MAX77813 [MAXIM]

5.5V Input, 2A, High-Efficiency Buck-Boost Converter;
MAX77813
型号: MAX77813
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

5.5V Input, 2A, High-Efficiency Buck-Boost Converter

文件: 总30页 (文件大小:1169K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Click here for production status of specific part numbers.  
MAX77813  
5.5V Input, 2A, High-Efficiency  
Buck-Boost Converter  
General Description  
Features and Benefits  
The MAX77813 is a high-efficiency step-up/step-down  
(buck-boost) converter targeted for single-cell Li+/Li-ion  
battery powered applications. The device maintains a  
regulated output voltage from 2.6V to 5.14V across an  
input voltage range of 2.3V to 5.5V. The device supports  
up to 2A of output current in boost mode and up to 3A in  
buck mode.  
V Range: 2.30V to 5.5V  
IN  
V  
Range: 2.60V to 5.14V  
OUT  
2
(I C Programmable in 20mV Steps)  
Up to 2A Output Current in Boost Mode  
(V = 3.0V, V  
= 3.4V, ILIM = High)  
IN  
OUT  
Up to 3A Output Current in Buck Mode (ILIM = High)  
Up to 97% Peak Efficiency  
The device seamlessly transitions between buck and  
boost modes. A unique control algorithm allows high-  
efficiency, outstanding load, and line transient response.  
SKIP Mode for Optimal Light Load Efficiency  
55µA (Typ) Low Quiescent Current  
Dedicated enable and power-OK pins allow simple hard-  
2
3.4MHz High Speed I C Serial Interface  
2
ware control. An I C serial interface is optionally used for  
Input Current Limit Selection Pin  
Power-OK Output  
dynamic voltage scaling, system power optimization, and  
fault read-back. The device supports two inductor current  
limit options selected by the ILIM pin.  
2.5MHz Switching Frequency  
The MAX77813 is available in a 20-bump, 1.83mm x  
2.13mm wafer-level package (WLP).  
Protection Features  
• Soft-Start  
• Thermal Shutdown  
• Overvoltage Protection  
• Overcurrent Protection  
Applications  
Single-Cell Li+/Li-ion Battery Powered Devices  
Handheld Scanners, Mobile Payment Terminals,  
Security Cameras  
1.827mm x 2.127mm, 20-Bump WLP  
AR/VR Headsets  
Ordering Information appears at end of data sheet.  
Typical Application Circuit  
1μH  
BOOST TO BUCK  
LINE TRANSIENT RESPONSE  
LX1  
MAX77813  
LX2  
IOUT = 1.5A  
DC INPUT  
2.3V TO 5.5V  
IN  
V
OUT  
V
OUT  
VOUT = 3.3V  
3.4V  
2.6V TO 5.14V  
2A (BOOST MODE)  
3A (BUCK MODE)  
10μF  
SYS  
47μF  
2.9V  
OUTS  
PGND  
1μF  
500mV/div  
20mV/div  
V
IN  
BOOST  
MODE  
BOOST  
MODE  
BUCK MODE  
V
IO  
SERIAL  
HOST  
SDA  
SCL  
EN  
V
OUT  
POWER-OK  
POK  
ILIM  
CURRENT LIMIT  
SELECT  
ENABLE  
100µs/div  
HIGH-EFFICIENCY BUCK-BOOST CONVERTER  
2
WITH OPTIONAL I C CONTROL IN TINY 20-BUMP WLP  
19-8238; Rev 2; 3/19  
MAX77813  
5.5V Input, 2A, High-Efficiency  
Buck-Boost Converter  
Absolute Maximum Ratings  
SYS, V to GND .................................................-0.3V to +6.0V  
LX2 to PGND..........................................-0.3V to (V  
+ 0.3V)  
IO  
OUT  
IN, OUT to PGND.................................................-0.3V to +6.0V  
PGND to GND......................................................-0.3V to +0.3V  
LX1/LX2 Continuous RMS Current (Note 1)........................3.2A  
Operating Junction Temperature Range .......... -40°C to +125°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range............................ -65°C to +150°C  
Soldering Temperature (Reflow)......................................+260°C  
SCL, SDA to GND..................................... -0.3V to (V + 0.3V)  
IO  
EN, ILIM, POK to GND........................... -0.3V to (V  
FB to GND..............................................-0.3V to (V  
+ 0.3V)  
+ 0.3V)  
SYS  
OUT  
LX1 to PGND..............................................-0.3V to (V + 0.3V)  
IN  
Note 1: LX1 and LX2 nodes have internal clamp diodes to PGNDBB and INBB. Applications that forward bias to these diodes should  
ensure that the total power loss does not exceed the power dissipation limit of the IC package.  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these  
or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect  
device reliability.  
Package Information  
WLP  
Package Code  
W201F2+1  
Outline Number  
21-0771  
Land Pattern Number  
Refer to Application Note 1891  
Thermal Resistance, Four-Layer Board:  
Junction to Ambient Thermal Resistance (θ  
)
55.49°C/W  
JA  
For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a “+”,  
“#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing  
pertains to the package regardless of RoHS status.  
Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board.  
For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.  
Maxim Integrated  
2  
www.maximintegrated.com  
MAX77813  
5.5V Input, 2A, High-Efficiency  
Buck-Boost Converter  
Buck-Boost Electrical Characteristics  
(V  
= V = +3.8V, V  
= V  
= +3.3V, T = -40°C to +125°C, typical values are at T ≈ T = +25°C, unless otherwise noted.)  
SYS  
IN  
OUTS  
OUT J A J  
(Note 4)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
GENERAL  
Input Voltage Range  
V
2.30  
5.50  
V
IN  
I
EN = low, T = +25°C  
0.1  
1
SHDN_25C  
J
Shutdown Supply Current  
Input Supply Current  
µA  
I
EN = low, T = +125°C  
J
SHDN_125C  
SKIP mode, no switching,  
T = -40° to +85°C  
J
I
55  
70  
µA  
Q_SKIP  
I
FPWM mode, no load  
6
mA  
Ω
Q_PWM  
Active Discharge Resistance  
Thermal Shutdown Threshold  
H-BRIDGE  
R
100  
+165  
DISCHG  
T
Rising, +20°C hysteresis  
°C  
SHDN  
2
Output Voltage Range  
V
I C programmable (20mV Step)  
2.60  
-1.0  
5.14  
+1.0  
V
OUT  
FPWM mode, VOUT[6:0] = 0x28, no load,  
V
OUT_ACC1  
T = +25°C  
J
Output Voltage Accuracy  
%
SKIP mode, VOUT[6:0] = 0x28,  
no load, T = +25°C  
V
-1.0  
+4.5  
OUT_ACC2  
J
Line Regulation  
Load Regulation  
V
= 2.63V to 5.5V  
0.200  
0.125  
%/V  
%/A  
IN  
(Note 5)  
I
= 1.0A, V changes from 3.4V to  
OUT  
IN  
V
V
OS1  
US1  
Line Transient Response  
Load Transient Response  
2.9V in 25µs (20mV/µs),  
L = 1µH, C = 47µF (Note 5)  
50  
50  
mV  
mV  
OUT_NOM  
V
= 3.4V, I  
changes from 10mA to  
OUT  
IN  
V
V
OS2  
US2  
1.5A in 15µs, L = 1µH, C  
(Note 5)  
= 47µF  
OUT_NOM  
BB_RU_SR = 0  
BB_RU_SR = 1  
BB_RD_SR = 0  
BB_RD_SR = 1  
20  
40  
5
Output Voltage Ramp-Up  
Slew Rate  
mV/µs  
mV/µs  
Output Voltage Ramp-Down  
Slew Rate  
10  
95  
97  
4.50  
Typical Condition Efficiency  
η
I
= 100mA (Note 5)  
OUT  
%
%
TYP  
Peak Efficiency  
η
(Note 5)  
PK  
ILIM = high  
ILIM = low  
3.70  
1.2  
5.70  
2.65  
LX1/2 Current Limit  
I
A
LIM_LX  
1.80  
40  
High-Side PMOS ON  
Resistance  
R
R
I
I
= 100mA per switch  
= 100mA per switch  
mΩ  
DSON(PMOS)  
LX  
LX  
Low-Side NMOS ON  
Resistance  
55  
mΩ  
DSON(NMOS)  
Switching Frequency  
f
PWM mode, T = +25°C  
2.25  
2.50  
2.75  
MHz  
SW  
J
Maxim Integrated  
3  
www.maximintegrated.com  
MAX77813  
5.5V Input, 2A, High-Efficiency  
Buck-Boost Converter  
Buck-Boost Electrical Characteristics (continued)  
(V  
= V = +3.8V, V  
= V  
= +3.3V, T = -40°C to +125°C, typical values are at T ≈ T = +25°C, unless otherwise noted.)  
SYS  
IN  
OUTS  
OUT J A J  
(Note 4)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
From EN asserting to LX switching with  
bias ON  
Turn-On Delay Time  
Soft-Start Timer  
t
100  
µs  
ON_DLY  
I
I
= 10mA, ILIM = high  
= 10mA, ILIM = low  
120  
800  
OUT  
OUT  
t
µs  
SS  
Minimum Effective Output  
Capacitance  
C
0A < I  
< 2000mA  
16  
0.1  
0.2  
µF  
EFF(MIN)  
OUT  
V
V
= 0V or 5.5V, V  
= 5.5V,  
OUT  
LX1/2  
SYS  
I
1
LK_25C  
= V = 5.5V, T = +25°C  
IN  
J
LX1, LX2 Leakage Current  
µA  
V
V
= 0V or 5.5V, V  
= 5.5V,  
LX1/2  
SYS  
OUT  
I
LK_125C  
= V = 5.5V, T = +125°C  
IN  
J
POWER-OK COMPARATOR  
Rising threshold  
Falling threshold  
80  
75  
Output POK Trip Level  
%
V
V
UNDERVOLTAGE LOCKOUT  
SYS  
V
V
V
rising  
falling  
2.375  
2.50  
2.05  
2.625  
0.4  
UVLO_R  
SYS  
V
Undervoltage Lockout  
SYS  
Threshold  
V
UVLO_F  
SYS  
LOGIC AND CONTROL INPUTS  
Input Low Level  
V
EN, ILIM, V  
EN, ILIM, V  
= 3.8V, T = +125°C  
V
V
V
IL  
SYS  
J
Input High Level  
V
= 3.8V, T = -40°C  
1.2  
-1  
IH  
SYS  
J
POK Output Low Voltage  
V
I
= 1mA  
SINK  
0.4  
+1  
OL  
I
T = +25°C  
J
OZH_25C  
POK Output High Leakage  
µA  
I
T = +125°C  
0.1  
OZH_125C  
J
INTERNAL PULLDOWN RESISTANCE  
EN  
R
Pulldown resistance to GND  
400  
800  
1600  
kΩ  
PD  
Note 2: Limits are 100% production tested at T = +25°C. The device is tested under pulsed load conditions such that T ≈ T  
A.  
J
J
Limits over the operating temperature range are guaranteed through correlation using statistical quality control methods.  
Note 3: Guaranteed by design. Not production tested.  
Maxim Integrated  
4  
www.maximintegrated.com  
MAX77813  
5.5V Input, 2A, High-Efficiency  
Buck-Boost Converter  
2
I C Electrical Characteristics  
(V  
= 3.8V, V  
= 1.8V, T = -40°C to +125°C, typical values are at T ≈ T = +25°C, unless otherwise noted.) (Note 4)  
SYS  
VIO J A J  
PARAMETER  
POWER SUPPLY  
Voltage Range  
SYMBOL  
CONDITIONS  
MIN  
1.7  
TYP  
MAX  
UNITS  
V
V
3.6  
V
IO  
VIO  
SDA AND SCL I/O STAGES  
0.7 x  
SCL, SDA Input High Voltage  
V
V
V
V
IH  
V
IO  
0.3 x  
SCL, SDA Input Low Voltage  
SCL, SDA Input Hysteresis  
V
IL  
V
IO  
0.05 x  
V
HYS  
V
IO  
SCL, SDA Input Current  
SDA Output Low Voltage  
I
V
= 3.8V  
-10  
+10  
0.4  
µA  
V
I
VIO  
V
I
= 20mA  
OL  
SINK  
SCL, SDA Input Capacitance  
C
10  
pF  
ns  
I
Output Fall Time from V  
to  
VIO  
t
120  
OF  
0.3 x V  
VIO  
2
I C-COMPATIBLE INTERFACE TIMING (STANDARD, FAST, AND FAST-MODE PLUS) (Note 5)  
Clock Frequency  
f
1000  
kHz  
µs  
SCL  
Hold Time (REPEATED)  
START Condition  
t
0.26  
HD;STA  
SCL Low Period  
SCL High Period  
t
0.5  
µs  
µs  
LOW  
t
0.26  
HIGH  
Setup Time REPEATED  
START Condition  
t
0.26  
µs  
SU_STA  
DATA Hold Time  
DATA Setup Time  
t
0
µs  
ns  
HD_DAT  
t
50  
SU_DAT  
Setup Time for STOP  
Condition  
t
0.26  
0.5  
µs  
µs  
pF  
SU_STO  
Bus-Free Time Between  
STOP and START  
t
BUF  
Capacitive Load for Each  
Bus Line  
C
550  
B
Maximum Pulse Width  
of Spikes that must be  
suppressed by the input filter  
50  
ns  
Maxim Integrated  
5  
www.maximintegrated.com  
MAX77813  
5.5V Input, 2A, High-Efficiency  
Buck-Boost Converter  
2
I C Electrical Characteristics (continued)  
(V  
= 3.8V, V  
= 1.8V, T = -40°C to +125°C, typical values are at T ≈ T = +25°C, unless otherwise noted.) (Note 4)  
SYS  
VIO J A J  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
2
I C-COMPATIBLE INTERFACE TIMING (HIGH-SPEED MODE, C = 100pF) (Note 5)  
B
Clock Frequency  
f
3.4  
MHz  
ns  
SCL  
Setup Time REPEATED  
START Condition  
t
160  
160  
SU_STA  
Hold Time (REPEATED)  
START Condition  
t
ns  
HD_STA  
CLK Low Period  
t
160  
60  
ns  
ns  
ns  
ns  
ns  
LOW  
CLK High Period  
DATA Setup Time  
DATA Hold Time  
t
HIGH  
t
10  
SU_DAT  
HD_DAT  
t
35  
SCL Rise Time (Note 3)  
t
T = +25°C  
10  
10  
10  
40  
80  
RCL  
J
Rise Time of SCL Signal after  
REPEATED START Condition  
and after Acknowledge Bit  
t
T = +25°C  
ns  
RCL1  
J
SCL Fall Time  
SDA Rise Time  
