = X: 1 + 1 + 1 + 1 phase  
SYS  
F2  
F3  
SNS4N  
GPI1  
Phase 4 Differential Negative Remote Sense Input  
Active-High, General-Purpose Input. An 800kΩ internal pulldown resistance to DGND. If this  
pin is not used, leave it unconnected.  
F4  
F5  
SNS4P  
SNS3P  
Phase 4 Differential Positive Remote Sense Input  
Phase 3 Differential Positive Remote Sense Input  
Phase Configuration Selection Input. Latches at V  
POR.  
SYS  
PH_CFG2 = low, PH_CFG1 = low, PH_CFG0 = low: 4 phase  
PH_CFG2 = low, PH_CFG1 = low, PH_CFG0 = high (V ): 3 + 1 phase  
SYS  
F6  
PH_CFG1  
PH_CFG2 = low, PH_CFG1 = high (V  
PH_CFG2 = low, PH_CFG1 = high (V  
), PH_CFG0 = low: 2 + 2 phase  
SYS  
), PH_CFG0 = high (V  
): 2 + 1 + 1 phase  
SYS  
SYS  
PH_CFG2 = high (V  
), PH_CFG1 = X, PH_CFG0 = X: 1 + 1 + 1 + 1 phase  
SYS  
F7  
SNS3N  
PGND4  
LX4  
Phase 3 Differential Negative Remote Sense Input  
Phase 4 Power Ground  
G1, G2, H1  
G3, H2, H3  
G4, G5, H4, H5  
G6, H6, H7  
G7, G8, H8  
Phase 4 Switch Node  
IN34  
Phase 3/4 Input. Bypass to PGND3/4 with a 10µF capacitor.  
Phase 3 Switch Node  
LX3  
PGND3  
Phase 3 Power Ground  
Maxim Integrated  
25  
www.maximintegrated.com  
MAX77812  
20A User-Configurable  
Quad-Phase Buck Converter  
stay there until CE goes high. As the V  
voltage rises  
SYS  
Detailed Description  
above POR threshold (≈ 1.60V), the internal reference  
and the integrated supply are enabled and the MAX77812  
starts loading the default register values from the OTPs.  
Top-Level System Management  
System Faults  
System Reset  
The MAX77812 monitors the system for the following  
faults:  
When V  
voltage drops below its POR threshold  
SYS  
(≈ 1.50V), all Type-S1 registers are reset to their POR  
default values.  
Undervoltage lockout  
VIO fault  
Off Reset  
Undervoltage Lockout  
Off reset occurs by any power-off or shutdown events.  
This condition resets all Type-O registers to their POR  
default values.  
When the V  
voltage falls below V  
(2.15V typ),  
SYS  
UVLO_F  
the MAX77812 enters into a shutdown state and UVLO  
forces the MAX77812 to a dormant state until V volt-  
age rises above the UVLO rising threshold (typically 2.5V).  
Once the V voltage is higher than the UVLO rising  
threshold, the MAX77812 comes out of shutdown mode  
to be securely functional. The UVLO falling threshold is  
programmable through I C, but it must be set lower than  
SYS  
Software Reset  
All Type-O registers can be reset by writing ‘1’ to SW_  
RST bit in REG_RESET register. This bit clears to ‘0’  
upon reset.  
SYS  
2
Watchdog Timeout Reset (WDTRSTB_IN)  
UVLO rising threshold to avoid unexpected behaviors.  
In case the host processor fails to reset its watchdog  
timer for any system issues, WDTRSTB_IN signal goes  
low for about 100ms. When the MAX77812 detects that  
WDTRSTB_IN is low longer than its debounce timer (pro-  
grammable by WDT_DEB[2:0]), the output voltage setting  
registers of all phases (Mx_VOUT[7:0]) reset to their POR  
default values and the output voltages return to their POR  
default values with given ramp-up/down slew rates.  
VIO Fault  
When the VIO supply falls below V  
typ), the MAX77812 immediately goes into a shutdown  
state and stays in this mode until IO supply rises beyond  
(1.0V  
TH_VIO_OK  
V
threshold.  
TH_VIO_OK  
Thermal Protection  
The MAX77812 has a centralized thermal protection  
circuit which monitors temperature on the die. If the die  
Chip Enable (CE)  
temperature exceeds +165°C (T  
), the MAX77812  
When V  
and V  
supplies are valid, a logic-high on  
SHDN  
SYS  
VIO  
initiates a soft-stop for all the output(s) and all Type-O  
registers are reset to their POR default values. However,  
the MAX77812 should be able to communicate with the  
host processor through the serial interface as long as  
CE pin puts the MAX77812 into standby mode (enabled).  
In standby mode, all user registers are accessible through  
I C/SPI so that the host processor can overwrite the  
2
default output voltages of regulators and each regulator  
2
V
SYS  
and V  
supplies are within the operating range.  
can be enabled by either I C/SPI or GPI input if applicable.  
VIO  
In case the die temperature drops by 15°C after the  
thermal protection occurs, the MAX77812 recovers to the  
normal state and the output(s) can be turned on again.  
When CE pin goes high, the MAX77812 turns on the  
internal bias circuitry which takes typically 50µs to be  
settled. As soon as the bias is ready, all the regulators  
are allowed to be turned on via I C/SPI or EN pins. In  
case the regulators are enabled before the bias circuitry is  
ready, the regulators require longer time to startup.  
2
In addition to +165°C threshold, there are two additional  
comparators which trip at +120°C and +140°C. Interrupts  
are generated in the event the die temperature reaches  
+120°C or +140°C.  
When the CE pin is pulled low, the MAX77812 goes into  
shutdown mode (disabled) and turns off all the regulators  
regardless of EN pins. This event also resets all Type-O  
registers to their POR default values.  
Reset Conditions  
Power-On Reset (POR)  
When a valid system supply voltage is applied to the  
device, the MAX77812 goes into shutdown mode and  
Maxim Integrated  
26  
www.maximintegrated.com  
MAX77812  
20A User-Configurable  
Quad-Phase Buck Converter  
Enable Control  
Immediate Shutdown Events  
Each master phase of the MAX77812 can be enabled and  
disabled by a corresponding enable register bit (EN_Mx),  
EN input and multifunction GPIs. The enable logic is an  
‘OR’ logic of active enable logic signals. For example, the  
Master1 is enabled when EN_M1 bit, GLB_EN or M1_EN  
logic signal is set to ‘1’. When all active signals are ‘0’, the  
corresponding master phase is turned off.  
The following events initiate an immediate shutdown:  
V  
V  
< SYS UVLO falling threshold (V  
)
SYS  
UVLO_F  
< VIO OK threshold (V  
)
VIO  
TH_VIO_OK  
The events in this category are associated with potentially  
hazardous system states. Powering down the host  
processor and resetting all Type-O registers help mitigate  
any issues that can occur due to these potentially  
hazardous conditions.  
Startup and Shutdown Sequence  
The MAX77812 supports programmable startup and  
shutdown delay times between the master phases. The  
startup and shutdown sequence is initiated by either  
EN pin or GLB_EN function of GPIs. The startup and  
shutdown delay times between the master phases are  
programmable from 0ms to 62ms (32 steps).  
Interrupt and Mask  
The IRQ output is used to indicate to the host processor  
that the status on the MAX77812 has changed. The IRQ  
output asserts (goes low) anytime an unmasked interrupt  
bit is triggered. The host processor reads the interrupt  
source register (ADDR 0x01) and the interrupt registers  
that are indicated by the interrupt source register to see  
the cause of interrupt event. Note that the interrupt source  
register is cleared when the corresponding interrupt regis-  
ter group is read by the host processor.  
The startup sequence is set by OTP bits as well as  
STUP_DLYx registers and the Master 1 is always turned  
on as soon as a startup sequence is initiated, while the  
shutdown sequence is programmable by SHDN_DLYx  
registers only and the delay times for all master phases  
are programmable.  
All the interrupt events are edge-triggered. Therefore, the  
same interrupt is not generated repeatedly even though  
the interrupt condition persists.  
If any master phase(s) is(are) turned on by EN_Mx bit or  
Mx_EN input before initiating startup or shutdown, global  
startup or shutdown sequence does not affect the master  
phase(s) already turned on or off.  
Each interrupt register can be read at a time and all inter-  
rupt bits are clear-on-read bits. The IRQ output de-asserts  
(goes high) when all interrupt bits have been cleared. If  
an interrupt is captured during the read sequence, IRQ  
output is held low. When IRQ output is pulled low by an  
unmasked interrupt event, IRQ output stays low until the  
interrupt bit is cleared by the reading operation of the host  
processor or the corresponding interrupt mask bit is set to  
‘1’ (masked).  
Figure 1 shows a typical startup and shutdown sequence.  
For more detailed information on programming the  
sequencer, refer to Application Note 6826: How to  
Program Startup and Shutdown Sequence with  
MAX77812.  
EN PIN OR  
GLB_EN  
M1  
M2  
M3  
M4  
t
4
t
t
5
1
t
t
6
2
t
t
7
3
Figure 1. Startup and Shutdown Sequence  
Maxim Integrated  
27  
www.maximintegrated.com  
 
MAX77812  
20A User-Configurable  
Quad-Phase Buck Converter  
Each interrupt can be masked (disabled) by setting the  
corresponding interrupt mask register bit.  
The PWM comparator regulates VOUTx by modulating  
off-time. A compensation ramp is fed to the positive  
input of the PWM comparator and the negative input  
is a voltage proportional to the actual output voltage  
error added to the replicated AC current in the inductor.  
The PWM comparator begins an on-time (and resets  
the compensation ramp) when the error voltage plus  
replicated AC inductor current becomes greater than the  
ramp. When the calculated on-time expires, the off-time  
automatically begins. One PWM comparator is used to  
control all phases in multiphase configuration. The output  
is demultiplexed by a phase scheduler which controls  
the phase spacing of each switching stage (e.g., 2Φ is  
spaced 180º apart, 3Φ is spaced 120º, 4Φ is spaced 90°).  
Multiphase configurations permanently have all phases  
activated and always switches in sequence during steady-  
state operation (phases do not add or shed).  
When the corresponding mask bit is set (masked), an  
interrupt bit is not set for an interrupt event. As a result,  
the IRQ output stays high. When the mask bit is cleared,  
an active interrupt event at the time of clearing the mask  
bit is captured, which results in pulling the IRQ output low.  
Interrupt mask bits are set to ‘1’ by default and are reset  
to the default values at power-off events.  
Status  
In addition to interrupt bits, the MAX77812 has read-only  
STATUS bits. Those bits always represent the current sta-  
tus of the device. It is highly recommended that the host  
processor read STATUS bits whenever the MAX77812 is  
initialized by the host processor. These STATUS bits do  
not directly affect the state of interrupt bits.  
The switching frequency (F ) of the adaptive on-time  
SW  
BUCK is variable and heavily influenced by the instanta-  
neous load. More on-time pulses in a given time (higher  
Quad-Phase Buck Regulator  
The MAX77812 uses Maxim’s proprietary Quick-PWM™  
adaptive on-time control scheme. Adaptive on-time con-  
trol provides fast response to load transients, inherent  
compensation to input voltage variation, and stable perfor-  
mance at low duty cycles. On-times (high-side MOSFET  
on) are controlled by the on-time generator circuit. This  
circuit calculates an on-time based on the input voltage  
F
) is observed as load increases. Fewer on-times in a  
SW  
given time (lower F ) is observed as load decreases.  
SW  
Phase/Output Configurations  
The MAX77812 supports user-programmable phase con-  
figuration by PH_CFG0, PH_CFG1 and PH_CFG2 input  
logic state. The input logic state is latched at the POR  
event.  
(V ), the output voltage (V  
INx  
), and the target switch-  
OUTx  
ing frequency (F ). The on-time is modified (slightly  
SW  
All supported phase configurations are shown in Table 1.  
Refer to Application Note 6804: Guidelines for the  
MAX77812 User-Selectable Phase Configurations and  
How to Select Them for a concise summary of all the  
shortened or lengthened) by the phase current balancing  
control circuit. Off-times (low-side MOSFET on) begin  
when the on-time ends. Shoot-through current from INx to  
PGNDx is avoided by introducing a brief period of dead-  
time between switching events when neither MOSFET is  
on. During the dead-time, the inductor current conducts  
through the intrinsic body diode of the low-side MOSFET.  
information  
data sheet.  
regarding phase configurations found in this  
Table 1. User-Programmable Phase/Output Configurations  
PH_CFG2  
Low  
PH_CFG1  
Low  
PH_CFG0  
Low  
PHASE CONFIGURATION  
1 Output: 4-Phase (Master 1)  
Low  
Low  
High  
2 Outputs: 3-phase (Master 1) + 1-phase (Master 4)  
2 Outputs: 2-phase (Master 1) + 2-phase (Master 3)  
Low  
High  
Low  
Low  
High  
High  
3 Outputs: 2-phase (Master 1) + 1-phase (Master 3) + 1-phase (Master 4)  
4 Outputs: 1-phase (Master 1) + 1-phase (Master 2) + 1-phase (Master 3) +  
1-phase (Master 4)  
High  
X
X
Maxim Integrated  
28  
www.maximintegrated.com  
 
