MAX77863AEWT [MAXIM]

Complete System PMIC, Featuring 13 Regulators, 8 GPIOs, RTC, and Flexible Power Sequencing for Multicore Applications;
MAX77863AEWT
型号: MAX77863AEWT
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Complete System PMIC, Featuring 13 Regulators, 8 GPIOs, RTC, and Flexible Power Sequencing for Multicore Applications

集成电源管理电路
文件: 总183页 (文件大小:3022K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EVALUATION KIT AVAILABLE  
Click here for production status of specific part numbers.  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
General Description  
The MAX77863 is a complete power management IC  
(PMIC) for mobile devices using multicore application  
processors.  
Benefits and Features  
Operates from a 2.6V to 5.5V Source  
Allows for Low-Cost PCB Technology  
Includes 4 DC-to-DC Step-Down Regulators  
Includes 9 Low-Dropout Linear Regulators  
No External MOSFETs Required  
It is available in a wafter-level package (WLP) to be used  
in space-constrained applications.  
The IC offers a total of 13 regulators. Two regulators have  
differential remote sensing and are rated for both continu-  
ous and peak output current.  
Consumes just 12µA in its Lowest-Power State  
Low-Power Modes on all Regulators Reduces Power  
Consumption  
Numerous factory-programmable options allow the IC to  
be tailored for many applications. Contact the factory for  
more information about programmable options; minimum  
order quantities may apply.  
LDOs are Stable with only the Point-of-Load  
Capacitor  
2
I C 3.0 Compatible Interface  
nIRQ Interrupt Output  
Eight GPIOs  
Applications  
Netbooks  
Tablet PCs  
Real-Time Clock (RTC)  
• Backup Battery Charger  
• Timing Clock Output  
Personal Internet Viewer  
Digital Photo Frames  
Set-Top Boxes  
Smartphones  
GPS  
System Watchdog Timer  
2
I C Watchdog Timer  
Automotive Aftermarket Accessories  
Bidirectional Reset I/O  
Flexible Power Sequencer (FPS)  
Thermal Shutdown  
Ordering Information appears at end of data sheet.  
19-7424; Rev 1; 2/20  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
TABLE OF CONTENTS  
General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Benefits and Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Package Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Electrical Characteristics—SD0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Electrical Characteristics—SD1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Electrical Characteristics—SD2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Electrical Characteristics—SD3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Electrical Characteristics—150mA PMOS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Electrical Characteristics—300mA PMOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Electrical Characteristics—150mA NMOS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Electrical Characteristics—300mA NMOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Electrical Characteristics—450mA NMOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Electrical Characteristics—GPIOs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Electrical Characteristics—RTC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Electrical Characteristics—32kHz Crystal Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Electrical Characteristics—Backup Battery Charger. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Electrical Characteristics—On-Off Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Electrical Characteristics—FPS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
2
Electrical Characteristics—I C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
2
Electrical Characteristics—I C (continued) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Typical Operating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Bump Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Bump Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Simplified Functional Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Detailed Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Global Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Voltage References, Bias Currents, and Timing References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63  
Voltage Monitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63  
Thermal Monitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64  
Bidirectional Reset Input/Output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65  
Global Shutdown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65  
Global Shutdown Events with Sequenced Shutdown and Automatic Wakeup . . . . . . . . . . . . . . . . . . . . . . . . . . . .66  
Global Shutdown Events with Sequenced Shutdown to the Off State. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66  
Global Shutdown Events with Immediate Shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66  
Maxim Integrated  
2  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
(
)
TABLE OF CONTENTS CONTINUED  
Global Low-Power Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66  
Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66  
Status and Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66  
System Watchdog Timer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68  
Step-Down Regulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Efficiency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Step-Down Regulator Input Voltage Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Buck Regulator Control Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77  
Step-Down Regulator Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77  
Output Voltage Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Output Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78  
Soft-Start. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78  
Dynamic Voltage Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79  
Remote Output Voltage Sensing (ROVS). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Out-of-Phase Switching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79  
SKIP/FPWM Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79  
Power-OK Comparators for Step-Down Regulators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80  
Inductor Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80  
Input Capacitor Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80  
Output Capacitor Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80  
Active-Discharge Resistors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
SD3 Default Voltage (D_SD3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Linear Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Basic LDO Topologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82  
LDO Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83  
Soft-Start and Dynamic Voltage Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83  
Power-OK Comparators for Linear Regulators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83  
Active-Discharge Resistors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83  
Overvoltage Clamp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83  
Output Capacitor Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .84  
P-Channel Linear Regulator Output Capacitor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .84  
N-Channel Linear Regulator Output Capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .84  
BIAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85  
General Purpose Input/Output (GPIO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85  
Maxim Integrated  
3  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
(
)
TABLE OF CONTENTS CONTINUED  
GPO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86  
GPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86  
GPI Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86  
Alternate Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87  
Real-Time Clock (RTC). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90  
Read/Write Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
Reading from RTC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93  
SMPL (Sudden Momentary Power Loss) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
32kHz Crystal Oscillator and Buffered Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94  
Backup Battery Charger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94  
ON/OFF Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96  
EN0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96  
Manual Reset with EN0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96  
EN1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .97  
EN2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .97  
ACOK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .98  
LID. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .98  
SMPL, ALARM1, and ALARM2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .98  
SHDN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .98  
MBATT_OK and MBATTLOW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99  
FPS0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99  
FPS1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100  
Nonvolatile Power-OFF Event Recorder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
Flexible Power Sequencer (FPS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109  
Commitment Time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
Changing Regulator Enable Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
2
I C Interface and Interrupt Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
2
I C System Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
2
I C Interface Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
2
I C Data Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
2
I C Start and Stop Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
2
I C Acknowledge Bit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
Maxim Integrated  
4  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
(
)
TABLE OF CONTENTS CONTINUED  
2
I C Slave Address. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
2
I C Clock Stretching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
2
I C General Call Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
2
I C Watchdog Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
2
I C Communication Speed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
2
I C Communication Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
Writing to a Single Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
Writing to Sequential Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
Writing Multiple Bytes Using Register-Data Pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118  
Reading from a Single Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
Reading from Sequential Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
Engaging HS-Mode for Operation up to 3.4MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
Factory OTP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
Register Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122  
SFT_RST and PWR_OFF Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170  
Typical Application Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182  
Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183  
Maxim Integrated  
5  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
LIST OF FIGURES  
Figure 1. Global Resource Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Figure 2. Simplified Interrupt, Status, and Mask Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Figure 3. Interrupt Service Routine Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Figure 4. Global Shutdown State Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Figure 5. Simplified Logic for Global Shutdown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Figure 6. Simplified Timing Diagram for Global Shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74  
Figure 7. Simplified Timing Diagram for Global Shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Figure 8. Simplified Logic for Global Low-Power Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Figure 9. Buck Control Scheme Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Figure 10. Linear Regulator Functional Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Figure 11. LDO Bias Enable Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Figure 12. GPIO Simplified Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
Figure 13. RTC Simplified Functional Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
Figure 14. Backup Battery Charger, 32kHz Crystal Oscillator and RTC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
Figure 15. Functional Block Diagram for ACOK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
Figure 16. Functional Block Diagram for LID. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
Figure 17. Functional Block Diagram for SHDN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
Figure 18. Simplified Block Diagram: ON/OFF Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
Figure 19. State Diagram: ON/OFF Controller. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
Figure 20. EN0 Simplified Input Stage: Active-High or Low . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
Figure 21. EN1 Simplified Input Stage: Active-High or Low . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
Figure 22. EN2 Simplified Input Stage: Active-High or Low . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
Figure 23. ACOK Simplified Input Stage: Active-High or Low. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
Figure 24. LID Simplied Input Stage: Active-High or Low . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
Figure 25. SHDN Simplified Input Stage: Active-High or Low. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
Figure 26. Application Processor Power-Up and Power-Down Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
Figure 27. Application Processor Entering and Exiting Sleep Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
Figure 28. Example Timing Diagram: Flexible Power Sequencer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110  
Figure 29. Functional Logic Diagram: Communications Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112  
Figure 30. Functional Logic Diagram: Communications Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112  
Figure 31. START and STOP Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113  
Figure 32. Acknowledge Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113  
Figure 33. Slave Address Byte Example Using the Power Management Slave Address. . . . . . . . . . . . . . . . . . . . . .114  
Maxim Integrated  
6  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
(
)
LIST OF FIGURES CONTINUED  
Figure 34. Writing to a Single Register with the “Write Byte” Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .116  
Figure 35. Writing to Sequential Register “x” to “n. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .117  
Figure 36. Writing to Multiple Registers with the “Multiple Byte Register-Data Pair” Protocol . . . . . . . . . . . . . . . . . .118  
Figure 37. Reading from a Single Register with the “Read Byte” Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .119  
Figure 38. Reading Continuously from Sequential Registers “x” to “n”. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
Figure 39. Engaging HS-Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
Figure 40. MAX77863 Typical Application Circuit for 1s Battery Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180  
Figure 41. MAX77863 Typical Application Circuit for 2s Battery Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . .181  
LIST OF TABLES  
Table 1. Regulator Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Table 2. Register Type Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Table 3. Out-of-Phase Switching Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Table 4. D_SD3 Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Table 5. Basic LDO Topologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Table 7. GPIO Programming Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
Table 6. Alternate Modes for GPIOs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
Table 8. 32kHz Crystal Oscillator Load Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
Table 9. SD0 Power Mode Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
Table 10. ON/OFF Controller State Diagram Transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
Table 11. Example Configuration of the Flexible Power Sequencer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111  
Table 12. Changing Enable Sources Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111  
2
Table 13. MAX77863 I C Slave Addresses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114  
2
Table 14. I C Communication Protocols Supported by Different Functional Blocks. . . . . . . . . . . . . . . . . . . . . . . . . .115  
Table 15. OTP Bit Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .121  
Maxim Integrated  
7  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
Absolute Maximum Ratings  
LDO and Step-Down Output  
Maximum DC current for 1 year is 20mA  
Short-Circuit Duration............................................Continuous  
Maximum AC current is 20mA/duty where the peak must be less  
than 200mA (Note 1)  
Continuous Power Dissipation at T = +70°C)  
A
(Derate 28.6mW/°C above +70°C, Multilayer PCB)... 2.353W  
Operating Ambient Temperature Range............. -40°C to +85°C  
Operating Junction Temperature Range .......... -40°C to +150°C  
Storage Temperature Range............................ -65°C to +150°C  
Soldering Temperature (reflow).......................................+260°C  
IN_LDO0-1, IN_LDO2, IN_LDO3-5, IN_LDO4-6,  
nRST_IO to GND .................................................-0.3V to +6.0V  
Maximum DC current for 1 year is 20mA  
Maximum AC current is 20mA/duty where the peak must be less  
than 200mA (Note 1)  
GPIO0, GPIO1, GPIO2, GPIO3, GPIO4, GPIO5,  
GPIO6, GPIO7 to GND ....................................-0.3V to +6.0V  
(when open-drain GPO with internal pullup disabled)  
IN_LDO7-8, MBATT, MON, BBAT, INI2C, SCL,  
-0.3V to lower of (V  
+0.3V) and +6.0V  
(when otherwise)  
EN0, EN1, SHDN, ACOK, LID,  
GPIO_INA to GND............................................-0.3V to +6.0V  
GPIO_INx  
Maximum 1-year DC source current is 12mA for each GPO  
Maximum 1-year total GPO source current is 100mA for GPO0-3  
and 100mA for GPIO4-7  
Maximum AC source current for each GPO is 12mA/duty where  
the peak must be less than 200mA (Note 1)  
Maximum 1-year DC sink current is 20mA for each GPO  
Maximum 1-year total GPO sink current is 100mA for all GPO  
combined  
Maximum AC sink current for each GPO is 20mA/duty where the  
peak must be less than 200mA (Note 1)  
GPIO_INB to GND ............................. -0.3V to (V  
OUT_LDO0,  
+ 0.3V)  
MBATT  
OUT_LDO1 to GND..................-0.3V to (IN_LDO0-1 + 0.3V).  
Output short-circuit duration is continuous.  
OUT_LDO2 to GND ........................ -0.3V to (IN_LDO2 + 0.3V).  
Output short-circuit duration is continuous.  
OUT_LDO3,  
OUT_LDO5 to GND..................-0.3V to (IN_LDO3-5 + 0.3V).  
Output short-circuit duration is continuous.  
OUT_LDO4,  
OUT_LDO6 to GND..................-0.3V to (IN_LDO4-6 + 0.3V).  
Output short-circuit duration is continuous.  
OUT_LDO7,  
OUT_LDO8 to GND..................-0.3V to (IN_LDO7-8 + 0.3V).  
Output short-circuit duration is continuous.  
AVSD to GND................. -0.3V to +6.0V. AVSD and all INy_SDx  
must be within ±0.3V from each other.  
INA_SD0 to PGA_SD0, INB_SD0 to PGB_SD0,  
IN_SD1 to PG_SD1, IN_SD2 to PG_SD2,  
IN_SD3 to PG_SD3.........................................-0.3V to +6.0V.  
Within ±0.3V from AVSD  
RMS current must not exceed 3.0A per bump at 110°C for 10k  
hours out of 100k hours of operating life  
PGA_SD0, PGB_SD0, PG_SD1, PG_SD2, PG_SD3 to  
(PGy_SDx, GND, and XGND).............................Within ±0.3V  
RMS current must not exceed 3.0A per bump at 110°C  
for 10k hours out of 100k hours  
XOUT to XGND.......-0.3V to lower of (V  
XIN to XGND....... -0.3V to lower of (V  
D_SD3 to GND....-0.3V to lower of (V  
+ 0.3V) and +6.0V  
+ 0.3V) and +6.0V  
+ 0.3V) and +6.0V  
RTC  
BBATT  
MBATT  
FB_SD0, FB_SD1, FB_SD2, FB_SD3 to  
32K_OUT0 to GND ...........-0.3V to lower of (V  
+ 0.3V)  
and +6.0V  
GPIO_INB  
GND...................-0.3V to lower of (V  
+ 0.3V) and +4.5V  
AVSD  
SNSP_SD0, SNSP_SD1, F4, SNSN_SD0, SNSN_SD1, F3 to  
GND...................-0.3V to lower of (V + 0.3V) and +6.0V  
LXA_SD0, LXB_SD0, LX_SD1, LX_SD2,  
Maximum DC current for 1 year is 20mA  
Maximum AC current is 20mA/duty where the peak must be less  
than 200mA (Note 1)  
AVSD  
LX_SD3 ...... RMS current must not exceed 3.0A per bump at  
110°C for 10k hours out of 100k hours (Note 2)  
SDA to GND.........................................................-0.3V to +6.0V  
Maximum DC current for 1 year is 25mA  
GND................ Within ±0.3V from PG_SDx grounds and XGND  
XGND ................Within ±0.3V from PG_SDx grounds and GND  
Maximum AC current is 25mA/duty where the peak must be less  
than 200mA (Note 1)  
nIRQ to GND......................Lower of (V  
+ 0.3V) and +6.0V  
INI2C  
Note 1: Maximum AC current capability is rated as some current divided by a duty cycle with a maximum peak value. For example,  
given an AC current capability of “20mA/duty where the peak must be less than 200mA”, a pin can withstand 100mA pulses  
at a 20% duty cycle (20mA/20% = 100mA).  
Note 2: LXx has internal clamp diodes to PG_SDx and PVx. Applications that forward bias these diodes must take care not to  
exceed the current limit and package power dissipation.  
Maxim Integrated  
8  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
Package Thermal Characteristics  
WLP  
PACKAGE CODE  
Outline Number  
W703A4+1  
21-100187  
Land Pattern Number  
Refer to Application Note 1891  
Thermal Resistance, Four-Layer Board:  
Junction to Ambient (θ  
)
37.43°C/W  
NA  
JA  
Junction to Case (θ  
)
JC  
Note 3: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer  
board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.  
Electrical Characteristics  
(V  
= 3.6V, I  
= 0µA, T = -40°C to +85°C, unless otherwise specified, typical values are at T = +25°C.) (Note 4)  
MBATT  
BBATT  
A
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
MAIN-BATTERY POWER INPUT (MBATT)  
V
V
V
MBATT  
IN_SDx  
MBATT/AVSD Operating  
Voltage Range  
AVSD and SDx must be connected  
together  
2.6  
5.5  
V
V
AVSD  
MBATT Undervoltage-  
Lockout Threshold  
V
V
falling, 200mV hysteresis  
2.5  
MBATTUVLO  
MBATT  
AVSD Undervoltage-  
Lockout Threshold  
V
V
V
falling, 25mV hysteresis  
falling, 200mV hysteresis  
2.5  
3
V
V
AVSDUVLO  
V
AVSD_LOW  
AVSD  
AVSD Low Threshold  
AVSD  
MBATT/AVSD  
Overvoltage-Lockout  
Threshold  
V
V
rising, 200mV hysteresis  
5.70  
5.85  
12  
6.00  
25  
V
MBATTOVLO  
MBATT  
All regulators off, 32kHz oscillator in low-  
power mode (PWR_MD_32k = 0b00),  
V
= 3.6V, I  
= 0µA  
MBATT  
BBATT  
I
+
Q_MBATT  
All regulators off, 32kHz oscillator in  
low-power mode (PWR_MD_32k = 0b00),  
internal reference and bias circuitry active  
Quiescent Supply Current  
µA  
µA  
I
Q_AVSD  
42  
(L_B_EN = 1), V  
= 3.6V,  
MBATT  
I
= 0µA  
BBATT  
AVSD Low Threshold  
Comparator Quiescent  
Supply Current  
AVSD low is enabled whenever SD1 or  
SD2 is enabled  
6.5  
Maxim Integrated  
9  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
Electrical Characteristics (continued)  
(V  
= 3.6V, I  
= 0µA, T = -40°C to +85°C, unless otherwise specified, typical values are at T = +25°C.) (Note 4)  
MBATT  
BBATT  
A
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Current into M  
BATT  
and all LDO power  
inputs, V = 3.6V.  
MBATT  
All LDO power inputs  
are 3.6V,  
Normal mode, all  
LDOs enabled  
265  
I
= 0µA, LDOs  
BBATT  
set to minimum output  
voltage, all step-down  
regulators disabled,  
32kHz clock buffer  
disabled, 32kHz  
No-Load LDO Supply  
Current  
µA  
oscillator in low-power  
mode (PWR_MD_32k  
Low-power  
mode, LDO2-  
LDO6 enabled  
(PMOS)  
= 0b00), V  
=
GPIOA-IN  
58  
V
= 0V; this  
GPIOB_IN  
does not include any  
current into nRST_IO  
or nIRQ  
Current into M  
,
BATT  
AVSD, and all step-  
down power inputs,  
Normal mode,  
all step-downs  
enabled  
V
= 3.6V, all  
MBATT  
145  
regulator inputs are  
3.6V, I = 0µA, all  
BBATT  
step-downs enabled  
with their minimum  
output voltages, all  
remote feedback  
disabled, all LDOs  
disabled, 32kHz clock  
buffer disabled, 32kHz  
oscillator in  
No-Load Step-Down  
Supply Current  
µA  
Low-power  
mode, all  
step-downs  
enabled  
low-power mode  
(PWR_MD_32k =  
82.5  
0b00), V  
=
GPIOA_IN  
V
= 0V. This  
GPIOB_IN  
does not include any  
current into nRST_IO  
or nIRQ  
Maxim Integrated  
10  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
Electrical Characteristics (continued)  
(V  
= 3.6V, I  
= 0µA, T = -40°C to +85°C, unless otherwise specified, typical values are at T = +25°C.) (Note 4)  
MBATT  
BBATT  
A
A
PARAMETER  
SYMBOL  
CONDITIONS  
Current into M  
MIN  
TYP  
MAX  
UNITS  
,
BATT  
AVSD all step-down  
power inputs, and all  
LDO power inputs,  
Normal mode,  
all regulators  
enabled  
375  
520  
V
= 3.6V,  
MBATT  
all regulator inputs  
are 3.6V, I  
=
BBATT  
0µA, regulators set  
to minimum output  
voltage, all remote  
feedback disabled,  
32kHz clock buffer  
disabled, 32kHz  
No-Load LDO and  
Step-Down Supply  
Current  
µA  
Low-power  
mode, all  
regulators except  
LDO0/1/7/8  
(NMOS)  
oscillator in low-power  
mode (PWR_MD_32k  
110  
165  
= 0b00), V  
=
GPIOA-IN  
VG  
= 0V; this  
PIOB_IN  
does not include any  
current into nRST_IO  
or nIRQ  
BACKUP-BATTERY POWER INPUT  
BBATT Current  
THERMAL ALARMS AND SHUTDOWN  
V
V
= 2.45V  
= 3.00V  
2.0  
2.2  
BBATT  
V
= 0V,  
MBATT  
I
µA  
BBATT  
PWR_MD_32k = 0b00  
4.2  
BBATT  
Thermal Alarm 1  
Thermal Alarm 2  
T
T
T rising, 5°C hysteresis  
120  
140  
°C  
°C  
J120  
J140  
J
T rising, 5°C hysteresis  
J
Thermal Shutdown  
Temperature  
T
T rising, 15°C hysteresis  
J
165  
°C  
JSHDN  
VOLTAGE MONITOR (MON)  
LBHYST[1:0] = 0b00  
LBHYST[1:0] = 0b01  
LBHYST[1:0] = 0b10  
LBHYST[1:0] = 0b11  
100  
200  
300  
400  
Low-Battery Hysteresis  
V
mV  
HYSL  
Maxim Integrated  
11  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
Electrical Characteristics (continued)  
(V  
= 3.6V, I  
= 0µA, T = -40°C to +85°C, unless otherwise specified, typical values are at T = +25°C.) (Note 4)  
MBATT  
BBATT  
A
A
PARAMETER  
SYMBOL  
CONDITIONS  
LBDAC[2:0] = 0b000  
MIN  
TYP  
2.7  
2.8  
2.9  
3.00  
3.1  
3.2  
3.3  
3.4  
0
MAX  
UNITS  
LBDAC[2:0] = 0b001  
LBDAC[2:0] = 0b010  
LBDAC[2:0] = 0b011  
LBDAC[2:0] = 0b100  
LBDAC[2:0] = 0b101  
LBDAC[2:0] = 0b110  
LBDAC[2:0] = 0b111  
2.95  
3.05  
Low-Battery Threshold  
V
V
V
falling  
V
MONL  
MON  
T
T
= +25°C  
= +85°C  
-125  
+125  
A
MON Input Bias Current  
I
= 3.0V  
nA  
µs  
MON  
MON  
0.5  
10  
A
Response Time  
100mV threshold overdrive  
INTERRUPT TIMING  
Interrupt Event to  
nIRQ-Low Time  
10  
10  
ns  
ns  
°C  
Interrupt Register Read to  
nIRQ-Deassert Time  
Thermal Shutdown  
Temperature  
T
T rising, 15°C hysteresis  
165  
JSHDN  
J
BIDIRECTIONAL RESET INPUT/OUTPUT (nRST_IO)  
OTP_TRSTO[1:0] = 0b00  
1.02  
1.28  
10.24  
40.96  
81.92  
1.54  
OTP_TRSTO[1:0] = 0b01  
OTP_TRSTO[1:0] = 0b10  
OTP_TRSTO[1:0] = 0b11  
Reset Output Deassert  
Delay Time  
t
ms  
ms  
RST-O  
Reset Input Debounce  
Timer  
t
24  
30  
1
36  
DBNC  
Minimum V  
for  
MBATT  
V
V
nRST_IO Assertion  
Output Voltage Low  
V
I
= 4mA, RSO = 1  
SINK  
0.4  
1
OL  
V
V
= 5.5V,  
MBATT  
T
= +25°C  
= +85°C  
0.001  
0.01  
A
A
Output High Leakage  
Current  
= 0V  
nRST_IO  
I
µA  
OZH  
and 5.5V,  
RSO = 0  
T
Input Voltage Low  
Input Voltage High  
Input Hysteresis  
V
RSO = 0  
RSO = 0  
RSO = 0  
0.4  
1
V
V
V
IL  
V
1.4  
IH  
V
0.05  
HYS  
V
V
= 5.5V,  
= 0V and  
T
T
= +25°C  
0.001  
MBATT  
A
Input Leakage Current  
I
µA  
i
nRST_IO  
= +85°C  
0.01  
5.5V, RSO = 0  
A
Maxim Integrated  
12  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
Electrical Characteristics (continued)  
(V  
= 3.6V, I  
= 0µA, T = -40°C to +85°C, unless otherwise specified, typical values are at T = +25°C.) (Note 4)  
MBATT  
BBATT  
A
A
PARAMETER  
LOGIC  
DEDICATED ACTIVE-LOW OPEN-DRAIN OUTPUTSnIRQ  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Output Voltage Low  
V
I
= 4mA  
SINK  
0.4  
1
V
OL  
T
T
= +25°C  
= +85°C  
0.001  
0.01  
A
Output High Leakage  
Current  
I
V
= 5.5V  
µA  
OZH  
MBATT  
A
DEDICATED INPUTEN0, EN1, EN2, SHDN, ACOK, LID  
Input Voltage Low  
Input Voltage High  
Input Hysteresis  
V
0.4  
V
V
V
IL  
V
1.4  
IH  
V
0.05  
10  
HYS  
R
EN0, OTP_EN0AL = 1, Figure 22  
ACOK, OTP_ACOKAL = 1, Figure 25  
LID, OTP_LIDAL = 1, Figure 26  
PUEN0  
R
100  
100  
100  
10  
PUACOK  
Internal Pullup Resistance  
kΩ  
kΩ  
R
PULID  
R
SHDN, OTP_SHDNAL = 1, Figure 27  
EN0, OTP_EN0AL = 0, Figure 22  
ACOK, OTP_ACOKAL = 0, Figure 25  
LID, OTP_LIDAL = 0, Figure 26  
PUSHDN  
R
PDEN0  
R
100  
100  
100  
PDACOK  
Internal Pulldown  
Resistance  
R
PDLID  
R
SHDN, OTP_SHDNAL = 0, Figure 27  
PDSHDN  
TIMING CLOCK OUTPUT32K_OUT0  
Output Voltage Low  
V
I
I
= 4mA, V = 1.7V  
GPIO_INB  
0.4  
1
V
V
OL  
SINK  
= 2mA, OTP_32K = 0,  
0.7 x  
V
GPIO-INB  
SOURCE  
Output Voltage High  
V
OH  
V
= 1.7V  
GPIO_INB  
Output High Leakage  
Current  
T = +25°C, OTP_32K = 1,  
A
V
I
0.001  
µA  
OZH  
= 1.7V  
GPIO_INB  
GPIO INPUTGPIO0-GPIO7  
GPIO0-3  
GPIO4-7  
0.5  
0.5  
Input Voltage Low  
V
V
V
IL  
0.7 x  
GPIO0-3  
GPIO4-7  
V
GPIO_INA  
Input Voltage High  
V
IH  
0.7 x  
V
GPIO_INB  
Input Hysteresis  
0.25  
V
V
HYS  
V
V
= 5.5V  
= 5.5V  
GPIO_INB  
= 0V and 5.5V  
T
T
= +25°C  
= +85°C  
0.001  
1
GPIO_INA  
A
Input Leakage Current  
I
µA  
i
0.01  
V
A
IN  
Maxim Integrated  
13  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
Electrical Characteristics (continued)  
(V  
= 3.6V, I  
= 0µA, T = -40°C to +85°C, unless otherwise specified, typical values are at T = +25°C.) (Note 4)  
MBATT  
BBATT  
A
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
GPIO PUSH-PULL OUTPUTGPIO0-GPIO7  
I
I
= 4mA  
0.08  
0.25  
SINK  
SINK  
Output Voltage Low  
Output Voltage High  
V
V
OL  
= 12mA  
0.7 x  
GPIO0-3, I  
= 4mA  
= 4mA  
SOURCE  
SOURCE  
V
GPIO_INA  
V
V
OH  
0.7 x  
GPIO4-7, I  
V
GPIO_INB  
GPIO OPEN-DRAIN OUTPUTGPIO0-GPIO7  
I
I
= 4mA  
0.08  
0.25  
SINK  
SINK  
Output Voltage Low  
V
V
OL  
= 12mA  
V
= 5.5V, T = +25°C  
GPIO_INx  
A
0.01  
0.1  
1.0  
internal pullup/pulldown disabled  
Output High Leakage  
Current  
I
µA  
OH  
V
= 5.5V, T = +85°C  
GPIO_INx  
A
internal pullup/pulldown disabled  
GPIO PULL RESISTANCESGPIO0-GPIO7  
Pullup Resistance  
R
R
Note 5  
Note 5  
50  
50  
100  
100  
160  
160  
kΩ  
kΩ  
PU  
PD  
Pulldown Resistance  
SDA AND SCL I/O STAGESSDA, SCL  
SCL, SDA Input High  
Voltage  
0.7 x  
V
INI2C  
V
V
V
V
IH  
SCL, SDA Input Low  
Voltage  
0.3 x  
V
IL  
V
INI2C  
0.05 x  
SCL, SDA Input Hysteresis  
V
HYS  
V
INI2C  
SCL, SDA Input Current  
SDA Output Low Voltage  
I
V
= 3.6V or 0V  
-10  
+10  
0.4  
μA  
i
I2CIN  
V
Sinking 20mA  
V
OL  
Note 4: Limits are 100% production tested at T = +25°C. Limits over the operating temperature range are guaranteed through  
A
correlation using statistical quality control methods.  