SDA Fall Time  
t
T = +25°C  
40  
80  
80  
ns  
ns  
ns  
FCL  
J
t
T = +25°C  
J
RDA  
t
T = +25°C  
J
FDA  
Setup Time for STOP  
Condition  
t
160  
ns  
SU_STO  
Bus Capacitance  
C
100  
1.7  
pF  
B
Maximum Pulse Width  
of Spikes that must be  
suppressed by the input filter  
10  
ns  
2
I C-COMPATIBLE INTERFACE TIMING (HIGH-SPEED MODE, C = 400pF) (Note 5)  
B
Clock Frequency  
f
MHz  
ns  
SCL  
Setup Time REPEATED  
START Condition  
t
160  
160  
SU_STA  
Hold Time (REPEATED)  
START Condition  
t
ns  
HD_STA  
SCL Low Period  
SCL High Period  
DATA Setup Time  
DATA Hold Time  
t
320  
120  
10  
ns  
ns  
ns  
ns  
LOW  
t
HIGH  
t
SU_DAT  
t
75  
HD_DAT  
Maxim Integrated  
6  
www.maximintegrated.com  
MAX77813  
5.5V Input, 2A, High-Efficiency  
Buck-Boost Converter  
2
I C Electrical Characteristics (continued)  
(V  
= 3.8V, V  
= 1.8V, T = -40°C to +125°C, typical values are at T ≈ T = +25°C, unless otherwise noted.) (Note 4)  
SYS  
VIO J A J  
PARAMETER  
SCL Rise Time  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
t
T = +25°C  
20  
80  
ns  
RCL  
J
Rise Time of SCL Signal after  
REPEATED START Condition  
and after Acknowledge Bit  
t
T = +25°C  
20  
20  
160  
ns  
RCL1  
J
SCL Fall Time  
SDA Rise Time  
SDA Fall Time  
t
T = +25°C  
80  
ns  
ns  
ns  
FCL  
J
t
T = +25°C  
160  
160  
RDA  
J
t
T = +25°C  
J
FDA  
Setup Time for STOP  
Condition  
t
160  
ns  
SU_STO  
Bus Capacitance  
C
400  
pF  
B
Maximum Pulse Width  
of Spikes that Must be  
t
10  
ns  
SP  
Suppressed by the Input Filter  
Note 4: Limits are 100% production tested at T = +25°C. The device is tested under pulsed load conditions such that T ≈ T .  
J
J
A
Limits over the operating temperature range are guaranteed through correlation using statistical quality control methods.  
Note 5: Guaranteed by design. Not production tested.  
Maxim Integrated  
7  
www.maximintegrated.com  
MAX77813  
5.5V Input, 2A, High-Efficiency  
Buck-Boost Converter  
Typical Operating Characteristics  
(V  
= 3.8V, V  
= 3.3V, I  
= 0A, FPWM = 0, T = +25°C, unless otherwise noted.)  
SYS  
OUT  
OUT  
A
QUIESCENT CURRENT vs.  
SUPPLY VOLTAGE  
SHUTDOWN CURRENT vs.  
SUPPLY VOLTAGE  
EFFICIENCY vs. LOAD  
2.8V OUTPUT  
toc01  
toc02  
toc03  
70  
65  
60  
55  
50  
45  
40  
35  
30  
2.0  
1.5  
1.0  
0.5  
0.0  
-0.5  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 3V  
TA = +85°C  
VIN = 3.8V  
VIN = 4.5V  
VOUT = 2.8V  
VOUT = 3.3V  
VOUT = 5V  
TA = +25°C  
TA = -40°C  
VIN = 3.8V (FPWM = 1)  
2
3
4
5
6
2
3
4
5
6
0.001  
0.01  
0.1  
LOAD (A)  
1
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
EFFICIENCY vs. LOAD  
3.3V OUTPUT  
EFFICIENCY vs. LOAD  
5V OUTPUT  
LOAD REGULATION  
2.8V OUTPUT  
toc04  
toc05  
toc06  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
2.85  
2.84  
2.83  
2.82  
2.81  
2.80  
2.79  
2.78  
2.77  
VIN = 3V  
VIN = 3V  
VIN = 3.8V  
VIN = 4.5V  
VIN = 3.3V  
VIN = 3.8V  
VIN = 4.5V  
VIN = 3V  
VIN = 3.8V  
VIN = 4.5V  
VIN = 3.8V (FPWM = 1)  
VIN = 3.8V (FPWM = 1)  
0.001  
0.01  
0.1  
LOAD (A)  
1
0.001  
0.01  
0.1  
LOAD (A)  
1
0.0  
0.5  
1.0  
1.5  
2.0  
LOAD (A)  
LOAD REGULATION  
3.3V OUTPUT  
LOAD REGULATION  
5V OUTPUT  
LINE REGULATION  
2.8V OUTPUT  
toc07  
toc08  
toc09  
3.39  
5.16  
2.80  
2.79  
2.78  
2.77  
2.76  
2.75  
2.74  
3.38  
3.37  
3.36  
3.35  
3.34  
3.33  
3.32  
3.31  
3.30  
3.29  
5.14  
5.12  
5.10  
5.08  
5.06  
5.04  
5.02  
5.00  
4.98  
4.96  
IOUT = 500mA  
IOUT = 1A  
IOUT = 2A  
VIN = 3V  
VIN = 3.8V  
VIN = 4.5V  
VIN = 3V  
VIN = 3.3V  
VIN = 3.8V  
VIN = 4.5V  
0.0  
0.5  
1.0  
1.5  
2.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.5  
4.5  
5.5  
LOAD (A)  
LOAD (A)  
SUPPLY VOLTAGE (V)  
Maxim Integrated  
8
www.maximintegrated.com  
MAX77813  
5.5V Input, 2A, High-Efficiency  
Buck-Boost Converter  
Typical Operating Characteristics (continued)  
(V  
= 3.8V, V  
= 3.3V, I  
= 0A, FPWM = 0, T = +25°C, unless otherwise noted.)  
SYS  
OUT  
OUT A  
LINE REGULATION  
3.3V OUTPUT  
LINE REGULATION  
5V OUTPUT  
toc10  
toc11  
3.32  
3.31  
3.30  
3.29  
3.28  
3.27  
3.26  
5.04  
5.02  
5.00  
4.98  
4.96  
4.94  
4.92  
IOUT = 500mA  
IOUT = 1A  
IOUT = 2A  
IOUT = 500mA  
IOUT = 1A  
IOUT = 2A  
2.5  
3.5  
4.5  
5.5  
2.5  
3.5  
4.5  
5.5  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
STARTUP WAVEFORM  
3.3V OUTPUT  
MAXIMUM OUTPUT CURRENT vs.  
SUPPLY VOLTAGE  
toc12  
toc13  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
VOUT = 2.8V  
VOUT = 3.3V  
2V/div  
2V/div  
VEN  
EN = 1  
VOUT  
VOUT = 5V  
200mV/div  
2A/div  
VLX  
IIN  
ILIM = HIGH  
VIN = 3.8V  
2
3
4
5
6
40µs/div  
SUPPLY VOLTAGE (V)  
LOAD TRANSIENT RESPONSE  
2.8V OUTPUT  
LOAD TRANSIENT RESPONSE  
3.3V OUTPUT  
toc14  
toc15  
1A  
1A  
500mA/div  
100mV/div  
500mA/div  
100mV/div  
IOUT  
IOUT  
10mA  
10mA  
VOUT  
VOUT  
SLEW RATE = 0.99A/15µs  
100µs/div  
SLEW RATE = 0.99A/15µs  
100µs/div  
Maxim Integrated  
9  
www.maximintegrated.com  
MAX77813  
5.5V Input, 2A, High-Efficiency  
Buck-Boost Converter  
Typical Operating Characteristics (continued)  
(V  
= 3.8V, V  
= 3.3V, I  
= 0A, FPWM = 0, T = +25°C, unless otherwise noted.)  
SYS  
OUT  
OUT  
A
LOAD TRANSIENT RESPONSE  
5V OUTPUT  
LINE TRANSIENT RESPONSE  
2.8V OUTPUT  
toc16  
toc17  
toc19  
toc21  
IOUT = 1.5A  
1A  
3.4V  
500mA/div  
100mV/div  
IOUT  
2.9V  
10mA  
500mV/div  
20mV/div  
VIN  
VOUT  
VOUT  
SLEW RATE = 20mV/µs  
100µs/div  
SLEW RATE = 0.99A/15µs  
100µs/div  
LINE TRANSIENT RESPONSE  
5V OUTPUT  
BOOST TO BUCK  
LINE TRANSIENT RESPONSE  
toc18  
IOUT = 1.5A  
IOUT = 1.5A  
VOUT = 3.3V  
2.9V  
3.9V  
3.4V  
3.4V  
500mV/div  
20mV/div  
500mV/div  
20mV/div  
VIN  
VIN  
VOUT  
VOUT  
SLEW RATE = 20mV/µs  
100µs/div  
SLEW RATE = 20mV/µs  
100µs/div  
SWITCHING WAVEFORM  
3.3V OUTPUT  
OUTPUT RIPPLE IN SKIP MODE  
3.3V OUTPUT (IOUT = 100mA)  
toc20  
IOUT = 1A  
IOUT = 100mA  
1V/div  
VLX  
20mV/div  
VOUT  
FSW = 2.5MHz  
100µs/div  
4µs/div  
Maxim Integrated  
10  
www.maximintegrated.com  
MAX77813  
5.5V Input, 2A, High-Efficiency  
Buck-Boost Converter  
Typical Operating Characteristics (continued)  
(V  
= 3.8V, V  
= 3.3V, I  
= 0A, FPWM = 0, T = +25°C, unless otherwise noted.)  
SYS  
OUT  
OUT  
A
OUTPUT RIPPLE IN PWM  
3.3V OUTPUT (IOUT = 1A)  
SHORT-CIRCUIT HICCUP AND RECOVERY  
3.3V OUTPUT (ILIM = LOW)  
toc22  
toc23  
IOUT = 1A  
SHORT APPLIED  
VOUT  
2V/div  
RECOVERY/  
SHORT REMOVED  
10mV/div  
VOUT  
HICCUP/RETRY  
ILX  
1A/div  
20µs/div  
20ms/div  
SHORT-CIRCUIT AND RECOVERY  
3.3V OUTPUT (ILIM = HIGH)  
toc24  
SHORT APPLIED  
VOUT  
2V/div  
RECOVERY/  
SHORT REMOVED  
HICCUP/RETRY  
ILX  
2A/div  
20ms/div  
Maxim Integrated  
11  
www.maximintegrated.com  
MAX77813  
5.5V Input, 2A, High-Efficiency  
Buck-Boost Converter  
Bump Configuration  
TOP VIEW  
(BUMP SIDE DOWN)  
1
2
3
4
5
+
A
B
ILIM  
POK  
LX2  
LX2  
GND  
V
SDA  
SCL  
SYS  
OUTS  
OUT  
GND  
GND  
EN  
LX1  
LX1  
VIO  
IN  
C
D
OUT  
GND  
IN  
20 WLP  
(2.13mm x 1.83mm, 0.4mm PITCH)  
Bump Description  
PIN  
NAME  
FUNCTION  
System (Battery) Voltage Input. Bypass to GND with a 1µF capacitor.  
Current Limit Selection Input. Connect to GND to set I to 1.8A. Connect to V  
A1  
V
SYS  
to set  
VIO  
LIM_BB  
A2  
A3, B3  
A4  
ILIM  
GND  
SDA  
I
to 4.5A. Do not leave this pin unconnected.  
LIM_BB  
Ground. Connect to PGND on the PCB. See the PCB Layout Guidelines.  
2
I C Serial Interface Data. This pin requires a pullup resistor (1.5k to 2.2k) to V  
.
IO  
Connect to GND if not used.  
2
I C Serial Interface Clock. This pin requires a pullup resistor (1.5k to 2.2k) to V  
Connect to GND if not used.  
.
IO  
A5  
SCL  
B1  
B2  
OUTS  
POK  
EN  
Output sense.  
Open-Drain Power-OK Output. Asserts high (high-Z) when buck-boost output reaches 80% of target.  
B4  
Active-High Enable Input. This pin has an 800kΩ internal pulldown to GND.  
2
B5  
VIO  
I C Supply Voltage Input. Bypass to GND with a 0.1µF capacitor. Connect to GND if not used.  
C1, D1  
C2, D2  
C3, D3  
C4, D4  
C5, D5  
OUT  
LX2  
Output. Bypass to PGND with a 10V 47µF ceramic capacitor.  
Switching Node 2  
PGND  
LX1  
Power Ground. Connect to GND on the PCB. See the PCB Layout Guidelines.  
Switching Node1  
IN  
Input. Bypass to PGND with a 10V 10µF capacitor.  
Maxim Integrated  
12  
www.maximintegrated.com  
MAX77813  
5.5V Input, 2A, High-Efficiency  
Buck-Boost Converter  
1µH  
LX1  
LX2  
IN  
HS1  
HS2  
OUT  
10µF  
CS  
CS  
47µF  
LS1  
LS2  
DRIVER  
DRIVER  
PGND  
OUTS  
MAX77813  
CONTROL LOGIC  
ETR  
OSC  
PROT.  
CF  
R1  
R2  
COMP.  
REF  
SLOPE COMP.  
PSM  
REGISTER  
CONTROL  
Figure 1. Simplified Block Diagram  
Maxim Integrated  
13  
www.maximintegrated.com  
MAX77813  
5.5V Input, 2A, High-Efficiency  
Buck-Boost Converter  
The H-bridge topology has three switching phases. See  
Figure 2 for details.  
Detailed Description  
The MAX77813 is a synchronous step-up/down (buck-  
boost) DC-DC converter with integrated switches. The  
buck-boost operates on a supply voltage between 2.3V  
● Φ1 Switch period (Phase 1: HS1 = ON, LS2 = ON)  
stores energy in the inductor. Inductor current ramps  
up at a rate proportional to the input voltage divided by  
2
and 5.5V. Output voltage is configurable through I C from  
inductance: V / L.  
2.60V to 5.14V in 20mV steps. Factory-default startup  
voltage options of 3.3V and 3.4V are available (see the  
Ordering Information table). The ILIM pin sets the buck-  
boost switch current capacity.  
IN  
● Φ2 Switch period (Phase 2: HS1 = ON, HS2 = ON)  
ramps inductor current up or down depending on the  
differential voltage across the inductor: (V - V  
IN  
OUT) / L.  
Strap ILIM high to set 4.5A (typ) switch current. This  
configuration supports up to 2A out in boost mode  
and up to 3A out in buck mode.  
● Φ3 Switch period (Phase 3: LS1 = ON, HS2 = ON)  
ramps inductor current down at a rate proportional to  
the output voltage divided by inductance: (-V  
/ L).  
OUT  
Strap ILIM low to set 1.8A (typ) switch current. This  
configuration supports up to 650mA in boost mode  
and up to 800mA in buck mode.  
Boost operation (V < V  
) utilizes phase 1 and phase  
IN  
OUT  
2 within a single clock period. See the representation of  
inductor current waveform for boost mode operation in  
Figure 2.  
Buck-Boost Control Scheme  
Buck operation (V > V  
) utilizes phase 2 and phase  
OUT  
IN  
The buck-boost converter operates using a 2.5MHz fixed-  
frequency pulse-width modulated (PWM) control scheme  
with current-mode compensation. The buck-boost utilizes  
an H-bridge topology using a single inductor and output  
capacitor.  
3 within a single clock period. See the representation of  
inductor current waveform for buck mode operation in  
Figure 2.  
BOOST OPERATION  
BUCK-BOOST H-BRIDGE  
TOPOLOGY  
Ф2  
Ф2  
IN  
OUT  
Ф3  
Ф3  
TSW  
TSW  
Ф2  
HS1  
HS2  
Charge/Discharge L  
CLK  
CLK  
CLK  
BUCK OPERATION  
L
Ф1  
Ф2  
Ф1  
Ф2  
Ф3  
Discharge L  
Ф1  
Charge L  
LS1  
LS2  
TSW  
TSW  
CLK  
CLK  
CLK  
Figure 2. Buck-Boost Block Diagram  
Maxim Integrated  
14  
www.maximintegrated.com  
 