MAX77812  
20A User-Configurable  
Quad-Phase Buck Converter  
Based on the selected phase configuration, the phase  
selector generates the TON signals to each power stage  
with different phase interleaving schemes and the master  
phases are assigned as shown in Figure 2.  
age of 0.4V when the regulator is enabled, the regulator  
gracefully increases the capacitor voltage to the required  
target voltage such as 1.0V. This is unlike other regulators  
without the start into prebias feature where they can force  
the output capacitor voltage to 0V before the soft-start  
ramp begins.  
Note that only registers for the master phase(s) are  
activated and the slave phase(s) are controlled by the  
corresponding master phase(s).  
The buck regulator supports programmable soft-start rate  
from 1.25mV/µs to 60mV/µs. The controlled soft-start rate  
and buck regulator current limit (ILIM_PEAK) limit the  
input inrush current to the output capacitor (IINRUSH).  
IINRUSH = min (ILIM_PEAK & COUT x dv/dt). Note that  
the input current of the buck regulator is lower than the  
inrush current to the output capacitor by the ratio of output  
to input voltage.  
SKIP/Forced PWM Operation  
In normal operating mode, buck automatically transitions  
from skip mode to fixed frequency operation as the load  
current increases. For operating modes where lowest  
output ripple is required, Forced PWM switching behavior  
can be enabled by writing ‘1’ to Mx_FPWM bit.  
Low Power Mode  
Output Voltage Setting  
Each master includes LPM (low power mode) operation to  
minimize the quiescent current when the host processor  
is in sleep state. In LPM, the ETR (enhanced transient  
response), ADT (adaptive dead-time control), and POK  
comparator (POK = high) are disabled so that load tran-  
sient response of the buck regulators are derated as the  
trade-off. The LPM of each master can be enabled inde-  
pendently by Mx_LPM bits.  
The output voltage is programmable from 0.25V to 1.525V  
in 5mV steps to allow fine adjustment to the processor  
supply voltage under light load conditions to minimize  
power loss within the processor. Each master phase have  
three output voltage control registers. Mx_VOUT[7:0]  
register is for normal operation and Mx_VOUT_D[7:0]  
and Mx_VOUT_S[7:0] are used for voltage selection func-  
tion by GPIx. See the *Multifunction GPIs* section. The  
default output voltages are set by an OTP option at the  
factory. The default output voltages can be overwritten by  
changing the contents in Mx_VOUT[7:0] register prior to  
enabling the regulator.  
Startup and Soft-Start  
When starting up buck regulator, the bias circuitry must  
be enabled and provided with adequate time to settle. The  
bias circuitry is guaranteed to settle within 250µs, at which  
time, the buck regulators power-up sequence can com-  
mence. Note that attempting to implement a power-up  
sequence before the BIASOK signal is generated results  
in all enabled regulators starting up at the same time.  
For some applications, an output voltage higher than  
1.525V is required. The MAX77812 supports higher out-  
put voltage with the addition of an external voltage-divider  
network. For more details, refer to Application Note  
6823: Generating a Higher Output Voltage than 1.525V  
Using the MAX77812.  
The buck regulator supports starting into a prebiased out-  
put. For example, if the output capacitor has an initial volt-  
PHASE  
CONFIGURATION  
PHASE  
SEQUENCE  
ACTIVE CONTROL  
REGISTERS  
4
PH1 PH3 PH2 PH4  
PH1 PH3 PH2 PH4  
PH1 PH2 PH3 PH4  
PH1 PH2 PH3 PH4  
PH1 PH2 PH3 PH4  
M1 NA NA NA  
M1 NA NA M4  
M1 NA M3 NA  
M1 NA M3 M4  
M1 M2 M3 M4  
PH1  
PH4  
PH2  
PH3  
3 + 1  
2 + 2  
2 + 1 + 1  
1 + 1 + 1 + 1  
Figure 2. Buck Phase Configuration  
Maxim Integrated  
29  
www.maximintegrated.com  
 
MAX77812  
20A User-Configurable  
Quad-Phase Buck Converter  
Either the regulator remains enabled or the active dis-  
charge function is disabled (Mx_AD = 0), the internal  
resistor is disconnected from the output. If the active dis-  
charge function is disabled, the output voltage decays at a  
rate that is determined by the output capacitance and the  
load current when the regulator is turned off.  
Changing Output Voltage During Operation  
In a typical smartphone or tablet application, there are  
several power domains in which the operating frequency  
of the processor is increased or decreased (DVFS). When  
the operating frequency needs to be changed, it is expect-  
ed that the buck regulator responds to a command to  
change the output voltages to new target values quickly.  
The high peak current limit, coupled with low inductance  
and small output capacitance, allows the buck regulator  
to respond to a positive step change in output voltage and  
settle to the new target value quickly. The buck regulator  
provides programmable ramp-up slew rates to accommo-  
date different requirements.  
Enhanced Transient Response  
The MAX77812 features the enhanced transient response  
(ETR) function to improve the output-voltage transient  
responses with very fast load changes. When enabled,  
the ETR function monitors the output voltage and detects  
high dv/dt undershoot and overshoot separately.  
When the negative ETR (NETR) is detected during  
output-voltage undershoot, the buck controllers turn on all  
master and slave phases assigned to the same output at  
the same time (in-phase) until the NETR is de-asserted.  
This allows the multi-phase buck converters (no signifi-  
cant impact on single-phase buck) to pump up energy to  
the output in order to recover from the undershoot quickly.  
For a negative step change in output voltage, the set-  
tling time is not critical. In Forced PWM mode (either  
Mx_FPWM bit or Mx_FSREN bit is enabled), the negative  
inductor current through NMOS discharges energy from  
the output capacitor, which helps the output voltage to  
decrease to the new target value faster. In skip mode, the  
negative inductor current is not allowed so that the output  
voltage settling time is dependent on the load current and  
the output capacitance.  
When the positive ETR (PETR) is detected, the buck  
controllers turn off the corresponding low-side MOSFETs  
to discharge excessive energy stored in the inductors,  
which results in suppressing output-voltage overshoot.  
When the PETR is released, the buck controllers operate  
in FPWM mode for about 5ms before returning to normal  
operation.  
Output Voltage Slew Rate Control  
The buck regulator supports programmable slew rate  
control feature when increasing and decreasing the out-  
put voltage. The ramp-up slew rate can be set to 1.25mV/  
µs, 2.5mV/µs, 5mV/µs, 10mV/µs, 20mV/µs 40mV/µs or  
60mV/µs independently via B_RU_SR[2:0] bits, while  
the ramp-down slew rate is programmable to 1.25mV/  
µs, 2.5mV/µs, 5mV/µs, 10mV/µs, 20mV/µs 40mV/µs or  
60mV/µs through B_RD_SR[2:0].  
Both NETR and PETR functions are enabled by default,  
but they can be turned off to reduce quiescent current by  
clearing the B_NETR_EN and B_PETR_EN bits in the  
GLB_CFG3 register.  
Inductor Selection  
Remote Output Voltage Sensing  
The buck regulator is optimized for 220nH to 470nH induc-  
tors. The lower the inductor DCR, the higher the buck effi-  
ciency is. Users need to trade off inductor size with DCR  
value and choose a suitable inductor for the buck.  
All phases support differential remote output voltage  
sensing feature for improving point of load regulation.  
Differential feedback (SNSxP and SNSxN) enables volt-  
age sensing directly at the point of load, ensuring best  
voltage regulation at the load, regardless of power plane  
impedances.  
Output Active Discharge  
BUCK provides an internal 100Ω resistor for output active  
discharge function. If the active discharge function is  
enabled (Mx_AD = 1), the internal resistor discharges the  
energy stored in the output capacitor to PGNDx whenever  
the regulator is disabled.  
Maxim Integrated  
30  
www.maximintegrated.com  
MAX77812  
20A User-Configurable  
Quad-Phase Buck Converter  
Inductor Current Limit  
Unused Outputs  
A cycle-by-cycle current limit provides overcurrent protec-  
tion by monitoring the current in the high-side and low-  
Follow these guidelines when the application has unused  
buck outputs:  
side MOSFETs. The peak current limit (I  
) triggers  
PLIM  
Connected unused inputs (INx) to SYS.  
during on-time and prevents the inductor current from  
running away. If I trips, the on-time ends and the  
Leave unused LXx pins unconnected (open).  
Connect unused SNSxN and PGNDx pins to ground.  
PLIM  
low-side MOSFET turns on to reduce the inductor current  
until it hits the valley current limit (I ). Once the cur-  
VLIM  
Connect unused SNSxP pins to either input or  
ground, depending on the state of the unused output  
in the application:  
rent falls to I , normal operation resumes. Note that  
VLIM  
the buck output current is limited to (I  
+ I )/2.  
VLIM  
PLIM  
For more detailed information, refer to Application Note  
6820: How Overcurrent Protections Works in the  
MAX77812.  
• If the unused output can be enabled at any point  
in the application, either by the global enable in-  
put pin (EN) or a GPIx set to be a global enable,  
connect the unused SNSxP to INx.  
Input and Output Capacitor Selection  
• If the unused output is disabled by default and  
will never be enabled, connect the unused  
SNSxP to ground.  
The input capacitor, C , reduces the current peaks  
drawn from the battery or input power source and reduces  
IN  
switching noise in the device. The impedance of C at  
IN  
Do not confuse unused outputs with unused phases.  
Phases configured under a master controller in a multi-  
phase configuration must connect according to Table 1.  
the switching frequency should be kept very low. Ceramic  
capacitors with X5R or X7R dielectrics are highly rec-  
ommended due to their small size, low ESR, and small  
temperature coefficients. For most applications a 10µF  
capacitor is sufficient.  
If possible, do not enable unused outputs. An unused out-  
put with a floating LX pin might try switching the LX node  
indefinitely (depending on the SNSxP connection), which  
wastes supply current.  
The output capacitor, C  
, is required to keep the out-  
OUT  
put voltage ripple small and to ensure regulation loop  
stability. C must have low impedance at the switching  
OUT  
PCB Trace Resistance  
frequency. Ceramic capacitors with X5R or X7R dielectric  
are highly recommended due to their small size, low ESR,  
and small temperature coefficients. Due to the unique  
feedback network, the output capacitance can be very  
low. The recommended minimum output capacitance per  
phase is 22µF.  
The evaluation kit (and the typical PCB on which the  
MAX77812 is expected to be designed in) utilize 1/3oz.  
Cu, which is plated up to 0.5oz. 0.5oz. Cu has a typical  
resistance of 1mΩ per square.  
Table 2. Suggested Inductors  
NOMINAL  
INDUCTANCE  
(nH)  
TYPICAL DC  
RESISTANCE  
CURRENT  
RATING (A)  
-30% (∆L/L)  
CURRENT  
RATING [A]  
∆T = +40°C RISE  
DIMENSIONS  
L x W x H  
(mm)  
MFGR.  
SERIES  
(mΩ)  
Cyntec  
TOKO  
ALPS  
HMLE20161B-R22MDR  
DFE201610-E-R24N  
GLULMR2201A  
220  
240  
220  
13  
16  
9
5.8  
7.0  
6.5  
5.3  
5.5  
7.0  
2.0 x 1.6 x 1.2  
2.0 x 1.6 x 1.0  
2.5 X 2.0 X 1.2  
Table 3. Suggested Capacitors  
NOMINAL  
CAPACITANCE  
RATED  
VOLTAGE  
(V)  
DIMENSIONS  
L x W x H  
(mm)  
TEMPERATURE  
CHARACTERISTICS  
CASE SIZE  
(Imperial)  
MFGR.  
SERIES  
(µF)  
Murata  
Murata  
GRM188R60J106ME84  
GRM188R60J226MEA0  
10 ±20%  
22 ±20%  
6.3  
6.3  
X5R  
X5R  
0603  
0603  
1.6 x 0.8 x 0.8  
1.6 x 0.8 x 0.8  
Maxim Integrated  
31  
www.maximintegrated.com  
MAX77812  
20A User-Configurable  
Quad-Phase Buck Converter  
Table 4. Multifunction GPI Configurations  
GPIx_FUNC[3:0]  
0000b  
0001b  
0010b  
0011b  
FUNCTION  
GLB_EN  
M1_EN  
REMARK  
Global Enable (Master 1 through Master 4)  
Master 1 Enable  
M2_EN  
Master 2 Enable  
M3_EN  
Master 3 Enable  
0100b  
0101b  
0110b  
M4_EN  
Master 4 Enable  
GLB_VSEL  
M1_VSEL  
M2_VSEL  
M3_VSEL  
M4_VSEL  
GLB_LPM  
M1_LPM  
M2_LPM  
M3_LPM  
M4_LPM  
No function  
Global Voltage Selection (Master 1 through Master 4)  
Master 1 Voltage Selection  
Master 2 Voltage Selection  
Master 3 Voltage Selection  
Master 4 Voltage Selection  
Global Low Power Mode Select (Master 1 through Master 4)  
Master 1 Low Power Mode Enable  
Master 2 Low Power Mode Enable  
Master 3 Low Power Mode Enable  
Master 4 Low Power Mode Enable  
0111b  
1000b  
1001b  
1010b  
1011b  
1100b  
1101b  
1110b  
1111b  
Voltage Selection by GPI  
The buck has two additional output voltage control reg-  
isters (Mx_VOUT_D[7:0] and Mx_VOUT_S[7:0]) besides  
one (Mx_VOUT[7:0]) for normal operation. Those two  
additional registers are for storing the default output  
voltage and the system sleep mode output voltage for a  
specific host processor.  
Multifunction GPIs  
General Description  
The MAX77812 has two general purpose inputs (GPI0  
and GPI1) that can be configured as the enable of regu-  
lators, the output voltage selection, the low power mode  
control and no function. The function of these two inputs  
2
is programmable through I C/SPI (GPI_FUNC register)  
When GPIx are configured as voltage selection pins,  
the output voltage of a specific regulator is set by Mx_  
VOUT_D[7:0] and Mx_VOUT_S[7:0] registers based on  
the input logic. For example, if GPI0_FUNC[3:0] = 0101b,  
the output voltages of all the masters are set by Mx_  
VOUT_D[7:0] and Mx_VOUT_S[7:0] when GPI0 = high  
and GPI0 = low, respectively. In case the two GPIs are  
configured as the same voltage selection function, those  
inputs are ORed. During the output voltage transition, the  
ramp-up/down slew rate is controlled by B_RU_SR[2:0]  
and B_RD_SR[2:0]. Note that M1 thru M4 are defined by  
PH_CFG0, PH_CFG1 and PH_CFG2 inputs.  
on the fly. Application Note 6822: How to Use Multi-  
Function GPIs? provides an in-depth look at program-  
ming the GPIs for their various functions.  
Enable Control by GPI  
When the GPIx are configured as output enable pins, the  
enable logic of a specific regulator is an ‘OR’ logic of the  
GPIx and the corresponding enable register bit (Mx_EN).  
For example, if GPI0_FUNC[3:0] = 0001b, the buck  
Master 1 enable is controlled by GPI0 and M1_EN bit.  
In case the two GPIs are configured as the same enable  
function (i.e., GPI0_FUNC[3:0] = GPI1_FUNC[3:0] =  
0010b), those inputs are ORed with M2_EN bit. GLB_EN  
function (GPI0_FUNC[3:0] = 0000b) allows the host pro-  
cessor to enable all the masters in sequence based on  
STUP_DLYx registers. Note that M1 thru M4 are defined  
by PH_CFG0, PH_CFG1 and PH_CFG2 inputs.  
Low Power Mode by GPI  
When GPIx are configured as low power mode enable  
pins, the low power mode enable logic of a specific regula-  
tor is an ‘OR’ logic of GPIx and the corresponding enable  
register bit (Mx_LPM). For example, if GPI0_FUNC[3:0]  
= 1011b, the buck Master 1 low power mode enable is  
controlled by GPI0 and M1_LPM bit.  
Maxim Integrated  
32  
www.maximintegrated.com  
MAX77812  
20A User-Configurable  
Quad-Phase Buck Converter  
In case the two GPIs are configured as the same enable  
function (i.e., GPI0_FUNC[3:0] = GPI0_FUNC[3:0] =  
1100b), those inputs are ORed with M2_LPM bit. GLB_  
LPM function (GPI0_FUNC[3:0] = 1010b) allows the host  
processor to enable low power mode of all the masters  
at the same time. Note that M1 thru M4 are defined by  
PH_CFG0, PH_CFG1, and PH_CFG2 inputs.  
System Configuration  
The I C bus is a multimaster bus. The maximum number  
of devices that can attach to the bus is only limited by bus  
capacitance.  
2
2
Figure 3 shows an example of a typical I C system. A  
2
device on I C bus that sends data to the bus in called a  
transmitter. A device that receives data from the bus is  
called a receiver. The device that initiates a data transfer  
and generates SCL clock signals to control the data  
transfer is a master. Any device that is being addressed  
by the master is considered a slave. When the MAX77812  
2
I C Serial Interface  
General Description  
2
The I C-compatible 2-wire serial interface is used for  
2
2
I C-compatible interface is operating, it is a slave on I C  
bus and it can be both a transmitter and a receiver.  
regulator on/off control, setting output voltages, and other  
functions. See the Register Map section for details.  
2
The I C serial bus consists of a bidirectional serial-data  
Bit Transfer  
2
line (SDA) and a serial clock (SCL). I C is an open-drain  
One data bit is transferred for each SCL clock cycle. The  
data on SDA must remain stable during the high portion of  
SCL clock pulse. Changes in SDA while SCL is high are  
control signals (START and STOP conditions).  
bus. SDA and SCL require pullup resistors (500Ω or  
greater). Optional 24Ω resistors in series with SDA and  
SCL help to protect the device inputs from high voltage  
spikes on the bus lines. Series resistors also minimize  
crosstalk and undershoot on bus lines.  
SDA  
SCL  
MASTER  
SLAVE  
SLAVE  
TRANSMITTER/  
RECEIVER  
MASTER  
TRANSMITTER/  
RECEIVER  
SLAVE  
TRANSMITTER  
TRANSMITTER/  
RECEIVER  
RECEIVER  
Figure 3. Functional Logic Diagram for Communications Controller  
SCL  
SDA  
DATA LINE STABLE  
DATA VALID  
CHANGE OF DATA  
ALLOWED  
2
Figure 4. I C Bit Transfer  
Maxim Integrated  
33  
www.maximintegrated.com  
 