Note 5: The min/max variation that is shown is based on process statistics. These parameters are not production tested.  
Maxim Integrated  
14  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
Electrical CharacteristicsSD0  
(V  
= 3.6V, V  
= 1.0V, C  
= 2 x 22µF, L0A = L0B = 1.0µH, T = -40°C to +85°C. Typical specifications are at T = +25°C,  
IN_  
SD0  
SD0  
A
A
unless otherwise noted.) (Note 26)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
STEP-DOWN REGULATOR  
V
AVSD  
AVSD, INA_SD0, and INB_SD0 must be  
connected together  
Input Voltage Range  
V
V
2.6  
5.5  
V
INA_SD0  
INB_SD0  
V
= 1.2V, accuracy includes  
SD0  
T
T
= +25°C  
-1.5  
-2.5  
0
0
+1.5  
+2.5  
A
static variations in line and  
temperature, no load, PWM  
mode, normal-power mode  
= -40°C to  
A
+85°C  
V
from 0.8V to 1.4V,  
SD0  
T
= +25°C  
-2.0  
-3.0  
0
0
+2.0  
+3.0  
A
accuracy includes static  
variations in line and  
temperature, no load, PWM  
mode, normal-power mode  
T
= -40°C to  
A
+85°C  
V
from 1.0V to 1.4V,  
Output Voltage  
Accuracy  
SD0  
V
%
SD0  
accuracy includes transient  
variations in line, load, and  
temperature during dynamic  
load transients from 0mA to  
1.4A with a transient rate of  
3.2A/µs, PWM mode or skip  
mode, normal-power mode  
T
= -40°C to  
A
±5  
+85°C  
T
= -5°C to  
A
-4.0  
-5.0  
0
0
+4.0  
+5.0  
Low-power mode,  
+85°C  
I
= 0mA to 5mA,  
SD0  
T
= -40°C to  
A
any output voltage  
+85°C  
Load Regulation  
Line Regulation  
LDREG  
-0.25  
0.08  
%/A  
%/V  
SD0  
V
= 2.6V to 5V  
MBATT  
Shutdown Supply  
Current  
I
0.1  
µA  
SHDN  
I
I
No switching, remote output voltage sensing off  
Switching, no load, skip mode  
Low-power mode  
32  
40  
10  
Q_SD0  
Q_SD0  
I
I
Q_LPM_SD0  
µA  
Additional current consumed  
by SD0 remote output voltage  
sense circuitry total in normal  
ROVS_EN_  
SD0 = 1  
Supply Quiescent  
Current  
10  
Q_SNS_EN0  
mode is I = I  
+
ROVS_EN_  
SD0 = 0  
Q
Q_SD0  
0.1  
20  
I
Q_SNS_EN0  
I
Switching, no load, forced PWM mode  
mA  
Q_PWM_SD0  
Maxim Integrated  
15  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
Electrical CharacteristicsSD0 (continued)  
(V  
= 3.6V, V  
= 1.0V, C  
= 2 x 22µF, L0A = L0B = 1.0µH, T = -40°C to +85°C. Typical specifications are at T = +25°C,  
IN_  
SD0  
SD0  
A
A
unless otherwise noted.) (Note 26)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Output Voltage Range  
12.5mV steps  
< V  
0.6000  
1.4000  
4.84  
V
V
< 5.5V  
AVSD  
8000  
6000  
5
AVSD_LOW  
Maximum Output  
Current (Note 9)  
I
2.6V < V < V  
AVSD_LOW  
mA  
MAX_SD0  
IN  
Low-power mode  
Switching Frequency  
Peak Current Limit  
f
Normal operation  
3.96  
4.4  
MHz  
mA  
SW  
I
Per phase, FPWM mode, V  
Per phase, FPWM mode, V  
Per phase, FPWM mode, V  
Per phase, FPWM mode, V  
FPWM mode  
> V  
< V  
> V  
< V  
4400  
3600  
3600  
3600  
1500  
60  
LIMPP_HIGH0  
AVSD  
AVSD  
AVSD  
AVSD  
AVSD_LOW  
AVSD_LOW  
AVSD_LOW  
AVSD_LOW  
I
LIMPP_LOW0  
I
LIMNV_HIGH0  
Valley Current Limit  
mA  
I
LIMNV_LOW0  
Negative Current Limit  
PMOS On-Resistance  
NMOS On-Resistance  
I
mA  
mΩ  
mΩ  
LIMNN0  
R
R
IN_ = 3.6V, each phase  
IN_ = 3.6V, each phase  
ON_PCH0  
50  
ON_NCH0  
NMOS Zero-Crossing  
Threshold  
Skip mode  
20  
mA  
Skip mode, no load, C  
Skip mode, no load, C  
= 2 x 22µF  
= 4 x 22µF  
40  
20  
SD0  
SD0  
V
Ripple in Skip  
SD0  
mV  
mV  
P-P  
P-P  
Mode (Note 8)  
V
Ripple in PWM  
FPWM mode, ESR = 1.5mΩ,  
ESL = 0.2nH, C = 2 x 22µF  
SD0  
2
Mode  
SD0  
T
T
= +25°C  
= +85°C  
0.1  
1
±1  
A
LX0 Leakage Current  
LX_ = PG_ or IN_  
µA  
A
Output disabled, V  
FB_SD0 to PG_SD0, active discharge disabled  
(nADE_SD0 = 1)  
= 1V, current from  
OUT  
FB_SD0 Disabled  
Leakage Current  
0.1  
µA  
Output disabled, resistance from FB_SD0 to  
PGx_SD0, active discharge enabled  
(nADE_SD0 = 0)  
FB_SD0 Active  
Discharge Resistance  
50  
44  
Nominal capacitor value  
Minimum capacitor value  
Minimum Output  
Capacitance for Stable  
Operation  
0µA < I  
6000mA,  
MAX ESR = 20mΩ  
<
OUT0  
after deration for initial  
accuracy, temperature  
coefficient, DC bias  
voltage, and aging  
C
µF  
µH  
OSD0  
30  
Output Inductor  
L
MAX DCR = 100mΩ  
1.0  
Maxim Integrated  
16  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
Electrical CharacteristicsSD0 (continued)  
(V  
= 3.6V, V  
= 1.0V, C  
= 2 x 22µF, L0A = L0B = 1.0µH, T = -40°C to +85°C. Typical specifications are at T = +25°C,  
IN_  
SD0  
SD0  
A
A
unless otherwise noted.) (Note 26)  
PARAMETER SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
All other regulators are  
off and L_B_EN = 0  
(i.e., central bias off and  
buck bias is off)  
185  
At least one LDO is on  
Time from the enable or L_B_EN = 1 and all  
Turn-On Time  
t
signal to the output  
starting to increase  
step-down are off  
(i.e., central bias is on  
and buck bias is off)  
135  
µs  
ONSD0  
At least one other  
step-down regulator is  
on (i.e., central bias is on  
and buck bias is on)  
22  
After the regulator is disabled; the output voltage  
discharges based on load and C . To ensure  
fast discharge times, enable the active-discharge  
OUT  
Turn-Off Time  
t
0.1  
µs  
OFFSD0  
resistor  
SR_SD0 [1:0] = 0b01  
SR_SD0 [1:0] = 0b00  
27.5  
13.75  
55  
Dynamic Voltage  
Change Ramp Rate  
Note 10  
mV/µs  
SR_SD0 [1:0] = 0b10  
SR_SD0 [1:0] = 0b11  
(Note 11)  
100  
OTP_SD_SS = 1  
OTP_SD_SS = 0  
25  
14  
dV/dt_SS_  
SD0  
Soft-Start Slew Rate  
mV/µs  
mV  
Maximum Remote  
Sense Compensation  
Range  
Voltage drop through power and ground plane,  
V
430  
RSR  
V
V
V
= V  
- (V  
- V  
)
RSR  
SD0  
SD0  
FB_SD0  
SNSP_SD0  
SNSN_SD0  
Output POK Threshold  
V
falling, 3% hysteresis, T = +25°C  
A
70  
75  
8
80  
%V  
SD0  
POK_SD0  
Power-OK Noise  
Pulse Immunity  
t
pulsed from 100% to 80% of regulation  
µs  
POKNFSD0  
Maxim Integrated  
17  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
Electrical CharacteristicsSD1  
(V  
= 3.6V, V  
= 1.0V, C  
= 22µF, L1 = 1.0µH, T = -40°C to +85°C. Typical specifications are at T = +25°C, unless  
IN_  
SD1  
SD1 A A  
otherwise noted.) (Note 26)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
STEP-DOWN REGULATOR  
V
AVSD  
Input Voltage Range  
AVSD and IN_SD1 must be connected together  
2.6  
-1.5  
-2.5  
-2.0  
-3.0  
5.5  
V
V
IN_SD1  
V
= 1.2V, accuracy includes  
SD1  
T
T
= +25°C  
0
0
0
0
+1.5  
+2.5  
+2.0  
+3.0  
A
static variations in line and  
temperature, no load, PWM mode,  
normal-power mode  
= -40°C to  
A
+85°C  
V
from 0.8V to 1.5V, accuracy  
SD1  
T
= +25°C  
A
includes static variations in line  
and temperature, no load,  
PWM mode, normal-power mode  
T
= -40°C to  
A
+85°C  
Output Voltage  
Accuracy  
V
from 1.0V to 1.5V, accuracy  
SD1  
V
%
SD1  
includes transient variations in  
line, load, and temperature during  
dynamic load transients from  
0mA to 1.4A with a transient rate  
of 3.2A/µs, PWM mode or skip  
mode, normal-power mode  
T
= -40°C to  
A
±5  
+85°C  
T
= -5°C to  
A
-4.0  
-5.0  
0
0
+4.0  
+5.0  
Low-power mode  
+85°C  
I
= 0mA to 5mA,  
SD1  
T
= -40°C to  
A
any output voltage  
+85°C  
Load Regulation  
Line Regulation  
LDREG  
-0.25  
0.08  
%/A  
%/V  
SD1  
V
= 2.6V to 5V  
MBATT  
Shutdown Supply  
Current  
I
0.1  
µA  
SHDN  
I
I
No switching, remote output voltage sensing off  
Switching, no load, skip mode  
Low-power mode  
16  
20  
5
Q_SD1  
Q_SD1  
I
I
Q_LPM_SD1  
µA  
Supply Quiescent  
Current  
ROVS_EN_  
SD1 = 1  
Additional current consumed by  
SD0 remote output voltage sense  
circuitry total in normal mode is  
10  
Q_SNS_EN1  
ROVS_EN_  
SD1 = 0  
0.1  
10  
I
= I  
+ I  
Q
Q_SD0 Q_SNS_EN0  
I
Switching, no load, forced PWM mode  
12.5mV steps  
mA  
V
Q_PWM_SD1  
Output Voltage Range  
0.60  
1.55  
Maxim Integrated  
18  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
Electrical CharacteristicsSD1 (continued)  
(V  
= 3.6V, V  
= 1.0V, C  
= 22µF, L1 = 1.0µH, T = -40°C to +85°C. Typical specifications are at T = +25°C, unless  
IN_  
SD1  
SD1 A A  
otherwise noted.) (Note 26)  
PARAMETER  
SYMBOL  
CONDITIONS  
< 5.5V  
MIN  
TYP  
MAX UNITS  
V
< V  
AVSD  
AVSD_LOW  
3000  
2500  
Maximum Output  
Current (Note 9)  
I
2.6V < V < V  
AVSD_LOW  
mA  
MAX_SD1  
IN  
Low-power mode  
Normal operation  
5
Switching Frequency  
f
3.96  
4.4  
4.84  
MHz  
mA  
SW  
I
FPWM mode, V  
FPWM mode, V  
FPWM mode, V  
FPWM mode, V  
FPWM mode  
IN_ = 3.6V  
> V  
< V  
> V  
< V  
3750  
3050  
3150  
3050  
775  
80  
LIMPP_HIGH1  
AVSD  
AVSD  
AVSD  
AVSD  
AVSD_LOW  
AVSD_LOW  
AVSD_LOW  
AVSD_LOW  
Peak Current Limit  
Valley Current Limit  
I
LIMPP_LOW1  
I
LIMNV_HIGH1  
mA  
I
LIMNV_LOW1  
Negative Current Limit  
PMOS On-Resistance  
NMOS On-Resistance  
I
mA  
mΩ  
mΩ  
LIMNN1  
R
ON_PCH1  
ON_NCH1  
R
IN_ = 3.6V  
60  
NMOS Zero-Crossing  
Threshold  
Skip mode  
20  
mA  
Skip mode, no load, C  
Skip mode, no load, C  
= 22µF  
= 44µF  
40  
20  
SD1  
SD1  
V
Ripple in Skip  
SD1  
Mode (Note 8)  
mV  
P-P  
V
Mode  
Ripple in PWM  
FPWM mode, ESR = 3.0mΩ, ESL = 0.4nH,  
C = 22µF  
SD1  
SD1  
4
T
= +25°C  
= +85°C  
0.1  
1
±1  
A
A
LX_SD1 Leakage  
Current  
LX_SD1 = PG_SD1  
or IN_SD1  
µA  
µA  
T
Output disabled, V  
= 1V, current from  
FB_SD1 to PG_SD1, active discharge disabled  
OUT  
FB_SD1 Disabled  
Leakage Current  
0.1  
(nADE_SD1 = 1)  
Output disabled, resistance from FB_SD1 to PGA_  
SD1, active discharge enabled  
(nADE_SD1 = 0)  
FB_SD1 Active  
Discharge Resistance  
100  
22  
Nominal capacitor value  
Minimum capacitor value  
Minimum Output  
Capacitance for Stable  
Operation  
0µA < I  
3000mA,  
MAX ESR = 20mΩ  
<
OUT1  
after deration for initial  
accuracy, temperature  
coefficient, DC bias voltage,  
and aging  
C
µF  
µH  
OSD1  
15  
Output Inductor  
L
MAX DCR = 100mΩ  
1.0  
Maxim Integrated  
19  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
Electrical CharacteristicsSD1 (continued)  
(V  
= 3.6V, V  
= 1.0V, C  
= 22µF, L1 = 1.0µH, T = -40°C to +85°C. Typical specifications are at T = +25°C, unless  
IN_  
SD1  
SD1  
A
A
otherwise noted.) (Note 26)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
All other regulators are off and  
L_B_EN = 0  
(i.e., central bias off and buck  
bias is off)  
185  
At least one LDO is on or  
L_B_EN = 1 and all  
step-down are off  
(i.e., central bias is on and  
buck bias is off)  
Time from the  
enable signal to  
the output starting  
to increase  
Turn-On Time  
t
135  
µs  
ONSD1  
At least one other step-down  
regulator is on  
(i.e., central bias is on and  
buck bias is on)  
22  
After the regulator is disabled, the output voltage  
discharges based on load and C . To ensure fast  
Turn-Off Time  
t
0.1  
µs  
OFFSD1  
OUT  
discharge times, enable the active-discharge resistor  
SR_SD1 [1:0] = 0b01  
27.5  
13.75  
55  
SR_SD1 [1:0] = 0b00  
Note 10  
Dynamic Voltage  
Change Ramp Rate  
mV/µs  
SR_SD1 [1:0] = 0b10  
SR_SD1 [1:0] = 0b11 (Note 11)  
OTP_SD_SS = 1  
100  
25  
dV/dt_SS_  
SD1  
Soft-Start Slew Rate  
mV/µs  
mV  
OTP_SD_SS = 0  
14  
Maximum Remote  
Sense Compensation  
Range  
Voltage drop through power and ground plane,  
V
430  
RSR  
V
V
V
= V  
- (V  
- V  
)
RSR  
SD1  
SD1  
FB_SD1  
SNSP_SD1  
SNSN_SD1  
Output POK Threshold  
V
falling, 3% hysteresis, T = +25°C  
A
71  
75  
8
79  
%V  
SD1  
POK_SD1  
Power-OK Noise Pulse  
Immunity  
t
pulsed from 100% to 80% of regulation  
µs  
POKNFSD1  
Maxim Integrated  
20  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
Electrical CharacteristicsSD2  
(V  
= 3.6V, V  
= 1.8V, C  
= 22µF, L2 = 1.0µH, T = -40°C to 85°C. Typical specifications are at T = +25°C, unless  
IN_  
SD2  
SD2 A A  
otherwise noted.) (Note 26)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
STEP-DOWN REGULATOR  
V
AVSD and IN_SD2 must be connected  
together  
AVSD  
Input Voltage Range  
2.6  
5.5  
V
V
IN_SD2  
V
= 1.8V, accuracy  
SD2  
T
= +25°C  
-1.5  
0
0
0
0
+1.5  
A
includes static variations in  
line and temperature, no load,  
PWM mode, normal-power  
mode  
T
= -40°C  
A
-2.5  
-2.0  
-3.0  
+2.5  
+2.0  
+3.0  
to +85°C  
V
from 1.2V to 2.8V,  
SD2  
T
= +25°C  
A
accuracy includes static  
variations in line and  
temperature, no load, PWM  
mode, normal-power mode  
T
= -40°C  
A
to +85°C  
Output Voltage  
Accuracy  
V
from 1.2V to 2.8V,  
V
%
SD2  
SD2  
accuracy includes transient  
variations in line, load, and  
temperature during dynamic  
load transients from 0mA to  
1.4A with a transient rate of  
3.2A/µs, PWM mode or skip  
mode, normal-power mode  
T
= -40°C  
A
±5  
to +85°C  
T
= -5°C to  
A
-4.0  
-5.0  
0
0
+4.0  
+5.0  
Low-power mode  
+85°C  
I
= 0mA to 5mA, any  
SD2  
T
= -40°C  
A
output voltage  
to +85°C  
Load Regulation  
Line Regulation  
LDREG  
-0.25  
0.04  
%/A  
%/V  
SD2  
V
= 2.6V to 5V  
MBATT  
Shutdown Supply  
Current  
I
0.1  
16  
µA  
SHDN  
No switching, remote output voltage  
sensing off  
I
I
Q_SD2  
Q_SD2  
µA  
Supply Quiescent  
Current  
Switching, no load, skip mode  
20  
5
I
Low-power mode, V  
= 1.8V  
Q_LPM_SD2  
OUT  
I
Switching, no load, forced PWM mode  
12.5mV steps  
10  
mA  
V
Q_PWM_SD2  
Output Voltage Range  
0.6000  
3.96  
3.3875  
4.84  
Normal operation  
2000  
5
Maximum Output  
Current  
I
mA  
MAX_SD2  
Low-power mode  
Switching Frequency  
f
Normal operation  
4.4  
MHz  
SW  
Maxim Integrated  
21  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
Electrical CharacteristicsSD2 (continued)  
(V  
= 3.6V, V  
= 1.8V, C  
= 22µF, L2 = 1.0µH, T = -40°C to 85°C. Typical specifications are at T = +25°C, unless  
IN_  
SD2  
SD2 A A  
otherwise noted.) (Note 26)  
PARAMETER  
Peak Current Limit  
SYMBOL  
CONDITIONS  
FPWM mode, T = +25°C  
MIN  
2500  
2000  
TYP  
3000  
2500  
620  
MAX  
3600  
3000  
UNITS  
mA  
I
I
LIMPP2  
LIMNV2  
LIMNN2  
A
Valley Current Limit  
Negative Current Limit  
PMOS On-Resistance  
NMOS On-Resistance  
FPWM mode, T = +25°C  
A
mA  
I
FPWM mode  
IN_ = 3.6V  
IN_ = 3.6V  
mA  
R
100  
mΩ  
ON_PCH2  
ON_NCH2  
R
75  
mΩ  
NMOS Zero-Crossing  
Threshold  
Skip mode  
20  
mA  
No load, C  
No load, C  
= 10µF  
= 20µF  
40  
20  
SD2  
SD2  
V
Ripple in SKIP  
SD2  
mV  
mV  
P-P  
P-P  
Mode (Note 8)  
V
Ripple in PWM  
SD2  
No load, ESR = 3.0 mΩ, ESL = 0.4 nH  
2
Mode  
T
= +25°C  
= +85°C  
0.1  
1
±1  
A
LX_SD2 Leakage  
Current  
LX_SD2 = PG_  
SD2 or IN_SD2  
µA  
T
A
Output disabled, V  
FB_SD2 to PG_SD2, active discharge  
disabled (nADE_SD2 = 1)  
= 1V, current from  
OUT  
FB_SD2 Disabled  
Leakage Current  
0.1  
µA  
Output disabled, resistance from FB_SD2 to  
PG_SD2, active discharge enabled  
(nADE_SD2 = 0)  
FB_SD2 Active  
Discharge Resistance  
100  
22  
Nominal capacitor  
value  
Minimum capacitor  
Minimum Output  
Capacitance for Stable  
Operation  
0µA < I  
2000mA, MAX ESR  
= 20mΩ  
<
OUT1  
value after deration  
for initial accuracy,  
temperature  
C
µF  
µH  
OSD1  
14  
coefficient, DC bias  
voltage, and aging  
Output Inductor  
L
MAX DCR = 100mΩ  
1.0  
Maxim Integrated  
22  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
Electrical CharacteristicsSD2 (continued)  
(V  
= 3.6V, V  
= 1.8V, C  
= 22µF, L2 = 1.0µH, T = -40°C to 85°C. Typical specifications are at T = +25°C, unless  
IN_  
SD2  
SD2  
A
A
otherwise noted.) (Note 26)  
PARAMETER  
SYMBOL  
CONDITIONS  
All other regulators are  
MIN  
TYP  
MAX  
UNITS  
off and L_B_EN = 0  
(i.e., central bias off and  
buck bias is off)  
185  
At least one LDO is on  
or L_B_EN = 1 and all  
step-down are off  
(i.e., central bias is on  
and buck bias is off)  
Time from the  
enable signal to the  
output starting to  
increase  
Turn-On Time  
t
135  
µs  
ONSD2  
At least one other step-  
down regulator is on  
(i.e., central bias is on  
and buck bias is on)  
22  
After the regulator is disabled, the output  
voltage discharges based on load and C  
To ensure fast discharge times, enable the  
.