MAX77813  
5.5V Input, 2A, High-Efficiency  
Buck-Boost Converter  
Enable Control (EN)  
Raise the EN pin voltage above V threshold to enable  
Peak Inductor Current  
Limit Selection (ILIM)  
IH  
the buck-boost output. Lower EN below V threshold to  
Select the buck-boost’s cycle-by-cycle inductor current  
IL  
disable. EN has an internal 800kΩ (typ) pulldown resistor  
to GND. Clear the EN bit using the I C interface to disable  
limit (I  
to set I  
) with the ILIM pin. Connect ILIM to V  
to 4.5A (typ). Connect ILIM to GND to set  
LIM_LX  
LIM_LX VIO  
2
the internal pulldown (making EN high-impedance). The  
EN_PD bit reset value is 1 (pulldown enabled). Therefore,  
the internal pulldown resistor is present whenever the  
MAX77813 starts up.  
I
to 1.8A (typ).  
LIM_LX  
The device automatically changes I  
following events:  
during the  
LIM_LX  
Soft-start (I  
is temporarily reduced.). See Soft-  
LIM_LX  
Start for details.  
After the initial buck-boost startup, clear the EN bit  
2
through I C to disable the buck-boost output. Table 1  
Burst mode (I  
is temporarily increased.). See  
LIM_LX  
details the interaction between the EN pin and the EN bit.  
Burst Mode (Enhanced Load Response) for details.  
Provide a valid V and set the EN pin logic-high to  
IO  
Always drive the ILIM pin logic-high or low. Do not leave  
ILIM unconnected.  
2
enable the I C serial interface. Serial reads and writes to  
the EN bit may happen only while V is valid and EN is  
IO  
logic-high. Lowering EN logic-low disables the buck-boost  
(regardless of EN) and causes all registers to reset to  
default values.  
Soft-Start  
The device implements a soft-start by reducing the peak  
inductor current limit (I  
) for a fixed time. The soft-  
LIM_LX  
start time begins immediately after the startup delay  
(t ). See Table 2 for details.  
Table 1. EN Logic  
ON_DLY  
2
I C SERIAL  
INTERFACE  
BUCK-BOOST  
OUTPUT  
I
reduces (according to Table 2) for t  
after the  
LIM_LX  
SS  
EN  
EN BIT  
buck-boost enables through either the EN pin or EN bit.  
Reducing the inductor current limit during startup controls  
inrush current from the supply input (I ) and prevents  
Low  
High  
High  
X
0
Disabled  
Enabled  
Enabled  
Disabled  
Disabled  
Enabled  
IN  
droop caused by upstream source impedance.  
1 (default)  
EN  
V
OUT  
T
T
ON_DLY  
SS  
ILIM_NORMAL  
ILIM_SS  
IL  
Figure 3. Soft-Start  
Maxim Integrated  
15  
www.maximintegrated.com  
 