MAX77812  
20A User-Configurable  
Quad-Phase Buck Converter  
When a STOP condition or incorrect address is detected,  
the MAX77812 internally disconnects SCL from I C serial  
interface until the next START condition, minimizing digital  
noise and feedthrough.  
START and STOP Conditions  
When I C serial interface is inactive, SDA and SCL idle  
high. A master device initiates communication by issuing  
a START condition. A START condition is a high-to-low  
transition on SDA with SCL high. A STOP condition is a  
low-to-high transition on SDA, while SCL is high.  
2
2
Acknowledge  
2
Both the I C bus master and the MAX77812 (slave)  
A START condition from the master signals the beginning  
of a transmission to the MAX77812. The master terminates  
transmission by issuing a NOT ACKNOWLEDGE followed  
by a STOP condition.  
generate acknowledge bits when receiving data. The  
acknowledge bit is the last bit of each nine bit data packet.  
To generate an ACKNOWLEDGE (A), the receiving  
device must pull SDA low before the rising edge of the  
acknowledge-related clock pulse (ninth pulse) and keep  
it low during the high period of the clock pulse. To gener-  
ate a NOT ACKNOWLEDGE (nA), the receiving device  
allows SDA to be pulled high before the rising edge of the  
acknowledge-related clock pulse and leaves it high during  
the high period of the clock pulse.  
A STOP condition frees the bus. To issue a series of  
commands to the slave, the master can issue REPEATED  
START (Sr) commands instead of a STOP command  
in order to maintain control of the bus. In general, a  
REPEATED START command is functionally equivalent  
to a regular START command.  
Monitoring the acknowledge bits allows for detection  
of unsuccessful data transfers. An unsuccessful data  
transfer occurs if a receiving device is busy or if a system  
fault has occurred. In the event of an unsuccessful data  
transfer, the bus master should reattempt communication  
at a later time.  
S
Sr  
P
t
SU_START  
SCL  
SDA  
t
SU_STOP  
t
t
HD_START  
HD_START  
Slave Address  
2
The I C slave address is set by buck phase configuration  
as shown in Table 5. If two MAX77812 devices with the  
same phase configuration need to be connected to the  
2
same I C bus, contact a Maxim representative.  
2
Figure 5. I C Start Stop  
2
Table 5. I C Slave Address  
SLAVE ADDRESS  
(7-BIT)  
SLAVE ADDRESS  
SLAVE ADDRESS  
(READ)  
PH_CFG2  
PH_CFG1  
PH_CFG0  
(WRITE)  
MAX77812EWB+, MAX77812AEWB+, MAX77812BEWB+, MAX77812CEWB+, MAX77812DEWB+  
Low  
Low  
Low  
High  
High  
X
Low  
High  
Low  
High  
X
011 0000  
011 0001  
011 0010  
011 0011  
011 0100  
0x60 (0110 0000)  
0x62 (0110 0010)  
0x64 (0110 0100)  
0x66 (0110 0110)  
0x68 (0110 1000)  
0x61 (0110 0001)  
0x63 (0110 0011)  
0x65 (0110 0101)  
0x67 (0110 0111)  
0x69 (0110 1001)  
Low  
Low  
Low  
High  
MAX77812FEWB+  
Low  
Low  
Low  
Low  
High  
Low  
Low  
High  
High  
X
Low  
High  
Low  
High  
X
011 1000  
011 1001  
011 1010  
011 1011  
011 1100  
0x70 (0111 0000)  
0x72 (0111 0010)  
0x74 (0111 0100)  
0x76 (0111 0110)  
0x78 (0111 1000)  
0x71 (0111 0001)  
0x73 (0111 0011)  
0x75 (0111 0101)  
0x77 (0111 0111)  
0x79 (0111 1001)  
Maxim Integrated  
34  
www.maximintegrated.com  
 
MAX77812  
20A User-Configurable  
Quad-Phase Buck Converter  
S
SDA  
SCL  
1
1
1
2
0
3
0
4
0
5
0
6
0
7
R/nW  
A
9
ACKNOWLEDGE  
8
Figure 6. Slave Address Byte Example  
bus capacitance and pullup resistance (C x R) slow the  
bus operation. Therefore, when increasing bus speeds  
the pullup resistance must be decreased to maintain a  
reasonable time constant. See the Pullup Resistor Sizing  
Clock Stretching  
In general, the clock signal generation for I C bus is  
the responsibility of the master device. I C specification  
allows slow slave devices to alter the clock signal by  
holding down the clock line. The process in which a slave  
device holds down the clock line is typically called clock  
stretching. The MAX77812 does not use any form of clock  
stretching to hold down the clock line.  
2
2
2
section of the I C revision 3.0 specification for detailed  
guidance on the pullup resistor selection. In general, for  
bus capacitance of 200pF, a 100kHz bus needs 5.6kΩ  
pullup resistors, a 400kHz bus needs about a 1.5kΩ pullup  
resistors, and a 1MHz bus needs 680Ω pullup resistors.  
Note that the pullup resistor is dissipating power when the  
open-drain bus is low. The lower the value of the pullup  
General Call Address  
The MAX77812 does not implement the I C speci-  
fication general call address. If the MAX77812 sees  
general call address (00000000b), it does not issue an  
ACKNOWLEDGE (A).  
2
2
resistor, the higher the power dissipation (V /R).  
Operating in high-speed mode requires some special con-  
2
siderations. For the full list of considerations, see the I C  
3.0 specification. The major considerations with respect to  
the MAX77812 are:  
Communication Speed  
The MAX77812 provides an I C 3.0-compatible (3.4MHz)  
serial interface.  
2
2
I C bus master use current source pullups to shorten  
the signal rise times.  
2
I C Revision 3 Compatible Serial Communications  
2
I C slave must use a different set of input filters  
Channel  
on its SDA and SCL lines to accommodate for the  
higher bus speed.  
• 0Hz to 100kHz (Standard Mode)  
• 0Hz to 400kHz (Fast Mode)  
• 0Hz to 1MHz (Fast Mode Plus)  
• 0Hz to 3.4MHz (High-speed Mode)  
The communication protocols need to utilize the  
high-speed master code.  
2
Does not utilize I C Clock Stretching  
At power-up and after each STOPcondition, the MAX77812  
inputs filters are set for standard mode, fast mode, or fast  
mode plus (i.e., 0Hz to 1MHz). To switch the input filters  
for high-speed mode, use the high-speed master code  
protocols that are described in the Protocols section.  
Operating in standard mode, fast mode and fast mode  
plus does not require any special protocols. The main  
consideration when changing the bus speed through  
this range is the combination of the bus capacitance and  
pullup resistors. Higher time constants created by the  
Maxim Integrated  
35  
www.maximintegrated.com  
MAX77812  
20A User-Configurable  
Quad-Phase Buck Converter  
(A) by pulling SDA low.  
Communication Protocols  
The MAX77812 supports both writing and reading from  
its registers.  
4) The master sends an 8-bit register pointer.  
5) The slave acknowledges the register pointer.  
6) The master sends a data byte.  
Writing to a Single Register  
2
Figure 7 shows the protocol for I C master device to write  
7) The slave acknowledges the data byte. At the rising  
edge of SCL, the data byte is loaded into its target  
register and the data becomes active.  
one byte of data to the MAX77812. This protocol is the  
same as SMBus specification’s write byte protocol.  
The write byte protocol is as follows:  
8) The master sends a STOP condition (P) or a  
REPEATED START condition (Sr). Issuing a P  
ensures that the bus input filters are set for 1MHz or  
slower operation. Issuing a REPEATED START (Sr)  
leaves the bus input filters in their current state.  
1) The master sends a START command (S).  
2) The master sends the 7-bit slave address followed  
by a write bit (R/W = 0).  
3) The addressed slave asserts an ACKNOWLEDGE  
LEGEND  
MASTER TO  
SLAVE  
SLAVE TO  
MASTER  
*P FORCES THE BUS FILTERS TO SWITCH TO THEIR 1MHz MODE.  
Sr LEAVES THE BUS FILTERS IN THEIR CURRENT STATE.  
NUMBER  
OF BITS  
1
7
1
0
1
8
1
8
1
1
S
SLAVE ADDRESS  
A
REGISTER POINTER  
A
DATA  
A
P or Sr *  
R/nW  
THE DATA IS LOADED INTO  
THE TARGET REGISTER  
AND BECOMES ACTIVE  
DURING THIS RISING EDGE.  
SDA  
SCL  
B1  
7
B0  
8
A
9
ACKNOWLEDGE  
Figure 7. Writing to a Single Register with Write Byte Protocol  
Maxim Integrated  
36  
www.maximintegrated.com  
 
MAX77812  
20A User-Configurable  
Quad-Phase Buck Converter  
6) The master sends a data byte.  
Writing to Sequential Registers  
Figure 8 shows the protocol for writing to a sequential  
registers. This protocol is similar to the write byte protocol,  
except the master continues to write after it receives the  
first byte of data. When the master is done writing it issues  
a STOP or REPEATED START  
7) The slave acknowledges the data byte. At the rising  
edge of SCL, the data byte is loaded into its target  
register and the data becomes active.  
8) Steps 6 to 7 are repeated as many times as the  
master requires.  
The writing to sequential registers protocol is as follows:  
1) The master sends a START command (S).  
9) During the last acknowledge related clock pulse, the  
master issues an ACKNOWLEDGE (A).  
2) The master sends the 7-bit slave address followed  
10) The master sends a STOP condition (P) or a  
REPEATED START condition (Sr). Issuing a P  
ensures that the bus input filters are set for 1MHz or  
slower operation. Issuing a REPEATED START (Sr)  
leaves the bus input filters in their current state.  
by a write bit (R/W = 0).  
3) The addressed slave asserts an ACKNOWLEDGE  
(A) by pulling SDA low.  
4) The master sends an 8-bit register pointer.  
5) The slave acknowledges the register pointer.  
LEGEND  
MASTER TO  
SLAVE  
SLAVE TO  
MASTER  
*P FORCES THE BUS FILTERS TO SWITCH TO THEIR ≤ 1MHz MODE.  
Sr LEAVES THE BUS FILTERS IN THEIR CURRENT STATE.  
NUMBER  
OF BITS  
1
7
1
0
1
8
1
8
1
S
SLAVE ADDRESS  
A
REGISTER POINTER X  
A
DATA X  
A
α
α
R/nW  
NUMBER  
OF BITS  
8
1
8
1
DATA X+1  
A
DATA X+2  
A
REGISTER POINTER = X + 2  
REGISTER POINTER = X + 1  
8
α
1
NUMBER  
OF BITS  
8
1
1
DATA N-1  
A
DATA N  
A
P or Sr *  
β
REGISTER POINTER = X + (N-2)  
REGISTER POINTER = X + (N-1)  
α
THE DATA IS LOADED INTO THE  
TARGET REGISTER AND BECOMES  
ACTIVE DURING THIS RISING EDGE.  
SDA  
SCL  
B1  
7
B0  
8
A
9
B9  
ACKNOWLEDGE  
1
DETAIL: α  
THE DATA IS LOADED INTO THE  
TARGET REGISTER AND BECOMES  
ACTIVE DURING THIS RISING EDGE.  
SDA  
SCL  
B1  
7
B0  
8
A
9
ACKNOWLEDGE  
DETAIL: β  
Figure 8. Writing to Sequential Registers “X” to “N”  
Maxim Integrated  
37  
www.maximintegrated.com  
 