OUT  
Turn-Off Time  
t
0.1  
µs  
OFFSD0  
active-discharge resistor  
SR_SD2 [1:0] = 0b01  
27.5  
13.75  
55  
SR_SD2 [1:0] = 0b00  
SR_SD2 [1:0] = 0b10  
Dynamic Voltage  
Change Ramp Rate  
Note 10  
mV/µs  
mV/µs  
SR_SD2 [1:0] = 0b11  
(Note 11)  
100  
OTP_SD_SS = 1  
OTP_SD_SS = 0  
25  
14  
90  
dV/dt_SS_  
SD2  
Soft-Start Slew Rate  
Output POK Threshold  
V
V
falling, 3% hysteresis, T = +25°C  
A
86  
94  
%V  
SD2  
POK_SD2  
SD2  
SD2  
Power-OK Noise Pulse  
Immunity  
t
V
pulsed from 100% to 80% of regulation  
8
µs  
POKNFSD  
Maxim Integrated  
23  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
Electrical CharacteristicsSD3  
(V  
= 3.6V, V  
= 1.5V, C  
= 22µF, L3 = 1.0µH, T = -40°C to 85°C. Typical specifications are at T = +25°C, unless  
IN_SD3  
SD3  
SD3  
A
A
otherwise noted.) (Note 26)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
STEP-DOWN REGULATOR  
V
AVSD  
Input Voltage Range  
AVSD and IN_SD3 must be connected together  
2.6  
-1.5  
-2.5  
-2.0  
-3.0  
5.5  
V
V
IN_SD3  
V
= 1.8V, accuracy includes  
SD3  
T
= +25°C  
0
0
0
0
+1.5  
+2.5  
+2.0  
+3.0  
A
static variations in line and  
temperature, no load, PWM  
mode, normal-power mode  
T
= -40°C to  
A
+85°C  
V
from 1.2V to 2.8V, accuracy  
SD3  
T
= +25°C  
A
includes static variations in line  
and temperature, no load,  
PWM mode, normal-power mode  
T
= -40°C to  
A
+85°C  
Output Voltage  
Accuracy  
V
from 1.2V to 2.8V, accuracy  
SD3  
V
%
SD3  
includes transient variations in  
line, load, and temperature during  
dynamic load transients from  
0mA to 1.4A with a transient rate  
of 3.2A/µs, PWM mode or skip  
mode, normal-power mode  
T
= -40°C to  
A
±5  
+85°C  
T
= -5°C to  
A
-4.0  
-5.0  
0
0
+4.0  
+5.0  
Low-power mode  
+85°C  
I
= 0mA to 5mA,  
SD3  
T
= -40°C to  
any output voltage  
A
+85°C  
Load Regulation  
Line Regulation  
LDREG  
-0.25  
0.04  
%/A  
%/V  
SD3  
V
= 2.6V to 5V  
MBATT  
Shutdown Supply  
Current  
I
0.1  
µA  
SHDN  
I
I
No switching, remote output voltage sensing off  
16  
20  
5
Q_SD3  
Q_SD3  
Switching, no load, skip mode  
µA  
Supply Quiescent  
Current  
I
Low-power mode, V  
= 1.8V  
Q_LPM_SD3  
OUT  
I
Switching, no load, forced PWM mode  
12.5mV steps  
10  
mA  
V
Q_PWM_SD3  
Output Voltage Range  
Default Output Voltage  
0.6000  
3.3875  
D_SD3 = GND  
1.2  
D_SD3 = unconnected; this value is set by OTP;  
see the Register Map for more information  
OTP  
1.35  
V
D_SD3 = MBATT  
Maxim Integrated  
24  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
Electrical CharacteristicsSD3 (continued)  
(V  
= 3.6V, V  
= 1.5V, C  
= 22µF, L3 = 1.0µH, T = -40°C to 85°C. Typical specifications are at T = +25°C, unless  
IN_SD3  
SD3  
SD3  
A
A
otherwise noted.) (Note 26)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
2000  
5
MAX  
UNITS  
Normal operation  
Low-power mode  
Normal operation  
Maximum Output  
Current  
I
mA  
MAX_SD3  
Switching Frequency  
Peak Current Limit  
f
3.96  
2500  
2000  
4.4  
4.84  
3600  
3000  
MHz  
mA  
mA  
mA  
mΩ  
mΩ  
SW  
I
I
FPWM mode, T = +25°C  
3000  
2500  
620  
100  
75  
LIMPP3  
LIMNV3  
LIMNN3  
A
Valley Current Limit  
Negative Current Limit  
PMOS On-Resistance  
NMOS On-Resistance  
FPWM mode, T = +25°C  
A
I
FPWM mode  
R
R
V
V
= 3.6V  
= 3.6V  
ON_PCH3  
IN_SD3  
IN_SD3  
ON_NCH3  
NMOS Zero-Crossing  
Threshold  
Skip mode  
20  
mA  
No load, C  
No load, C  
= 10µF  
= 20µF  
40  
20  
SD3  
SD3  
V
Ripple in SKIP  
SD3  
mV  
mV  
P-P  
P-P  
Mode (Note 8)  
V
Ripple in PWM  
SD3  
No load, ESR = 3.0mΩ, ESL = 0.4nH  
2
Mode  
T
= +25°C  
= +85°C  
0.1  
1
±1  
A
LX_SD3 Leakage  
Current  
LX_SD3 = PG_SD3 or IN_SD3  
Output disabled, V  
µA  
T
A
= 1V, current from  
FB_SD3 to PG_SD3, active discharge disabled  
OUT  
FB_SD3 Disabled  
Leakage Current  
0.1  
µA  
(nADE_SD3 = 1)  
Output disabled, resistance from FB_SD3 to  
PG_SD3, active discharge enabled  
(nADE_SD3 = 0)  
FB_SD3 Active  
Discharge Resistance  
100  
22  
Nominal capacitor value  
Minimum capacitor value  
Minimum Output  
Capacitance for Stable  
Operation  
0µA < I  
2000mA,  
MAX ESR = 20mΩ  
<
OUT3  
after deration for initial  
accuracy, temperature  
coefficient, DC bias  
voltage, and aging  
C
µF  
µH  
OSD3  
14  
Output Inductor  
L
MAX DCR = 100 mΩ  
1.0  
Maxim Integrated  
25  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
Electrical CharacteristicsSD3 (continued)  
(V  
= 3.6V, V  
= 1.5V, C  
= 22µF, L3 = 1.0µH, T = -40°C to 85°C. Typical specifications are at T = +25°C, unless  
IN_SD3  
SD3  
SD3  
A
A
otherwise noted.) (Note 26)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
All other regulators are off and  
L_B_EN = 0  
(i.e., central bias off and buck  
bias is off)  
185  
Time from the  
enable signal  
to the output  
starting to  
At least one LDO is on or  
L_B_EN = 1 and all step-down  
are off  
(i.e., central bias is on and  
buck bias is off)  
Turn-On Time  
t
135  
µs  
ONSD3  
increase  
At least one other step-down  
regulator is on  
(i.e., central bias is on and  
buck bias is on)  
22  
After the regulator is disabled, the output voltage  
discharges based on load and C . To ensure  
fast discharge times, enable the active-discharge  
OUT  
Turn-Off Time  
t
0.1  
µs  
OFFSD0  
resistor  
SR_SD3 [1:0] = 0b01  
27.5  
13.75  
55  
SR_SD3 [1:0] = 0b00  
Note 10  
Dynamic Voltage  
Change Ramp Rate  
mV/µs  
mV/µs  
SR_SD3 [1:0] = 0b10  
SR_SD3 [1:0] = 0b11 (Note 11)  
OTP_SD_SS = 1  
100  
25  
dV/dt_SS_  
SD3  
Soft-Start Slew Rate  
OTP_SD_SS = 0  
14  
Output POK Threshold  
V
V
falling, 3% hysteresis, T = +25°C  
A
86  
90  
94  
%V  
SD3  
POK_SD3  
SD3  
SD3  
Power-OK Noise Pulse  
Immunity  
t
V
pulsed from 100% to 80% of regulation  
8
2
µs  
POKNFSD3  
D_SD3 TRI-LEVEL LOGIC INPUT  
Maximum D_SD3 to  
Ground Resistance  
to Achieve the “LOW”  
Logic Level  
The impedance from D_SD3 to ground must be  
less than 2kΩ to set the “LOW” state; Maxim  
recommends that D_SD3 be connected directly to  
ground to achieve the “LOW” state  
kΩ  
kΩ  
Maximum D_SD3 to  
Ground Resistance  
to Achieve the  
“UNCONNECTED”  
Logic Level  
The impedance at D_SD3 must be larger than  
200kΩ to set the “UNCONNECTED” state; Maxim  
recommends that D_SD3 be left unconnected  
(floating) to achieve the “UNCONNECTED” state  
200  
Maxim Integrated  
26  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
Electrical CharacteristicsSD3 (continued)  
(V  
= 3.6V, V  
= 1.5V, C  
= 22µF, L3 = 1.0µH, T = -40°C to 85°C. Typical specifications are at T = +25°C, unless  
IN_SD3  
SD3  
SD3  
A
A
otherwise noted.) (Note 26)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Maximum D_SD3 to  
Ground Resistance to  
Achieve the “HIGH”  
Logic Level  
The impedance from D_SD3 to MBATT must be  
less than 2kΩ to set the “HIGH” state; Maxim  
recommends that D_SD3 be connected directly to  
ground to achieve the “HIGH” state  
2
kΩ  
From MBATT okay until the D_SD3 detects its  
state; after state detection, D_SD3 becomes  
high-impedance  
D_SD3 Force Time  
t
22  
µs  
DSD3LTCH  
D_SD3 Input Leakage  
Current  
T
= +25°C, after the force time has expired  
0.01  
µA  
A
Note 6: Limits are 100% production tested at T = +25°C. Limits over the operating temperature range are guaranteed through  
A
correlation using statistical quality control methods.  
Note 7:  
SD0 and SD1 have remote output voltage sensing. When enabled, the remote output voltage sensing compensates for  
voltage drops (up to VRSR) in a PCBs power path due to parasitic resistance. As a result of this compensation, the  
output voltage directly at the output of SD0 and SD1 may vary up to VRSR, but the voltage at the remote sense point  
complies with the load regulation specifications. When the remote sensing feature is disabled, the output voltage is  
sensed at FB_SDx.  
Note 8: Skip mode output voltage ripple decreases as the output capacitance increases. Typically a system’s point-of-load  
capacitance contributes to the step-down regulators local output capacitance to decrease the overall skip-mode output  
voltage ripple.  
Note 9: Maximum output current refers to the maximum current that the step-down regulator is electrically capable of delivering.  
Thermal and reliability limits can reduce the maximum sustainable output current and/or the operation time at maximum  
output current.  
Note 10: During a DVS transition, the regulators output current increases by COUT x dV/dt. In the event that the load current plus  
the additional current imposed by the DVS transition reaches the regulator’s current limit, the current limit is enforced.  
When the current limit is enforced, the advertised DVS transition rate (dV/dt) does not occur.  
Note 11: For the 0b00, 0b01, and 0b10 settings, the device actively controls the slew rate. For the 0b11 setting, the device drives  
the output voltage as fast as possible and the slew rate is limited by the current limit and the output capacitance.  
Maxim Integrated  
27  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
Electrical Characteristics150mA PMOS  
(V  
= V = 3.7V, C  
= 1.0µF, T = -40°C to +85°C, unless otherwise noted.) (Note 12)  
MBATT  
IN  
OUT A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
OPERATIONAL SPECIFICATIONS  
Input Voltage Range  
Undervoltage Lockout  
Battery Voltage Range  
V
Guaranteed by output accuracy  
Rising, 100mV hysteresis  
1.7  
5.5  
1.7  
5.5  
V
V
V
IN_LDOx  
V
1.6  
UVLOxx  
V
Guaranteed by main bias testing  
2.45  
0.8  
MBATT  
50mV/Step (6-bit),  
LDO2, LDO5, LDO6  
V
is the  
INxx  
3.95  
Output Voltage Range  
V
maximum of 3.7V  
V
OUTxx  
MAXxx  
or V +0.3V  
OUT  
12.5mV Step (6-bit), LDO4  
Normal mode  
0.8  
150  
5
1.5875  
Maximum Output  
Current  
Guaranteed by  
output accuracy  
I
mA  
Low-power mode  
Nominal capacitor value  
1.0  
0.7  
1.0  
0.7  
Minimum capacitor value after  
deration for initial accuracy,  
temperature coefficient,  
Normal mode  
Minimum Output  
Capacitance for Stable  
Operation  
DC bias voltage, and aging  
C
µF  
OUTxx  
Nominal capacitor value  
(Note 13, Note 14)  
Minimum capacitor value after  
deration for initial accuracy,  
temperature coefficient,  
Low-power mode  
DC bias voltage, and aging  
BIAS  
Time to enable LDO bias only; central bias is  
already enabled  
Bias Enable Time  
Bias Enable Currents  
t
90  
10  
µs  
LBIAS  
I
LDO bias enabled; L_B_EN = 1  
µA  
QBIAS  
CORE PERFORMANCE SPECIFICATIONS  
V
= V  
+ 0.3V to 5.5V  
NOM  
IN  
with 1.7V minimum,  
Normal mode  
-3  
-5  
+3  
+5  
I
= 0.1mA to I  
,
MAX  
OUT  
V
set to any voltage  
NOM  
Output Voltage  
Accuracy  
%
V
= V  
+ 0.3V to 5.5V  
NOM  
IN  
Low-power  
mode  
with 1.7V minimum,  
I
= 0.1mA to 5mA,  
OUT  
V
set to any voltage  
NOM  
I
= 0.1mA to I  
,
MAX  
OUT  
V
= V  
+ 0.3V with 1.7V  
IN  
NOM  
Normal mode  
0.05  
0.05  
minimum, V  
voltage  
set to any  
NOM  
Load Regulation  
(Note 14)  
%
I
= 0.1mA to 5mA,  
= V  
OUT  
Low-power  
mode  
V
+ 0.3V with 1.7V  
IN  
NOM  
minimum, V  
set to any  
NOM  
voltage  
Maxim Integrated  
28  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
Electrical Characteristics150mA PMOS (continued)  
(V  
= V = 3.7V, C  
= 1.0µF, T = -40°C to +85°C, unless otherwise noted.) (Note 12)  
MBATT  
IN  
OUT A  
PARAMETER  
SYMBOL  
CONDITIONS  
= V  
MIN  
TYP  
MAX  
UNITS  
V
+0.3V to 5.5V  
NOM  
IN  
with 1.7V minimum;  
Normal mode  
0.01  
I
= 0.1mA,  
OUT  
V
set to any voltage  
NOM  
Line Regulation  
(Note 14)  
%/V  
V
= V  
+0.3V to 5.5V  
NOM  
IN  
with 1.7V minimum;  
= 0.1mA,  
Low-power mode  
0.01  
I
OUT  
V
set to any voltage  
NOM  
V
V
= 3.7V  
= 1.7V  
50  
100  
300  
300  
250  
IN  
IN  
I
I
=
OUT  
MAX  
Normal mode  
Dropout Voltage  
V
150  
150  
180  
mV  
%
DOxx  
Low-power mode  
I
= 5mA, V = 3.7V  
OUT IN  
Output Current Limit  
I
V
= 0V, percentage of I  
110  
LIMxx  
OUT  
MAX  
COMP_Lx = 0b00,  
C
C
= 50mΩ,  
= 5nH  
55  
66  
ESR  
ESL  
Normal mode,  
= V  
+0.3V to 5.5V  
with 1.7V absolute  
minimum.  
V
IN  
NOM  
COMP_Lx = 0b01,  
C
C
= 150mΩ,  
= 10nH  
ESR  
ESL  
I
= 1% to  
OUT  
COMP_Lx = 0b10,  
100% to 1% of  
Output Load Transient  
(OVCLMP_EN_Lxx = 1)  
(Note 14)  
C
C
= 500mΩ,  
= 35nH  
99  
I
, V set  
ESR  
ESL  
MAX NOM  
mV  
to any voltage,  
t
C
= t = 1µs,  
R
F
COMP_Lx = 0b11,  
C
C
= 1.0µF  
OUT  
= 1000mΩ,  
= 50nH  
125  
ESR  
ESL  
Low-power mode, V = V  
+ 0.3V to 5.5V with  
NOM  
IN  
1.7V absolute minimum. I  
= 0.05mA to 5mA  
OUT  
25  
5
to 0.05mA, V  
set to any voltage;  
NOM  
t
= t = 1µs, C  
= 1.0µF  
OUT  
R
F
Normal mode, V = V  
+ 0.3V to V  
+ 0.8V  
NOM  
IN  
NOM  
to V  
+ 0.3V with 1.7V absolute minimum; t =  
NOM  
R
t
= 1µs, I  
= I  
, V  
set to any voltage  
F
OUT  
MAX NOM  
Output Line Transient  
(Note 14)  
mV  
Low-power mode, V = V  
+0.3V to V  
NOM  
IN  
NOM  
+0.8V to V  
+0.3V with 1.7V absolute  
NOM  
minimum. t = t = 1µs, I = 5mA,  
OUT  
5
R
F
V
set to any voltage  
NOM  
Maxim Integrated  
29  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
Electrical Characteristics150mA PMOS (continued)  
(V  
= V = 3.7V, C  
= 1.0µF, T = -40°C to +85°C, unless otherwise noted.) (Note 12)  
MBATT  
IN  
OUT A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
79  
68  
50  
39  
35  
81  
71  
52  
45  
39  
52  
43  
38  
33  
28  
MAX  
UNITS  
f = 1kHz  
f = 10kHz  
V
V
V
=
+1V  
= 50mV  
INDC  
NOM  
INAC  
f = 100kHz  
f = 1000kHz  
f = 4450kHz  
f = 1kHz  
Rejection from  
f = 10kHz  
V
V
V
=
INDC  
NOM  
INAC  
V
to V  
IN  
OUT  
+0.5V  
= 50mV  
f = 100kHz  
f = 1000kHz  
f = 4450kHz  
f = 1kHz  
I
I
= 10% of  
OUT  
MAX  
Power Supply  
Rejection  
PSRRxx  
dB  
f = 10kHz  
V
V
V
=
INDC  
NOM  
INAC  
+0.1V  
= 10mV  
f = 100kHz  
f = 1000kHz  
f = 4450kHz  
Low-power mode, I  
rejection from V to V  
IN  
= 1mA, f = 1kHz,  
OUT  
50  
OUT  
V
= 0.8V  
= 1.8V  
= 3.7V  
45  
45  
60  
OUT  
OUT  
OUT  
f = 10Hz to  
Output Noise  
100kHz, I  
=
V
V
µV  
RMS  
OUT  
10% of I  
MAX  
Soft-Start and Dynamic  
Voltage Change Ramp  
Rate  
Lxx_SS = 0  
Lxx_SS = 1  
100  
5
After enabling,  
Note 17  
t
mV/µs  
µA  
SSxx  
Output disabled, V  
= 1V, current from  
OUT  
Output Disabled  
Leakage Current  
OUT_LDOx to GND, active discharge disabled  
0.1  
65  
(Lxx_ADE = 0)  
Output disabled, V  
= 1V, resistance from  
OUT  
Active-Discharge  
Resistance  
OUT_LDOx to GND, active discharge enabled  
Ω
(Lxx_ADE = 1)  
OVERVOLTAGE CLAMP  
Clamp Active  
Regulation Voltage  
Clamp active (OVCLMP_EN_Lxx = 1),  
LDO output sinking 0.1mA  
V
V
NOM  
2.2  
Clamp Disabled  
Overvoltage Sink  
Current  
V
= V  
× 110%  
NOM  
µA  
OUTxx  
Maxim Integrated  
30  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
Electrical Characteristics150mA PMOS (continued)  
(V  
= V = 3.7V, C  
= 1.0µF, T = -40°C to +85°C, unless otherwise noted.) (Note 12)  
MBATT  
IN  
OUT A  
PARAMETER  
TIMING  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Time from LDO enable  
Lxx_SS = 0  
Lxx_SS = 1  
10  
60  
command received  
to the output starting  
to slew, LDO bias  
enabled  
Turn-On Time  
t
µs  
LON  
After LDO is disabled, the LDO output voltage  
discharges based on load and C  
To ensure fast discharge times, enable the active  
.
OUT  
Turn-Off Time  
0.1  
50  
µs  
µs  
discharge resistor.  
Transition Time from  
Low-Power Mode to  
Normal Mode  
THERMAL SHUTDOWN  
Thermal Shutdown  
POWER-OK  
T Rising  
165  
150  
J
Output Disabled or  
Enabled  
°C  
T Falling  
J
V
V
Rising  
Falling  
92  
87  
95  
OUT  
V
when V  
POK  
OUT  
Power-OK Threshold  
V
%
POKTHL  
switches  
84  
OUT  
Power-OK Noise Pulse  
Immunity  
t
V
pulsed from 100% to 80% of regulation  
25  
µs  
POKNFLDO  
OUT  
Maxim Integrated  
31  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
Electrical Characteristics300mA PMOS  
(V  
= V = 3.7V, T = -40°C to +85°C, unless otherwise noted.) (Note 12)  
MBATT  
IN A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
OPERATIONAL SPECIFICATIONS  
Input Voltage Range  
Undervoltage Lockout  
Battery Voltage Range  
V
Guaranteed by output accuracy  
Rising, 100mV hysteresis  
1.7  
5.5  
1.7  
5.5  
V
V
V
IN_LDOx  
V
1.6  
UVLOxx  
V
Guaranteed by main bias testing  
2.45  
0.8  
MBATT  
V
is the  
INxx  
maximum of 3.7V  
or V +0.3V.  
50mV/Step  
(6-bit), LDO3  
Output Voltage Range  
V
3.95  
V
OUTxx  
OUT  
Normal mode  
300  
5
Maximum Output  
Current  
Guaranteed by  
output accuracy  
I
mA  
MAXxx  
Low-power mode  
Nominal capacitor value  
2.2  
1.5  
2.2  
1.5  
Minimum capacitor value after  
deration for initial accuracy,  
temperature coefficient, DC bias  
voltage, and aging  
Normal mode  
Minimum Output  
Capacitance for Stable  
Operation  
C
µF  
OUTxx  
Low-power mode Nominal capacitor value  
(Note 13, Note 14)  
Minimum capacitor value after  
deration for initial accuracy,  
temperature coefficient, DC bias  
voltage, and aging  
BIAS  
Time to enable LDO bias only; central bias is already  
enabled  
Bias Enable Time  
Bias Enable Currents  
t
90  
10  
µs  
LBIAS  
I
LDO bias enabled; L_B_EN = 1  
µA  
QBIAS  
CORE PERFORMANCE SPECIFICATIONS  
V
= V  
+0.3V to 5.5V with  
IN  
NOM  
Normal mode  
1.7V minimum, I  
= 0.1mA to  
-3  
-5  
+3  
+5  
OUT  
I
, V  
set to any voltage  
MAX NOM  
Output Voltage  
Accuracy  
%
%
V
= V  
NOM  
+0.3V to 5.5V with  
IN  
Low-power  
mode  
1.7V minimum, I  
= 0.1mA to  
OUT  
5mA, V  
set to any voltage  
NOM  
I
V
= 0.1mA to I ,  
MAX  
OUT  
Normal mode  
= V  
+0.3V with 1.7V  
0.05  
0.05  
IN  
NOM  
minimum, V  
set to any voltage  
NOM  
Load Regulation  
(Note 14)  
I
= 0.1mA to 5mA,  
OUT  
Low-power  
mode  
V
= V  
+0.3V with 1.7V  
set to any voltage  
IN  
NOM  
minimum, V  
NOM  
Maxim Integrated  
32  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
Electrical Characteristics300mA PMOS (continued)  
(V  
= V = 3.7V, T = -40°C to +85°C, unless otherwise noted.) (Note 12)  
MBATT  
IN A  
PARAMETER  
SYMBOL  
CONDITIONS  
= V +0.3V to 5.5V with  
MIN  
TYP  
MAX  
UNITS  
V
IN  
NOM  
Normal mode  
1.7V minimum; I  
= 0.1mA,  
0.01  
OUT  
V
set to any voltage  
NOM  
Line Regulation  
(Note 14)  
%/V  
V
= V  
+0.3V to 5.5V with  
IN  
NOM  
Low-power  
mode  
1.7V minimum; I  
= 0.1mA,  
0.01  
OUT  
V
set to any voltage  
NOM  
V
V
= 3.7V  
= 1.7V  
IN  
50  
150  
100  
450  
Normal mode  
I
I
= I  
MAX  
OUT  
OUT  
IN  
Dropout Voltage  
V
mV  
%
DOxx  
Low-power  
mode  
= 5mA, V = 3.7V  
150  
180  
300  
250  
IN  
Output Current Limit  
I
OUT = 0V  
110  
LIMxx  
Normal mode,  
COMP_Lx = 0b00,  
= 50mΩ, C  
55  
66  
V
= V  
C
= 5nH  
ESL  
IN  
NOM  
ESR  
+0.3V to 5.5V  
with 1.7V  
absolute  
minimum.  