 
MAX77813  
5.5V Input, 2A, High-Efficiency  
Buck-Boost Converter  
Table 2. Soft-Start ILIM  
I
AFTER  
I
DURING  
t
SS  
SOFT-START TIME  
(µS)  
LIM_LX  
LIM_LX  
ILIM (PIN)  
SOFT-START (A)  
SOFT-START (A)  
High  
Low  
4.5  
1.8  
1.8  
1.8  
120  
800  
inductor current limit from I  
(See Table 3.)  
to I  
.
Burst Mode (Enhanced Load Response)  
LIM_LX  
LIM_LX_HIGH  
The device implements a burst mode to service short-  
duration heavy load transients (burst loads). A summary  
of burst mode operation follows:  
If the heavy load causes peak inductor current >  
for longer than 800µs(typ), then burst mode  
I
LIM_LX  
deactivates and peak inductor current limit returns to  
If a heavy load transient happens that requires peak  
inductor current > I to maintain regulation,  
I
.
LIM_LX  
LIM_LX  
then the buck-boost temporarily increases the peak  
Table 3. ILIM Levels  
INDUCTOR CURRENT LIMIT DURING  
NORMAL OPERATION  
INDUCTOR CURRENT LIMIT DURING  
BURST MODE  
ILIM (PIN)  
I
(A)  
I
(A)  
LIM_LX  
LIM_LX_HIGH  
High  
Low  
4.5  
5.5  
2.3  
1.8  
EN  
V
OUT  
T
T
SS  
ON_DLY  
ILIM_LX  
ILIM_LX_SS  
IL  
Figure 4. Short Circuit Waveform  
Maxim Integrated  
16  
www.maximintegrated.com  
 