MAX77812  
20A User-Configurable  
Quad-Phase Buck Converter  
3) The addressed slave asserts an ACKNOWLEDGE  
(A) by pulling SDA LOW.  
Writing Multiple Bytes using Register-Data Pairs  
2
Figure 9 shows the protocol for I C master device to write  
multiple bytes to the MAX77812 using register-data pairs.  
This protocol allows I C master device to address the  
slave only once and then send data to multiple registers  
in a random order. Registers may be written continuously  
until the master issues a STOP condition.  
4) The master sends an 8-bit register pointer.  
5) The slave acknowledges the register pointer.  
6) The master sends a data byte.  
2
7) The slave acknowledges the data byte. At the rising  
edge of SCL, the data byte is loaded into its target  
register and the data will become active.  
The “Multiple Byte Register-Data Pair” protocol is as follows:  
1) The master sends a START command.  
8) Steps 4 to 7 are repeated as many times as the  
master requires.  
2) The master sends the 7-bit slave address followed  
by a write bit.  
9) The master sends a STOP condition.  
LEGEND  
MASTER TO  
SLAVE  
SLAVE TO  
MASTER  
NUMBER  
OF BITS  
1
7
1
0
1
8
1
8
1
S
SLAVE ADDRESS  
A
REGISTER POINTER X  
A
DATA X  
A
α
α
R/nW  
NUMBER  
OF BITS  
8
1
8
1
REGISTER POINTER N  
A
DATA N  
A
NUMBER  
OF BITS  
8
1
8
1
1
REGISTER POINTER Z  
A
DATA Z  
A
P
β
THE DATA IS LOADED INTO THE  
TARGET REGISTER AND BECOMES  
ACTIVE DURING THIS RISING EDGE.  
SDA  
SCL  
B1  
7
B0  
8
A
9
B9  
ACKNOWLEDGE  
1
DETAIL: α  
THE DATA IS LOADED INTO THE  
TARGET REGISTER AND BECOMES  
ACTIVE DURING THIS RISING EDGE.  
SDA  
SCL  
B1  
7
B0  
8
A
9
ACKNOWLEDGE  
DETAIL: β  
Figure 9. Writing to Multiple Registers with Multiple Byte Register Data Pairs Protocol  
Maxim Integrated  
38  
www.maximintegrated.com  
 
MAX77812  
20A User-Configurable  
Quad-Phase Buck Converter  
nal the slave that it wants more data. When the master has  
all the data it requires, it issues a NOT ACKNOWLEDGE  
(nA) and a STOP (P) to end the transmission.  
Reading from a Single Register  
2
I CmasterdevicereadsonebyteofdatatotheMAX77812.  
This protocol is the same as SMBus specification’s read  
byte protocol.  
The continuous read from sequential registers protocol is  
as follows:  
The read byte protocol is as follows:  
1) The master sends a START command (S).  
1) The master sends a START command (S).  
2) The master sends the 7-bit slave address followed  
2) The master sends the 7-bit slave address followed  
by a write bit (R/W = 0).  
by a write bit (R/W = 0).  
3) The addressed slave asserts an ACKNOWLEDGE  
(A) by pulling SDA low.  
3) The addressed slave asserts an ACKNOWLEDGE  
(A) by pulling SDA low.  
4) The master sends an 8-bit register pointer.  
5) The slave acknowledges the register pointer.  
4) The master sends an 8-bit register pointer.  
5) The slave acknowledges the register pointer.  
6) The master sends a REPEATED START command  
(Sr).  
6) The master sends a REPEATED START command  
(Sr).  
7) The master sends the 7-bit slave address followed  
7) The master sends the 7-bit slave address followed  
by a read bit (R/W = 1).  
by a read bit (R/W = 1).  
8) The addressed slave asserts an ACKNOWLEDGE  
(A) by pulling SDA low.  
8) The addressed slave asserts an ACKNOWLEDGE  
(A) by pulling SDA low.  
9) The addressed slave places 8 bits of data on the bus  
9) The addressed slave places 8-bits of data on the bus  
from the location specified by the register pointer.  
from the location specified by the register pointer.  
10) The master issues an ACKNOWLEDGE (A) signaling  
the slave that it wishes to receive more data.  
10) The master issues a NOT ACKNOWLEDGE (nA).  
11) The master sends a STOP condition (P) or a  
REPEATED START condition (Sr). Issuing a P  
ensures that the bus. input filters are set for 1MHz or  
slower operation. Issuing a REPEATED START (Sr)  
leaves the bus input filters in their current state.  
11) Steps 9 to 10 are repeated as many times as the  
master requires. Following the last byte of data, the  
master must issue a NOT ACKNOWLEDGE (nA) to  
signal that it wishes to stop receiving data.  
12) The master sends a STOP condition (P) or a  
REPEATED START condition (Sr). Issuing a STOP  
(P) ensures that the bus input filters are set for 1MHz  
or slower operation. Issuing a REPEATED START  
(Sr) leaves the bus input filters in their current state.  
Note that every time the MAX77812 receives a STOP,  
its register pointer is set to 0x00. If reading register 0x00  
after a STOP has been issued, steps 1 to 6 in the above  
algorithm can be skipped.  
Reading from Sequential Registers  
Note that every time the MAX77812 receives a STOP its  
register pointer is set to 0x00. If reading register 0x00  
after a STOP has been issued, steps 1 to 6 in the above  
algorithm can be skipped.  
Figure 10 shows the protocol for reading from sequential  
registers. This protocol is similar to the read byte protocol  
except the master issues an ACKNOWLEDGE (A) to sig-  
Maxim Integrated  
39  
www.maximintegrated.com  
MAX77812  
20A User-Configurable  
Quad-Phase Buck Converter  
2
The MAX77812 I C supports the HS mode extension  
Engaging HS Mode for Operation Up to 3.4MHz  
feature. The HS extension feature keeps the high-speed  
operation even after STOP condition. This eliminates  
Figure 11 shows the protocol for engaging HS mode  
operation. HS mode operation allows for a bus operating  
speed up to 3.4MHz.  
2
the needs of HS master code issued by the I C master  
2
controller when the I C master controller wants to stay in  
The engaging HS mode protocol is as follows:  
HS mode for multiple read/write cycles.  
1) Begin the protocol while operating at a bus speed of  
1MHz or lower.  
As shown in the state diagram, the HS extension mode  
can be enabled by setting HS_EXT bit in I C_CFG regis-  
ter (ADDR 0x15) from LS mode only (entering HS exten-  
sion mode from HS mode is not supported).  
2
2) The master sends a START command (S).  
3) The master sends the 8-bit master code of  
00001xxxb where xxxb are don’t care bits.  
SPI Slave Controller  
4) The addressed slave issues a NOT  
ACKNOWLEDGE (nA).  
The serial interface includes a SPI slave controller and  
2
the selection between I C and SPI slave controller is  
5) The master can now increase its bus speed up to  
3.4MHz and issue any read/write operation.  
2
done by I C_SPI_SEL input pin. The SPI slave controller  
requires a reset every time before the SPI master control-  
ler starts a new frame. This can be done by setting SCS  
(SPI chip select, active low) input high for more than 50ns.  
When SCS is held high, the MISO output is in a high-  
impedance state.  
The master can continue to issue high-speed read/write  
operations until a STOP (P) is issued. Issuing a STOP  
(P) ensures that the bus input filters are set for 1MHz or  
slower operation.  
LEGEND  
*P FORCES THE BUS FILTERS TO SWITCH TO THEIR ≤ 1MHz MODE.  
Sr LEAVES THE BUS FILTERS IN THEIR CURRENT STATE.  
MASTER TO  
SLAVE  
SLAVE TO  
MASTER  
NUMBER  
OF BITS  
1
7
1
0
1
8
1
1
7
1
1
1
8
1
S
SLAVE ADDRESS  
A
REGISTER POINTER X A Sr SLAVE ADDRESS  
A
DATA X  
A
R/nW  
R/W  
NUMBER  
OF BITS  
8
1
8
1
8
1
DATA X+1  
A
DATA X+2  
A
DATA X+3  
A
REGISTER POINTER = X + 2 REGISTER POINTER = X + 3  
REGISTER POINTER = X + 1  
NUMBER  
OF BITS  
8
1
8
1
8
1
1
P OR Sr*  
DATA N-2  
A
DATA N-1  
A
DATA N  
nA  
REGISTER POINTER =  
X + (N-2)  
REGISTER POINTER =  
X + (N-3)  
Figure 10. Reading Continuously from Sequential Registers “X” to “N”  
LEGEND  
MASTER TO SLAVE  
SLAVE TO MASTER  
1
8
1
1
ANY READ/WRITE PROTOCOL  
FOLLOWED BY Sr  
ANY READ/WRITE PROTOCOL  
FOLLOWED BY Sr  
ANY READ/WRITE PROTOCOL  
S
HS MASTER CODE  
nA Sr  
Sr  
Sr  
P
FAST MODE  
HS MODE  
FAST MODE  
Figure 11. Engaging HS Mode  
Maxim Integrated  
40  
www.maximintegrated.com  
 
 
MAX77812  
20A User-Configurable  
Quad-Phase Buck Converter  
Features  
General Description  
The SPI slave controller has following features:  
The SPI slave controller works with CKPOL = 0, CKPHA  
= 0 setting in the SPI master controller. In other words,  
idle state of SCL is low and the SPI controller samples  
data in the rising edge of SCL. Besides single read/write  
cycle, the SPI salve controller also supports multiple read/  
write cycles.  
Slave Only  
Single Read/Write Support  
Multiple Read/Write Support  
Up to 30MHz (26MHz typ)  
Figure 13, Figure 14, and Figure 15 show single and  
multiple read/write frame structures.  
HS MASTER  
CODE  
LS MODE  
HS MODE  
(HS_EXT = 0)  
(HS_EXT = 0)  
STOP  
CONDITION  
SET HS_EXT = 0  
SET HS_EXT = 1  
SET HS_EXT = 0  
LS MODE  
HS MODE  
(HS_EXT = 1)  
(HS_EXT = 1)  
HS MASTER  
CODE  
2
Figure 12. I C Operating Mode State Diagram  
SCS  
···  
···  
···  
···  
t
SP_MOSI  
t
t
SCS_H(MIN)  
HD_SCS  
t
SU_SCS  
SCLK  
MOSI  
MISO  
MSB  
LSB  
t
HD_MOSI  
MSB  
LSB  
t
D_MISO  
Figure 13. SPI Timing Diagram  
LEGEND  
MASTER TO  
SLAVE  
SLAVE TO  
MASTER  
1
0
1
1
0
0
4
10  
8
8
MSB  
MSB  
MSB  
RESERVED[3:0]  
RESERVED[3:0]  
READ  
ADDR[9:0]  
ADDR[9:0]  
PACKET_LENGTH[7:0]  
PACKET_LENGTH[7:0]  
RDATA0[7:0] AT ADDR  
WDATA0[7:0] AT ADDR  
WRITE  
Figure 14. SPI Single Read/Write Frame Structure  
Maxim Integrated  
41  
www.maximintegrated.com  
 
 
MAX77812  
20A User-Configurable  
Quad-Phase Buck Converter  
LEGEND  
MASTER TO SLAVE  
SLAVE TO MASTER  
MSB  
1
0
1
1
4
10  
8
8
MSB  
MSB  
MULTIPLE READ  
MULTIPLE WRITE  
1 RESERVED[3:0]  
1 RESERVED[3:0]  
ADDR[9:0]  
ADDR[9:0]  
PACKET_LENGTH[7:0]  
PACKET_LENGTH[7:0]  
RDATA0[7:0] AT ADDR  
WDATA0[7:0] AT ADDR  
8
8
8
MSB  
MSB  
MSB  
RDATA1[7:0] AT ADDR+1  
WDATA1[7:0] AT ADDR+1  
RDATA2[7:0] AT ADDR+2  
WDATA2[7:0] AT ADDR+2  
RDATA3[7:0] AT ADDR+3  
WDATA3[7:0] AT ADDR+3  
···  
Figure 15. SPI Multiple Read/Write Frame Structure  
For multiple read/write frame, PACKET_LENGTH[7:0]  
bits determine the number of data bytes. The total length  
of the multiple read/write frame is ‘32 + 8 x n’ bits, where  
‘n’ is the packet length.  
Frame Structure  
Read/Write Bit (R/W)  
The first bit indicates either read (0) or write (1) frame.  
Single/Multiple Bit (S/M)  
Data Bits (RDATA[7:0]/WDATA[7:0])  
The second bit determines either single read/write frame  
(0) or multiple read/write frame (1).  
The SPI slave controller has 8-bit data bus. While the  
slave controller is loading data onto MISO, it ignores the  
data on MOSI. When MISO is inactive, it is held low by  
the SPI slave controller.  
Reserved Bits (RESERVED[3:0])  
There are 4 reserved bits followed by read/write and  
single/multiple bits. The MAX77812 SPI slave controller  
ignores those bits.  
Multiple Write Cycles  
Figure 16 is the timing diagram of multiple write cycle.  
The first data (WDATA0[7:0]) is written at ADDR[9:0] if  
the address is valid. For the next data byte, the register  
address automatically increases by one. The total number  
of data bytes are determined by PACKET_LENGTH[7:0]  
and the MAX77812 slave controller ignores the any data  
bytes beyond the total number of data bytes (PACKET_  
LENGTH[7:0] + 1). While the SPI master controller is  
writing data onto MOSI, the SPI controller keeps MISO  
to a low state.  
Address Bits (ADDR[9:0])  
The SPI master controller loads 10 address bits on MOSI,  
however, the MAX77812 has only 8-bit address bus so  
that the SPI slave controller ignores attempt to access to  
overflowed addresses (beyond 0xFF).  
Packet Length Bits (PACKET_LENGTH[7:0])  
The length of single read/write frame is organized as  
32-bit (packet length bits are ignored).  
Maxim Integrated  
42  
www.maximintegrated.com  
 