COMP_Lx = 0b01,  
= 150mΩ, C  
C
= 10nH  
= 35nH  
= 50nH  
ESR  
ESL  
ESL  
I
= 1% to  
OUT  
COMP_Lx = 0b10,  
= 500mΩ, C  
Output Load Transient  
100% to 1% of  
99  
C
ESR  
(OVCLMP_EN_Lxx = 1)  
(Note 14)  
mV  
I
, V set  
MAX  
NOM  
to any voltage,  
COMP_Lx = 0b11,  
= 1000mΩ, C  
t
= t = 1µs,  
R
F
125  
C
C
= 2.2µF  
ESR  
ESL  
OUT  
Low-power mode, V = V  
+0.3V to 5.5V with  
= 0.05mA to 5mA to  
IN  
NOM  
1.7V absolute minimum. I  
OUT  
25  
0.05mA, V  
set to any voltage;  
NOM  
t
= t = 1µs, C  
= 2.2µF  
R
F
OUT  
Normal mode, V = V  
+0.3V to V  
+0.8V to  
IN  
NOM  
NOM  
V
+0.3V with 1.7V absolute minimum;  
5
5
NOM  
t
= t = 1µs, I  
= I  
, V  
set to any voltage  
R
F
OUT  
MAX NOM  
Output Line Transient  
(Note 14)  
mV  
Low-power mode, V = V  
to V  
+0.3V to V  
+0.8V  
IN  
NOM  
NOM  
+0.3V with 1.7V absolute minimum;  
NOM  
t
= t = 1µs, I  
= 5mA, V  
set to any voltage  
R
F
OUT  
NOM  
Maxim Integrated  
33  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
Electrical Characteristics300mA PMOS (continued)  
(V  
= V = 3.7V, T = -40°C to +85°C, unless otherwise noted.) (Note 12)  
IN A  
MBATT  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
79  
68  
50  
39  
35  
81  
71  
52  
45  
39  
52  
43  
38  
33  
28  
MAX  
UNITS  
f = 1kHz  
f = 10kHz  
V
V
V
=
+1V  
= 50mV  
INDC  
f = 100kHz  
f = 1000kHz  
f = 4450kHz  
f = 1kHz  
NOM  
INAC  
Rejection from  
f = 10kHz  
V
= V  
NOM  
INDC  
V
to V  
IN  
OUT  
+0.5V  
f = 100kHz  
f = 1000kHz  
f = 4450kHz  
f = 1kHz  
I
I
= 10% of  
OUT  
MAX  
V
= 50mV  
INAC  
Power Supply Rejection  
PSRRxx  
dB  
f = 10kHz  
V
= V  
INDC  
NOM  
+0.1V  
f = 100kHz  
f = 1000kHz  
f = 4450kHz  
V
= 10mV  
INAC  
Low-power mode, I  
rejection from V to V  
IN  
= 1mA, f = 1kHz,  
OUT  
50  
OUT  
V
V
V
= 0.8V  
= 1.8V  
= 3.7V  
45  
45  
60  
OUT  
OUT  
OUT  
f = 10Hz to 100kHz,  
Output Noise  
µV  
RMS  
I
= 10% of I  
MAX  
OUT  
Soft-Start and Dynamic  
Voltage Change Ramp  
Rate  
Lxx_SS = 0  
100  
5
t
After enabling, Note 17  
mV/µs  
µA  
SSxx  
Lxx_SS = 1  
Output Disabled  
Leakage Current  
Output disabled, V  
= 1V, current from OUT_LDOx  
to GND, active discharge disabled (Lxx_ADE = 0)  
OUT  
0.1  
65  
Output disabled, V = 1V, resistance from  
OUT_LDOx to GND, active discharge enabled  
OUT  
Active-Discharge  
Resistance  
(Lxx_ADE = 1)  
OVERVOLTAGE CLAMP  
Clamp Active Regulation  
Voltage  
Clamp active (OVCLMP_EN_Lxx = 1),  
LDO output sinking 0.1mA  
V
V
NOM  
2.2  
Clamp Disabled  
Overvoltage Sink  
Current  
V
= V  
x 110%  
µA  
OUTxx  
NOM  
Maxim Integrated  
34  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
Electrical Characteristics300mA PMOS (continued)  
(V  
= V = 3.7V, T = -40°C to +85°C, unless otherwise noted.) (Note 12)  
IN A  
MBATT  
PARAMETER  
TIMING  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Time from LDO enable command  
received to the output starting to  
slew, LDO bias enabled  
Lxx_SS = 0  
Lxx_SS = 1  
10  
60  
µs  
µs  
Turn ON Time  
Turn OFF Time  
t
LON  
After LDO is disabled, the LDO output voltage  
discharges based on load and C . To ensure fast  
0.1  
50  
µs  
µs  
OUT  
discharge times, enable the active-discharge resistor  
Transition time from Low  
Power mode to Normal  
Mode  
THERMAL SHUTDOWN  
Thermal Shutdown  
POWER-OK  
T rising  
165  
150  
J
Output disabled or enabled  
°C  
T falling  
J
V
V
rising  
falling  
92  
87  
95  
OUT  
Power-OK Threshold  
V
V
V
when V switches  
POK  
%
POKTHL  
OUT  
84  
OUT  
Power-OK Noise Pulse  
Immunity  
t
pulsed from 100% to 80% of regulation  
25  
µs  
POKNFLDO  
OUT  
Maxim Integrated  
35  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
Electrical Characteristics150mA NMOS  
(V  
= V = 3.7V, T = -40°C to +85°C, unless otherwise noted) (Note 12)  
MBATT  
IN A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
OPERATIONAL SPECIFICATIONS  
Input Voltage Range  
V
Note 15  
Guaranteed by main bias testing (Note 16)  
V
5.5  
5.5  
V
V
INxx  
OUT  
Battery Voltage Range  
V
MBATT  
2.45  
V
is the  
INxx  
25mV/step  
(6-bit)  
Output Voltage Range  
V
maximum of 3.7V  
or V +0.3V  
0.8  
2.375  
V
OUTxx  
OUT  
Normal mode  
150  
Guaranteed by  
output accuracy  
Maximum Output Current  
I
mA  
MAXxx  
Low-power mode  
Nominal capacitor value  
5
0
Normal mode  
(1.0µF is  
recommended for  
“nice” transient  
performance)  
Minimum capacitor value after  
deration for initial accuracy,  
temperature coefficient, DC bias  
voltage, and aging  
0
1
Minimum Output  
Capacitance for Stable  
Operation  
C
µF  
OUTxx  
Nominal capacitor value  
(Note 13, Note 14)  
Minimum capacitor value after  
deration for initial accuracy,  
temperature coefficient, DC bias  
voltage, and aging  
Low-power  
mode  
0.7  
BIAS  
Time to enable LDO bias only; central bias is already  
enabled  
Bias Enable Time  
Bias Enable Currents  
t
90  
10  
µs  
LBIAS  
I
LDO bias enabled. L_B_EN = 1  
µA  
QBIAS  
CORE PERFORMANCE SPECIFICATIONS  
V
= V  
+0.3V to 5.5V,  
IN  
NOM  
I
= 0.1mA to I  
,
OUT  
MAX  
Normal mode  
V
V
set to any voltage,  
-3  
-5  
+3  
+5  
NOM  
= V  
+1.5V with  
MBATT  
NOM  
Output Voltage  
Accuracy  
2.45V minimum  
%
V
= V +0.3V to 5.5V  
NOM  
MBATT  
Low-power  
mode  
with 2.45V minimum, I  
0.1mA to 5mA, V  
=
OUT  
set to any  
NOM  
voltage, V = V  
+0.3V  
IN  
NOM  
I
= 0.1mA to I  
,
OUT  
MAX  
V
V
= V  
+0.3V  
IN  
NOM  
= V  
Normal mode  
0.05  
0.05  
+1.5V with  
MBATT  
NOM  
2.45V minimum  
Load Regulation  
(Note 14)  
%
I
= 0.1mA to 5mA,  
OUT  
Low-power  
mode  
V
V
= V  
+0.3V,  
IN  
NOM  
= V  
+0.3V with  
MBATT  
NOM  
2.45V minimum  
Maxim Integrated  
36  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
Electrical Characteristics150mA NMOS (continued)  
(V  
= V = 3.7V, T = -40°C to +85°C, unless otherwise noted) (Note 12)  
MBATT  
IN A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
V
= V  
= 0.1mA  
+0.3V to 5.5V,  
IN  
NOM  
Normal mode  
0.01  
I
OUT  
Line Regulation  
(Note 14)  
%/V  
V
= V  
+0.3V to 5.5V  
MBATT  
NOM  
Low-power mode  
with 2.45V minimum, V  
=
0.01  
IN  
V
+0.3V I  
= 0.1mA  
NOM  
OUT  
V
V
-
MBATT  
50  
100  
= 2.5V  
OUT  
Normal mode  
I
I
= I  
MAX  
OUT  
Dropout Voltage  
V
mV  
V
V
-
DOxx  
MBATT  
150  
300  
= 1.5V  
OUT  
Low-power mode  
= 5mA, V = 3.7V  
150  
180  
300  
OUT  
IN  
Output Current Limit  
I
V
= 0V, percentage of I  
103  
250  
%
LIMxx  
OUT  
MAX  
Normal mode, V = V  
+0.3V to 5.5V;  
IN  
NOM  
I
= 1% to 100% to 1% of I  
, V  
set to any  
60  
25  
5
OUT  
MAX NOM  
voltage, t = t = 1µs, C = 1µF  
OUT  
R
F
Output Load Transient  
(Note 14)  
mV  
Low-power mode, V = V  
I
voltage. t = t = 1µs, C = 1µF  
OUT  
+0.3V to 5.5V;  
IN  
NOM  
= 0.05mA to 5mA to 0.05mA, V  
set to any  
OUT  
NOM  
R
F
Normal mode, V = V  
V
V
+0.3V to V  
+0.8V to  
IN  
NOM  
NOM  
+0.3V; t = t = 1µs, I  
set to any voltage  
= I  
,
NOM  
NOM  
R
F
OUT  
MAX  
Output Line Transient  
(Note 14)  
mV  
Low-power mode, V = V  
+0.3V to V  
+0.8V  
IN  
NOM  
NOM  
to V  
+0.3V; t = t = 1µs, I = 5mA,  
5
NOM  
R
F
OUT  
V
set to any voltage, C  
= 1µF  
NOM  
OUT  
f = 1kHz  
88  
65  
51  
22  
15  
85  
63  
49  
21  
14  
45  
45  
30  
18  
10  
f = 10kHz  
V
V
V
=
+1V  
= 50mV  
INDC  
f = 100kHz  
f = 1000kHz  
f = 4450kHz  
f = 1kHz  
NOM  
INAC  
Rejection from  
f = 10kHz  
V
to V  
V
= V  
INDC NOM  
IN  
OUT  
I
I
C
= 10% of  
+0.5V  
f = 100kHz  
f = 1000kHz  
f = 4450kHz  
f = 1kHz  
OUT  
MAX  
Power Supply  
Rejection  
V
= 50mV  
INAC  
PSRRxx  
dB  
= 1µF  
OUT  
f = 10kHz  
V
V
V
=
INDC  
NOM  
INAC  
+0.1V  
= 10mV  
f = 100kHz  
f = 1000kHz  
f = 4450kHz  
Low-power mode, I  
= 1mA, f = 1kHz,  
to V  
OUT  
OUT  
50  
rejection from V  
MBATT  
Maxim Integrated  
37  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
Electrical Characteristics150mA NMOS (continued)  
(V  
= V = 3.7V, T = -40°C to +85°C, unless otherwise noted.) (Note 12)  
MBATT  
IN A  
PARAMETER  
Output Noise  
SYMBOL  
CONDITIONS  
MIN  
TYP  
55  
MAX UNITS  
V
V
= 0.8V  
= 1.8V  
OUT  
OUT  
f = 10Hz to 100kHz,  
= 10% of I  
µV  
RMS  
I
OUT  
MAX  
65  
Soft-Start and Dynamic  
Voltage Change Ramp  
Rate  
Lxx_SS = 0  
100  
5
t
After enabling, Note 17  
mV/µs  
µA  
SSxx  
Lxx_SS = 1  
Output Disabled Leakage  
Current  
Output disabled, V  
= 1V, current from OUT_LDOx  
to GND, active discharge disabled (Lxx_ADE = 0)  
OUT  
0.1  
65  
Output disabled, V = 1V, resistance from  
OUT_LDOx to GND, active discharge enabled  
OUT  
Active-Discharge  
Resistance  
Ω
(Lxx_ADE = 1)  
OVERVOLTAGE CLAMP  
Clamp Active Regulation  
Voltage  
Clamp active (OVCLMP_EN_Lxx = 1),  
LDO output sinking 0.1mA  
V
V
NOM  
2.5  
Clamp Disabled  
Overvoltage Sink Current  
V
= V  
x 110%  
µA  
OUTxx  
NOM  
TIMING  
Time from LDO enable  
command received to the  
output starting to slew, LDO  
bias enabled  
Lxx_SS = 0  
Lxx_SS = 1  
15  
µs  
µs  
Enable Delay  
t
LON  
140  
After LDO is disabled, the LDO output voltage  
discharges based on load and C . To ensure fast  
discharge times, enable the active discharge resistor  
Disable Delay  
t
0.1  
50  
µs  
µs  
LDD  
OUT  
Transition Time from Low-  
Power Mode to Normal  
Mode  
THERMAL SHUTDOWN  
Thermal Shutdown  
POWER-OK  
T Rising  
165  
150  
J
Output disabled  
or enabled  
°C  
T Falling  
J
V
V
Rising  
Falling  
92  
87  
95  
OUT  
OUT  
Power-OK Threshold  
V
V
V
when V switches  
POK  
%
POKTHL  
OUT  
OUT  
84  
Power-OK Noise Pulse  
Immunity  
t
pulsed from 100% to 80% of regulation  
25  
µs  
POKNFLDO  
Maxim Integrated  
38  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
Electrical Characteristics300mA NMOS  
(V  
= V = 3.7V, T = -40°C to +85°C, unless otherwise noted.) (Note 12)  
MBATT  
IN A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
OPERATIONAL SPECIFICATIONS  
Input Voltage Range  
V
Note 15  
Guaranteed by main bias testing  
V
5.5  
5.5  
V
V
IN_LDO  
OUT  
Battery Voltage Range  
V
MBATT  
2.45  
V
is the  
INxx  
50mV/Step  
(6-bit)  
Output Voltage Range  
V
maximum of 3.7V  
or V +0.3V.  
0.8  
3.95  
V
OUTxx  
OUT  
Normal mode  
300  
Maximum Output  
Current  
Guaranteed by  
output accuracy  
I
mA  
MAXxx  
Low-power mode  
Nominal capacitor value  
5
0
Normal mode  
(2.2µF is  
recommended for  
“nice” transient  
performance)  
Minimum capacitor value after  
deration for initial accuracy,  
temperature coefficient,  
0
1
Minimum Output  
Capacitance for Stable  
Operation  
DC bias voltage, and aging  
C
µF  
OUTxx  
Nominal capacitor value  
(Note 13, Note 14)  
Minimum capacitor value after  
deration for initial accuracy,  
temperature coefficient,  
Low-power  
mode  
0.7  
DC bias voltage, and aging  
BIAS  
Time to enable LDO bias only; central bias is  
already enabled  
Bias Enable Time  
Bias Enable Currents  
t
90  
10  
µs  
LBIAS  
I
LDO bias enabled; L_B_EN = 1  
µA  
QBIAS  
CORE PERFORMANCE SPECIFICATIONS  
V
= V  
+0.3V to 5.5V,  
IN  
NOM  
Normal mode  
I
V
= 0.1mA to I  
,
-3  
-5  
+3  
+5  
OUT  
MAX  
set to any voltage  
NOM  
Output Voltage Accuracy  
%
V
= V  
+0.3V to 5.5V  
IN  
NOM  
Low-power  
mode  
with 1.7V minimum,  
I
= 0.1mA to 5mA,  
OUT  
V
set to any voltage  
NOM  
I
= 0.1mA to I  
,
OUT  
MAX  
Normal mode  
V
V
= V  
+0.3V,  
0.05  
0.05  
IN  
NOM  
set to any voltage  
NOM  
Load Regulation  
(Note 14)  
%
I
= 0.1mA to 5mA,  
OUT  
Low-power  
mode  
V
= V  
+0.3V with 1.7V  
IN  
NOM  
minimum, V  
set to any  
NOM  
voltage  
Maxim Integrated  
39  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
Electrical Characteristics300mA NMOS (continued)  
(V  
= V = 3.7V, T = -40°C to +85°C, unless otherwise noted.) (Note 12)  
MBATT  
IN A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
V
= V  
+0.3V to 5.5V,  
IN  
NOM  
Normal mode  
I
= 0.1mA, V  
set to  
0.01  
OUT  
NOM  
any voltage  
Line Regulation  
(Note 14)  
%/V  
V
= V  
+0.3V to 5.5V with  
= 0.1mA,  
IN  
NOM  
Low-power  
mode  
1.7V minimum, I  
0.01  
OUT  
set to any voltage  
V
NOM  
V
V
-
MBATT  
= 2.5V  
OUT  
50  
150  
100  
450  
mV  
Normal mode  
I
I
= I  
MAX  
OUT  
OUT  
V
V
-
Dropout Voltage  
V
MBATT  
DOxx  
= 1.5V  
OUT  
Low-power mode  
OUT = 0V  
= 5mA, V = 3.7V  
150  
180  
300  
IN  
Output Current Limit  
I
110  
250  
%
LIMxx  
Normal mode, V = V  
+0.3V to 5.5V;  
IN  
NOM  
I
= 1% to 100% to 1% of I  
, V set to  
60  
25  
5
OUT  
MAX NOM  
any voltage, t = t = 1µs, C = 2.2uF  
OUT  
R
F
Output Load Transient  
(Note 14)  
mV  
Low-power mode, V = V  
I
any voltage. t = t = 1µs, C = 2.2µF  
OUT  
+0.3V to 5.5V;  
IN  
NOM  
= 0.05mA to 5mA to 0.05mA, V  
set to  
OUT  
NOM  
R
F
Normal mode, V = V  
to V  
+0.3V to V  
+0.8V  
IN  
NOM  
NOM  
+0.3V; t = t = 1µs, I  
= I  
,
NOM  
R
F
OUT  
MAX  
V
set to any voltage  
NOM  
Output Line Transient  
(Note 14)  
mV  
Low-power mode, V = V  
+0.3V to  
IN  
NOM  
V
+0.8V to V  
+0.3V. t = t = 1µs,  
5
NOM  
NOM  
R
F
I
= 5mA, V  
set to any voltage  
OUT  
NOM  
f = 1kHz  
88  
65  
51  
22  
15  
85  
63  
49  
21  
14  
45  
45  
30  
18  
10  
f = 10kHz  
V
V
V
=
+1V  
= 50mV  
INDC  
NOM  
INAC  
f = 100kHz  
f = 1000kHz  
f = 4450kHz  
f = 1kHz  
Rejection from  
f = 10kHz  
V
V
V
=
INDC  
NOM  
INAC  
V
to V  
IN  
OUT  
+0.5V  
= 50mV  
f = 100kHz  
f = 1000kHz  
f = 4450kHz  
f = 1kHz  
I
I
= 10% of  
OUT  
MAX  
Power Supply Rejection  
PSRRxx  
dB  
f = 10kHz  
V
V
V
=
INDC  
NOM  
INAC  
+0.1V  
= 10mV  
f = 100kHz  
f = 1000kHz  
f = 4450kHz  
Low-power mode, I  
= 1mA, f = 1kHz,  
to V  
OUT  
OUT  
50  
rejection from V  
BATT  
Maxim Integrated  
40  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
Electrical Characteristics300mA NMOS (continued)  
(V  
= V = 3.7V, T = -40°C to +85°C, unless otherwise noted.) (Note 12)  
MBATT  
IN A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
V
V
= 0.8V  
= 1.8V  
55  
OUT  
OUT  
f = 10Hz to 100kHz,  
= 10% of I  
Output Noise  
µV  
RMS  
I
OUT  
MAX  
65  
100  
5
Soft-Start and Dynamic  
Voltage Change Ramp  
Rate  
Lxx_SS = 0  
Lxx_SS = 1  
After enabling,  
Note 17  
t
mV/µs  
µA  
SSxx  
Output disabled, V  
= 1V, current from  
OUT_LDOx to GND, active discharge disabled  
OUT  
Output Disabled Leakage  
Current  
0.1  
65  
(Lxx_ADE = 0)  
Output disabled, V  
= 1V, resistance from  
OUT_LDOx to GND, active discharge enabled  
OUT  
Active-Discharge  
Resistance  
(Lxx_ADE = 1)  
OVERVOLTAGE CLAMP  
Clamp Active Regulation  
Voltage  
Clamp active (OVCLMP_EN_Lxx = 1),  
LDO output sinking 0.1mA  
V
V
NOM  
Clamp Disabled  
Overvoltage Sink Current  
V
= V  
x 110%  
2.2  
µA  
OUTxx  
NOM  
TIMING  
Time from LDO enable  
command received to  
the output starting to  
slew, LDO bias enabled  
Lxx_SS = 0  
Lxx_SS = 1  
15  
µs  
µs  
Turn-On Time  
t
LON  
140  
After LDO is disabled, the LDO output voltage  
discharges based on load and C . To ensure  
fast discharge times, enable the active-discharge  
OUT  
Turn-Off Time  
0.1  
50  
µs  
µs  
resistor  
Transition Time from Low-  
Power Mode to Normal  
Mode  
THERMAL SHUTDOWN  
Thermal Shutdown  
POWER-OK  
T rising  
165  
150  
J
Output disabled  
or enabled  
°C  
T falling  
J
92  
87  
95  
V
rising  
falling  
V
when V  
POK  
OUT  
OUT  
Power-OK Threshold  
V
%
POKTHL  
switches  
84  
V
OUT  
Power-OK Noise Pulse  
Immunity  
t
V
pulsed from 100% to 80% of regulation  
OUT  
25  
µs  
POKNFLDO  
Maxim Integrated  
41  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
Electrical Characteristics450mA NMOS  
(V  
= V = 3.7V, T = -40°C to +85°C, unless otherwise noted.) (Note 12)  
MBATT  
IN A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
OPERATIONAL SPECIFICATIONS  
Input Voltage Range  
V
Note 15  
Guaranteed by main bias testing  
is the maximum 50mV/step  
+0.3V. (6-bit)  
V
5.5  
5.5  
V
V
INxx  
OUT  
Battery Voltage Range  
V
MBATT  
2.45  
V
INxx  
Output Voltage Range  
V
0.8  
3.95  
V
OUTxx  
of 3.7V or V  
OUT  
Normal mode  
450  
Maximum Output  
Current  
Guaranteed by output  
accuracy  
I
mA  
MAXxx  
Low-power mode  
Nominal capacitor value  
5
0
Normal mode  
Minimum capacitor value  
after deration for initial  
accuracy, temperature  
coefficient, DC bias voltage,  
and aging  
(4.7µF is recommended  
for “nice” transient  
performance)  
0
1
Minimum Output  
Capacitance for Stable  
Operation  
C
µF  
OUTxx  
Nominal capacitor value  
(Note 13, Note 14)  
Minimum capacitor value  
after deration for initial  
accuracy, temperature  
coefficient, DC bias voltage,  
and aging  
Low-power mode  
0.7  
BIAS  
Time to enable LDO bias only, central bias is already  
enabled  
Bias Enable Time  
Bias Enable Currents  
t
90  
10  
µs  
LBIAS  
I
LDO bias enabled; L_B_EN = 1  
µA  
QBIAS  
CORE PERFORMANCE SPECIFICATIONS  
V
= V  
+0.3V to 5.5V,  
IN  
NOM  
Normal mode  
I
V
= 0.1mA to I  
,
-3  
-5  
+3  
+5  
OUT  
MAX  
set to any voltage  
NOM  
Output Voltage  
Accuracy  
V
= V  
+1.5V to  
MBATT  
NOM  
%
5.5V with 2.45V minimum,  
Low-power  
mode  
I
= 0.1mA to 5mA,  
OUT  
V
set to any voltage;  
NOM  
V
= V  
+0.3V  
IN  
NOM  
Maxim Integrated  
42  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
Electrical Characteristics450mA NMOS (continued)  
(V  
= V = 3.7V, T = -40°C to +85°C, unless otherwise noted.) (Note 12)  
MBATT  
IN A  
PARAMETER  
SYMBOL  
CONDITIONS  
= 0.1mA to I  
MIN  
TYP  
MAX  
UNITS  
I
,
MAX  
OUT  
Normal mode  
0.05  
V
= V  
+0.3V  
IN  
NOM  
Load Regulation  
(Note 14)  
%
I
V
= 0.1mA to 5mA,  
OUT  
Low-power  
mode  
= V  
+0.3V with  
0.05  
0.01  
0.01  
IN  
NOM  
1.7V minimum  
V
= V  
+0.3V to 5.5V,  
IN  
NOM  
Normal mode  
I
= 0.1mA  
OUT  
Line Regulation  
(Note 14)  
%/V  
V
= V  
+0.3V to 5.5V  
IN  
NOM  
Low-power mode  
with 1.7V minimum,  
I
= 0.1mA  
OUT  
V
V
-
MBATT  
50  
100  
450  
= 2.5V  
OUT  
I
I
=
OUT  
MAX  
Normal mode  
Dropout Voltage  
V
mV  
%
V
V
-
DOxx  
MBATT  
150  
= 1.5V  
OUT  
Low-power mode  
OUT = 0V  
I
= 5mA, V = 3.7V  
150  
180  
300  
250  
OUT  
IN  
Output Current Limit  
I
105  
LIMxx  
Normal mode, V = V  
+0.3V to 5.5V;  
IN  
NOM  
I
= 1% to 100% to 1% of I  
, V  
set to any  
60  
25  
5
OUT  
MAX NOM  
voltage, t = t = 1µs, C = 4.7µF  
OUT  
R
F
Output Load Transient  
(Note 14)  
mV  
mV  
Low-power mode, V = V  
I
voltage. t = t = 1µs, C = 4.7µF  
OUT  
+0.3V to 5.5V;  
IN  
NOM  
= 0.05mA to 5mA to 0.05mA, V  
set to any  
OUT  
NOM  
R
F
Normal mode, V = V  
to V  
+0.3V to V  
+0.8V  
IN  
NOM  
NOM  
+0.3V; t = t = 1µs, I  
= I  
,
NOM  
R
F
OUT  
MAX  
V
set to any voltage  
NOM  
Output Line Transient  
(Note 14)  
Low-power mode, V = V  
+0.3V to V  
+0.8V  
IN  
NOM  
NOM  
to V  
+0.3V; t = t = 1µs, I = 5mA,  
5
NOM  
R
F
OUT  
V
set to any voltage  
NOM  
Maxim Integrated  
43  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
Electrical Characteristics450mA NMOS (continued)  
(V  
= V = 3.7V, T = -40°C to +85°C, unless otherwise noted.) (Note 12)  
MBATT  
IN A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
88  
65  
51  
22  
15  
85  
63  
49  
21  
14  
45  
45  
30  
18  
10  
MAX  
UNITS  
f = 1kHz  
V
V
V
=
+1V  
=
f = 10kHz  
INDC  
NOM  
INAC  
f = 100kHz  
f = 1000kHz  
f = 4450kHz  
f = 1kHz  
50mV  
V
=
f = 10kHz  
INDC  
Rejection from  
V
+0.5V  
=
NOM  
V
to V  
f = 100kHz  
f = 1000kHz  
f = 4450kHz  
f = 1kHz  
IN  
OUT  
V
INAC  
Power Supply  
Rejection  
I
= 10% of I  
MAX  
OUT  
PSRRxx  
dB  
50mV  
V
=
f = 10kHz  
INDC  
V
+0.1V  
=
NOM  
f = 100kHz  
f = 1000kHz  
f = 4450kHz  
V
INAC  
10mV  
Low-power mode, I  
= 1mA, f = 1kHz,  
to V  
OUT  
OUT  
50  
rejection from V  
MBATT  
V
= 0.8V  
= 1.8V  
55  
65  
OUT  
OUT  
f = 10Hz to 100kHz,  
= 10% of I  
Output Noise  
µV  
RMS  
I
OUT  
MAX  
V
Soft-Start and Dynamic  
Voltage Change  
Ramp Rate  
Lxx_SS = 0  
Lxx_SS = 1  
100  
5
t
After enabling, Note 17  
mV/µs  
µA  
SSxx  
Output disabled, V  
= 1V, current from  
OUT_LDOx to GND, active-discharge disabled (Lxx_  
ADE = 0)  
OUT  
Output Disabled  
Leakage Current  
0.1  
65  
Output Disabled, V  
= 1V, resistance from  
OUT_LDOx to GND, active-discharge enabled  
OUT  
Active-Discharge  
Resistance  
(Lxx_ADE = 1)  
OVERVOLTAGE CLAMP  
Clamp Active  
Regulation Voltage  
Clamp active (OVCLMP_EN_Lxx = 1),  
LDO output sinking 0.1mA  
V
V
NOM  
Clamp Disabled  
Overvoltage Sink  
Current  
V
= V  
x 110%  
2.2  
µA  
OUTxx  
NOM  
Maxim Integrated  
44  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
Electrical Characteristics450mA NMOS (continued)  
(V  
= V = 3.7V, T = -40°C to +85°C, unless otherwise noted.) (Note 12)  
MBATT  
IN A  
PARAMETER  
TIMING  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Time from LDO enable  
Lxx_SS = 0  
Lxx_SS = 1  
15  
µs  
µs  
command received to  
the output starting to  
slew, LDO bias enabled  
Turn-On Time  
t
LON  
140  
After LDO is disabled, the LDO output voltage  
discharges based on Load and C . To ensure fast  
discharge times enable the active-discharge resistor  
Turn-Off Time  
0.1  
50  
µs  
µs  
OUT  
Transition Time from  
Low-Power Mode to  
Normal Mode  
THERMAL SHUTDOWN  
Thermal Shutdown  
POWER-OK  
T rising  
165  
150  
J
Output disabled or  
enabled  
°C  
T falling  
J
V
V
rising  
falling  
92  
87  
95  
OUT  
V
when V  
POK  
OUT  
Power-OK Threshold  
V
%
POKTHL  
switches  
84  
OUT  
Power-OK Noise  
Pulse Immunity  
t
V
pulsed from 100% to 80% of regulation  
25  
µs  
POKNFLDO  
OUT  
Note 12: Limits are 100% production tested at T = +25°C. Limits over the operating temperature range are guaranteed through  
A
correlation using statistical quality control (SQC) methods.  