 
MAX77813  
5.5V Input, 2A, High-Efficiency  
Buck-Boost Converter  
Disable OVP by programming OVP_TH[1:0] to 0b00  
using I C. The default OVP threshold is 0b11 (120% of  
Power-OK (POK) Output  
2
The device features an open-drain POK output to monitor  
the output voltage. POK requires an external pullup resis-  
tor (typically 10kΩ to 100kΩ).  
the target V  
).  
OUT  
The OVP status bit continuously mirrors the status of the  
OVP circuit. See the Register Map for details.  
POK is active-high by default. Use the POK_POL bit to  
change the POK polarity to active-low. See the Register  
Map for details.  
Thermal Shutdown  
The device has an internal thermal protection circuit  
which monitors die temperature. The buck-boost disables  
While POK_POL = 1 (active-high, default state), POK  
goes high (high-impedance) after the buck-boost output  
increases above 80% of the target regulation voltage.  
POK goes low when the output drops below 75% of the  
target or when the buck-boost is disabled.  
if the die temperature exceeds T  
(165°C typ). The  
SHDN  
buck-boost enables again after the die temperature cools  
by approximately 20°C.  
The T  
status bit continuously mirrors the status of  
SHDN  
the thermal protection circuit. See the Register Map for  
details.  
Output Voltage Selection and  
Slew Rate Control  
Write the VOUT[6:0] bitfield through I C to configure the  
2
2
I C Serial Interface  
The device features a revision 3.0 I C-compatible, 2-wire  
target output voltage (V  
) between 2.60V and 5.14V  
OUT  
2
in 20mV steps. The default value of VOUT[6:0] is factory-  
programmable. See the Ordering Information for the  
serial interface consisting of a bidirectional serial data line  
(SDA) and a serial clock line (SCL). The MAX77813 is a  
slave-only device that that relies on an external bus mas-  
ter to generate SCL. SCL clock rates from 0Hz to 3.4MHz  
default V  
associated with each orderable part num-  
2
OUT  
ber. Overwriting the default value through I C sets a new  
target V  
until registers reset.  
OUT  
2
are supported. I C is an open-drain bus, and therefore,  
Changing the VOUT[6:0] bitfield while the buck-boost  
output is enabled causes the device to respond in the  
following way:  
SDA and SCL require pullups (500Ω or greater).  
2
The device’s I C communication controller implements  
2
7-bit slave addressing. An I C bus master initiates com-  
V
OUT  
ramps up at a rate set by RU_SR (20mV/μs or  
munication with the slave by issuing a START condition  
followed by the slave address. The slave address of the  
device is shown in Table 4.  
40mV/μs) when the V  
target is increased.  
OUT  
V
OUT  
ramps down at a rate set by RD_SR (5mV/μs  
or 10mV/μs) when the V  
target is decreased.  
OUT  
The device uses 8-bit registers with 8-bit register address-  
ing. They support standard communication protocols: (1)  
Writing to a single register (2) Writing to multiple sequen-  
tial registers with an automatically incrementing data  
pointer (3) Reading from a single register (4) Reading  
from multiple sequential registers with an automati-  
cally incrementing data pointer. For additional informa-  
See the Register Map for details about the RU_SR and  
RD_SR bits.  
Output Overvoltage Protection (OVP)  
The device has an internal output overvoltage protection  
(OVP) circuit which monitors V  
The buck-boost disables if the output exceeds the over-  
voltage threshold set by the OVP_TH[1:0] bitfield.  
for overvoltage faults.  
OUT  
2
2
tion on the I C protocols, refer to the MAX77813 I C  
2
Implementer’s Guide and/or the I C specification that is  
freely available on the internet.  
2
Table 4. I C Slave Address  
INDUCTOR CURRENT LIMIT DURING  
NORMAL OPERATION  
INDUCTOR CURRENT LIMIT DURING  
BURST MODE  
ILIM (PIN)  
I
(A)  
I
(A)  
LIM_LX  
LIM_LX_HIGH  
High  
Low  
4.5  
5.5  
2.3  
1.8  
Maxim Integrated  
17  
www.maximintegrated.com  
 
MAX77813  
5.5V Input, 2A, High-Efficiency  
Buck-Boost Converter  
Output Capacitor Selection  
Applications Information  
Sufficient output capacitance (C  
) is required to keep  
OUT  
Inductor Selection  
the output voltage ripple small and the regulation loop  
stable. Choose the effective C to be 16uF, minimum.  
Choose a 1μH inductor with a saturation current of 7A or  
higher for ILIM = HIGH and a saturation current of 3.39A  
or higher for ILIM = LOW.  
OUT  
Considering the DC bias characteristic of ceramic capaci-  
tors, a 47μF 10V capacitor is recommended for most  
applications.  
Table 5 lists recommended inductors for the MAX77813.  
Always choose the inductor carefully by consulting the  
manufacturer’s latest released data sheet.  
Effective C  
is the actual capacitance value seen by  
OUT  
the buck-boost output during operation. Choose effec-  
tive C carefully by considering the capacitor’s initial  
OUT  
Input Capacitor Selection  
tolerance, variation with temperature, and derating with  
DC bias.  
Choose the input capacitor (C ) to be a 10μF ceramic  
IN  
capacitor that maintains at least 2μF of effective capaci-  
Ceramic capacitors with X5R or X7R dielectric are highly  
recommended due to their small size, low ESR, and small  
temperature coefficients. All ceramic capacitors derate  
with DC bias voltage (effective capacitance goes down as  
DC bias goes up). Generally, small case size capacitors  
derate heavily compared to larger case sizes (0603 case  
size performs better than 0402). Consider the effective  
capacitance value carefully by consulting the manufac-  
turer’s data sheet.  
tance at its working voltage. Larger values improve the  
decoupling of the buck-boost. C reduces the current  
IN  
peaks drawn from the battery or input power source and  
reduces switching noise in the device. Ceramic capaci-  
tors with X5R or X7R dielectric are highly recommended  
due to their small size, low ESR, and small temperature  
coefficients.  
All ceramic capacitors derate with DC bias voltage  
(effective capacitance goes down as DC bias goes up).  
Generally, small case size capacitors derate heavily com-  
pared to larger case sizes (0603 case size performs bet-  
ter than 0402). Consider the effective capacitance value  
carefully by consulting the manufacturer’s data sheet.  
Table 5. Suggested Inductors for Buck Boost  
NOMINAL  
TYPICAL DC  
CURRENT  
CURRENT  
DIMENSIONS  
L x W x H  
[mm]  
ILIM  
MFGR.  
SERIES  
INDUCTANCE RESISTANCE RATING [A]  
RATING [A]  
SETTING  
[µH]  
[mΩ]  
-30% (ΔL/L) ΔT = 40°C RISE  
TFM201610GHM -  
1R0MTAA  
TDK  
1.0  
50  
3.8  
3.0  
2.0 x 1.6 x 1.0  
Low  
TOKO  
DFE322512C  
1.0  
1.0  
34  
13  
4.6  
8.7  
3.7  
9.6  
3.2 x 2.5 x 1.2  
4.0 x 4.0 x 2.1  
Low  
Coilcraft XAL4020-102MEB  
High  
Maxim Integrated  
18  
www.maximintegrated.com  
 