MAX77812  
20A User-Configurable  
Quad-Phase Buck Converter  
bytes (PACKET_LENGTH[7:0] + 1). While the SPI master  
controller is writing data onto MOSI, the MAX77812 SPI  
controller keeps MISO to a low state. When the SPI slave  
controller loads the data on MISO, the data on MOSI are  
ignored (don’t care) by the SPI slave controller.  
Multiple Read Cycles  
The timing diagram of multiple read cycle is shown  
in Figure 17. The first data (RDATA0[7:0]) is read at  
ADDR[9:0] if the address is valid. For the next data  
byte, the register address automatically increases by  
one. The total number of data bytes are determined by  
PACKET_LENGTH[7:0] and the MAX77812 slave con-  
troller stops loading data beyond the total number of data  
In case the SPI master controller tries to read nonexisting  
registers, the MAX77812 SPI slave controller returns zero  
values (MISO = low).  
SCS  
1
2
3
4
5
6
7
8
14  
15  
16  
17  
23  
24  
25  
31  
32  
33  
39  
40  
SCL  
MOSI  
MISO  
···  
···  
···  
···  
RESERVED[3:0]  
ADDR[9:0]  
PACKET_ LENGTH[7:0]  
WDATA0[7:0]  
WDATA1[7:0]  
HI-Z  
HI-Z  
LOW  
Figure 16. SPI Multiple Write Cycle  
SCS  
1
2
3
4
5
6
7
8
14  
15  
16  
17  
23  
24  
25  
31  
32  
33  
39  
40  
SCL  
MOSI  
MISO  
···  
···  
···  
···  
PACKET_  
LENGTH[7:0]  
RESERVED[3:0]  
ADDR[9:0]  
DON’T CARE  
HI-Z  
HI-Z  
RDATA0[7:0]  
RDATA1[7:0]  
LOW  
Figure 17. SPI Multiple Read Cycle  
Maxim Integrated  
43  
www.maximintegrated.com  
 
 
MAX77812  
20A User-Configurable  
Quad-Phase Buck Converter  
Maxim Integrated  
44  
www.maximintegrated.com  
 