Note 13: For stability requirements, refer to the Remote Capacitor Design with the Register Adjustable Compensation section.  
Note 14: Does not include ESR of the capacitance or trace resistance of the PCB.  
Note 15: Input voltage range is guaranteed from V  
+0.3V to 5.5V by output accuracy specifications. Inputs between V  
OUT  
OUT  
and V  
+0.3V are guaranteed by design and subject to drop-out resistance limitations [V (min) = V  
+ I  
x
OUT  
OUT  
IN  
OUT  
R
R
] and may have reduced PRSS and transient performance. For example, with V  
= 0.8V and V  
= 2.7V,  
= 0.8V +  
DO  
DO  
DO  
OUT  
MBATT  
= 0.5Ω therefore with I  
= 0.2A, the input voltage must be at least 0.9V (V ≥ V  
+I  
x R  
OUT  
IN  
OUT OUT  
0.2A x 0.5Ω = 0.9V).  
Note 16: Battery Voltage Range is guaranteed from V  
+1.5V to 5.5V by the Dropout Voltage specification. Inputs between  
OUT  
V
+1.0V and V  
+1.5V are guaranteed by design and subject to drop-out resistance limitations  
OUT  
OUT  
(see Typical Operating Characteristics). Absolute minimum battery voltage range for LDOs is 2.45V.  
Note 17: During a soft-start event or a DVS transition, the regulators output current increases by C x dV/dt. In the event that  
OUT  
the load current plus the additional current imposed by the soft-start or DVS transition reach the regulator’s current limit,  
the current limit is enforced. When the current limit is enforced, the advertised transition rate (dV/dt) does not occur.  
Maxim Integrated  
45  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
Electrical CharacteristicsGPIOs  
(V  
= V  
= V  
= 3.6V, I  
= 0µA, circuit of Simplified Functional Diagram, T = -40°C to +85°C, unless oth-  
MBATT  
GPIO_INA  
GPIO_INB  
BBATT A  
erwise specified, typical values are at T = +25°C.) (Note 18)  
A
PARAMETER  
SUPPLY  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Supply Voltage  
Supply Current  
GPIO INPUT  
V
1.7  
5.5  
1
V
GPIO_INx  
I
µA  
GPIO_INx  
GPIO0-3, V  
GPIO4-7, V  
= 1.7V to 5.5V  
0.5  
0.5  
GPIO_INA  
Input Voltage Low  
V
V
V
IL  
= 1.7V to 5.5V  
= 1.7V to 5.5V  
GPIO_INB  
0.7 x  
GPIO0-3, V  
GPIO_INA  
GPIO_INB  
V
GPIO_INA  
Input Voltage High  
V
IH  
0.7 x  
GPIO4-7, V  
= 1.7V to 5.5V  
V
GPIO_INB  
Input Hysteresis  
V
0.25  
V
hys  
V
V
= 5.5V  
= 5.5V  
GPIO_INB  
= 0V and 5.5V  
T
T
= +25°C  
0.001  
0.01  
1
GPIO_INA  
A
Input Leakage Current  
I
µA  
i
= +85°C  
V
A
IN  
GPIO PUSH-PULL OUTPUT—GPIO0-GPIO7  
I
I
= 4mA  
0.08  
0.25  
SINK  
SINK  
Output Voltage Low  
V
V
V
OL  
= 12mA  
0.7 x  
GPIO0-3, I  
= 4mA  
= 4mA  
SOURCE  
SOURCE  
V
GPIO_INA  
Output Voltage High  
V
OH  
0.7 x  
GPIO4-7, I  
V
GPIO_INB  
GPIO OPEN-DRAIN OUTPUT—GPIO0-GPIO7  
I
I
= 4mA  
0.08  
0.25  
SINK  
SINK  
Output Voltage Low  
V
V
OL  
= 12mA  
V
= 5.5V, T = +25°C,  
GPIO_INx  
A
0.01  
0.1  
1.0  
internal pullup/pulldown disabled  
Output High Leakage Current  
I
µA  
OH  
V
= 5.5V, T = +85°C,  
GPIO_INx  
A
internal pullup/pulldown disabled  
GPIO PULL RESISTANCES—GPIO0-GPIO7  
Pullup Resistance  
R
R
Note 19  
Note 19  
50  
50  
100  
100  
160  
160  
kΩ  
kΩ  
PU  
PD  
Pulldown Resistance  
Maxim Integrated  
46  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
Electrical CharacteristicsGPIOs (continued)  
(V  
= V  
= V  
= 3.6V, I  
= 0µA, circuit of Simplified Functional Diagram, T = -40°C to +85°C, unless oth-  
MBATT  
GPIO_INA  
GPIO_INB  
BBATT A  
erwise specified, typical values are at T = +25°C.) (Note 18)  
A
PARAMETER  
REFERENCE OUTPUT—GPIO7  
Output Voltage  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
0µA < I  
< 160µA  
1.225  
1.250  
2
1.272  
V
REF  
REFOUT  
V
= 5.5V, 2.6V < V  
= 0µA  
< 5.5V,  
< 5.5V,  
MBATT  
GPIO_INB  
Line Regulation  
mV  
I
REFOUT  
Load Regulation  
Ripple Rejection  
0µA < I  
< 160µA  
2
mV  
dB  
REFOUT  
f = 1kHz  
70  
V
= 5.5V, 2.6V < V  
= 0µA  
MBATT  
GPIO_INB  
Output Current  
160  
µA  
I
REFOUT  
Output Noise Voltage  
10Hz to 100kHz, C  
= 20pF  
55  
µV  
RMS  
REFOUT  
Note 18: Limits are 100% production tested at T = +25°C. Limits over the operating temperature range are guaranteed through  
A
correlation using statistical quality control methods.  
Note 19: The min/max variation shows it is based on process statistics. This parameter is not production tested.  
Electrical CharacteristicsRTC  
(V  
= 3.6V, V  
= 2.5V, T = -40°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.) (Note 20)  
MBATT  
BBATT  
A
A
PARAMETER  
Operating Voltage Range  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Note 21  
1.65  
5.5  
V
RTC  
V
= 0V,  
V
= 2.45V  
= 3.00V  
2.0  
MBATT  
BBATT  
B
Current  
I
PWR_MD_32k =  
0b00  
µA  
BATT  
BBATT  
V
2.2  
2
4.2  
BBATT  
Time Accuracy  
Per day (Note 21)  
s
Hz  
V
32KCLK Input Frequency  
32KCLK Voltage  
f
32768  
32KCLK  
V
V
RTC  
32KCLK  
Note 20: Limits are 100% production tested at T = +25°C. Limits over the operating temperature range are guaranteed through  
A
correlation using statistical quality control methods.  
Note 21: Design guidance only, not tested during final test.  
Maxim Integrated  
47  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
Electrical Characteristics32kHz Crystal Oscillator  
(V  
= 3.6V, V  
= 2.5V, T = -40°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.) (Note 20)  
MBATT  
RTC  
A
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
CRYSTAL OSCILLATOR  
Minimum Oscillator Supply  
Voltage  
V
1.5  
23  
V
RTCUVLO  
Low-jitter mode  
(PWR_MD_32K[1:0]  
= 0b11)  
V
V
= 3.6V,  
= 2.55V,  
MBATT  
BBATT  
backup battery  
charger target  
voltage = 2.5V  
Oscillator Supply Current  
I
µA  
BBATT  
Low-power mode  
(PWR_MD_32K[1:0]  
= 0b00)  
2.0  
(BBCRS[1:0] = 0b00)  
Oscillator Voltage  
Temperature Coefficient  
V
V
= 1.5V to 3.4V  
20  
90  
3
ppm/V  
kΩ  
OLTCO  
OSC  
Maximum Crystal ESR  
Parasitic XIN/XOUT  
Pin Capacitance  
C
From XIN to XGND and from XOUT to XGND  
pF  
PAR  
32KLOAD = 0x03  
32KLOAD = 0x00  
32KLOAD = 0x01  
6.5  
7.5  
Crystal Loading  
pF  
12.5  
Maximum Oscillator  
Start-Up Time  
t
1000  
ms  
OSU  
32K OUTPUT BUFFERS  
Output Frequency  
f
I
32768  
1.8  
Hz  
V
32K_OUTx  
32K_OUTx  
32k Output Buffer Supply  
Voltage  
Buffer is internally supplied by GPIO_INB  
1.7  
C
= 25pF, f  
= 32768Hz,  
32K_OUTx  
32K_OUTx  
Supply Current  
3.7  
64  
µA  
µs  
(Note 22)  
Maximum 32K_OUTx  
Enable Time  
Clock input = 32768Hz  
Low-power mode (PWR_MD_32K[1:0] = 0b00)  
40  
45  
60  
55  
32K_OUT0 Duty Cycle  
%
Low-jitter mode (PWR_MD_32K[1:0] = 0b11)  
push-pull output (OTP_32K = 0)  
32K_OUT0 Rise/Fall Time  
C
= 25pF  
20  
ns  
V
32K_OUTx  
32K_OUT0 Output  
Voltage High  
V
= 1.7V, I  
= 4mA,  
0.7 x  
V
GPIO_INB  
GPIO_INB  
SOURCE  
V
OH  
push-pull output (OTP_32K = 0)  
Output High Leakage  
Current (Note 22)  
I
T
= +25°C, open-drain output (OTP_32K = 1)  
0.001  
1
µA  
V
OZH  
A
32K_OUT0 Output  
Voltage Low  
V
V
= 1.7V, I = 4mA  
SINK  
0.4  
OL  
GPIO_INB  
Note 22: The MAX77863 internal clock buffer consumes 1uA. To drive a 25pF capacitor at 32kHz consumes 2.7µA  
(C x V x F losses). Therefore, enabling a single 32kHz clock buffer consumes approximately 3.7µA.  
Maxim Integrated  
48  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
Electrical CharacteristicsBackup Battery Charger  
(Operating conditions (unless otherwise specified) V  
= 3.7V, V  
= 3.0V, T = -40°C to +85°C.)  
MBATT  
BBATT A  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
2.580  
3.090  
3.400  
3.605  
UNITS  
BBCVS[1:0] = 0x00  
BBCVS[1:0] = 0x01  
BBCVS[1:0] = 0x02  
BBCVS[1:0] = 0x03  
2.420  
2.910  
3.200  
3.395  
2.500  
3.000  
3.300  
3.500  
Programmable Output  
Voltage Range  
I
= 1µA  
V
LOAD  
BBCCS[1:0] = 0x00,  
0x01, 0x02  
50  
BBCLOWIEN  
= 0  
BBCCS[1:0] = 0x01  
BBCCS[1:0] = 0x00  
BBCCS[1:0] = 0x01  
BBCCS[1:0] = 0x02  
BBCCS[1:0] = 0x03  
100  
200  
600  
800  
400  
0.1  
1
V
BBATT  
Constant Current Limit  
short to  
GND  
µA  
BBCLOWIEN  
= 1  
BBCRS[1:0] = 0x00  
BBCRS[1:0] = 0x01  
BBCRS[1:0] = 0x02  
BBCRS[1:0] = 0x03  
Output Resistance  
kΩ  
3
6
T
T
= +25°C  
= +85°C  
0.01  
0.1  
5
10  
A
A
Reverse Leakage Current  
Input = 0V, V  
= 3.0V  
µA  
µA  
BBATT  
from BBATT to V  
MBATT  
Charger Ground Current  
I
= 1µA (Note 1)  
LOAD  
Maxim Integrated  
49  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
Electrical CharacteristicsOn-Off Controller  
(V  
= 3.6V, I  
= 0µA, T = -40°C to +85°C, unless otherwise specified, typical values are at T = +25°C.) (Note 23)  
MBATT  
BBATT A A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
EN0  
Input Voltage Low  
Input Voltage High  
Input Hysteresis  
Debounce Time  
EN0_1SEC Time  
V
0.4  
V
V
IL  
V
1.4  
24  
IH  
V
0.05  
30  
1
V
HVS  
t
36  
ms  
s
DBEN0  
t
1SECEN0  
MRT[2:0] = 0b000  
2
MRT[2:0] = 0b001  
MRT[2:0] = 0b010  
MRT[2:0] = 0b011  
MRT[2:0] = 0b100  
MRT[2:0] = 0b101  
MRT[2:0] = 0b110  
MRT[2:0] = 0b111  
MRT[2:0] = 0b000  
MRT[2:0] = 0b001  
MRT[2:0] = 0b010  
MRT[2:0] = 0b011  
MRT[2:0] = 0b100  
MRT[2:0] = 0b101  
MRT[2:0] = 0b110  
MRT[2:0] = 0b111  
3
4
5
Manual Reset Time  
t
s
HRDRST  
6
8
10  
12  
2
2
3
4
Manual Reset Warning  
Time (MRWRN)  
t
s
MRWRN  
5
6
8
10  
Internal Pullup  
Resistance  
Only available with OTP_EN0AL = 1,  
Figure 20  
R
10  
10  
kΩ  
kΩ  
PUEN0  
Internal Pulldown  
Resistance  
Only available with OTP_EN0AL = 0,  
Figure 20  
R
PDEN0  
Note 23: Limits are 100% production tested at T = +25°C. Limits over the operating temperature range are guaranteed through  
A
correlation using statistical quality control methods.  
Maxim Integrated  
50  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
Electrical CharacteristicsFPS  
(V  
= 3.6V, I  
= 0µA, circuit of Simplified Functional Diagram, T = -40°C to +85°C, unless otherwise specified, typical val-  
MBATT  
BBATT A  
ues are at T = +25°C.) (Note 24)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
The MAX77863 reference is already powered  
up prior to the enable command (Note 25)  
0.01  
Flexible Power  
Sequencer Enable Delay  
t
µs  
FSDON  
The MAX77863 reference is powered down  
prior to the enable command  
30  
Flexible Power  
Sequencer Disable Delay  
t
0.01  
µs  
µs  
FPSDOFF  
TFPSx[2:0] = 0b000  
TFPSx[2:0] = 0b001  
TFPSx[2:0] = 0b010  
40  
80  
160  
320  
640  
1280  
2560  
5120  
TFPSx[2:0] = 0b011  
Figure 28  
Flexible Power  
Sequencer Event Period  
t
FST  
TFPSx[2:0] = 0b100  
TFPSx[2:0] = 0b101  
TFPSx[2:0] = 0b110  
TFPSx[2:0] = 0b111  
Flexible Power  
Sequencer Event Period  
Timer Accuracy  
Accuracy of the flexible power sequencer clock  
-15  
+15  
%
Note 24: Limits are 100% production tested at T = +25°C. Limits over the operating temperature range are guaranteed through  
A
correlation using statistical quality control methods.  
Note 25: The MAX77863 reference is powered up if any of the step-down regulators or any of the low dropout linear regulators  
are enabled.  
Maxim Integrated  
51  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
2
Electrical CharacteristicsI C  
(V  
= 3.6V, V  
= 1.8V, circuit of Simplified Functional Diagram, T = -40°C to +85°C, unless otherwise specified, typical  
MBATT  
INI2C A  
values are at T = +25°C.) (Note 26)  
A
PARAMETER  
POWER SUPPLY  
SYMBOL  
CONDITIONS  
MIN  
1.7  
TYP  
MAX  
UNITS  
INI2C Voltage  
V
3.6  
V
INI2C  
SDA AND SCL I/O STAGES  
0.7 x  
SCL, SDA Input High Voltage  
SCL, SDA Input Low Voltage  
SCL, SDA Input Hysteresis  
V
V
V
= 1.7V to 3.6V  
= 1.7V to 3.6V  
V
V
V
IH  
INI2C  
V
INI2C  
0.3 x  
V
IL  
INI2C  
V
INI2C  
0.05 x  
V
HYS  
V
INI2C  
SCL, SDA Input Current  
II  
V
= 3.6V or 0V  
-10  
+10  
0.4  
μA  
V
I2CIN  
SDA Output Low Voltage  
SCL, SDA Pin Capacitance  
Output Fall Time from VIH to VIL  
V
Sinking 20mA  
OL  
Ci  
10  
pF  
ns  
t
Note 27  
120  
OF  
2
Electrical CharacteristicsI C (continued)  
(V  
= 3.6V, V  
= 1.8V, circuit of Simplified Functional Diagram, T = -40°C to +85°C, unless otherwise specified, typical  
MBATT  
INI2C A  
values are at T = +25°C.) (Note 27)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
2
I C-COMPATIBLE INTERFACE TIMING FOR STANDARD, FAST, AND FAST-MODE PLUS  
Clock Frequency  
f
1000  
kHz  
µs  
SCL  
Hold Time (Repeated)  
START Condition  
t
0.26  
HD;STA  
CLK Low Period  
CLK High Period  
t
0.5  
µs  
µs  
LOW  
t
0.26  
HIGH  
Set-Up Time Repeated  
START Condition  
t
0.26  
µs  
SU;STA  
HD:DAT  
DATA Hold Time  
t
0
µs  
ns  
µs  
DATA Set-Up time  
t
50  
SU;DAT  
Set-Up Time for STOP Condition  
t
0.26  
SU;STO  
Bus-Free Time Between STOP  
and START  
t
0.5  
µs  
pF  
BUF  
Capacitive Load for Each Bus Line  
C
550  
B
Maximum Pulse Width of Spikes  
that Must be Suppressed by the  
Input Filter  
50  
ns  
Maxim Integrated  
52  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
2
Electrical CharacteristicsI C (continued)  
(V  
= 3.6V, V  
= 1.8V, circuit of Simplified Functional Diagram, T = -40°C to +85°C, unless otherwise specified, typical  
MBATT  
INI2C A  
values are at T = +25°C.) (Note 27)  
A
C
= 100pF  
C = 400pF  
B
B
PARAMETER  
SYMBOL  
CONDITIONS  
UNITS  
MIN  
MAX  
MIN  
MAX  
2
I C-COMPATIBLE INTERFACE TIMING FOR HS-MODE  
Clock Frequency  
f
3.4  
1.7  
MHz  
ns  
SCL  
Set-Up Time Repeated  
START Condition  
t
160  
160  
160  
160  
SU;STA  
Hold Time (Repeated)  
START Condition  
t
ns  
HD;STA  
CLK Low Period  
CLK High Period  
DATA Set-Up time  
DATA Hold Time  
SCL Rise Time  
t
160  
60  
10  
0
320  
120  
10  
0
ns  
ns  
ns  
ns  
ns  
LOW  
t
HIGH  
t
SU;DAT  
HD:DAT  
t
70  
40  
150  
80  
t
10  
20  
RCL  
Rise Time of SCL Signal After a  
Repeated START Condition and  
after an Acknowledge Bit  
t
10  
80  
20  
80  
ns  
rCL1  
SCL Fall Time  
SDA Rise Time  
SDA Fall Time  
t
10  
10  
10  
40  
80  
80  
20  
20  
20  
80  
ns  
ns  
ns  
fCL  
t
160  
160  
rDA  
t
fDA  
Set-Up Time for STOP  
Condition  
t
160  
160  
ns  
SU;STO  
Capacitive Load for Each  
Bus Line  
C
100  
10  
400  
10  
pF  
B
Maximum Pulse Width of  
Spikes that Must be Suppressed  
by the Input Filter  
ns  
Note 26: Limits are 100% production tested at T = +25°C. Limits over the operating temperature range are guaranteed through  
A
correlation using statistical quality control methods.  
Note 27: System design guidance only. Not production tested.  
Maxim Integrated  
53  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
Typical Operating Characteristics  
(IN_SDx = MBATT, FPWM Mode, L = 1μH (TOKO 2520 case size) ,remote sense disabled, T = +25°C unless otherwise noted.)  