MAX77813  
5.5V Input, 2A, High-Efficiency  
Buck-Boost Converter  
2
Figure 5 shows an example of a typical I C system. A  
Serial Interface  
The I C-compatible 2-wire serial interface is used for  
regulator on/off control, setting output voltages, and other  
functions. See the Register Map for details.  
2
device on I C bus that sends data to the bus in called  
2
a “Transmitter”. A device that receives data from the  
bus is called a “Receiver”. The device that initiates a  
data transfer and generates SCL clock signals to control  
the data transfer is a “Master”. Any device that is being  
addressed by the master is considered a “Slave”. When  
2
The I C serial bus consists of a bidirectional serial-data  
2
line (SDA) and a serial clock (SCL). I C is an open-drain  
bus. SDA and SCL require pullup resistors (500Ω or  
greater). Optional 24Ω resistors in series with SDA and  
SCL help to protect the device inputs from high voltage  
spikes on the bus lines. Series resistors also minimize  
crosstalk and undershoot on the bus lines.  
2
2
the MAX77813 I C-compatible interface is operating, it is  
a slave on the I C bus and it can be both a transmitter  
and a receiver.  
Bit Transfer  
One data bit is transferred for each SCL clock cycle. The  
data on SDA must remain stable during the high portion of  
SCL clock pulse. Changes in SDA while SCL is high are  
control signals (START and STOP conditions).  
System Configuration  
The I C bus is a multi-master bus. The maximum number  
of devices that can attach to the bus is only limited by bus  
capacitance.  
2
SDA  
SCL  
MASTER  
SLAVE  
SLAVE  
TRANSMITTER /  
RECEIVER  
MASTER  
TRANSMITTER /  
RECEIVER  
SLAVE  
TRANSMITTER  
TRANSMITTER /  
RECEIVER  
RECEIVER  
Figure 5. Functional Logic Diagram for Communications Controller  
SDA  
SCL  
DATA LINE STABLE DATA VALID  
CHANGE OF DATA  
ALLOWED  
2
Figure 6. I C Bit Transfer  
Maxim Integrated  
19  
www.maximintegrated.com  
 
MAX77813  
5.5V Input, 2A, High-Efficiency  
Buck-Boost Converter  
interface until the next START condition, minimizing digital  
noise and feed-through.  
START and STOP Conditions  
When I C serial interface is inactive, SDA and SCL idle  
2
high. A master device initiates communication by issuing  
a START condition. A START condition is a high-to-low  
transition on SDA with SCL high. A STOP condition is a  
low-to-high transition on SDA, while SCL is high.  
Acknowledged  
Both the I C bus master and the device (slave) generate  
2
acknowledge bits when receiving data. The acknowledge  
bit is the last bit of each nine-bit data packet. To gener-  
ate an ACKNOWLEDGE (A), the receiving device must  
pull SDA low before the rising edge of the acknowledge-  
related clock pulse (ninth pulse) and keep it low during  
the high period of the clock pulse. To generate a NOT-  
ACKNOWLEDGE (nA), the receiving device allows SDA  
to be pulled high before the rising edge of the acknowl-  
edge-related clock pulse and leaves it high during the  
high period of the clock pulse.  
A START condition from the master signals the beginning  
of a transmission to the device. The master terminates  
transmission by issuing a NOT-ACKNOWLEDGE fol-  
lowed by a STOP condition.  
A STOP condition frees the bus. To issue a series of com-  
mands to the slave, the master may issue REPEATED  
START (Sr) commands instead of a STOP command  
in order to maintain control of the bus. In general, a  
REPEATED START command is functionally equivalent  
to a regular START command.  
Monitoring the acknowledge bits allows for detection  
of unsuccessful data transfers. An unsuccessful data  
transfer occurs if a receiving device is busy or if a system  
fault has occurred. In the event of an unsuccessful data  
transfer, the bus master should reattempt communication  
at a later time.  
When a STOP condition or incorrect address is detected,  
2
the device internally disconnects SCL from the I C serial  
Slave Address  
The I C slave address of the device is shown in Table 6.  
S
Sr  
P
2
SDA  
SCL  
2
t
t
SU;STO  
SU;STA  
Table 6. I C Slave Address  
SLAVEADDRESS SLAVEADDRESS SLAVEADDRESS  
(7 BIT)  
(WRITE)  
(READ)  
t
t
HD;STA  
HD;STA  
001 1000  
0x30 (0011 0000)  
0x31 (0011 0001)  
Figure 7. START and STOP Conditions  
S
SDA  
0
0
2
1
3
1
4
0
5
0
6
0
7
R/nW  
A
9
ACKNOWLEDGE  
SCL  
1
8
Figure 8. Slave Address Byte Example  
Maxim Integrated  
20  
www.maximintegrated.com  
 
MAX77813  
5.5V Input, 2A, High-Efficiency  
Buck-Boost Converter  
2
section of the I C revision 3.0 specification for detailed  
Clock Stretching  
In general, the clock signal generation for the I C bus is  
the responsibility of the master device. I C specification  
allows slow slave devices to alter the clock signal by  
holding down the clock line. The process in which a slave  
device holds down the clock line is typically called clock  
stretching. The device does not use any form of clock  
stretching to hold down the clock line.  
guidance on the pullup resistor selection. In general, for  
bus capacitances of 200pF, a 100kHz bus needs 5.6kΩ  
pullup resistors, a 400kHz bus needs about 1.5kΩ pullup  
resistors, and a 1MHz bus needs 680Ω pullup resistors.  
Note that the pullup resistor is dissipating power when the  
open-drain bus is low. The lower the value of the pullup  
2
2
2
resistor, the higher the power dissipation (V /R).  
Operating in high-speed mode requires some special con-  
siderations. For the full list of considerations, see the I C  
3.0 specification. The major considerations with respect to  
the MAX77813 are:  
General Call Address  
The device does not implement I C specification “General  
Call Address.” If the device sees “General Call Address  
(00000000b)” it does not issue an ACKNOWLEDGE (A).  
2
2
2
I C bus master use current source pullups to shorten  
the signal rise times.  
Communication Speed  
The device provides I C 3.0-compatible (3.4MHz) serial  
2
2
I C slave must use a different set of input filters on  
interface.  
its SDA and SCL lines to accommodate for the higher  
bus speed.  
2
I C Revision 3 Compatible Serial Communications  
Channel  
The communication protocols need to utilize the high-  
• 0Hz to 100kHz (Standard mode)  
• 0Hz to 400kHz (Fast mode)  
• 0Hz to 1MHz (Fast-mode plus)  
• 0Hz to 3.4MHz (High-speed mode)  
speed master code.  
At power-up and after each STOP condition, the device  
input filters are set for standard mode, fast mode, or  
fast-mode plus (i.e., 0Hz to 1MHz). To switch the input  
filters for high-speed mode, use the high-speed master  
code protocols that are described in the Communication  
Protocols section.  
2
Does not utilize I C Clock Stretching  
Operating in standard mode, fast mode, and fast-mode  
plus does not require any special protocols. The main  
consideration when changing the bus speed through  
this range is the combination of the bus capacitance and  
pullup resistors. Higher time constants created by the  
bus capacitance and pullup resistance (C x R) slow the  
bus operation. Therefore, when increasing bus speeds,  
the pullup resistance must be decreased to maintain a  
reasonable time constant. See the Pullup Resistor Sizing  
Communication Protocols  
The device supports both writing and reading from its reg-  
isters. The following sections show the I C communica-  
tion protocols for each functional block. The power block  
uses the same communication protocols.  
2
Maxim Integrated  
21  
www.maximintegrated.com  
 
MAX77813  
5.5V Input, 2A, High-Efficiency  
Buck-Boost Converter  
4) The master sends an 8-bit register pointer.  
5) The slave acknowledges the register pointer.  
6) The master sends a data byte.  
Writing to a Single Register  
2
Figure 9 shows the protocol for the I C master device to  
write one byte of data to the device. This protocol is the  
same as SMBus specification’s “Write Byte” protocol.  
7) The slave acknowledges the data byte. At the rising  
edge of SCL, the data byte loads into its target regis-  
ter and the data becomes active.  
The “Write Byte” protocol is as follows:  
1) The master sends a START command (S).  
2) The master sends the 7-bit slave address followed  
by a write bit (R/nW = 0).  
8) The master sends a STOP condition (P) or a RE-  
PEATED START condition (Sr). Issuing a P ensures  
that the bus input filters are set for 1MHz or slower  
operation. Issuing a REPEATED START (Sr) leaves  
the bus input filters in their current state.  
3) The addressed slave asserts an ACKNOWLEDGE  
(A) by pulling SDA low.  
LEGEND  
*P FORCES THE BUS FILTERS TO SWITCH  
TO THEIR 1MHz MODE. Sr LEAVES THE  
BUS FILTERS IN THEIR CURRENT STATE.  
MASTER TO  
SLAVE  
SLAVE TO  
MASTER  
NUMBER  
OF BITS  
1
7
1
0
1
8
1
8
1
1
S
SLAVE ADDRESS  
A
REGISTER POINTER  
A
DATA  
A
P or Sr*  
R/nW  
THE DATA IS LOADED INTO  
THE TARGET REGISTER AND  
BECOMES ACTIVE DURING  
THIS RISING EDGE.  
SDA  
SCL  
B1  
7
B0  
8
A
9
ACKNOWLEDGE  
Figure 9. Writing to a Single Register with “Write Byte” Protocol  
Maxim Integrated  
22  
www.maximintegrated.com  
 