MAX77812  
20A User-Configurable  
Quad-Phase Buck Converter  
Maxim Integrated  
45  
www.maximintegrated.com  
MAX77812  
20A User-Configurable  
Quad-Phase Buck Converter  
REG_RESET Register Reset Control Register  
ADDRESS  
MODE  
TYPE: O  
RESET VALUE: 0x00  
DESCRIPTION  
0x00  
W/C  
BIT  
NAME  
POR  
7:1  
RESERVED  
0000 000  
Type-O Register Reset Control  
0
SW_RST  
0
1: Reset all Type-O registers to their POR default values.  
This bit clears to ‘0’ upon reset.  
INT_SRC Interrupt Source Register  
ADDRESS  
MODE  
TYPE: O  
RESET VALUE: 0x00  
DESCRIPTION  
0x01  
BIT  
7:2  
1
R
NAME  
POR  
RESERVED  
BUCK_INT  
0000 00  
0
0
1: Interrupt event on BUCK is detected  
1: Interrupt event on TOPSYS is detected  
0
TOPSYS_INT  
INT_SRC_M Interrupt Source Mask Register  
ADDRESS  
MODE  
TYPE: O  
RESET VALUE: 0x02  
DESCRIPTION  
0x02  
R/W  
BIT  
NAME  
POR  
7:4  
RESERVED  
0000 00  
0: Enable BUCK_INT  
1: Mask BUCK_INT  
1
0
BUCK_INT_M  
1
0
0: Enable TOPSYS_INT  
1: Mask TOPSYS_INT  
TOPSYS_INT_M  
TOPSYS_INT TOPSYS Interrupt Register  
ADDRESS  
MODE  
TYPE: S1  
RESET VALUE: 0x00  
DESCRIPTION  
0x03  
BIT  
7:5  
4
R/C  
NAME  
POR  
RESERVED  
WDTRSTB_INT  
UVLO_INT  
000  
0
1: WDTRSTB interrupt has triggered.  
1: UVLO interrupt has triggered.  
3
0
2
TSHDN_INT  
0
1: TSHDN interrupt has triggered.  
1: TJCT_140C interrupt has triggered.  
1: TJCT_120C interrupt has triggered.  
1
TJCT_140C_INT  
TJCT_120C_INT  
0
0
0
Maxim Integrated  
46  
www.maximintegrated.com  
MAX77812  
20A User-Configurable  
Quad-Phase Buck Converter  
TOPSYS_INT_M TOPSYS Interrupt Mask Register  
ADDRESS  
MODE  
TYPE: O  
RESET VALUE: 0x13  
DESCRIPTION  
0x04  
R/W  
BIT  
NAME  
POR  
7:5  
RESERVED  
000  
0: Enable WDTRSTB_INT.  
1: Mask WDTRSTB_INT.  
4
3
2
1
0
WDTRSTB_M  
1
0
0
1
1
0: Enable UVLO_INT.  
1: Mask UVLO_INT.  
UVLO_M  
TSHDN_M  
0: Enable TSHDN_INT.  
1: Mask TSHDN_INT.  
0: Enable TJCT_140C_INT.  
1: Mask TJCT_140C_INT.  
TJCT_140C_M  
TJCT_120C_M  
0: Enable TJCT_120C_INT.  
1: Mask TJCT_120C_INT.  
TOPSYS_STAT TOPSYS Status Register  
ADDRESS  
MODE  
TYPE: O  
RESET VALUE: N/A  
DESCRIPTION  
0x05  
R
BIT  
NAME  
POR  
7:4  
RESERVED  
0: V  
1: V  
≥ V  
< V  
SYS  
SYS  
UVLO_F  
UVLO_F  
3
2
1
0
UVLO  
0: Junction Temperature (T  
1: Junction Temperature (T  
) ≤ +165°C  
) > +165°C  
JCT  
JCT  
TSHDN  
0: Junction Temperature (T  
1: Junction Temperature (T CT) > +140  
°C  
) ≤ +140°C  
JCT  
TJCT_140C  
TJCT_120C  
J
0: Junction Temperature (T  
1: Junction Temperature (T  
) ≤ +120°C  
) > +120°C  
JCT  
JCT  
Maxim Integrated  
47  
www.maximintegrated.com  
MAX77812  
20A User-Configurable  
Quad-Phase Buck Converter  
EN_CTRL Regulator Enable Control Register  
ADDRESS  
MODE  
TYPE: O  
RESET VALUE: 0x00  
DESCRIPTION  
0x06  
R/W  
BIT  
NAME  
POR  
0: Disable BUCK Master 4 low power mode.  
1: Enable BUCK Master 4 low power mode.  
7
6
5
4
3
2
1
0
EN_M4_LPM  
EN_M4  
0
0: Disable BUCK Master 4 output.  
1: Enable BUCK Master 4 output (‘OR’ logic with GPIx input).  
0
0
0
0
0
0
0
0: Disable BUCK Master 3 low power mode.  
1: Enable BUCK Master 3 low power mode.  
EN_M3_LPM  
EN_M3  
0: Disable BUCK Master 3 output.  
1: Enable BUCK Master 3 output (‘OR’ logic with GPIx input).  
0: Disable BUCK Master 2 low power mode.  
1: Enable BUCK Master 2 low power mode.  
EN_M2_LPM  
EN_M2  
0: Disable BUCK Master 2 output.  
1: Enable BUCK Master 2 output (‘OR’ logic with GPIx input).  
0: Disable BUCK Master 1 low power mode.  
1: Enable BUCK Master 1 low power mode.  
EN_M1_LPM  
EN_M1  
0: Disable BUCK Master 1 output.  
1: Enable BUCK Master 1 output (‘OR’ logic with GPIx input).  
STUP_DLY1 Global Startup Delay Setting Register 1  
ADDRESS  
MODE  
TYPE: O (OTP)  
RESET VALUE: 0x00  
DESCRIPTION  
0x07  
R/W  
BIT  
NAME  
POR  
0
Delay Time Step Selection  
0: 1ms  
1: 2ms  
7
DLY_STEP  
6:5  
RESERVED  
00  
BUCK Master 2 Startup Delay Time Setting (Delay from Rising Edge  
of EN Pin or GLB_EN)  
0 0000b = 0ms  
0 0001b = 1 x DLY_STEP  
0 0010b = 2 x DLY_STEP  
4:0  
M2_STUP_DLY[4:0]  
0 0000  
·
·
·
·
·
·
1 1110b = 30 x DLY_STEP  
1 1111b = 31 x DLY_STEP  
Maxim Integrated  
48  
www.maximintegrated.com  
MAX77812  
20A User-Configurable  
Quad-Phase Buck Converter  
STUP_DLY2 Global Startup Delay Setting Register 2  
ADDRESS  
MODE  
TYPE: O (OTP)  
RESET VALUE: 0x00  
DESCRIPTION  
0x08  
R/W  
BIT  
NAME  
POR  
7:5  
RESERVED  
000  
BUCK Master 3 Startup Delay Time Setting (Delay from Rising Edge  
of EN Pin or GLB_EN)  
0 0000b = 0ms  
0 0001b = 1 x DLY_STEP  
0 0010b = 2 x DLY_STEP  
4:0  
M3_STUP_DLY[4:0]  
0 0000  
·
·
·
·
·
·
1 1110b = 30 x DLY_STEP  
1 1111b = 31 x DLY_STEP  
STUP_DLY3 Global Startup Delay Setting Register 3  
ADDRESS  
MODE  
TYPE: O (OTP)  
RESET VALUE: 0x00  
DESCRIPTION  
0x09  
R/W  
BIT  
NAME  
POR  
7:5  
RESERVED  
000  
BUCK Master 4 Startup Delay Time Setting (Delay from Rising Edge  
of EN Pin or GLB_EN)  
0 0000b = 0ms  
0 0001b = 1 x DLY_STEP  
0 0010b = 2 x DLY_STEP  
4:0  
M4_STUP_DLY[4:0]  
0 0000  
·
·
·
·
·
·
1 1110b = 30 x DLY_STEP  
1 1111b = 31 x DLY_STEP  
SHDN_DLY1 Global Shutdown Delay Setting Register 1  
ADDRESS  
0x0A  
BIT  
MODE  
TYPE: O  
RESET VALUE: 0x00  
DESCRIPTION  
R/W  
NAME  
POR  
7:5  
RESERVED  
000  
BUCK Master 1 Shutdown Delay Time Setting (Delay from Falling  
Edge of EN Pin or GLB_EN)  
0 0000b = 0ms  
0 0001b = 1 x DLY_STEP  
0 0010b = 2 x DLY_STEP  
4:0  
M1_SHDN_DLY[4:0]  
0 0000  
·
·
·
·
·
·
1 1110b = 30 x DLY_STEP  
1 1111b = 31 x DLY_STEP  
Maxim Integrated  
49  
www.maximintegrated.com  
MAX77812  
20A User-Configurable  
Quad-Phase Buck Converter  
SHDN_DLY2 Global Shutdown Delay Setting Register 2  
ADDRESS  
0x0B  
BIT  
MODE  
TYPE: O  
RESET VALUE: 0x00  
DESCRIPTION  
R/W  
NAME  
POR  
7:5  
RESERVED  
000  
BUCK Master 2 Shutdown Delay Time Setting (Delay from Falling  
Edge of EN Pin or GLB_EN)  
0 0000b = 0ms  
0 0001b = 1 x DLY_STEP  
0 0010b = 2 x DLY_STEP  
4:0  
M2_SHDN_DLY[4:0]  
0 0000  
·
·
·
·
·
·
1 1110b = 30 x DLY_STEP  
1 1111b = 31 x DLY_STEP  
SHDN_DLY3 Global Shutdown Delay Setting Register 3  
ADDRESS  
0x0C  
BIT  
MODE  
TYPE: O  
RESET VALUE: 0x00  
DESCRIPTION  
R/W  
NAME  
POR  
7:5  
RESERVED  
000  
BUCK Master 3 Shutdown Delay Time Setting (Delay from Falling  
Edge of EN Pin or GLB_EN)  
0 0000b = 0ms  
0 0001b = 1 x DLY_STEP  
0 0010b = 2 x DLY_STEP  
4:0  
M3_SHDN_DLY[4:0]  
0 0000  
·
·
·
·
·
·
1 1110b = 30 x DLY_STEP  
1 1111b = 31 x DLY_STEP  
SHDN_DLY4 Global Shutdown Delay Setting Register 4  
ADDRESS  
0x0D  
BIT  
MODE  
TYPE: O  
RESET VALUE: 0x00  
DESCRIPTION  
R/W  
NAME  
POR  
7:5  
RESERVED  
000  
BUCK Master 4 Shutdown Delay Time Setting (Delay from Falling  
Edge of EN Pin or GLB_EN)  
0 0000b = 0ms  
0 0001b = 1 x DLY_STEP  
0 0010b = 2 x DLY_STEP  
4:0  
M4_SHDN_DLY[4:0]  
0 0000  
·
·
·
·
·
·
1 1110b = 30 x DLY_STEP  
1 1111b = 31 x DLY_STEP  
Maxim Integrated  
50  
www.maximintegrated.com  
MAX77812  
20A User-Configurable  
Quad-Phase Buck Converter  
WDTRSTB_DEB WDTRSTB_IN Input Debounce Time Setting Register  
ADDRESS  
0x0E  
BIT  
MODE  
TYPE: O  
RESET VALUE: 0x02  
DESCRIPTION  
R/W  
NAME  
POR  
7:3  
RESERVED  
0000 0  
WDTRSTB_IN Debounce Time Setting  
000b = 0ms  
001b = 0.8ms  
010b = 1.6ms  
011b = 3.2ms  
2:0  
WDT_DEB[2:0]  
010  
100b = 6.4ms  
101b = 12.8ms  
111b = 51.2ms  
GPI_FUNC GPI Function Selection Register  
ADDRESS  
MODE  
TYPE: O  
RESET VALUE: 0x43  
DESCRIPTION  
0x0F  
R/W  
BIT  
NAME  
POR  
GPI1 Function Selection  
0000b: GLB_EN  
0001b: M1_EN  
0010b: M2_EN  
0011b: M3_EN  
0100b: M4_EN  
1000b: M3_VSEL  
1001b: M4_VSEL  
1010b: GLB_LPM  
1011b: M1_LPM  
1100b: M2_LPM  
7:4  
GPI1_FUNC[3:0]  
0100  
0101b: GLB_VSEL 1101b: M3_LPM  
0110b: M1_VSEL  
0111b: M2_VSEL  
1110b: M4_LPM  
1111b: No Function  
GPI0 Function Selection  
0000b: GLB_EN  
0001b: M1_EN  
0010b: M2_EN  
0011b: M3_EN  
0100b: M4_EN  
1000b: M3_VSEL  
1001b: M4_VSEL  
1010b: GLB_LPM  
1011b: M1_LPM  
1100b: M2_LPM  
3:0  
GPI0_FUNC[3:0]  
0011  
0101b: GLB_VSEL 1101b: M3_LPM  
0110b: M1_VSEL  
0111b: M2_VSEL  
1110b: M4_LPM  
1111b: No Function  
Maxim Integrated  
51  
www.maximintegrated.com  
MAX77812  
20A User-Configurable  
Quad-Phase Buck Converter  
GPI_DEB1 GPI Debounce Time Setting Register 1  
ADDRESS  
MODE  
TYPE: O  
RESET VALUE: 0x11  
DESCRIPTION  
0x10  
R/W  
BIT  
NAME  
POR  
LPM Debounce Time Setting  
0000b = 0µs  
1000b = 512µs  
0001b = 64µs  
0010b = 128µs  
0011b = 192µs  
0100b = 256µs  
0101b = 320µs  
0110b = 384µs  
0111b = 448µs  
1001b = 576µs  
1010b = 640µs  
1011b = 704µs  
1100b = 768µs  
1101b = 832µs  
1110b = 896µs  
1111b = 960µs  
7:4  
LPM_DEB[3:0]  
0001  
EN Debounce Time Setting  
0000b = 0µs  
1000b = 512µs  
0001b = 64µs  
0010b = 128µs  
0011b = 192µs  
0100b = 256µs  
0101b = 320µs  
0110b = 384µs  
0111b = 448µs  
1001b = 576µs  
1010b = 640µs  
1011b = 704µs  
1100b = 768µs  
1101b = 832µs  
1110b = 896µs  
1111b = 960µs  
3:0  
EN_DEB[3:0]  
0001  
GPI_DEB2 GPI Debounce Time Setting Register 2  
ADDRESS  
MODE  
TYPE: O  
RESET VALUE: 0x11  
0x11  
R/W  
BIT  
NAME  
POR  
DESCRIPTION  
GPI1 Debounce Time Setting  
0000b = 0µs  
1000b = 512µs  
0001b = 64µs  
0010b = 128µs  
0011b = 192µs  
0100b = 256µs  
0101b = 320µs  
0110b = 384µs  
0111b = 448µs  
1001b = 576µs  
1010b = 640µs  
1011b = 704µs  
1100b = 768µs  
1101b = 832µs  
1110b = 896µs  
1111b = 960µs  
7:4  
GPI1_DEB[3:0]  
0001  
GPI0 Debounce Time Setting  
0000b = 0µs  
1000b = 512µs  
0001b = 64µs  
0010b = 128µs  
0011b = 192µs  
0100b = 256µs  
0101b = 320µs  
0110b = 384µs  
0111b = 448µs  
1001b = 576µs  
1010b = 640µs  
1011b = 704µs  
1100b = 768µs  
1101b = 832µs  
1110b = 896µs  
1111b = 960µs  
3:0  
GPI0_DEB[3:0]  
0001  
Maxim Integrated  
52  
www.maximintegrated.com  
MAX77812  
20A User-Configurable  
Quad-Phase Buck Converter  
GPI_PD_CTRL GPI Pulldown Resistor Control Register  
ADDRESS  
MODE  
TYPE: O  
RESET VALUE: 0x0F  
0x12  
R/W  
BIT  
NAME  
POR  
DESCRIPTION  
7:4  
RESERVED  
0000  
LPM Input Pulldown Resistor Enable Setting  
3
2
1
0
LPM_PD  
1
1
1
1
0: Disable  
1: Enable  
EN Input Pulldown Resistor Enable Setting  
0: Disable  
1: Enable  
EN_PD  
GPI1_PD  
GPI0_PD  
GPI1 Input Pulldown Resistor Enable Setting  
0: Disable  
1: Enable  
GPI0 Input Pulldown Resistor Enable Setting  
0: Disable  
1: Enable  
PROT_CFG Protection Configuration Register  
ADDRESS  
MODE  
TYPE: O  
RESET VALUE: 0x82  
0x13  
R/W  
BIT  
NAME  
POR  
1
DESCRIPTION  
Thermal Protection Enable Control  
0: Disable (TSHDN_INT is not disabled)  
1: Enable  
7
TSHDN_EN  
RESERVED  
6:3  
000 0  
V
UVLO Falling Threshold  
SYS  
000b = 1.95V  
001b = 2.05V  
010b = 2.15V  
011b = 2.25V  
100b = 2.35V  
101b = 2.45V  
110b = 2.55V  
111b = Disabled  
2:0  
UVLO_F[2:0]  
010  
0x14: RESERVED  
Maxim Integrated  
53  
www.maximintegrated.com  
MAX77812  
20A User-Configurable  
Quad-Phase Buck Converter  
2
I2C_CFG I C Configuration Register  
ADDRESS  
0x15  
BIT  
MODE  
TYPE: O  
RESET VALUE: 0x00  
DESCRIPTION  
R/W  
NAME  
POR  
NA  
7:4  
RESERVED  
RESERVED  
3:2  
00  
Write ‘00’  
Register Data Pair Mode  
1
0
PAIR  
0
0
0: Disable (Sequential Mode)  
1: Enable  
HS Mode Extension  
0: Disable HS mode extension (I C Rev. 4 Compliant).  
1: Enable HS mode extension.  
2
HS_EXT  
(HS mode is extended during/after ‘STOP’ condition.)  
0x16 – 0x1F: RESERVED  
BUCK_INT Regulators Interrupt Register  
ADDRESS  
MODE  
TYPE: S1  
RESET VALUE: 0x00  
DESCRIPTION  
0x20  
BIT  
7:4  
3
R/C  
NAME  
POR  
RESERVED  
M4_POK_INT  
M3_POK _INT  
M2_POK _INT  
M1_POK _INT  
0000  
0
0
0
0
1: BUCK Master 4 POK interrupt has triggered.  
1: BUCK Master 3 POK interrupt has triggered.  
1: BUCK Master 2 POK interrupt has triggered.  
1: BUCK Master 1 POK interrupt has triggered.  
2
1
0
BUCK_INT_M BUCK Interrupt Mask Register  
ADDRESS  
MODE  
TYPE: O  
RESET VALUE: 0x0F  
DESCRIPTION  
0x21  
R/W  
BIT  
NAME  
POR  
7:4  
RESERVED  
0000  
0: Enable M4_POK _INT.  
1: Mask M4_POK _INT.  
3
2
1
0
M4_POK _M  
1
1
1
1
0: Enable M3_ POK_INT.  
1: Mask M3_POK_INT.  
M3_POK_M  
M2_POK_M  
M1_POK_M  
0: Enable M2_ POK_INT.  
1: Mask M2_POK_INT.  
0: Enable M1_POK_INT.  
1: Mask M1_POK_INT.  
Maxim Integrated  
54  
www.maximintegrated.com  
MAX77812  
20A User-Configurable  
Quad-Phase Buck Converter  
BUCK_STAT BUCK Status Register  
ADDRESS  
MODE  
TYPE: O  
RESET VALUE: N/A  
0x22  
BIT  
7:4  
3
R
NAME  
POR  
DESCRIPTION  
RESERVED  
M4_POK  
M3_POK  
M2_POK  
M1_POK  
0000  
0
0
0
0
BUCK Master 4 POK Status  
BUCK Master 3 POK Status  
BUCK Master 2 POK Status  
BUCK Master 1 POK Status  
2
1
0
M1_VOUT BUCK Master1 Output Voltage Setting Register  
ADDRESS  
MODE  
TYPE: O  
(OTP)  
RESET VALUE: 0x50  
RESET VALUE: 0x50  
RESET VALUE: 0x46  
RESET VALUE: 0x46  
0x23  
R/W  
BIT  
NAME  
M1_VOUT[7:0]  
POR  
DESCRIPTION  
BUCK Master 1 Output Voltage  
7:0  
01010000  
M2_VOUT BUCK Master 2 Output Voltage Setting Register  
ADDRESS  
MODE  
TYPE: O  
(OTP)  
0x24  
R/W  
BIT  
NAME  
M2_VOUT[7:0]  
POR  
DESCRIPTION  
BUCK Master 2 Output Voltage  
7:0  
01010000  
M3_VOUT BUCK Master 3 Output Voltage Setting Register  
ADDRESS  
MODE  
TYPE: O  
(OTP)  
0x25  
R/W  
BIT  
NAME  
M3_VOUT[7:0]  
POR  
DESCRIPTION  
BUCK Master 3 Output Voltage  
7:0  
01000110  
M4_VOUT BUCK Master 4 Output Voltage Setting Register  
ADDRESS  
MODE  
TYPE: O  
(OTP)  
0x26  
R/W  
BIT  
NAME  
M4_VOUT[7:0]  
POR  
DESCRIPTION  
BUCK Master 4 Output Voltage  
7:0  
01000110  
Maxim Integrated  
55  
www.maximintegrated.com  
MAX77812  
20A User-Configurable  
Quad-Phase Buck Converter  
M1_VOUT_D BUCK Master 1 Default Output Voltage Setting Register  
ADDRESS  
MODE  
TYPE: O  
RESET VALUE: 0x78  
0x27  
R/W  
BIT  
NAME  
POR  
DESCRIPTION  
Buck Master 1 Default Output Voltage. Sets the output voltage when  
DVS = 1 through a GPI.  
7:0  
M1_VOUT_D[7:0]  
0111 1000  
M2_VOUT_D BUCK Master 2 Default Output Voltage Setting Register  
ADDRESS  
MODE  
TYPE: O  
RESET VALUE: 0x78  
0x28  
R/W  
BIT  
NAME  
POR  
DESCRIPTION  
Buck Master 2 Default Output Voltage. Sets the output voltage when  
DVS = 1 through a GPI.  
7:0  
M2_VOUT_D[7:0]  
0111 1000  
M3_VOUT_D BUCK Master 3 Default Output Voltage Setting Register  
ADDRESS  
MODE  
TYPE: O  
RESET VALUE: 0x78  
0x29  
R/W  
BIT  
NAME  
POR  
DESCRIPTION  
Buck Master 3 Default Output Voltage. Sets the output voltage when  
DVS = 1 through a GPI.  
7:0  
M3_VOUT_D[7:0]  
0111 1000  
M4_VOUT_D BUCK Master 4 Default Output Voltage Setting Register  
ADDRESS  
MODE  
TYPE: O  
RESET VALUE: 0x78  
0x2A  
R/W  
BIT  
NAME  
POR  
DESCRIPTION  
Buck Master 4 Default Output Voltage. Sets the output voltage when  
DVS = 1 through a GPI.  
7:0  
M4_VOUT_D[7:0]  
0111 1000  
M1_VOUT_S BUCK Master1 Sleep Mode Output Voltage Setting Register  
ADDRESS  
MODE  
TYPE: O  
RESET VALUE: 0x1E  
0x2B  
R/W  
BIT  
NAME  
POR  
DESCRIPTION  
Buck Master 1 Sleep Mode Output Voltage. Sets the output voltage  
when DVS = 0 through a GPI.  
7:0  
M1_VOUT_S[7:0]  
0001 1110  
M2_VOUT_S BUCK Master 2 Sleep Mode Output Voltage Setting Register  
ADDRESS  
MODE  
TYPE: O  
RESET VALUE: 0x1E  
0x2C  
R/W  
BIT  
NAME  
POR  
DESCRIPTION  
Buck Master 2 Sleep Mode Output Voltage. Sets the output voltage  
when DVS = 0 through a GPI.  
7:0  
M2_VOUT_S[7:0]  
0001 1110  
Maxim Integrated  
56  
www.maximintegrated.com  
MAX77812  
20A User-Configurable  
Quad-Phase Buck Converter  
M3_VOUT_S BUCK Master 3 Sleep Mode Output Voltage Setting Register  
ADDRESS  
MODE  
TYPE: O  
RESET VALUE: 0x1E  
0x2D  
R/W  
BIT  
NAME  
POR  
DESCRIPTION  
Buck Master 3 Sleep Mode Output Voltage. Sets the output voltage  
when DVS = 0 through a GPI.  
7:0  
M3_VOUT_S[7:0]  
0001 1110  
M4_VOUT_S BUCK Master 4 Sleep Mode Output Voltage Setting Register  
ADDRESS  
MODE  
TYPE: O  
RESET VALUE: 0x1E  
0x2E  
R/W  
BIT  
NAME  
POR  
DESCRIPTION  
Buck Master 4 Sleep Mode Output Voltage. Sets the output voltage  
when DVS = 0 through a GPI.  
7:0  
M4_VOUT_S[7:0]  
0001 1110  
Buck Output Voltage Table  
0x00 =  
0x20 =  
0x40 =  
0x60 =  
0x80 =  
0xA0 =  