A
SD1  
SD0  
SD2  
EFFICIENCY vs. LOAD CURRENT  
EFFICIENCY vs. LOAD CURRENT  
EFFICIENCY vs. LOAD CURRENT  
toc02  
toc01  
toc03  
100  
90  
80  
70  
60  
50  
40  
30  
100  
90  
80  
70  
60  
50  
40  
30  
100  
90  
80  
70  
60  
50  
40  
30  
V
= 2.7V  
IN  
V
= 2.7V  
V
V
= 2.7V  
= 3.8V  
IN  
IN  
V
V
= 3.8V  
= 5.5V  
IN  
V
V
= 3.8V  
= 5.5V  
IN  
IN  
IN  
V
= 5.5V  
IN  
IN  
V
= 1.15V, FORCED PWM DISABLED,  
1µH (TOKO DFE201612P-1R0M),  
REMOTE SENSE DISABLED  
V
= 1.35V, FORCED PWM DISABLED,  
1µH (TOKO DFE201612P-1R0M),  
REMOTE SENSE DISABLED  
V
= 1.0V, FORCED PWM DISABLED,  
1µH (TOKO DFE252012F-1R0M),  
REMOTE SENSE DISABLED  
OUT  
OUT  
OUT  
0.001  
0.01  
0.1  
1
10  
0.001  
0.01  
0.1  
1
10  
0.001  
0.01  
0.1  
1
10  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
POWER-SUPPLY REJECTION RATIO  
vs. INPUT FREQUENCY  
SD3  
EFFICIENCY vs. LOAD CURRENT  
150mA PMOS LDO  
toc04  
toc05  
100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
V
AVERAGE = 3.5V  
AVERAGE = 2.8V  
IN_LDO2  
90  
80  
70  
60  
50  
40  
30  
IN_LDO2  
V
= 2.7V  
= 3.8V  
= 5.5V  
IN  
IN  
IN  
V
V
LDO POWERED EXTERNALLY  
V
= 1.8V, FORCED PWM DISABLED,  
1µH (TOKO DFE201612P-1R0M),  
REMOTE SENSE DISABLED  
OUT  
V
I
= 1.6V  
= 15mA  
OUT2  
OUT2  
0.001  
0.01  
0.1  
1
10  
0.1  
1
10  
100  
1000  
LOAD CURRENT (A)  
INPUT FREQUENCY (kHz)  
POWER-SUPPLY REJECTION RATIO  
vs. INPUT FREQUENCY  
150mA PMOS LDO  
toc06  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
IOUT2 = 30mA  
IOUT2 = 90mA  
IOUT2 = 150mA  
VIN_LDO3 AVERAGE = 3.5V  
VIN_LDO3 AVERAGE = 3.0V  
LDO POWERED EXTERNALLY  
LDO POWERED EXTERNALLY  
VOUT2 = 1.6V  
VIN_LDO2 AVERAGE = 3.5V  
VOUT3 = 1.8V  
IOUT3 = 30mA  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
INPUT FREQUENCY (kHz)  
INPUT FREQUENCY (kHz)  
Maxim Integrated  
54  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
Typical Operating Characteristics (continued)  
(IN_SDx = MBATT, FPWM Mode, L = 1μH (TOKO 2520 case size) ,remote sense disabled, T = +25°C unless otherwise noted.)  
A
POWER-SUPPLY REJECTION RATIO  
vs. INPUT FREQUENCY  
300mA PMOS LDO  
toc08  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
IOUT3 = 30mA  
IOUT3 = 120mA  
IOUT3 = 240mA  
VIN_LDO0 AVERAGE = 3.5V  
IN_LDO0 AVERAGE = 3.0V  
IOUT0 = 15mA  
IOUT0 = 30mA  
IOUT0 = 60mA  
V
LDO POWERED EXTERNALLY  
LDO POWERED EXTERNALLY  
LDO POWERED EXTERNALLY  
VOUT0 = 1.8V  
VOUT3 = 1.8V  
VIN_LDO3 AVERAGE = 3.5V  
VOUT0 = 1.8V  
VIN_LDO0 AVERAGE = 3.5V  
IOUT0 = 15mA  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
INPUT FREQUENCY (kHz)  
INPUT FREQUENCY (kHz)  
INPUT FREQUENCY (kHz)  
POWER-SUPPLY REJECTION RATIO  
vs. INPUT FREQUENCY  
300mA NMOS LDO  
toc11  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
IN_LDO8 AVERAGE = 3.5V  
IN_LDO8 AVERAGE = 3.0V  
IOUT8 = 30mA  
IOUT8 = 120mA  
IOUT8 = 300mA  
V
LDO POWERED EXTERNALLY  
LDO POWERED EXTERNALLY  
VOUT8 = 1.8V  
VOUT8 = 1.8V  
VIN_LDO8 AVERAGE = 3.5V  
IOUT8 = 30mA  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
INPUT FREQUENCY (kHz)  
INPUT FREQUENCY (kHz)  
POWER-SUPPLY REJECTION RATIO  
vs. INPUT FREQUENCY  
450mA NMOS LDO  
toc13  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN_LDO7 AVERAGE = 3.5V  
IN_LDO7 AVERAGE = 3.0V  
IOUT7 = 45mA  
IOUT7 = 225mA  
IOUT7 = 450mA  
V
LDO POWERED EXTERNALLY  
LDO POWERED EXTERNALLY  
VOUT7 = 1.8V  
VOUT7 = 1.8V  
VIN_LDO7 AVERAGE = 3.5V  
IOUT7 = 45mA  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
INPUT FREQUENCY (kHz)  
INPUT FREQUENCY (kHz)  
Maxim Integrated  
55  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
Bump Configuration  
TOP VIEW  
(BUMP SIDE DOWN)  
MAX77863  
1
2
3
4
5
6
7
8
9
10  
+
OUT_  
LDO3  
IN_LD  
O3-5  
OUT_  
LDO5  
IN_  
LDO2  
OUT_  
LDO7  
IN_LD  
O7-8  
OUT_  
LDO8  
NIC0  
MON  
NIC1  
A
B
C
D
IN_  
SD3  
OUT_  
LDO4  
IN_LD  
O4-6  
OUT_  
LDO6  
OUT_  
LDO2  
OUT_  
LDO0  
IN_LD  
O0-1  
OUT_  
LDO1  
AVSD  
XIN  
LX_  
SD3  
LX_  
SD3  
FB_  
SD3  
MBA TT  
EN1  
GND  
EN2  
GND  
EN0  
GND  
ACOK  
XGND  
XOUT  
PG_  
SD3  
FB_  
SD2  
FB_  
SD1  
32K_  
OUT0  
nIRQ  
D_SD3  
BBATT  
PG_  
SD2  
SNSN  
_SD1  
SNSP  
_SD1  
E
SCL  
SDA  
INI2C  
GND  
GND  
GND  
LID  
GND  
GND  
SHDN  
PG_  
SD2  
FB_  
SD0  
FB_  
SD0  
SNSP  
_SD0  
SNSN  
_SD0  
nRST  
_IO  
PG_  
SD1  
F
G
H
J
LX_  
SD2  
LX_  
SD2  
GPIO  
_INB  
GPIO  
_INA  
LX_  
SD1  
LX_  
SD1  
GPIO4  
GPIO5  
GPIO6  
GPIO7  
GPIO0  
GPIO1  
GPIO2  
GPIO3  
IN_  
SD2  
INB_  
SD0  
PGB_  
SD0  
PGA_  
SD0  
INA_  
SD0  
IN_  
SD1  
INB_  
SD0  
LXB_  
SD0  
LXB_  
SD0  
PGB_  
SD0  
PGA_  
SD0  
LXA_  
SD0  
LXA_  
SD0  
INA_  
SD0  
NIC2  
NIC3  
WLP  
(4.1mm x 3.8mm X 0.7mm)  
Maxim Integrated  
56  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
Bump Description  
PIN  
NAME  
DESCRIPTION  
LINEAR REGULATORS  
B8  
A6  
IN_LDO0-1 Linear regulator 0 and 1 power input. Bypass IN_LDO0 to GND with a 1.0µF ceramic capacitor.  
IN_LDO2  
Linear regulator 2 power input. Bypass IN_LDO2 to GND with a 1.0µF ceramic capacitor.  
Linear regulator 3 and 5 power input. Bypass IN_LDO3-5 to GND with a 1.0µF ceramic capacitor.  
A4  
B4  
IN_LDO3-5 A single IN_LDO3-5 and IN_LDO4-6 input bypass capacitor can be shared between LDOs 3, 4, 5,  
and 6 if they are powered from the same input supply.  
Linear regulator 4 and 6 power input. Bypass IN_LDO4-6 to GND with a 1.0µF ceramic capacitor.  
IN_LDO4-6 A single IN_LDO3-5 and IN_LDO4-6 input bypass capacitor can be shared between LDOs 3, 4, 5,  
and 6 if they are powered from the same input supply.  
A8  
B7  
B9  
B6  
A3  
B3  
A5  
B5  
A7  
A9  
IN_LDO7-8 Linear regulator 7 and 8 power input. Bypass IN_LDO7-8 to GND with a 1.0µF ceramic capacitor.  
OUT_LDO0 LDO0 power output. LDO0 is an N-channel linear regulator.  
OUT_LDO1 LDO1 power output. LDO1 is an N-channel linear regulator.  
OUT_LDO2 LDO2 power output. LDO2 is a P-channel linear regulator.  
OUT_LDO3 LDO3 power output. LDO3 is a P-channel linear regulator.  
OUT_LDO4 LDO4 power output. LDO4 is a P-channel linear regulator.  
OUT_LDO5 LDO5 power output. LDO5 is a P-channel linear regulator.  
OUT_LDO6 LDO6 power output. LDO6 is a P-channel linear regulator.  
OUT_LDO7 LDO7 power output. LDO7 is a N-channel linear regulator.  
OUT_LDO8 LDO8 power output. LDO8 is a N-channel linear regulator.  
GLOBAL RESOURCES  
C3  
A2  
MBATT  
MON  
Low-noise PMIC power input. Bypass MBATT with a 0.1µF ceramic capacitor to ground.  
Low-battery monitor analog input.  
D5, D6, D7,  
E4, E6, E7  
GND  
BBATT  
XOUT  
Ground. All GND pins must be connected together.  
D10  
C10  
Backup battery connection. Bypass BBATT with a 0.1µF ceramic capacitor to ground.  
32.768kHz crystal oscillator output. XOUT has on-chip programmable load capacitors for the  
crystal oscillator.  
32.768kHz crystal oscillator input. XIN has on-chip programmable load capacitors for the crystal  
oscillator.  
B10  
XIN  
C9  
XGND  
NIC1  
Crystal oscillator ground. All XGND pins must be connected together.  
A10  
Not internally connected #1. However, for best PCB routing, connect NIC1 to XGND.  
32.768kHz crystal oscillator output. 32K_OUT0 is a 50% duty cycle square wave buffered  
version of TXIN.  
D9  
32K_OUT0  
Maxim Integrated  
57  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
Bump Description (continued)  
PIN  
NAME  
DESCRIPTION  
2
I C SERIAL INTERFACE  
E3  
F2  
E2  
D2  
INI2C  
SDA  
SCL  
Internal logci supply for SDA and SCl.  
Serial interface data bidirectional open-drain.  
Serial interface clock input. Open-drain output.  
Active-low interrupt output. nIRQ is an open-drain output.  
nIRQ  
ON/OFF CONTROLLER AND FLEXIBLE POWER SEQUENCER  
Enable input 0 to the flexible power sequencer. EN0 is typically connected to the system’s ONKEY.  
See the EN0 section for more information.  
C7  
C5  
EN0  
EN1  
Enable input 1 to the flexible power sequencer. EN1 is typically connected to the system’s AP.  
See the EN1 section for more information.  
Enable input 2 to the flexible power sequencer. EN2 is typically connected to the system’s AP.  
See the EN2 section for more information.  
C6  
E10  
C8  
EN2  
SHDN  
ACOK  
Shutdown digital input.  
ACOK is a digital input to the ON/OFF controller that typically comes from  
the system’s battery charger .  
LID is a digital input to the ON/OFF controller that typically comes from the system’s  
battery charger.  
E5  
LID  
STEP-DOWN REGULATORS  
Step-down regulator analog power input. AVSD powers the analog portions of all step-down  
regulators. INy_SDx, and AVSD are typically connected to MBATT in the typical applications  
circuit for a 1s battery configuration as shown in Figure 40. For applications with 2s  
(or higher) battery configuration AVSD can be connected to an external step-down regulator  
as shown in Figure 41 and all INy_SDx must be connected together.  
B2  
D4  
AVSD  
D_SD3 default output voltage select input. D_SD3 is a tri-level logic input. Connect D_SD3 as  
described in Table D_SD3 Logic. The logic level of D_SD3 is latched each time the MBATT  
D_SD3  
voltage rises above the main-battery under voltage lockout threshold (V  
> V  
).  
MBATT  
MBATTUVLO  
Changes to D_SD3 after the logic level has been latched have no effect.  
Power input for phase “A” of the step-down regulator 0. Connect AVSD and all INA_SD0 together.  
Bypass INA_SD0 to GND with a 4.7µF ceramic capacitor.  
H9, J9  
H2, J2  
H10  
J10  
INA_SD0  
INB_SD0  
IN_SD1  
NIC3  
MAX77863 power input for phase “B” of the step-down regulator 0. Connect AVSD and  
all INB_SD0 together. Bypass INB_SD0 to GND with a 4.7µF ceramic capacitor.  
Power input for step-down regulator 1. Connect AVSD and all IN_SD1 together. All IN_SD1 pins  
must be connected together. Bypass IN_SD1 to GND with a 2.2µF ceramic capacitor.  
Not internally connected #3. J10 is not internally connected. However, for best PCB routing,  
connect NIC3 to IN_SD1.  
Power input for step-down regulator 2. Connect AVSD and all IN_SD2 together. All IN_SD2 pins  
must be connected together. Bypass IN_SD2 to GND with a 2.2µF ceramic capacitor.  
H1  
IN_SD2  
NIC2  
Not internally connected #2. J1 is not internally connected. However, for best PCB routing,  
connect NIC2 to IN_SD2.  
J1  
Maxim Integrated  
58  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
Bump Description (continued)  
PIN  
NAME  
DESCRIPTION  
Power input for step-down regulator 3. Connect AVSD and all IN_SD3 together. All IN_SD3 pins  
must be connected together. By pass IN_SD3 to GND with a 2.2µF ceramic capacitor.  
B1  
IN_SD3  
Not internally connected #0. A1 is not internally connected. However, for best PCB routing,  
connect NIC0 to IN_SD3.  
A1  
NIC0  
Inductor switching node for phase “A” of step-down regulator 0. When the regulator is enabled,  
the inductor switching node drives between INA_SD0 and PGA_SD0 to maintain FB_SD0 at its  
regulation threshold. All LXA_SD0 pins must be connected together.  
J7, J8  
LXA_SD0  
Inductor switching node for phase “B” of step-down regulator 0. When the regulator is enabled,  
the inductor switching node drives between INB_SD0 and PGB_SD0 to maintain FB_SD0 at its  
regulation threshold. All LXB_SD0 pins must be connected together.  
J3, J4  
G9, G10  
G1, G2  
C1, C2  
LXB_SD0  
LX_SD1  
LX_SD2  
LX_SD3  
Inductor switching node for step-down regulator 1. When the regulator is enabled, the inductor  
switching node drives between IN_SD1 and PG_SD1 to maintain FB_SD1 at its regulation  
threshold. All LX_SD1 pins must be connected together.  
Inductor switching node for step-down regulator 2. When the regulator is enabled, the inductor  
switching node drives between IN_SD2 and PG_SD2 to maintain FB_SD2 at its regulation  
threshold. All LX_SD2 pins must be connected together.  
Inductor switching node for step-down regulator 3. When the regulator is enabled, the inductor  
switching node drives between IN_SD3 and PG_SD3 to maintain FB_SD3 at its regulation  
threshold. All LX_SD3 pins must be connected together.  
Power ground for phase “A” of step-down regulator 0. All PGA_SD0 pins must be connected  
together.  
H6, J6  
H5, J5  
PGA_SD0  
PGB_SD0  
Power ground for phase “B” of step-down regulator 0. All PGB_SD0 pins must be connected  
together.  
F10  
E1, F1  
D1  
PG_SD1  
PG_SD2  
PG_SD3  
Power ground for step-down regulator 1. All PG_SD1 pins must be connected together.  
Power ground for step-down regulator 2. All PG_SD2 pins must be connected together.  
Power ground for Step-down regulator 3.  
Step-down regulator 0 output voltage feedback node. Connect FB_SD0 directly to the  
step-down regulator output capacitor.  
F6  
D8  
D3  
C4  
F5  
F7  
E9  
FB_SD0  
FB_SD1  
Step-down regulator 1 output voltage feedback node. Connect FB_SD1 directly to the  
step-down regulator output capacitor.  
Step-down regulator 2 output voltage feedback node. Connect FB_SD2 directly to the  
step-down regulator output capacitor.  
FB_SD2  
Step-down regulator 3 output voltage feedback node. Connect FB_SD3 directly to the  
step-down regulator output capacitor.  
FB_SD3  
Step-down regulator 0 output voltage feedback node. Connect FB_SD0 directly to the  
step-down regulator output capacitor.  
FB_SD0  
Output voltage remote sense positive input for step-down regulator 0. Connect SNSP_SD0  
directly to the point-of-load positive terminal.  
SNSP_SD0  
SNSP_SD1  
Output voltage remote sense positive input for step-down regulator 1. Connect SNSP_SD1  
directly to the point-of-load positive terminal.  
Maxim Integrated  
59  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
Bump Description (continued)  
PIN  
NAME  
DESCRIPTION  
F4  
GND  
Unused pin that is internally connected. Connect to ground for the lowest thermal impedance.  
Output voltage remote sense negative input for step-down regulator 0.  
Connect SNSN_SD0 directly to the point-of-load ground terminal.  
F8  
SNSN_SD0  
Output voltage remote sense negative input for step-down regulator 1.  
Connect SNSN_SD1 directly to the point-of-load ground terminal.  
E8  
F3  
SNSN_SD1  
GND  
Unused pin that is internally connected. Connect to ground for the lowest thermal impedance.  
GPIO  
GPIO power input for the lower nibble. Bypass GPIO_INA to GND with a 0.1µF ceramic capacitor.  
However, for the MAX77863, if GPIO_INA is supplied by one of the on-chip regulators, the  
regulators output capacitor is sufficient bypass capacitance for GPIO_INA.  
G6  
G5  
GPIO_INA  
GPIO_INB  
GPIO power input for the upper nibble. Bypass GPIO_INB to GND with a 0.1µF ceramic capacitor.  
However, for the MAX77863, if GPIO_INB is supplied by one of the on-chip regulators, the  
regulators output capacitor is sufficient bypass capacitance for GPIO_INB.  
G7  
GPIO0  
GPIO1  
GPIO2  
GPIO3  
GPIO4  
GPIO5  
GPIO6  
GPIO7  
H7  
G8  
H8  
General purpose input/output.  
G3  
H3  
G4  
H4  
RESET I/O  
F9  
nRST_IO  
Bidirectional active-low open-drain reset input/output.  
Maxim Integrated  
60  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
Simplified Functional Diagram  
IN_LDO0-1  
AVSD  
OUT_LDO0  
INA_SD0  
IN  
LDO0, 150mA, NMOS  
OUT_LDO1  
LDO1, 150mA, NMOS  
LXA_SD0  
IN_LDO2  
DCDC0  
CONTROL  
PGA_SD0  
INB_SD0  
LXB_SD0  
PGB_SD0  
OUT_LDO2  
LDO2, 150mA, PMOS  
PGND  
PGND  
8A PEAK  
6A CONT.  
IN_LDO3-5  
MAX77863  
OUT_LDO3  
OUT_LDO5  
LDO3, 300mA, PMOS  
LDO5, 150mA, PMOS  
IN_LDO4-6  
OUT_LDO4  
OUT_LDO6  
FB_SD0  
SNSP_SD0  
SNSN_SD0N  
LDO4, 150mA, PMOS  
LDO6, 150mA, PMOS  
LOAD  
IN_LDO7-8  
OUT_LDO7  
OUT_LDO8  
IN_SD1  
LX_SD1  
PG_SD1  
IN  
DCDC1  
CONTROL  
LDO7, 450mA, NMOS  
LDO8, 300mA, NMOS  
V
DCDC1  
3A  
MON  
PGND  
LOW-BATTERY MONITOR  
FB_SD1  
SNSP_SD1  
SNSN_SD1  
MBA TT  
GND  
BIAS, REF, UVLO, OVLO,  
THERMAL SHUTDOWN  
LOAD  
GND  
BBATT  
GND  
IN_SD2  
LX_SD2  
PG_SD2  
FB_SD2  
IN_SD3  
LX_SD3  
PG_SD3  
BACKUP BATTERY CHARGER  
IN  
DCDC2  
CONTROL  
V
DCDC2  
2A  
XOUT  
XIN  
XGND  
PGND  
IN  
RTC  
GND  
WATCHDOG  
GPIO_INB  
32k_OUT0  
GND  
DCDC3  
CONTROL  
V
DCDC3  
2A  
INI2C  
SDA  
SCL  
PGND  
FB_SD3  
D_SD3  
2
I C INTERFACE  
AND  
TRI-STATE  
INPUT LATCH  
INTERRUPT OUTPUT  
nIRQ  
EN0  
GPIO_INA  
GPIO0  
GPIO1  
GPIO  
LOWER NIBBLE  
EN1  
ON/OFF  
CONTROLLER  
GPIO2  
GPIO3  
EN2  
AND  
ACOK  
LID  
GPIO_INB  
GPIO4  
GPIO5  
FLEXIBLE POWER  
SEQUENCER  
GPIO  
UPPER NIBBLE  
SHDN  
GPIO6  
GPIO7  
NICx  
nRST_IO  
BIDIRE CTIONAL RES ET  
INPUT/OUTPUT  
GND XGND PGND  
Maxim Integrated  
61  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
ers the global resources of the IC through MBATT and  
GPIO band “A”. With AON5V0 applied to MBATT, the  
Detailed Description  
The MAX77863 is a complete power management IC  
(PMIC) for mobile devices that use multicore appli-  
cation processors. The IC works well with many  
different series/parallel (s/p) configurations of a Li+/  
Li-Poly battery pack. Figure 40 shows the MAX77863 in  
its Typical Application Circuit for systems with 1s configu-  
ration batteries.  
on/off controller monitors its inputs for a wakeup event.  
When a wakeup event occurs, the IC begins its wakeup  
sequence by enabling the external step-down regulator  
such as the MAX15066 with GPIO2. The MAX15066  
generates SD5V0 which powers all of the step-down  
regulators and a few of its LDOs which are required to  
complete the wakeup sequence. The concepts used in  
Figure 41 can be utilized to create solutions for 3s and 4s  
configurations. Other devices such as the MAX17085B,  
MAX17005/6, MAX17015, and MAX17020 are also good  
candidates for support devices in this series battery con-  
figuration.  
Figure 41 shows the IC in its typical applications circuit  
for a system with a 2s1p (two series one parallel) battery  
configuration. This applications circuit for systems with  
series battery configurations adds three components that  
are not shown in Figure 40: battery charger, low-I LDO,  
and step-down regulator. A battery charger charges the  
series configured battery pack and generates a system  
Q
Simplified Functional Diagram: where appropriate, further  
details of each functional block are shown within the  
dedicated chapter for that function.  
voltage (V  
) that is derived from the adapter and/  
MBATT  
or the battery pack. V  
is regulated down to an  
MBATT  
Table 1 provides a regulator summary for the IC.  
always on voltage (AON5V0) by a low-I linear regulator  
Q
such as the MAX1725 or the MAX8881. AON5V0 pow-  
Table 1. Regulator Summary  
V
V
V
OUTPUT  
IN  
OUT  
OUT  
REGULATOR  
TOPOLOGY  
MAXIMUM  
OUTPUT  
NOISE  
SPECIAL  
FEATURES  
RANGE  
(V)  
RANGE RESOLUTION CAPACITOR  
(V)  
I
OUT  
(mV)  
(C  
)
OUTX  
8.0A Peak  
6.0A  
Continuous  
Differential remote  
output voltage  
sensing  
3.0 to 5.5  
Step-Down  
Regulator  
0.6 to  
1.4  
SD0  
12.5  
2x22µF  
N/A  
6.0A  
3.0A  
2.6 to 3.0  
3.0 to 5.5  
Differential remote  
output voltage  
sensing  
Step-Down  
Regulator  
0.6 to  
1.55  
SD1  
SD2  
12.5  
12.5  
22µF  
22µF  
N/A  
N/A  
2.5A  
2.0A  
2.6 to 3.0  
2.6 to 5.5  
Step-Down  
Regulator  
0.6 to  
3.3875  
Capable of 100%  
duty-cycle  
• Capable of  
100% duty-cycle  
• Three default  
output voltage  
options via pin  
strap (D_SD3)  
Step-Down  
Regulator  
0.6 to  
3.3875  
SD3  
2.0A  
2.6 to 5.5  
12.5  
22µF  
N/A  
N-Channel  
LDO (NDRV1)  
0.8 to  
2.35  
LDO0  
LDO1  
LDO2  
150mA  
150mA  
150mA  
0.8 to 5.5  
0.8 to 5.5  
1.7 to 5.5  
25  
25  
50  
1.0µF  
1.0µF  
1.0µF  
65µV  
65µV  
45µV  
N/A  
N/A  
N/A  
RMS  
RMS  
RMS  
N-Channel  
LDO (NDRV1)  
0.8 to  
2.35  
P-Channel  
LDO (PDRV1)  
0.8 to  
3.95  
Maxim Integrated  
62  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
Table 1. Regulator Summary (continued)  
V
V
V
OUTPUT  
IN  
OUT  
OUT  
REGULATOR  
TOPOLOGY  
MAXIMUM  
OUTPUT  
NOISE  
SPECIAL  
FEATURES  
RANGE  
(V)  
RANGE RESOLUTION CAPACITOR  
(V)  
I
OUT  
(mV)  
(C  
)
OUTX  
P-Channel  
LDO (PDRV2)  
0.8 to  
3.95  
LDO3  
LDO4  
LDO5  
LDO6  
LDO7  
LDO8  
300mA  
150mA  
150mA  
150mA  
450mA  
300mA  
1.7 to 5.5  
1.7 to 5.5  
1.7 to 5.5  
1.7 to 5.5  
0.8 to 5.5  
0.8 to 5.5  
50  
2.2µF  
1.0µF  
45µV  
45µV  
45µV  
45µV  
65µV  
65µV  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
RMS  
RMS  
RMS  
RMS  
RMS  
RMS  
P-Channel  
LDO (PDRV1)  
0.8 to  
1.5875  
12.5  
50  
P-Channel  
LDO (PDRV1)  
0.8 to  
3.95  
1.0µF  
P-Channel  
LDO (PDRV1)  
0.8 to  
3.95  
50  
1.0µF  
N-Channel  
LDO (NDRV3)  
0.8 to  
3.95  
50  
4.7µF  
N-Channel  
LDO (NDRV2)  
0.8 to  
3.95  
50  
2.2µF  
*Output noise is proportional to output voltage. The specified noise values are for V  
= 0.8V.  