MAX77813  
5.5V Input, 2A, High-Efficiency  
Buck-Boost Converter  
5) The slave acknowledges the register pointer.  
6) The master sends a data byte.  
Writing to Sequential Registers  
Figure 10 shows the protocol for writing to sequential  
registers. This protocol is similar to the “Write Byte” proto-  
col, except the master continues to write after it receives  
the first byte of data. When the master is done writing, it  
issues a STOP or REPEATED START.  
7) The slave acknowledges the data byte. At the rising  
edge of SCL, the data byte loads into its target regis-  
ter and the data becomes active.  
8) Steps 6 to 7 are repeated as many times as the  
master requires.  
The “Writing to Sequential Registers” protocol is as follows:  
1) The master sends a START command (S).  
9) During the last acknowledge related clock pulse, the  
slave issues an ACKNOWLEDGE (A).  
2) The master sends the 7-bit slave address followed  
by a write bit (R/nW = 0).  
10) The master sends a STOP condition (P) or a RE-  
PEATED START condition (Sr). Issuing a P ensures  
that the bus input filters are set for 1MHz or slower  
operation. Issuing a REPEATED START (Sr) leaves  
the bus input filters in their current state.  
3) The addressed slave asserts an ACKNOWLEDGE  
(A) by pulling SDA low.  
4) The master sends an 8-bit register pointer.  
LEGEND  
*P FORCES THE BUS FILTERS TO SWITCH TO THEIR  
1MHZ MODE. SR LEAVES THE BUS FILTERS IN  
THEIR CURRENT STATE.  
MASTER TO SLAVE  
SLAVE TO MASTER  
NUMBER  
OF BITS  
1
S
7
1
0
1
8
REGISTER POINTER X  
1
8
1
SLAVE ADDRESS  
A
A
DATA X  
A
α
α
R/nW  
NUMBER  
OF BITS  
8
1
8
1
DATA X+1  
A
DATA X+2  
A
α
REGISTER POINTER = X + 2  
REGISTER POINTER = X + 1  
NUMBER  
OF BITS  
8
1
8
1
1
DATA n-1  
A
DATA n  
A
P or Sr*  
β
REGISTER POINTER = X + (N-2)  
REGISTER POINTER = X + (N-1)  
α
THE DATA IS LOADED INTO THE  
TARGET REGISTER AND BECOMES  
ACTIVE DURING THIS RISING  
EDGE.  
SDA  
SCL  
B1  
7
B0  
8
A
9
B9  
ACKNOWLEDGE  
1
DETAIL: α  
THE DATA IS LOADED INTO THE  
TARGET REGISTER AND BECOMES  
ACTIVE DURING THIS RISING  
EDGE.  
SDA  
SCL  
B1  
7
B0  
8
A
9
ACKNOWLEDGE  
DETAIL: β  
Figure 10. Writing to Sequential Registers  
Maxim Integrated  
23  
www.maximintegrated.com  
 
MAX77813  
5.5V Input, 2A, High-Efficiency  
Buck-Boost Converter  
the slave that it wants more data – when the master has all  
the data it requires, it issues a NOT-ACKNOWLEDGE (nA)  
and a STOP (P) to end the transmission.  
Reading from a Single Register  
The I C master device reads one byte of data to the  
device. This protocol is the same as SMBus specifica-  
tion’s “Read Byte” protocol.  
2
The “Continuous Read from Sequential Registers” proto-  
col is as follows:  
The “Read Byte” protocol is as follows:  
1) The master sends a START command (S).  
1) The master sends a START command (S).  
2) The master sends the 7-bit slave address followed  
by a write bit (R/nW = 0).  
2) The master sends the 7-bit slave address followed  
by a write bit (R/nW = 0).  
3) The addressed slave asserts an ACKNOWLEDGE  
(A) by pulling SDA low.  
3) The addressed slave asserts an ACKNOWLEDGE  
(A) by pulling SDA low.  
4) The master sends an 8-bit register pointer.  
5) The slave acknowledges the register pointer.  
4) The master sends an 8-bit register pointer.  
5) The slave acknowledges the register pointer.  
6) The master sends a REPEATED START command  
(Sr).  
6) The master sends a REPEATED START command  
(Sr).  
7) The master sends the 7-bit slave address followed  
by a read bit (R/nW = 1).  
7) The master sends the 7-bit slave address followed  
by a read bit (R/nW = 1).  
8) The addressed slave asserts an ACKNOWLEDGE  
(A) by pulling SDA low.  
8) The addressed slave asserts an ACKNOWLEDGE  
(A) by pulling SDA low.  
9) The addressed slave places 8-bits of data on the bus  
9) The addressed slave places 8-bits of data on the bus  
from the location specified by the register pointer.  
from the location specified by the register pointer.  
10) The master issues an ACKNOWLEDGE (A) signaling  
the slave that it wishes to receive more data.  
10) The master issues a NOT-ACKNOWLEDGE (nA).  
11) The master sends a STOP condition (P) or a RE-  
PEATED START condition (Sr). Issuing a P ensures  
that the bus input filters are set for 1MHz or slower  
operation. Issuing a REPEATED START (Sr) leaves  
the bus input filters in their current state.  
11) Steps 9 to 10 are repeated as many times as the  
master requires. Following the last byte of data, the  
master must issue a NOT-ACKNOWLEDGE (nA) to  
signal that it wishes to stop receiving data.  
12) The master sends a STOP condition (P) or a RE-  
PEATED START condition (Sr). Issuing a STOP (P)  
ensures that the bus input filters are set for 1MHz or  
slower operation. Issuing a REPEATED START (Sr)  
leaves the bus input filters in their current state.  
Reading from Sequential Registers  
Figure 11 shows the protocol for reading from sequential  
registers. This protocol is similar to the “Read Byte” protocol  
except the master issues an ACKNOWLEDGE (A) to signal  
LEGEND  
*P FORCES THE BUS FILTERS TO SWITCH TO  
THEIR ≤ 1MHz MODE. SR LEAVES THE BUS  
FILTERS IN THEIR CURRENT STATE.  
MASTER TO  
SLAVE  
SLAVE TO  
MASTER  
NUMBER  
OF BITS  
1
7
1
0
1
8
1
1
7
1
1
1
8
1
S
SLAVE ADDRESS  
A
REGISTER POINTER X A Sr SLAVE ADDRESS  
A
DATA X  
A
R/  
nW  
R/  
nW  
NUMBER  
OF BITS  
8
1
8
1
8
1
DATA X+1  
A
DATA X+2  
A
DATA X+3  
A
Register Pointer = X + 1  
Register Pointer = X + 2  
Register Pointer = X + 3  
NUMBER  
OF BITS  
8
1
8
1
8
1
1
P or  
Sr*  
DATA n-2  
A
DATA n-1  
A
DATA n  
nA  
Register Pointer =  
X + (n-3)  
Register Pointer =  
X + (n-2)  
Register Pointer =  
X + (n-1)  
Figure 11. Reading Continuously from Sequential Registers  
Maxim Integrated  
24  
www.maximintegrated.com  
 
MAX77813  
5.5V Input, 2A, High-Efficiency  
Buck-Boost Converter  
3) The master sends the 8-bit master code of  
Engaging HS-Mode for Operation  
up to 3.4MHz  
00001xxxb where xxxb are don’t care bits.  
Figure 12 shows the protocol for engaging HS-mode  
operation. HS-mode operation allows for a bus operating  
speed up to 3.4MHz.  
4) The addressed slave issues a NOT-ACKNOWL-  
EDGE (nA).  
5) The master may now increase its bus speed up to  
3.4MHz and issue any read/write operation.  
The “Engaging HS-Mode” protocol is as follows:  
1) Begin the protocol while operating at a bus speed of  
1MHz or lower.  
The master may continue to issue high-speed read/write  
operations until a STOP (P) is issued. Issuing a STOP  
(P) ensures that the bus input filters are set for 1MHz or  
slower operation.  
2) The master sends a START command (S).  
LEGEND  
MASTER TO SLAVE  
SLAVE TO MASTER  
1
8
1
1
ANY READ/WRITE PROTOCOL  
FOLLOWED BY Sr  
ANY READ/WRITE PROTOCOL  
FOLLOWED BY Sr  
S
HS-MASTER CODE  
nA Sr  
Sr  
Sr ANY READ/WRITE PROTOCOL  
P
FAST- MODE  
HS-MODE  
FAST-MODE  
Figure 12. Engaging HS-Mode  
Register Map  
Register Reset Condition  
Registers reset to their default values when either of the following conditions become true:  
Undervoltage Lockout (V  
< V  
)
SYS  
UVLO_F  
Device Disabled (EN = logic low)  
MAX77813 Registers  
2
I C Device Address: 0x18 (7-bit)  
ADDRESS  
0x00  
NAME  
DEVICE_ID  
STATUS  
CONFIG1  
CONFIG2  
VOUT  
ACCESS  
R
MSB  
LSB  
RESET  
RESERVED  
̶
0x01  
R
RESERVED  
RESERVED RESERVED RU_SR  
TSHDN POK OVP OCP  
OVP_TH[1:0] AD FPWM  
RESERVED  
0x00  
0x0E  
0x70  
varies  
0x02  
R/W  
R/W  
R/W  
RD_SR  
EN_PD POK_POL  
VOUT[6:0]  
0x03  
RESERVED  
RESERVED  
EN  
0x04  
Maxim Integrated  
25  
www.maximintegrated.com  
 