0xC0 =  
0xE0 =  
0.25000V  
0.41000V  
0.57000V  
0.73000V  
0.89000V  
1.05000V  
1.21000V  
1.37000V  
0x01 =  
0x21 =  
0x41 =  
0x61 =  
0x81 =  
0xA1 =  
0xC1 =  
0xE1 =  
0.25500V  
0.41500V  
0.57500V  
0.73500V  
0.89500V  
1.05500V  
1.21500V  
1.37500V  
0x02 =  
0x22 =  
0x42 =  
0x62 =  
0x82 =  
0xA2 =  
0xC2 =  
0xE2 =  
0.26000V  
0.42000V  
0.58000V  
0.74000V  
0.90000V  
1.06000V  
1.22000V  
1.38000V  
0x03 =  
0x23 =  
0x43 =  
0x63 =  
0x83 =  
0xA3 =  
0xC3 =  
0xE3 =  
0.26500V  
0.42500V  
0.58500V  
0.74500V  
0.90500V  
1.06500V  
1.22500V  
1.38500V  
0x04 =  
0x24 =  
0x44 =  
0x64 =  
0x84 =  
0xA4 =  
0xC4 =  
0xE4 =  
0.27000V  
0.43000V  
0.59000V  
0.75000V  
0.91000V  
1.07000V  
1.23000V  
1.39000V  
0x05 =  
0x25 =  
0x45 =  
0x65 =  
0x85 =  
0xA5 =  
0xC5 =  
0xE5 =  
0.27500V  
0.43500V  
0.59500V  
0.75500V  
0.91500V  
1.07500V  
1.23500V  
1.39500V  
0x06 =  
0x26 =  
0x46 =  
0x66 =  
0x86 =  
0xA6 =  
0xC6 =  
0xE6 =  
0.28000V  
0.44000V  
0.60000V  
0.76000V  
0.92000V  
1.08000V  
1.24000V  
1.40000V  
0x07 =  
0x27 =  
0x47 =  
0x67 =  
0x87 =  
0xA7 =  
0xC7 =  
0xE7 =  
0.28500V  
0.44500V  
0.60500V  
0.76500V  
0.92500V  
1.08500V  
1.24500V  
1.40500V  
0x08 =  
0x28 =  
0x48 =  
0x68 =  
0x88 =  
0xA8 =  
0xC8 =  
0xE8 =  
0.29000V  
0.45000V  
0.61000V  
0.77000V  
0.93000V  
1.09000V  
1.25000V  
1.41000V  
0x09 =  
0x29 =  
0x49 =  
0x69 =  
0x89 =  
0xA9 =  
0xC9 =  
0xE9 =  
0.29500V  
0.45500V  
0.61500V  
0.77500V  
0.93500V  
1.09500V  
1.25500V  
1.41500V  
0x0A =  
0x2A =  
0x4A =  
0x6A =  
0x8A =  
0xAA =  
0xCA =  
0xEA =  
0.30000V  
0.46000V  
0.62000V  
0.78000V  
0.94000V  
1.10000V  
1.26000V  
1.42000V  
0x0B =  
0x2B =  
0x4B =  
0x6B =  
0x8B =  
0xAB =  
0xCB =  
0xEB =  
0.30500V  
0.46500V  
0.62500V  
0.78500V  
0.94500V  
1.10500V  
1.26500V  
1.42500V  
0x0C =  
0x2C =  
0x4C =  
0x6C =  
0x8C =  
0xAC =  
0xCC =  
0xEC =  
0.31000V  
0.47000V  
0.63000V  
0.79000V  
0.95000V  
1.11000V  
1.27000V  
1.43000V  
0x0D =  
0x2D =  
0x4D =  
0x6D =  
0x8D =  
0xAD =  
0xCD =  
0xED =  
0.31500V  
0.47500V  
0.63500V  
0.79500V  
0.95500V  
1.11500V  
1.27500V  
1.43500V  
Maxim Integrated  
57  
www.maximintegrated.com  
MAX77812  
20A User-Configurable  
Quad-Phase Buck Converter  
Buck Output Voltage Table (continued)  
0x0E =  
0x2E =  
0x4E =  
0x6E =  
0x8E =  
0xAE =  
0xCE =  
0xEE =  
0.32000V  
0.48000V  
0.64000V  
0.80000V  
0.96000V  
1.12000V  
1.28000V  
1.44000V  
0x0F =  
0x2F =  
0x4F =  
0x6F =  
0x8F =  
0xAF =  
0xCF =  
0xEF =  
0.32500V  
0.48500V  
0.64500V  
0.80500V  
0.96500V  
1.12500V  
1.28500V  
1.44500V  
0x10 =  
0x30 =  
0x50 =  
0x70 =  
0x90 =  
0xB0 =  
0xD0 =  
0xF0 =  
0.33000V  
0.49000V  
0.65000V  
0.81000V  
0.97000V  
1.13000V  
1.29000V  
1.45000V  
0x11 =  
0x31 =  
0x51 =  
0x71 =  
0x91 =  
0xB1 =  
0xD1 =  
0xF1 =  
0.33500V  
0.49500V  
0.65500V  
0.81500V  
0.97500V  
1.13500V  
1.29500V  
1.45500V  
0x12 =  
0x32 =  
0x52 =  
0x72 =  
0x92 =  
0xB2 =  
0xD2 =  
0xF2 =  
0.34000V  
0.50000V  
0.66000V  
0.82000V  
0.98000V  
1.14000V  
1.30000V  
1.46000V  
0x13 =  
0x33 =  
0x53 =  
0x73 =  
0x93 =  
0xB3 =  
0xD3 =  
0xF3 =  
0.34500V  
0.50500V  
0.66500V  
0.82500V  
0.98500V  
1.14500V  
1.30500V  
1.46500V  
0x14 =  
0x34 =  
0x54 =  
0x74 =  
0x94 =  
0xB4 =  
0xD4 =  
0xF4 =  
0.35000V  
0.51000V  
0.67000V  
0.83000V  
0.99000V  
1.15000V  
1.31000V  
1.47000V  
0x15 =  
0x35 =  
0x55 =  
0x75 =  
0x95 =  
0xB5 =  
0xD5 =  
0xF5 =  
0.35500V  
0.51500V  
0.67500V  
0.83500V  
0.99500V  
1.15500V  
1.31500V  
1.47500V  
0x16 =  
0x36 =  
0x56 =  
0x76 =  
0x96 =  
0xB6 =  
0xD6 =  
0xF6 =  
0.36000V  
0.52000V  
0.68000V  
0.84000V  
1.00000V  
1.16000V  
1.32000V  
1.48000V  
0x17 =  
0x37 =  
0x57 =  
0x77 =  
0x97 =  
0xB7 =  
0xD7 =  
0xF7 =  
0.36500V  
0.52500V  
0.68500V  
0.84500V  
1.00500V  
1.16500V  
1.32500V  
1.48500V  
0x18 =  
0x38 =  
0x58 =  
0x78 =  
0x98 =  
0xB8 =  
0xD8 =  
0xF8 =  
0.37000V  
0.53000V  
0.69000V  
0.85000V  
1.01000V  
1.17000V  
1.33000V  
1.49000V  
0x19 =  
0x39 =  
0x59 =  
0x79 =  
0x99 =  
0xB9 =  
0xD9 =  
0xF9 =  
0.37500V  
0.53500V  
0.69500V  
0.85500V  
1.01500V  
1.17500V  
1.33500V  
1.49500V  
0x1A =  
0x3A =  
0x5A =  
0x7A =  
0x9A =  
0xBA =  
0xDA =  
0xFA =  
0.38000V  
0.54000V  
0.70000V  
0.86000V  
1.02000V  
1.18000V  
1.34000V  
1.50000V  
0x1B =  
0x3B =  
0x5B =  
0x7B =  
0x9B =  
0xBB =  
0xDB =  
0xFB =  
0.38500V  
0.54500V  
0.70500V  
0.86500V  
1.02500V  
1.18500V  
1.34500V  
1.50500V  
0x1C =  
0x3C =  
0x5C =  
0x7C =  
0x9C =  
0xBC =  
0xDC =  
0xFC =  
0.39000V  
0.55000V  
0.71000V  
0.87000V  
1.03000V  
1.19000V  
1.35000V  
1.51000V  
0x1D =  
0x3D =  
0x5D =  
0x7D =  
0x9D =  
0xBD =  
0xDD =  
0xFD =  
0.39500V  
0.55500V  
0.71500V  
0.87500V  
1.03500V  
1.19500V  
1.35500V  
1.51500V  
0x1E =  
0x3E =  
0x5E =  
0x7E =  
0x9E =  
0xBE =  
0xDE =  
0xFE =  
0.40000V  
0.56000V  
0.72000V  
0.88000V  
1.04000V  
1.20000V  
1.36000V  
1.52000V  
0x1F =  
0x3F =  
0x5F =  
0x7F =  
0x9F =  
0xBF =  
0xDF =  
0xFF =  
0.40500V  
0.56500V  
0.72500V  
0.88500V  
1.04500V  
1.20500V  
1.36500V  
1.52500V  
Maxim Integrated  
58  
www.maximintegrated.com  
MAX77812  
20A User-Configurable  
Quad-Phase Buck Converter  
M1_CFG BUCK Master 1 Configuration Register  
ADDRESS  
MODE  
TYPE: O  
RESET VALUE: 0xD1  
DESCRIPTION  
0x2F  
R/W  
BIT  
NAME  
POR  
BUCK Master 1 Output Active Discharge  
7
M1_AD  
1
0: Disable  
1: Enable  
BUCK Master 1 PMOS Peak/NMOS Valley Current Limit Setting  
000b: 3.0A/2.0A  
001b: 3.6A/2.4A  
010b: 4.2A/2.8A  
011b: 4.8A/3.2A  
100b: 5.4A/3.6A  
101b: 6.0A/4.0A  
110b: 6.6A/4.4A  
111b: 7.2A/4.8A  
6:4  
M1_ILIM[2:0]  
101  
2:3  
1
RESERVED  
M1_FPWM  
00  
0
Write ‘00’  
BUCK Master 1 Forced PWM  
0: Turn off Forced PWM  
(Automatic skip mode operation under light load)  
1: Turn on Forced PWM mode  
BUCK Master 1 Falling Slew Rate Control  
0: Disable  
BUCK Master 1 operates in skip mode during the output voltage ramp-  
down (only if M1_FPWM = 0). In skip mode, negative current through  
the low-side FET is not allowed so that the output voltage falling slew  
rate is a function of the output capacitance and the external load under  
light load condition. If the load is heavy, the output voltage falling slew  
rate is limited to the ramp-down slew rate set by B_RD_SR[1:0]. Note  
that the internal feedback string always imposes a 2µA load on the  
output.  
0
M1_FSREN  
1
1: Enable  
BUCK Master 1 operates in Forced PWM mode during the output  
voltage ramp-down. In Forced PWM mode, BUCK Master 1 can sink  
current from the output capacitor to ensure that the output voltage  
decreases at the ramp-down slew rate set by B_RD_SR[1:0]. To  
ensure a smooth output voltage ramp-down, Forced PMW mode  
remains engaged for 50µs after the output voltage decreases to its  
target voltage.  
Maxim Integrated  
59  
www.maximintegrated.com  
MAX77812  
20A User-Configurable  
Quad-Phase Buck Converter  
M2_CFG BUCK Master 2 Configuration Register  
ADDRESS  
MODE  
TYPE: O  
RESET VALUE: 0xD1  
DESCRIPTION  
0x30  
R/W  
BIT  
NAME  
POR  
BUCK Master 2 Output Active Discharge  
7
M2_AD  
1
0: Disable  
1: Enable  
BUCK Master 2 PMOS Peak/NMOS Valley Current Limit Setting  
000b: 3.0A/2.0A  
001b: 3.6A/2.4A  
010b: 4.2A/2.8A  
011b: 4.8A/3.2A  
100b: 5.4A/3.6A  
101b: 6.0A/4.0A  
110b: 6.6A/4.4A  
111b: 7.2A/4.8A  
6:4  
M2_ILIM[2:0]  
101  
2:3  
1
RESERVED  
M2_FPWM  
00  
0
Write ‘00’  
BUCK Master 2 Forced PWM  
0: Turn off Forced PWM  
(Automatic skip mode operation under light load)  
1: Turn on Forced PWM mode  
BUCK Master 2 Falling Slew Rate Control  
0: Disable  
BUCK Master 2 operates in skip mode during the output voltage  
ramp-down (only if M2_FPWM = 0). In skip mode, negative current  
through the low-side FET is not allowed so that the output voltage  
falling slew rate is a function of the output capacitance and the  
external load under light load condition. If the load is heavy, the output  
voltage falling slew rate is limited to the ramp-down slew rate set by  
B_RD_SR[1:0]. Note that the internal feedback string always imposes  
a 2µA load on the output.  
0
M2_FSREN  
1
1: Enable  
BUCK Master 2 operates in Forced PWM mode during the output  
voltage ramp-down. In Forced PWM mode, BUCK Master 2 can sink  
current from the output capacitor to ensure that the output voltage  
decreases at the ramp-down slew rate set by B_RD_SR[1:0]. To  
ensure a smooth output voltage ramp-down, Forced PMW mode  
remains engaged for 50µs after the output voltage decreases to its  
target voltage.  
Maxim Integrated  
60  
www.maximintegrated.com  
MAX77812  
20A User-Configurable  
Quad-Phase Buck Converter  
M3_CFG BUCK Master 3 Configuration Register  
ADDRESS  
MODE  
TYPE: O  
RESET VALUE: 0xD1  
DESCRIPTION  
0x31  
R/W  
BIT  
NAME  
POR  
BUCK Master 3 Output Active Discharge  
7
M3_AD  
1
0: Disable  
1: Enable  
BUCK Master 3 PMOS Peak/NMOS Valley Current Limit Setting  
000b: 3.0A/2.0A  
001b: 3.6A/2.4A  
010b: 4.2A/2.8A  
011b: 4.8A/3.2A  
100b: 5.4A/3.6A  
101b: 6.0A/4.0A  
110b: 6.6A/4.4A  
111b: 7.2A/4.8A  
6:4  
M3_ILIM[2:0]  
101  
2:3  
1
RESERVED  
M3_FPWM  
00  
0
Write ‘00’  
BUCK Master 3 Forced PWM  
0: Turn off Forced PWM  
(Automatic skip mode operation under light load)  
1: Turn on Forced PWM mode  
BUCK Master 3 Falling Slew Rate Control  
0: Disable  
BUCK Master 3 operates in skip mode during the output voltage  
ramp-down (only if M3_FPWM = 0). In skip mode, negative current  
through the low-side FET is not allowed so that the output voltage  
falling slew rate is a function of the output capacitance and the  
external load under light load condition. If the load is heavy, the output  
voltage falling slew rate will be limited to the ramp-down slew rate  
set by B_RD_SR[1:0]. Note that the internal feedback string always  
imposes a 2µA load on the output.  
0
M3_FSREN  
1
1: Enable  
BUCK Master 3 operates in Forced PWM mode during the output  
voltage ramp-down. In Forced PWM mode, BUCK Master 3 can sink  
current from the output capacitor to ensure that the output voltage  
decreases at the ramp-down slew rate set by B_RD_SR[1:0]. To  
ensure a smooth output voltage ramp-down, Forced PMW mode  
remains engaged for 50µs after the output voltage decreases to its  
target voltage.  
Maxim Integrated  
61  
www.maximintegrated.com  
MAX77812  
20A User-Configurable  
Quad-Phase Buck Converter  
M4_CFG BUCK Master 4 Configuration Register  
ADDRESS  
MODE  
TYPE: O  
RESET VALUE: 0xD1  
DESCRIPTION  
0x32  
R/W  
BIT  
NAME  
POR  
BUCK Master 4 Output Active Discharge  
7
M4_AD  
1
0: Disable  
1: Enable  
BUCK Master 4 PMOS Peak/NMOS Valley Current Limit Setting  
000b: 3.0A/2.0A  
001b: 3.6A/2.4A  
010b: 4.2A/2.8A  
011b: 4.8A/3.2A  
100b: 5.4A/3.6A  
101b: 6.0A/4.0A  
110b: 6.6A/4.4A  
111b: 7.2A/4.8A  
6:4  
M4_ILIM[2:0]  
101  
2:3  
1
RESERVED  
M4_FPWM  
00  
0
Write ‘00’  
BUCK Master4 Forced PWM  
0: Turn off Forced PWM  
(Automatic skip mode operation under light load)  
1: Turn on Forced PWM mode  
BUCK Master 4 Falling Slew Rate Control  
0: Disable  
BUCK Master 4 operates in skip mode during the output voltage ramp-  
down (only if M4_FPWM = 0). In skip mode, negative current through  
the low-side FET is not allowed so that the output voltage falling slew  
rate is a function of the output capacitance and the external load under  
light load condition. If the load is heavy, the output voltage falling slew  
rate is limited to the ramp-down slew rate set by B_RD_SR[1:0]. Note  
that the internal feedback string always imposes a 2µA load on the  
output.  
0
M4_FSREN  
1
1: Enable  
BUCK Master 4 operates in Forced PWM mode during the output  
voltage ramp-down. In Forced PWM mode, BUCK Master 4 can sink  
current from the output capacitor to ensure that the output voltage  
decreases at the ramp-down slew rate set by B_RD_SR[1:0]. To  
ensure a smooth output voltage ramp-down, Forced PMW mode  
remains engaged for 50µs after the output voltage decreases to its  
target voltage.  
Maxim Integrated  
62  
www.maximintegrated.com  
MAX77812  
20A User-Configurable  
Quad-Phase Buck Converter  
GLB_CFG1 BUCK Global Configuration Register 1  
ADDRESS  
MODE  
TYPE: O  
RESET VALUE: 0x24  
DESCRIPTION  
0x33  
BIT  
7
R/W  
NAME  
POR  
RESERVED  
B_SD_SR[2:0]  
RESERVED  
0
Shutdown Slew Rate  
000b: 1.25mV/µs  
001b: 2.5mV/µs  
010b: 5mV/µs  
011b: 10mV/µs  
100b: 20mV/µs  
101b: 40mV/µs  
110b: 60mV/µs  
111b: 60mV/µs  
6:4  
010  
3
0
Soft Start Slew Rate  
000b: 1.25mV/µs  
001b: 2.5mV/µs  
010b: 5mV/µs  
0:2  
B_SS_SR[2:0]  
100  
011b: 10mV/µs  
100b: 20mV/µs  
101b: 40mV/µs  
110b: 60mV/µs  
111b: 60mV/µs  
Maxim Integrated  
63  
www.maximintegrated.com  
MAX77812  
20A User-Configurable  
Quad-Phase Buck Converter  
GLB_CFG2 BUCK Global Configuration Register 2  
ADDRESS  
MODE  
TYPE: O  
RESET VALUE: 0x24  
DESCRIPTION  
0x34  
BIT  
7
R/W  
NAME  
POR  
RESERVED  
B_RD_SR[2:0]  
RESERVED  
0
Ramp-Down Slew Rate  
000b: 1.25mV/µs  
001b: 2.5mV/µs  
010b: 5mV/µs  
011b: 10mV/µs  
100b: 20mV/µs  
101b: 40mV/µs  
110b: 60mV/µs  
111b: 60mV/µs  
6:4  
010  
3
0
Ramp-Up Slew Rate  
000b: 1.25mV/µs  
001b: 2.5mV/µs  
010b: 5mV/µs  
0:2  
B_RU_SR[2:0]  
100  
011b: 10mV/µs  
100b: 20mV/µs  
101b: 40mV/µs  
110b: 60mV/µs  
111b: 60mV/µs  
Maxim Integrated  
64  
www.maximintegrated.com  
MAX77812  
20A User-Configurable  
Quad-Phase Buck Converter  
GLB_CFG3 BUCK Global Configuration Register 3  
ADDRESS  
MODE  
TYPE: O  
RESET VALUE: 0x5F  
0x35  
R/W  
BIT  
7
NAME  
POR  
DESCRIPTION  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
0
1
0
1
1
1
6
5
4
3
2
Positive Enhanced Transient Response Control  
1
0
B_PETR_EN  
B_NETR_EN  
1
1
0: Disable  
1: Enable  
Negative Enhanced Transient Response Control  
0: Disable  
1: Enable  
0x36 – 0xFF: RESERVED  
PCB Layout Guidelines  
Careful circuit board layout is critical to low-power switch-  
ing losses and clean stable operation.  
For more details on PCB layout recommendations for the  
MAX77812, refer to Application Note 6819: MAX77812  
PCB Layout Guide.  
Maxim Integrated  
65  
www.maximintegrated.com  
MAX77812  
20A User-Configurable  
Quad-Phase Buck Converter  
Simplified Block Diagram  
SYS  
IN12  
V
SYS  
V
SYS  
1µF  
DGND  
AGND  
SBIAS,  
REF,  
UVLO,  
TSHDN  
10µF  
0.22µH  
0.22µH  
LX1  
PGND1  
MAX77812  
V
OUT1  
CE  
22µF  
VIO  
V
VIO  
VIO  
1.5kx2  
SNS1P  
SNS1N  
0.1µF  
OTPs  
IRQB  
SCL  
LX2  
PGND2  
22µF  
SDA/MOSI  
MISO  
SNS2P  
SNS2N  
CONSTANT  
ON- TIME  
MULTI- PHASE  
BUCK  
ON / OFF  
CONTROL  
AND  
IN34  
SCS  
V
SYS  
10µF  
2
I C / SPI  
I2C_ SPI_SEL  
EN  
INTERFACE  
0.22µH  
0.22µH  
LX3  
V
V
OUT2  
OUT3  
PGND3  
22µF  
22µF  
LPM  
SNS3P  
SNS3N  
WDTRSTB_IN  
GPI0  
GPI1  
LX4  
PGND4  
MULTIFUNCTION  
GPIs  
PH_CFG0  
PH_CFG1  
PH_CFG2  
SNS4P  
SNS4N  
V
SYS  
Maxim Integrated  
66  
www.maximintegrated.com  
MAX77812  
20A User-Configurable  
Quad-Phase Buck Converter  
Ordering Information  
DEFAULT OUTPUT VOLTAGE (V)  
STARTUP DELAY TIME (ms)  
2
I C SLAVE  
PART  
M2_STUP M3_STUP M4_STUP  
ADDRESS  
M1_VOUT M2_VOUT M3_VOUT M4_VOUT  
_DLY  
_DLY  
_DLY  
MAX77812EWB+T  
MAX77812AEWB+T  
MAX77812BEWB+T  
MAX77812CEWB+T  
MAX77812DEWB+T  
MAX77812FEWB+T  
0.650  
0.700  
1.120  
0.720  
0.720  
0.620  
0.650  
0.700  
1.120  
1.495  
1.200  
1.100  
0.600  
0.800  
0.920  
0.820  
0.900  
0.900  
0.600  
1.100  
0.950  
0.820  
0.750  
1.495  
0
0
0
5
3
0
0
0
0
1
6
0
0
2
0
3
9
0
0x60–0x69  
0x60–0x69  
0x60–0x69  
0x60–0x69  
0x60–0x69  
0x70–0x79  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
T = Tape and reel.  
Package Information  
For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a “+”,  
“#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing  
pertains to the package regardless of RoHS status.  
PACKAGE TYPE  
PACKAGE CODE  
OUTLINE NO.  
LAND PATTERN NO.  
Refer to  
Application Note 1891:  
Wafer-Level Packaging  
(WLP) and Its Applications  
64 WLP  
W643C3+1  
21-100087  
Maxim Integrated  
67  
www.maximintegrated.com  
 