OUT_LDOx  
**Quiescent supply current is the sum of the main battery current (I  
), the step-down regulator analog input supply current  
MBATT  
(I  
), and the regulator’s power input current.  
AVSD  
voltage (V ) is not within the acceptable window  
AVSD  
Global Resources  
of operation (2.6V to 5.5V). Disabling the IC when the  
supply is outside of its acceptable range ensures reliable  
consistent behavior when the supply voltage is removed/  
applied and it prevents overvoltage stress to the device.  
The global resources encompasses a set of circuits that  
serve the entire device and ensures safe, consistent,  
and reliable operation. These resources include voltage  
reference, bias currents, timing references, voltage  
monitors, and thermal monitors. See Figure 1 for more  
information.  
In addition to the fixed threshold, UVLO and OVLO com-  
parators and adjustable threshold low-battery monitor  
monitors the battery voltage through the MON input and  
provides the system with a signal that the main-battery is  
low through a MBATTLOW status bit and MBATTLOW_R  
Voltage References, Bias Currents,  
and Timing References  
Centralized voltage references, bias current, and timing  
references support all the functional blocks within the  
IC. These resources are automatically enabled when  
any of the peripherals functions within the device require  
them. The supply current associated with the minimum  
set of these resources make up the quiescent current  
interrupt bit. When V  
< V  
, MBATTLOW is 1.  
MON  
MONL  
The main-battery low signal is also available through the  
nRST_IO signal when LBRSTEN = 1. With all peripheral  
blocks of the IC disabled, the quiescent current of the  
device is 12µA (I  
). The “low-battery” compara-  
Q_MBATT  
tor’s threshold and hysteresis are register programmable.  
(I  
).  
Q_MBATT  
For a single-cell (i.e., 1s) battery configuration (Figure  
40), MON is intended to connect directly to the MBATT  
pin externally. For multi-cell (i.e., 2s, 3s, 4s) configura-  
tions (Figure 41), MON is intended to connect to the  
main system power source (i.e., battery or system node)  
Voltage Monitors  
The MBATT undervoltage lockout (UVLO) and MBATT  
overvoltage lockout (OVLO) comparators force the entire  
device off when the supply voltage (V  
) is not  
MBATT  
through a resistive divider. Although V  
can inde-  
MON  
within the acceptable window of operation (2.6V to  
5.5V). Similarly, the AVSD undervoltage lockout (UVLO)  
and AVSD overvoltage lockout (OVLO) comparators  
force the IC step-down regulators off when the supply  
pendently swing from -0.3V to +6.0V, systems should be  
designed such that V is less than or equal to MBATT.  
MON  
Maxim Integrated  
63  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
Example 1: Setting the low-battery cutoff threshold to  
5.6V and the battery valid threshold to 6.0V for a 2s  
battery configuration  
an issue because the valid battery operating range  
is from 2.6V to 5.5V. However, it could be possible  
that the battery capacity is not enough to support the  
system when the voltage is lower than 2.9V. In this  
situation, the low-battery threshold would be set for  
2.9V falling.  
A system with two series batteries has a maximum  
charge voltage of 8.4V and a low battery cutoff volt-  
age of 5.6V (i.e., 2.8V per cell). A 400mV hysteresis  
is desired before the system recognizes the battery  
as valid.  
Some systems may need to choose the low-battery  
threshold based on backup time: Consider the case  
where a 2000mAh battery supports a system where  
the highest step-down regulator output voltage is  
2.5V (no dropout issues), the battery can support the  
system when the voltage is down to 2.7V (no capacity  
issues), but the system must have a backup time of  
one year. In this case, the low-battery threshold must  
be set sufficiently high so that the main battery has  
enough capacity to support the system in its backup  
mode for one year. In a situation like this, the low-  
battery threshold may be set to 3.3V falling.  
The LBDAC[2:0] = 0b001 setting is chosen (2.8V) to  
get a falling cutoff voltage of 5.6V for the two series  
cell battery configuration.  
The LBHSYT[1:0] = 0b01 setting is chosen (200mV)  
to get 400mV of hysteresis (i.e., 200mV per cell) and  
a battery valid threshold of 6.0V.  
Adivide-by-two resistive divider using two 402kΩ resis-  
tors is used from the system voltage (either battery or  
adapter) to ground with the center tap connected at  
MON. The low MON bias current (I  
) allows for  
MON  
The V  
LHYST[1:0]. Choose V  
peak currents and battery impedance. Set V  
sufficiently high to avoid oscillation in and out of the  
low-battery state due to system peak currents.  
hysteresis (V  
) is configurable using  
LBHYST  
MONL  
the use of a large resistor to minimize the drain on the  
system. Limiting the top of the resistive divider to  
< 402kΩ limits the total error due to bias current to  
50mV. When using high-impedance resistive dividers,  
make sure to isolate them from noise sources in the  
PCB layout.  
based on your system  
LBHYST  
LBHYST  
For example, consider a system that has maximum  
peak currents of 1A with an internal battery imped-  
ance of 100mΩ, a connector impedance of 50mΩ,  
and a fuse impedance of 50mΩ. The total impedance  
of 200mΩ combined with the 1A peak currents results  
in the battery voltage varying by 200mV. In this case,  
Example 2: Optimizing the low-battery threshold and  
hysteresis  
The default low-battery threshold is 3.0V falling with  
200mV hysteresis. A system with a low battery cannot  
start until its battery has charged above 3.2V.  
V
needs to be set to 300mV (>200mV).  
LBHYST  
The following bullet points give some examples of  
Example 3: Charging a dead battery with a 3.0V falling  
situations where the low-battery falling threshold (V  
can be optimized:  
)
threshold and 200mV of hysteresis.  
MONL  
A device with a 2.5V battery is off and does not start  
when the user presses the “on key” because the  
battery is too low. The user plugs the device into the  
charger and presses the “on key” to find out that it still  
does not start because the battery voltage is too low.  
Three minutes later, the battery voltage rises above  
3.2V and the device starts up with no user intervention.  
Some systems may need to choose the low-battery  
threshold based on step-down regulator dropout:  
Consider the case where an 800mAh battery supports  
a system where the highest step-down regulator out-  
put voltage is 2.8V, the step-down regulator output can  
be prevented from going into dropout by setting the  
low-battery threshold to 3.0V falling. This assumes  
that 200mV (3.2V-3.0V) is sufficient for the step-down  
regulator to stay out of dropout.  
Thermal Monitors  
Several on-chip thermal sensors force the IC to shut down  
if the junction temperature exceeds 165°C (T  
addition to the 165°C shutdown threshold, these thermal  
sensors also provide interrupts when the temperature  
exceeds 120°C (thermal alarm 1) and 140°C (thermal  
alarm 2).  
). In  
JSHDN  
Some systems may need to choose the low-battery  
threshold based on the battery capacity: Consider the  
case where a 2000mAh battery supports a system  
where the highest step-down regulator output voltage  
is 2.5V, then the step-down regulator dropout is not  
Maxim Integrated  
64  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
FPS0 (flexible power sequencer 0) has gotten past  
Bidirectional Reset Input/Output  
power up cycle 5 (FSO_RSO).  
The MAX77863 has a bidirectional, active-low, open-  
drain, reset input/output (nRST_IO) as shown in Figure  
1. The RSO signal within the bidirectional reset IO logic  
in Figure 1 is asserted by the IC when it needs to drive  
nRST_IO low. If the IC is not driving nRST_IO low (i.e.,  
RSO is low), and an external device such as a reset  
button (Figure 1) pulls nRST_IO low, then the RSI signal  
within the bidirectional reset IO logic is asserted. If RSI is  
t  
expired.  
RST_O  
No external device such as a reset button (Figure 40  
)
are pulling nRST_IO low.  
Global Shutdown  
This document uses the term “global shutdown” to refer to  
any event that causes a shutdown of all regulators and a  
reset for most of the registers within the IC. The NVERC  
register records the source of a “global shutdown” event.  
Figure 4 shows the global shutdown state machine.  
Figure 5 is the simplified logic diagram for the global shut-  
down. Figure 6 and Figure 7 shows the simplified timing  
diagram for the global shutdown events. In addition to  
the state machine, the various conditions that causes a  
global shutdown are also shown in the bulleted list below:  
asserted for longer than t  
, then a global shutdown  
DBNC  
event is triggered (GLBALSHDN). A global shutdown due  
to RSI is recorded in the NVERC register such that when  
the system’s microprocessor recovers from the reset it  
can recognize that the cause of the power down was due  
to RSI. If a global shutdown event is triggered by RSI,  
then the IC automatically generates a wakeup event after  
the global shutdown event has completed. See the Global  
Shutdown section for more information.  
Reset input (i.e., RSI event)  
The reset output is a programmable slave to the flexible  
power sequencer. Allowing the RSO to respond to the flexible  
power sequencer gives it the capability to drive the nRST_IO  
line low as the first action in the power down sequence  
(Figure 26). The FPS_RSO register configures how nRST_IO  
behaves with respect to the flexible power sequencer.  
• nRST_IO externally pulled low for t  
is deasserted.  
after RSO  
DBNC  
Software Reset (i.e., SFT_RST event)  
• SFT_RST bit is set.  
Main-Battery Undervoltage  
(V  
< V  
)
MBATT  
MBATTUVLO  
Once all conditions for allowing the reset output to go  
high-impedance have been met, a reset delay timer is  
Main-Battery Low when MBLPD is set  
(V  
< V  
)
initiated before RSO is deasserted (t  
).  
MON  
MONL  
RST_O  
Overvoltage (V  
> V  
)
or  
MBATTOVLO  
The following bulleted list summarizes all the conditions  
required for the MAX77863 to set RSO low and allow  
nRST_IO to go high-impedance.  
MBATT  
V
AVSD  
> V  
MBATTOVLO  
Thermal Overload (T > T  
)
JSHDN  
J
The IC must not be in a global shutdown state. See  
the Global Shutdown section for more information.  
Manual Reset  
• EN0 low for more than the time programmed by  
MRT[2:0] and MREN is set.  
The low-battery monitor must be satisfied (V  
>
MON  
V
) if LBRSTEN is set. See the Voltage Monitors  
MONL  
System Watchdog Timeout  
SHDN Pin  
section for more information.  
The 32kHz oscillator must be stable (32K_  
OK). See the 32kHz Crystal Oscillator and  
Buffered Outputs section for more information.  
PWR_OFF Bit  
After a global shutdown occurs, the device may be  
powered up normally as long as the main-battery voltage  
and the die temperature are within their valid ranges.  
Although all regulators are forced off in response to  
a global shutdown, the RTC remains powered and  
continues to record the calendar.  
The flexible power sequencer (FPS_RSO) must be  
satisfied.  
Reset timer has expired (t  
).  
RST_O  
An example configuration that allows nRST_IO to go  
high-impedance is:  
From any state there are three ways of implementing a  
“global shutdown”. The source of the global shutdown  
event determines how the global shutdown is implemented  
and is described as follows.  
No global shutdown events.  
The main-battery voltage is within the valid region.  
The 32kHz clock is stable.  
Maxim Integrated  
65  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
The 32kHz oscillator power mode is configured with  
PWR_MD_32K[1:0]. When any of these power mode bits  
are programmed to 0b01 (PWR_MD_xx[1:0] = 0b01), the  
given peripheral are in low-power mode.  
Global Shutdown Events with Sequenced  
Shutdown and Automatic Wakeup  
As shown in Figure 4, three events initiate “sequenced  
global shutdown and automatic wakeup.” The events in  
this category are associated with faulty system states  
where the software may not be working properly but the  
system could potentially recover by powering down the  
microprocessor, resetting all the “global shutdown” reg-  
isters, and then powering up the microprocessor again.  
The logic shown in Figure 8 allows EN1 to control the  
low-power mode bus (LPM_BUS). With LPM_BUS = 1,  
any peripheral (32kHz oscillator (OSC), linear regulator  
(LDO), or step-down regulator (SD)) with its power mode  
bits programmed to 0b01 (PWR_MD_xx[1:0] = 0b01) are  
in low-power mode when LPM_BUS = 1.  
Global Shutdown Events with  
Sequenced Shutdown to the Off State  
When the IC is asserting its reset output (RSO = 1), the  
EN1 signal cannot control the active-low sleep mode  
signal (i.e., EN1_LPM is forced low). However, if the IC is  
not asserting RSO and the low-power mode during sleep  
mask bit (nSLP_LPM_MSK) is clear, the EN1 signal can  
affect EN1_LPM and LPM_BUS.  
As shown in Figure 4, five events initiate “sequenced  
global shutdown to the off state.” With the exception of  
PWR_OFF which is a normal system function, the events  
in this category are associated with undesirable system  
states that may occur in a “normally” functioning product.  
Powering down the microprocessor and resetting all the  
“global shutdown” registers helps the system resolve  
these undesirable events. In general, a wakeup event  
such as an on-key press is required to power up the  
microprocessor again.  
Logic  
2
The IC includes an I C interface as well as several other  
logic signals. All logic level specifications for the IC are  
consolidated within the “Logic” section of the Electrical  
Characteristics table.  
In the case of a software reset input (SFT_RST) with  
SFT_RST_WK = 0, the global shutdown state machine  
results in the “default state” with the device off and wait-  
ing for a wakeup event. It is possible for the system  
software to program a wakeup event based on an RTC  
alarm. For example, once the state machine lands in the  
“default state” it waits there until the RTC alarm generates  
the wakeup event.  
Status and Interrupts  
The IC contains several status, interrupt, and interrupt  
mask registers. Table 2 shows the various register types  
within the IC along with a brief description. Figure 2  
shows the simplified interrupt, status, and mask logic for  
the entire device; see each section for more information.  
Status, interrupt, and interrupt mask functions are typi-  
cally provided in a block of three registers and register  
blocks are typically associated with a single device func-  
tion.  
Global Shutdown Events with  
Immediate Shutdown  
As shown in Figure 4, five events initiate an “immedi-  
ate shutdown.” The events in this category are associ-  
ated with potentially hazardous system events. Powering  
down the microprocessor and resetting all the IC regis-  
ters helps mitigate any issues that can occur due to these  
potentially hazardous system events.  
An elegant interrupt structure design minimizes proces-  
sor time. This structure allows the applications processor  
to quickly find the interrupt of interest. It achieves this  
through a top-level interrupt register that sub-divides the  
interrupt sources into eight different categories.  
Figure 3 provides a guideline for processing the interrupt  
information. The following bulleted list reviews the basic  
details of this diagram:  
Global Low-Power Mode  
All step-down regulators, linear regulators, and the 32kHz  
oscillator have low-power modes. Each block containing  
low-power mode allows for the power mode to be con-  
trolled individually or for the power mode to be controlled  
globally with the global low-power mode bit (GLBL_LPM),  
or GPIO0 when it is set in its alternative mode, or the EN1  
hardware input. See Figure 8 for the simplified logic.  
The starting point is that the processor is powered but  
it could be in normal operating mode or sleep mode  
and its global interrupt is unmasked.  
Upon the interrupt hardware line going low (nIRQ = 0),  
the software is switched to the priority decoder which  
decides in what order all interrupts to the processor  
are serviced and therefore, transfers control to the  
PMIC interrupt service routine appropriately.  
For the step-down regulators, the power modes are con-  
figured with PWR_MD_SDx[1:0]. For the linear regulators,  
the power modes are configured with PWR_MD_Lx[1:0].  
Maxim Integrated  
66  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
The first task for the processor is to mask the PMIC  
interrupt by setting GLBLM (not to be confused with  
IRQ_GLBLM).  
If an additional PMIC sub-block interrupt occurs after  
the top level interrupt register (IRQTOP) has been  
read but prior to the sub-block being serviced, it is  
serviced in the routine although it did not cause the  
original interrupt.  
• This forces nIRQ to go high-impedance in which  
case it is pulled high by the external pullup resistor.  
• Forcing nIRQ to go high-impedance ensures that  
any interrupts that occur within the PMIC while the  
PMIC interrupt service routine is being executed  
causes a subsequent falling edge on the processor  
interrupt line.  
• For example, if GPIO0 rising edge caused the  
original interrupt but GPIO1 had a rising edge before  
the GPIO sub-block’s interrupts were serviced, both  
GPIO0 and GPIO1 interrupts would get serviced.  
If an additional PMIC sub-block interrupt occurs after  
the top level interrupt register (IRQTOP) has been  
read and after the sub-block being serviced, it is  
serviced the next time the interrupt service routine is  
called.  
The next task is to read the IRQTOP register and  
maintain a local copy. Note that IRQTOP is cleared  
when read.  
Based on the value of the IRQTOP register, the  
service routing branches to individual functions that  
service interrupts from each of the PMIC sub-blocks.  
• Using the same example, if GPIO1 has a rising  
edge subsequent to the GPIO sub-block being ser-  
viced, it gets stored in the GPIO block interrupt flag  
and in the global interrupt register (IRQTOP) which  
then causes an interrupt once GLBLM is unmasked.  
• Note that at this point, subsequent interrupts that  
occur on the PMIC are masked from reaching the  
processor. They are however, not lost since they  
are stored on the local interrupt registers and global  
interrupt register on the PMIC.  
If a PMIC sub-block that did not cause an interrupt has  
an interrupt while the interrupt service routine is being  
executed (due to another sub-block), it gets stored  
and serviced the next time the routine is called.  
Once all interrupts have been checked and serviced,  
the interrupt service routine unmasks the hardware  
interrupt line by clearing GLBLM (not to be confused  
with IRQ_GLBLM).  
• For example, if the service routine was called due to  
the GPIO sub-block but the RTC sub-block has an  
interrupt while the service routine is being executed,  
it gets stored in its local interrupt flag (RTCINT) and  
the bit in the top level interrupt register (IRQTOP)  
also gets set. This subsequently causes an interrupt  
when GLBLM is unmasked after the present inter-  
rupt service routine has completed.  
• If any interrupts occurred on the PMIC during the  
process of servicing the PMIC interrupts, and these  
interrupts are unmasked, the nIRQ line now gets  
pulled low causing an interrupt on the processor.  
The process now repeats.  
The above bulleted list reviews the basic details of Figure  
3. The following bulleted list is of second-level interrupt  
service routine concerns:  
Table 2. Register Type Description  
REGISTER TYPES  
DESCRIPTION  
Interrupt registers are read only and provide indications that a particular event has occurred. When an  
interrupt event has occurred, the corresponding bit is set in the interrupt register. Each interrupt event has  
a corresponding interrupt mask that determines whether an interrupt event affects the hardware interrupt  
output. Interrupt registers are cleared when read.  
Interrupt  
Interrupt mask registers allow for preventing (masking) an interrupt event from affecting the hardware  
interrupt output. Note that the interrupt mask settings have no effect on the interrupt registers. If an interrupt  
mask is set, then when an interrupt event happens it does not get reported on the hardware interrupt  
output, however, that interrupt is still reported in the interrupt register.  
Interrupt Mask  
Status  
Data  
Status registers are read only and reflect the actual condition of a particular event or input.  
Data registers provide information. One example is the RTCs minutes register (RTCMIN).  
Configuration registers allow for the adjustment of device parameters.  
Configuration  
Maxim Integrated  
67  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
down condition, and sets the WDT bit in the nonvolatile  
event recorder.  
System Watchdog Timer  
The IC contains a system watchdog timer to ensure  
safe and reliable operation. The system watchdog timer  
prevents the device from powering a system in the event  
that the system controller hangs or otherwise isn’t com-  
municating correctly. The default state of the system  
watchdog timer enable bit (WDTEN) can be factory  
programmed with an OTP bit (OTP_WDTED). To use  
the watchdog timer feature, enable the feature by setting  
WDTEN. While enabled, the system controller must reset  
the system watchdog timer within the timer period (t  
for the charger to operate normally. Reset the system  
watchdog timer by programming WDTC[1:0] = 0b01. t  
is programmable from 2s to 128s with TWD[1:0].  
To prevent the system watchdog timer from initiating a  
global shutdown event and disabling the IC, a properly  
operating processor clears the system watchdog timer  
within the timer period programmed by TWD[1:0]. The  
system watchdog timer is cleared by setting WDTC[1:0]  
= 0b01. See the Global Shutdown section for more infor-  
mation.  
The system watchdog timer can be set to automatically  
clear when the AP enters its sleep or off states. The  
device interprets the AP sleep state as FPS1 is being  
disabled. The device interprets the off state as FPS1 and  
FPS2 being disabled.  
)
WD  
WD  
With WDTEN set, an internal counter is incremented with  
the internal oscillator. When the internal counter matches  
a value programmed by TWD[1:0], the IC asserts nRST_  
IO, powers down all of its regulators with a global shut-  
Note that the IC contains both a system watchdog timer  
and an I C watchdog timer. See the I C Watchdog Timer  
section for more information.  
2
2
Maxim Integrated  
68  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
AVSD  
AVSD  
Overvoltage  
Lockout  
VMBATTOVLO  
AVSD_OK must be high for  
any step-down regulator to  
be on.  
AVSDUVLO  
To step-down  
regulator analog  
blocks.  
VMBATTUVLO  
AVSD  
Undervoltage  
Lockout  
To RTC based shutdown  
event register.  
TJ  
VCC  
Thermal  
Overload  
TJS HDN  
. . . .  
Other  
Interrupts  
Sources  
TJALRM2M  
RET*  
RET*  
TJALRM2_R  
MASK  
Thermal  
Alarm # 2  
100k  
TJ140  
nIRQ  
GPIOA  
TJALRM1M  
MASK  
GLBLM  
MASK  
TJALRM1_R  
Thermal  
Alarm # 1  
TJ120  
IRQ  
MBATT  
To RTC based shutdown  
event register.  
To the ON/OFF  
controller  
Cleared by FPS0  
being initiated.  
Microprocessor  
MBATT_OK  
MBATT  
Overvoltage  
Lockout  
VMBATTOVLO  
RSI Wakeup  
Generator  
WK_RSI  
MBATTUVLO  
To RTC based shutdown  
event register.  
VMBATTUVLO  
MBATT  
Undervoltage  
Lockout  
DEBOUNCE  
Rising/Falling  
tDBNC  
RESET_IN  
100k  
RSI  
To bias circuits,  
voltage references,  
and timing references  
Debounce output during  
POR is low.  