 
MAX77813  
5.5V Input, 2A, High-Efficiency  
Buck-Boost Converter  
Register Details  
DEVICE ID (0x00)  
BIT  
Field  
7
6
5
4
3
2
1
0
RESERVED[7:0]  
Reset  
Access  
Read Only  
BITFIELD  
RESERVED  
BITS  
DESCRIPTION  
DECODE  
7:0  
Reserved. Bits for internal use only.  
N/A  
STATUS (0x01)  
BIT  
Field  
7
6
5
4
3
2
POK  
1
OVP  
0
OCP  
RESERVED[3:0]  
0b0000  
TSHDN  
0b0  
Reset  
Access  
0b0  
0b0  
0b0  
Read Only  
Read Only  
Read Only  
Read Only  
Read Only  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
RESERVED  
TSHDN  
3:0  
Reserved. Reads are don’t care.  
N/A  
0 = Junction temperature OK (T < T  
1 = Thermal shutdown (T ≥ T  
)
SHDN  
J
3
2
Thermal Shutdown Status  
)
J
SHDN  
0 = Output not OK (V  
OUT  
1 = Output OK (V  
< 75% of target) or disabled.  
> 80% of target)  
POKn  
Power-OK Status  
OUT  
0 = Output OK (V  
< the OVP threshold set by  
OUT  
OVP_TH[1:0]) or disabled.  
OVP  
OCP  
1
0
Output Overvoltage Status  
Overcurrent Status  
1 = Output overvoltage. V  
set by OVP_TH[1:0].  
> the OVP threshold  
OUT  
0 = Current OK  
1 = Overcurrent  
Maxim Integrated  
26  
www.maximintegrated.com  
MAX77813  
5.5V Input, 2A, High-Efficiency  
Buck-Boost Converter  
CONFIG1 (0x02)  
BIT  
Field  
7
6
5
4
3
2
1
AD  
0
RESERVED  
0b00  
RU_SR  
0b0  
RD_SR  
0b0  
OVP_TH[1:0]  
0b11  
FPWM  
0b0  
Reset  
Access  
0b1  
Read, Write  
Read, Write  
Read, Write  
Read, Write  
Read, Write  
Read, Write  
BITFIELD  
BITS  
DESCRIPTION  
Reserved. Bit is a don’t care.  
DECODE  
RESERVED  
7:6  
N/A  
V
V
Rising Ramp Rate Control.  
increases with this slope  
OUT  
OUT  
0 = +20mV/µs  
1 = +40mV/µs  
RU_SR  
5
whenever the output voltage target is  
modified upwards while the converter is  
enabled.  
V
V
Falling Ramp Rate Control.  
decreases with this slope  
OUT  
OUT  
0 = -5mV/µs  
1 = -10mV/µs  
RD_SR  
4
whenever the output voltage target  
is modified downwards while the  
converter is enabled.  
00 = No OVP (protection disabled)  
01 = 110% of V  
10 = 115% of V  
11 = 120% of V  
target  
target  
target  
V
Overvoltage Protection (OVP)  
OUT  
OUT  
OUT  
OUT  
OVP_TH[1:0]  
3:2  
Threshold Control  
Output Active Discharge Resistor  
Enable  
0 = Disabled  
1 = Enabled  
AD  
1
0
0 = SKIP mode  
1 = Forced PWM (FPWM) mode  
FPWM  
Converter Mode Control  
Maxim Integrated  
27  
www.maximintegrated.com  
MAX77813  
5.5V Input, 2A, High-Efficiency  
Buck-Boost Converter  
CONFIG2 (0x03)  
BIT  
Field  
Reset  
7
6
5
4
3
2
1
0
RESERVED  
0b0  
BB_EN  
0b1  
EN_PD  
0b1  
POK_POL  
0b1  
RESERVED  
0b0000  
Access Read, Write  
Read, Write  
Read, Write  
Read, Write  
Read, Write  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
RESERVED  
7
Reserved. Bit is a don’t care.  
N/A  
While EN (pin) = logic low:  
0 or 1 = Output disabled  
While EN (pin = logic high:  
0 = Output disabled  
Buck-boost output software enable  
control. See Table 1.  
EN  
6
1 = Output enabled  
EN input pulldown resistor enable  
control.  
0 = Pulldown disabled  
1 = Pulldown enabled  
PD  
5
0 = Active-low  
1 = Active-high  
Power-OK (POK) output polarity  
control.  
POK_POL  
4
RESERVED  
3:0  
Reserved. Bitfield is a don’t care.  
N/A  
V
OUT  
(0x04)  
BIT  
7
6
5
4
3
2
1
0
Field  
RESERVED  
0b0  
VOUT[6:0]  
Reset  
Varies (See the Ordering Information table)  
Access Read, Write  
Read, Write  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
RESERVED  
7
Reserved. Bit is a don’t care.  
N/A  
0x00 = 2.60V  
0x01 = 2.62V  
0x02 = 2.64V  
0x23 = 3.30V  
0x28 = 3.40V  
0x7E = 4.12V  
0x7F = 5.14V  
Output Voltage Control.  
Sets the V  
target. Configurable  
OUT  
in 20mV per LSB from 0x00  
(2.60V) to 0x7F (5.14V).  
VOUT  
6:0  
The default value of this register is  
preset. See the Ordering Information  
table. Overwriting the default value  
sets a new target output voltage.  
Maxim Integrated  
28  
www.maximintegrated.com  
MAX77813  
5.5V Input, 2A, High-Efficiency  
Buck-Boost Converter  
Ordering Information  
DEFAULT  
PART  
PIN-PACKAGE  
V
OUT  
20-Bump (5 x 4)  
0.4mm Pitch  
MAX77813EWP33+T  
MAX77813EWP+T  
3.3V  
3.4V  
20-Bump (5 x 4)  
0.4mm Pitch  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
T = Tape and reel.  
Maxim Integrated  
29  
www.maximintegrated.com  
 
MAX77813  
5.5V Input, 2A, High-Efficiency  
Buck-Boost Converter  
Revision History  
REVISION REVISION  
PAGES  
CHANGED  
DESCRIPTION  
NUMBER  
DATE  
10/18  
1/19  
0
1
Initial release  
Grammar and content fixes  
1–27  
Updated the Electrical Characteristics table, Bump Description table, and Figure 1;  
added the following sections: Burst Mode (Enhanced Load Response), Output Voltage  
Selection and Slew Rate Control, Output Overvoltage Protection (OVP), Thermal  
4, 12, 13,  
16–18, 26  
2
3/19  
2
Shutdown, I C Serial Interface, and Applications Information, updated Register Details  
table  
For pricing, delivery, and ordering information, please visit Maxim Integrated’s online storefront at https://www.maximintegrated.com/en/storefront/storefront.html.  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses  
are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits)  
shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
©
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  
2019 Maxim Integrated Products, Inc.  
30  

相关型号:

MAX77813EVKIT

Accessible Test Points for EN, POK, and ILIM
MAXIM

MAX77813EWP+T

5.5V Input, 2A, High-Efficiency Buck-Boost Converter
MAXIM

MAX77813EWP33+T

5.5V Input, 2A, High-Efficiency Buck-Boost Converter
MAXIM

MAX77816AEWP+

Switching Regulator,
MAXIM

MAX77818EWZ+

Power Supply Management Circuit, Adjustable, 2 Channel, BICMOS, PBGA72, WLP-72
MAXIM

MAX77818EWZ+T

Power Supply Management Circuit, Adjustable, 1 Channel, BICMOS, PBGA72, WLP-72
MAXIM

MAX77826EWJ+

Power Supply Support Circuit, Adjustable, 17 Channel, PBGA49, BUMPS-49
MAXIM

MAX77827

5.5V Input, 1.8A/3.1A Switch Buck-Boost Converter with 6μA IQ
MAXIM

MAX77827AEFD+T

5.5V Input, 1.8A/3.1A Switch Buck-Boost Converter with 6μA IQ
MAXIM

MAX77827AEWC+T

5.5V Input, 1.8A/3.1A Switch Buck-Boost Converter with 6μA IQ
MAXIM

MAX77827BEFD+T

5.5V Input, 1.8A/3.1A Switch Buck-Boost Converter with 6μA IQ
MAXIM

MAX77827BEWC+T

Switching Regulator,
MAXIM