MAX77812  
20A User-Configurable  
Quad-Phase Buck Converter  
Revision History  
REVISION REVISION  
PAGES  
CHANGED  
DESCRIPTION  
NUMBER  
DATE  
0
6/16  
Initial release  
Updated Applications section, updated Benefits and Features section, updated  
MIN/TYP/MAX values in the Electrical Characteristics section and changed  
inductor to 220nH, DCR = 16mΩ, added Cyntec information to Table 2,  
1–14, 29,  
32–36, 42, 43,  
49, 56, 60–66  
2
1
3/17  
added I C slave addresses for OTP = 1 to Table 5, updated Figures 6─9 and  
communication protocols description, updated GPI_FUNC, M1_CFG, M2_CFG,  
M3_CFG, M4_CFG, GLB_CFG1, GLB_CFG2 registers in the Register Map  
table, updated Typical Application Circuit  
1, 2, 4–6, 8, 11, 12,  
14, 15, 23, 25, 26,  
31, 33-38, 42, 43,  
46-48, 62–64  
Updated Benefits and Features section and Register Map table, fixed various  
typos  
2
3
4
6/17  
8/17  
1/18  
Updated title, Benefits and Features section, and Electrical Characteristics  
table, corrected label error to Output Voltage Error (%) in Typical Operating  
Characteristics, corrected errors to register name and removed error statement  
in HS mode in Detailed Description section, removed inductor from Table 2,  
corrected error in POR bits in the GPI_PD_CTRL GPI Pulldown Resistor Control  
Register table  
1, 10, 14, 16, 26,  
29, 30, 38, 51  
Updated Applications and Benefits and Features sections, added Simplified  
Block Diagram, added LX1/2/3/4 pulsed ratings, updated Electrical  
Characteristics tables, updated Detailed Description section, added ALPS  
220nH, removed process information  
1–4, 11, 15,  
26–29, 30, 31, 38,  
67  
Updated General Description, Benefits and Features, and Applications sections,  
renamed Typical Application Circuit and moved to page 1, updated Absolute  
Maximum Ratings for LXx RMS current, updated Electrical Characteristics  
tables, updated Typical Operating Characteristics global conditions and TOCs,  
updated Detailed Description sections, Table 1, Figure 2, Table 5, corrected  
errors in Registers information, renamed Simplified Block Diagram and updated  
to 2+1+1 configuration, updated Ordering Information table  
1–3, 14, 16, 17,  
26, 28–30, 32, 34,  
35, 47–50, 59–62,  
66, 67  
5
5/18  
Corrected typo in Electrical Characteristics table and other sections, updated  
Ordering Information table  
1, 13, 22, 24–43,  
53, 63, 65  
6
7
7/18  
6/19  
Updated Table 5 and Ordering Information table  
32, 65  
14-15, 28-29, 63  
14–22  
Updated Typical Operating Characteristics global conditions and TOCs,  
corrected label error to Output Voltage Error (%) in Typical Operating  
Characteristics, updated Output Voltage Setting section, added Enhanced  
Transient Response section, and added PCB Layout Guidelines section  
8
9
8/19  
9/19  
Updated Typical Operating Characteristics section  
Maxim Integrated  
68  
www.maximintegrated.com  
MAX77812  
20A User-Configurable  
Quad-Phase Buck Converter  
Revision History (continued)  
REVISION REVISION  
PAGES  
CHANGED  
DESCRIPTION  
NUMBER  
DATE  
Updated Startup and Shutdown Sequence section, Phase/Output Configurations  
section, Multifunction GPIs General Description section, Register Map table,  
M1_VOUT_D, M2_VOUT_D, M3_VOUT_D, M4_VOUT_D, M1_VOUT_S,  
M2_VOUT_S, M3_VOUT_S, and M4_VOUT_S register descriptions, and GLB_  
CFG3 BUCK Global Configuration Register 3 table; added Inductor Current Limit  
section and Unused Outputs section  
27–28, 31–32, 45,  
56–57, 65  
10  
4/20  
Updated Absolute Maximum Ratings section, added Recommended Operating  
Conditions table, and updated global conditions in Electrical Characteristics  
tables  
11  
12/20  
1–13  
For pricing, delivery, and ordering information, please visit Maxim Integrated’s online storefront at https://www.maximintegrated.com/en/storefront/storefront.html.  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses  
are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits)  
shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
©
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  
2020 Maxim Integrated Products, Inc.  
69  

相关型号:

MAX77812CEWB+T

20A User-Configurable Quad-Phase Buck Converter
MAXIM

MAX77812DEWB+T

20A User-Configurable Quad-Phase Buck Converter
MAXIM

MAX77812EWB+

Switching Regulator,
MAXIM

MAX77812EWB+T

20A User-Configurable Quad-Phase Buck Converter
MAXIM

MAX77812FEWB+T

20A User-Configurable Quad-Phase Buck Converter
MAXIM

MAX77812_V01

20A User-Configurable Quad-Phase Buck Converter
MAXIM

MAX77813

5.5V Input, 2A, High-Efficiency Buck-Boost Converter
MAXIM

MAX77813EVKIT

Accessible Test Points for EN, POK, and ILIM
MAXIM

MAX77813EWP+T

5.5V Input, 2A, High-Efficiency Buck-Boost Converter
MAXIM

MAX77813EWP33+T

5.5V Input, 2A, High-Efficiency Buck-Boost Converter
MAXIM

MAX77816AEWP+

Switching Regulator,
MAXIM

MAX77818EWZ+

Power Supply Management Circuit, Adjustable, 2 Channel, BICMOS, PBGA72, WLP-72
MAXIM