RESET_IN  
GLBLSHDN  
nRESET_OUT  
nRESET_IN  
SFT_RST  
nRST_IO  
WTCHDG  
HRDPO  
SHDN  
RESET Timer  
Falling Edge Delay  
(tRST_O  
Reset  
Button  
RSO  
nRSO  
)
Low-Battery Monitor  
MBLPD  
GND  
MBLSD  
Low-Battery Hysteresis  
Register (LBHYST)  
RET*  
MBATTLOW_R  
MASK  
LBM  
OTP_TRSTO[1:0]  
MBATTLOW  
Low-Battery DAC  
Register (LBDAC)  
Low-Battery DAC  
VMONL  
MON  
LBRSTEN  
32K_OK  
FPS_RSO  
*RET= Rising Edge Trigger  
Figure 1. Global Resource Logic  
Maxim Integrated  
69  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
GLOBAL RESOURCES  
INTERRUPT LOGIC EXAMPLE  
TJALRM1_R  
VIO  
100kΩ  
nIRQ  
MAX77863  
TJALARM1  
T
J
RISING EDGE LATCH  
CLEARED BY  
READING INTERRUPT  
REGISTER  
IRQ  
nIRQ  
T
J120  
TJALRM1_IRQ  
GLBLM  
TJALRM1M  
TJALARM2 (INTERRUPT LOGIC)  
TJALRM2_IRQ  
IRQ_GLBL  
IRQ_GLBLM  
MBATTLOW_R (INTERRUPT LOGIC)  
MBATTLOW_R_IRQ  
STEP-DOWN REGULATORS  
STEP-DOWN REGULATOR POK INTERRUPT LOGIC EXAMPLE  
POK_SDx  
nPOK_SDx  
PFI_SDx  
V
SDx  
GLITCH FILTER  
RISING EDGE LATCH  
CLEARED BY READING  
INTERRUPT REGISTER  
t
POKNFSDx  
V
POK_SDx  
t
SS_SDx  
PFIM_SDx  
t
DVS_SDx  
PFI_SD0_IRQ  
SD1 POK (INTERRUPT LOGIC)  
SD2 POK (INTERRUPT LOGIC)  
SD3 POK (INTERRUPT LOGIC)  
PFI_SD1_IRQ  
PFI_SD2_IRQ  
PFI_SD3_IRQ  
IRQ_SD  
IRQ_SDM  
LINEAR REGULATORS  
LINEAR REGULATOR POK INTERRUPT LOGIC EXAMPLE  
nPOK_Lx  
GLITCH  
FILTER  
V
RISING EDGE LATCH  
Lxx  
IRQ_LVL2_Lx  
IRQ_MSK_Lx  
CLEARED BY  
READING INTERRUPT  
REGISTER  
t
V
POKNFLDOx  
POKTHLx  
t
SS_Lx  
POK_Lx  
t
DVS_Lx  
PFI_L0_IRQ  
PFI_L1_IRQ  
PFI_L2_IRQ  
PFI_Ln_IRQ  
PFI_L9_IRQ  
L1 POK (INTERRUPT LOGIC)  
L2 POK (INTERRUPT LOGIC)  
LN POK (INTERRUPT LOGIC)  
L9 POK (INTERRUPT LOGIC)  
IRQ_LDO  
IRQ_LDOM  
IRQ_GPIO  
IRQ_GPIOM  
GPIO  
IRQ_RTC  
IRQ_RTCM  
RTC  
IRQ_32K  
IRQ_32KM  
32KHz OSCILLATOR  
ON/OFF CONTROLLER  
IRQ_ONOFF  
IRQ_ONOFFM  
IRQ_NVER  
IRQ_NVERM  
NON-VOLATILE EVENT RECORDER  
Figure 2. Simplified Interrupt, Status, and Mask Logic  
Maxim Integrated  
70  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
nIRQ FROM PMIC  
GOES LOW  
NORMAL/SLEEP  
PROCESSOR  
OPERATING STATE  
INTERRUPT  
PRIORITY  
DECODER  
START ISR FOR PMIC  
INTERRUPT  
MASK PMIC GLOBAL INTERRUPT BIT  
(GLBLM)  
READ IRQTOP REGISTER FROM  
PMIC AND KEEP LOCAL COPY  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
READ GLOBAL  
INTERRUPTS REGISTER  
IS BIT 7 SET?  
PROCESS APPROPRIATE  
INTERRUPT  
NO  
READ STEP-DOWN  
INTERRUPTS REGISTER  
IS BIT 6 SET?  
PROCESS APPROPRIATE  
INTERRUPT  
NO  
READ LDO INTERRUPTS  
REGISTER  
IS BIT 5 SET?  
PROCESS APPROPRIATE  
INTERRUPT  
NO  
READ GPIO  
INTERRUPTS REGISTER  
IS BIT 4 SET?  
PROCESS APPROPRIATE  
INTERRUPT  
NO  
READ RTC INTERRUPTS  
REGISTER  
IS BIT 3 SET?  
PROCESS APPROPRIATE  
INTERRUPT  
NO  
READ 32K INTERRUPTS  
REGISTER  
IS BIT 2 SET?  
PROCESS APPROPRIATE  
INTERRUPT  
NO  
READ ON/OFF  
INTERRUPTS REGISTER  
IS BIT 1 SET?  
PROCESS APPROPRIATE  
INTERRUPT  
NO  
UN-MASK PMIC GLOBAL INTERRUPT  
BIT (GLBLM)  
Figure 3. Interrupt Service Routine Example  
Maxim Integrated  
71  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
GLOBAL SHUTDOWN EVENTS WITH SEQUENCED  
SHUTDOWN AND AUTOMATIC WAKEUP ARE ANY  
OF THE FOLLOWING:  
ANY STATE  
GLOBAL SHUTDOWN EVENTS WITH  
SEQUENCED SHUTDOWN TO THE OFF  
STATE ARE ANY OF THE FOLLOWING:  
GLOBAL SHUTDOWN EVENTS WITH  
IMMEDIATE SHUTDOWN TO THE OFF  
STATE ARE ANY OF THE FOLLOWING:  
RSI EVENT (HARDWARE RESET INPUT)  
SFT_RST EVENT IF SFT_RST_WK=1  
(SOFTWARE RESET INPUT)  
WATCHDOG TIMER EXPIRE IF WD_RST_WK=1  
“MANUAL RESET” EVENT IF OTP_MR=1  
V
SET  
<V  
WHEN MBLPD IS  
V
<V  
MON MONL  
MBATT MBATTUVLO  
(MAIN-BATTERY UNDERVOLTAGE)  
SET WAKEUP  
(MAIN-BATTERY LOW)  
WATCHDOG TIMER EXPIRE IF  
WD_RST_WK=0  
“MANUAL RESET” EVENT IF  
OTP_MR=0  
SFT_RST EVENT IF  
SFT_RST_WK=0  
(SOFTWARE RESET INPUT)  
PWR_OFF=1  
T >T  
J
JSHDN  
FLAG  
(THERMAL OVERLOAD)  
SHDN INPUT EVENT  
V
>V  
MBATT MBATTOVLO  
GS_ST0  
START SEQUENCED  
GLOBAL SHUTDOWN  
GLBLSHDN=0  
(MAIN-BATTERY OVERVOLTAGE)  
V >V  
AVSD MBATTOVLO  
(STEP-DOWN INPUT  
OVERVOLTAGE)  
RESET=0  
ALL OTHER CASES EXCEPT  
PWR_OFF=1 & SFT_RST=0  
PWR_OFF=1 & SFT_RST=0  
GS_ST1  
TURN OFF ALL REGULATORS THAT ARE NOT ASSIGNED TO  
FPS0 OR FPS1.  
NOTE THAT THIS IS NOT RESET,  
IT IS FORCE OFF.  
GS_ST10  
SDx = OFF IF FPSSRCx1=1  
LDOx = OFF IF FPSSRCx1=1  
TURN OFF ALL REGULATORS IMMEDIATELY  
(I.E., NO SEQUENCE SHUTDOWN)  
GLBLSHDN=1  
RESET=0  
GLBLSHDN=1  
RESET=1  
FPS0 HAS NOT REACHED ITS  
8th POWER DOWN EVENT.  
GS_ST2  
INITIATE THE FPS0 AND FPS1 POWER DOWN EVENT.  
GLBLSHDN=1  
RESET=0  
FPS0 HAS REACHED ITS 8th POWER DOWN EVENT.  
GS_ST3  
30ms DELAY  
GLBLSHDN=1  
RESET=0  
ALL OTHER CASES EXCEPT  
PWR_OFF=1 & SFT_RST=0  
PWR_OFF=1 & SFT_RST=0  
IF WAKEUP FLAG IS SET AND GLOBAL  
SHUTDOWN EVENT IS FINISHED  
GS_ST4  
RESET ALL “GLOBAL SHUTDOWN” REGISTERS  
GLBLSHDN=1  
RESET=1  
GS_ST5  
100ms DELAY AND  
CLEAR WAKEUP FLASH  
GLBLSHDN=0  
GS_ST9  
PWR_OFF=0  
RESET=0  
IF WAKEUP FLAG IS CLEAR AND GLOBAL  
SHUTDOWN EVENT IS FINISHED  
GS_ST6  
GENERATE WAKE UP EVENT  
GLBLSHDN=0  
RESET=0  
GS_ST7  
AWAKE STATE (i.e. NORMAL)  
GLBLSHDN=0  
GS_ST8  
DEFAULT STATE (i.e. OFF AND WAITING FOR A WAKEUP EVENT)  
GLBLSHDN=0  
RESET=0  
RESET=0  
Figure 4. Global Shutdown State Diagram  
Maxim Integrated  
72  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
SEQUENCED GLOBAL SHUTDOWN CONTROL (LDOx)  
SEQUENCED GLOBAL SHUTDOWN CONTROL (SDx)  
FPSSRC_Lx1  
GLBLSHDN  
FPSSRC_SDx1  
OFFSDx  
OFFLDOx  
GLBLSHDN  
LDOx  
SDx  
FPS0  
FPS1  
FPS2  
FPS0  
FPS1  
FPS2  
(LDO0 THROUGH  
LDO8)  
(SD0 THROUGH  
SD3)  
RESET  
RESET  
SEQUENCED GLOBAL SHUTDOWN CONTROL (GPIOx)  
RESET  
GLOBAL  
GPIOx  
RESOURCES  
GLBLSHDN  
RSTGPIOx  
(GPIO0, GPIO4  
THROUGH GPIO7)  
RTC  
SEQUENCED GLOBAL SHUTDOWN CONTROL (GPIOy)  
AMEx  
GLBLSHDN  
RSTGPIOy  
GPIOy  
I2C INTERFACE  
RESET  
(GPIO1, GPIO2,  
GPIO3)  
FPS0  
FPS1  
FPS2  
ON/OFF  
CONTROLLER  
AND FLEXIBLE  
POWER  
RESET  
SEQUENCER  
RSI  
RESET I/O  
FPS0  
FPS1  
FPS2  
Figure 5. Simplified Logic for Global Shutdown  
Maxim Integrated  
73  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
GLOBAL SHUTDOWN EVENT WITH SEQUENCED SHUTDOWN AND AUTOMATIC WAKEUP:  
GS_ST1 GS_ST2 GS_ST3  
GS_ST4  
GS_ST5  
GS_ST6  
GS_ST7  
SFT_RST  
SF T_RST_W K = 1  
RESET LATCH  
(INTERNAL SIGNAL)  
t
(1ns)  
t
DGSDRSTCLR  
DGSD  
t
GLBLSHDN  
(INTERNAL  
SIGNAL)  
FPSDON  
FPS1  
(INTERNAL  
SIGNAL)  
t
FPSDON  
FPS0  
(INTERNAL  
SIGNAL)  
t
t
DGSD100msA  
DGSD30ms  
DELAY  
(INTERNAL  
SIGNAL)  
30m s  
DGSDRST  
100ms  
t
RESET  
(INTERNAL  
SIGNAL)  
t
DGSD100msB  
WAKE  
(INTERNAL  
SIGNAL)  
t
DGSWK  
GLOBAL SHUTDOWN EVENT WITH SEQUENCED SHUTDOW N TO THE OFF STATE:  
GS_ST1 GS_ST2 GS_ST3  
GS_ST4  
GS_ST8  
SFT_RST  
SF T_RST_W K = 0  
RESET LATCH  
(INTERNAL  
SIGNAL)  
t
(1ns)  
t
DGSDCLR  
DGSD  
t
GLBLSHDN  
(INTERNAL  
SIGNAL)  
FPSDON  
FPS1  
(INTERNAL  
SIGNAL)  
FPS0  
(INTERNAL  
SIGNAL)  
t
DGSD30ms  
DELAY  
(INTERNAL  
SIGNAL)  
30ms  
t
DGSDRST  
RESET  
(INTERNAL  
SIGNAL)  
WAKE  
(INTERNAL  
SIGNAL)  
Figure 6. Simplified Timing Diagram for Global Shutdown  
Maxim Integrated  
74  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
GLOBAL SHUTDOWN EVENT WITH IMMEDIATE SHUTDOWN TO THE OFF STATE:  
GS_ST4  
GS_ST8  
SHDN  
ACTIVE HIGH  
RESET LATCH  
(INTERNAL SIGNAL)  
t
t
(1ns)  
DGSDCLR  
DGSD  
t
GLBLSHDN  
(INTERNAL SIGNAL)  
FPSDON  
FPS1  
(INTERNAL SIGNAL)  
FPS0  
(INTERNAL SIGNAL)  
DELAY  
(INTERNAL SIGNAL)  
t
t
(1ns)  
DGSDRSTCLR  
DGSD  
RESET  
(INTERNAL SIGNAL)  
WAKE  
(INTERNAL SIGNAL)  
Figure 7. Simplified Timing Diagram for Global Shutdown  
GPIO0 IS MASKED FROM THE  
GLOBAL LOW-POWER MODE  
CONTROL BUS WITH AME0 = 0  
GPIO0  
GPIO0  
LOGIC  
LPM_BUS = 1 LOW-POWER MODE  
LPM_BUS = 0 NORMAL-POWER MODE  
GLBL_LPM  
LPM_BUS  
EN1  
RSO  
EN1_LPM  
LDOx  
(LDO0 to LDO8)  
SDx  
(SD0 to SD3)  
32 kH z  
OSCILLATOR  
nSLP_LPM_MSK  
PWR_MD_Lx[1:0]  
PWR_MD_SDx[1:0]  
PWR_MD_32K[1:0]  
OFF  
Figure 8. Simplified Logic for Global Low-Power Mode  
Maxim Integrated  
75  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
Dynamically programmable output voltage  
Step-Down Regulators  
The IC features four ultra-low I step-down regulators  
Programmable output voltage slew rate during  
Q
(SD0, SD1, SD2, SD3). Table 1 summarizes the basic  
characteristics of the step-down regulators in addition to  
the other regulators on the device. Figure 40 shows the  
external component values for the step-down regulators.  
Figure 2 shows a Simplified Functional Diagram of the  
step-down regulators.  
dynamic voltage changes.  
Low-power mode Increases light-load efficiency  
Forced PWM operation selectable through serial  
interface  
Remote output voltage sensing (SD0, SD1)  
±1% steady-state accuracy and ±5% transient  
In normal operation, these step-down regulators consume  
only 16µA of quiescent current except for SD0 which  
consumes 32µA. In standby mode, the quiescent current  
is reduced to 5µA per step-down regulator, with reduced  
load capability (10µA for SD0). Each step-down regulator  
can be independently put into standby mode by writing a  
bit in a control register.  
accuracy (SD0, SD1)  
Power-OK interrupt  
Soft-start into prebiased output  
Efficiency  
The typical efficiencies for the IC step-down regulators  
are shown in the Typical Operating Characteristics sec-  
tion. Note that the inductors used to get the efficiency  
shown are physically small and therefore the ESR is high.  
Physically larger inductors achieve efficiencies that are 1  
to 3% higher than what is shown.  
Each step-down regulator features internal feedback,  
minimizing external component count by allowing all  
step-down regulator output voltages to be programmed  
through the serial interface. A 4.4MHz switching  
frequency minimizes the external component size. All  
step-down regulators feature dynamic voltage scaling  
Step-Down Regulator  
Input Voltage Range  
2
(DVS) through the I C serial interface. Additionally, all  
step-down regulators automatically transition from PFM to  
PWM operation (FPWM_SDx = 0). Forced PWM opera-  
tion can be independently enabled for each step-down  
regulator by setting FPWM_SDx.  
All step-down regulators share a single analog power  
input (AVSD). Additionally, each step-down regulator has  
a dedicated power input that is connected to the source  
of its high-side p-channel MOSFET (INy_SDx) as shown  
in the Simplified Functional Diagram. All INy_SDx pins  
and AVSD must be connected together. For applications  
with 1s battery configurations, typically AVSD, INY_SDx,  
MBATT, and MON are connected together (Figure 40).  
For applications with 2s (or higher) battery configurations,  
INy_SDx and AVSD can be connected to an external  
SD1 and SD3 switching is interleaved to minimize the  
input capacitance requirement. Each phase of SD0 are  
also interleaved. SD2 switching is independent of the  
other step-down regulators  
Features  
16µA quiescent current in normal mode  
step-down regulator as shown in Figure 41  
.
(SD1, SD2, SD3)  
The valid operating input voltage range for AVSD and  
INy_SDx is 2.6V to 5.5V. AVSD undervoltage lockout  
(UVLO) and AVSD overvoltage lockout (OVLO) compara-  
tors force the MAX77863 step-down regulators off when  
the supply voltage (VAVSD) is not within the acceptable  
window of operation (2.6V to 5.5V). See Figure 1 and the  
Voltage Monitors section for more information.  
25µA quiescent current in normal mode (SD0)  
5µA quiescent current in low-power mode  
(SD1, SD2, SD3)  
10µA quiescent current in low-power mode (SD0)  
Four step-down regulators  
• SD0: 6.0A continuous, 8.0A peak  
• SD1: 3.0A  
SD0 is capable of operating across the full AVSD and  
INy_SDx range of 2.6V to 5.5V. The peak output current  
of 8.0A is guaranteed only for AVSD and INy_SDx greater  
than 3.0V. From 2.6V to 3.0V, the rated output current  
derates to 6.0A.  
• SD2: 2.0A  
• SD3: 2.0A  
100% duty-cycle operation for SD2 and SD3  
No external MOSFETs, synchronous rectifiers, or  
current sense resistors are required  
Maxim Integrated  
76  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
begin again due to a fixed-frequency clock pulse. The  
controller’s compensation components and current-sense  
Buck Regulator Control Scheme  
The step-down converter uses a PWM peak current-mode  
control scheme with a high-gain architecture. Peak cur-  
rent mode control provides precise control of the inductor  
current on a cycle-by-cycle basis and inherent compensa-  
tion for supply voltage variation. On-times (MOSFET Q1  
on) are started by a fixed-frequency clock and terminated  
by a PWM comparator. See Figure 9. When an on-time  
ends (starting an off-time) current conducts through the  
low-side MOSFET (Q2 on). Shoot-through current from  
IN_SDx to PG_SDx is avoided by introducing a brief peri-  
od of dead time between switching events when neither  
MOSFET is on. Inductor current conducts through Q2’s  
intrinsic body diode during dead time. The PWM compar-  
ator regulates VOUT by controlling duty cycle. The nega-  
tive input of the PWM comparator is a voltage proportional  
to the actual output voltage error. The positive input is the  
sum of the current-sense signal through MOSFET Q1 and  
a slope-compensation ramp. The PWM comparator ends  
an on-time when the error voltage becomes less than  
the slope-compensated current-sense signal. On-times  
circuits are integrated. This reduces the risk of routing  
sensitive control signals on the PCB. A high-gain architec-  
ture is present in the controller design. The feedback uses  
an integrator to eliminate steady-state output voltage error  
while the converter is conducting heavy loads.  
Step-Down Regulator Power Modes  
Step-down regulators and linear regulators have very  
similar power mode controls. Each step-down regulator  
is independently controlled with PWR_MD_SDx[1:0] and  
each linear regulator is independently controlled with  
PWR_MD_Lx[1:0] (see the Linear Regulator section for  
more information). In addition, to enable and disable con-  
trol, each step-down regulator has a special low-power  
mode that reduced the quiescent current to 5µA for SD1-  
SD2 and 10µA for SD0. In low-power mode, each regula-  
tor supports a load of up to 5mA (IMAX_SDx). Remote  
output voltage sensing (ROVS) is disabled in low-power  
mode and the load regulation performance degrades pro-  
portionally with the reduced load current.  
IN_SDx  
SCL  
I2C INTERFACE  
SDA  
+
Σ
I
LX-PEAK  
+
SDx REFERENCE/REMOTE  
SENSE  
LIM  
REGISTERS &  
CONTROL  
SLOPE COMPENSATION  
SOFT-START RAMP  
Q1  
Q2  
S
R
Q
Q
LXx  
LOGIC  
PWM  
gm  
OUT/FB  
R
C
COMP  
COMP  
LIM  
I
LX-VALLEY  
POK_SDx  
GS  
PG_SDx  
Figure 9. Buck Control Scheme Diagram  
Maxim Integrated  
77  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
Several usage options are available for low-power mode.  
To force individual regulators to low-power mode, set  
PWR_MD_SDx to 0b10. To force a group of regulators  
to enter and exit low-power mode in unison, set their  
individual PWR_MD_SDx_ bits to 0b10. When set for this  
“group and/or dynamic” low-power mode, the low-power  
mode is enabled when the global low-power mode signal  
is high. The global low-power mode signal is driven by  
the GLBL_LPM bit or though GPIO0 (see the Global Low-  
Power Mode section for more information).  
Soft-Start  
The step-down regulators have an OTP programmable  
(OTP_SD_SS) soft-start rate of either 25mV/µs or 12.5mV/  
µs. The controlled soft-start rate and the step-down  
regulator current limit (I  
rent to the output capacitor (I  
) limit the input inrush cur-  
LIMP  
). I  
= min  
INRUSH  
INRUSH  
(I  
LIMP  
& C  
x dV/dt). Note that the input current on the  
OUT  
step-down converter is lower than the inrush current to  
the output capacitor by the ratio of output to input voltage.  
The step-down regulators support starting into a pre-  
biased output. For example, if the output capacitor has an  
initial voltage of 0.4V when the regulator is enabled, the  
regulator gracefully increases the capacitor voltage to the  
required target voltage such as 1.2V. This is unlike other  
regulators without the start into prebias feature where  
they may force the output capacitor voltage to 0V before  
the soft-start ramp begins.  
When a step-down regulator is configured to be part of  
a flexible power sequence (FPSSRC_SDx), the power  
mode bits (PWR_MD_SDx) are still used to configure  
low-power mode and normal-power mode, but the flexible  
power sequencer itself controls weather the regulator  
is enabled or disabled. See the Step-Down Regulator  
Configuration—Register 1 table for complete information  
on PWR_MD_SDx[1:0] bit descriptions.  
During the soft-start period, the POK comparator is  
masked to prevent false POK interrupts.  
SD0 is unique in that it has a hardware enable pin called  
EN2. When EN2 is high, SD0 is enabled. See the Step-Down  
Regulator Configuration—Register 1 table for PWR_MD_  
SDx[1:0] bit descriptions and Table 9 for the full details.  
Example 4: What is the inrush current when starting SD0  
with an output capacitance (C  
) of 100µF?  
OUT  
I  
= min(I  
and C  
x dV/dt)  
INRUSH  
LIMP  
OUT  
Output Voltage Settings  
SD0 is a two-phase regulator with a high PMOS  
current limit (I ) of 4.4A per phase. For  
SD2 and SD3 are independently programmable from  
0.6V to 3.3875V in 12.5mV increments. SD0 is program-  
mable from 0.6V to 1.4V in 12.5mV increments. SD1 is  
programmable from 0.6V to 1.55V in 12.5mV increments.  
The main target voltage registers are programmed with  
VSDx[7:0]. The DVS registers for SD0 and SD1 are pro-  
grammed with VDVSSDx[7:0].  
LIMPP_HIGH0  
I
in the above equation we use 2 x 4.4A = 8.8A.  
LIMP  
SD0 has a typical soft-start rate (dV/dt_SS_SD0) of  
25mV/µs when OTP_SD_SS = 1. For dV/dt in the  
above equation we use 25mV/µs.  
I  
I  
I  
= min (8.8A & 100µF x 25mV/µs)  
= min (8.8A and 2.5A)  
= 2.5A  
INRUSH  
INRUSH  
INRUSH  
Output Current  
The output current rating of each step-down regulator are  
slightly conservative numbers based on the typical appli-  
cation for the devices:  
Example 5: What is the inrush current when starting SD1  
with an output capacitance (C ) of 20µF?  
OUT  
SD0: 6.0A continous, 8.0A peak  
SD1: 3.0A  
I  
= min (I  
and C  
x dV/dt)  
INRUSH  
LIMP  
OUT  
SD1 is a single-phase regulator with a high PMOS  
current limit (I ) of 3.75A per phase. For  
SD2: 2.0A  
LIMPP_HIGH1  
in the above equation we use 3.75A.  
I
LIMP  
SD3: 2.0A  
SD1 has a typical soft-start rate (dV/dt_SS_SD1) of  
25mV/µs when OTP_SD_SS = 1. For dV/dt in the  
above equation we use 25mV/µs.  
These output current ratings vary with output voltage set-  
ting, inductor, switching frequency, and device current limits.  
I  
I  
I  
= min (3.75A and 20µF x 25mV/µs)  
= min (3.75A and 0.5A)  
= 0.5A  
INRUSH  
INRUSH  
INRUSH  
Maxim Integrated  
78  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
Example 6: What is the inrush current when starting SD3  
with an output capacitance (C ) of 200µF?  
During a DVS transition, the regulators output current  
increases by C x dV/dt. In the event that the load  
OUT  
OUT  
current plus the additional current imposed by the DVS  
transition reach the regulator’s current limit, the current  
limit is enforced. When the current limit is enforced, the  
advertised DVS transition rate (dV/dt) does not occur.  
I  
= min (I  
and C  
x dV/dt)  
INRUSH  
LIMP  
OUT  
SD3 is a single-phase regulator with a typical PMOS  
current limit (I ) of 1.8A per phase. For I in  
LIMPP3  
LIMP  
the above equation we use 1.8A.  
The POK comparator is masked to prevent false POK  
interrupts during the DVS period.  
SD3 has a typical soft-start rate (dV/dt_SS_SD3)  
of 25mV/µs with OTP_SD_SS = 1. For dV/dt in the  
above equation we use 25mV/µs.  
Remote Output Voltage Sensing (ROVS)  
SD0 and SD1 feature remote output voltage sensing  
(ROVS) for improved output voltage accuracy. The SNSN  
and SNSP inputs connect directly across the load, with  
the SNSN pin connected to a quiet analog ground near  
the load, and SNSP connected directly to the load’s  
power input. The ROVS can be independently disabled  
through software order to reduce quiescent current  
consumption (ROVS_EN_SDx). When SD0 or SD1 is  
placed in low-power mode, the ROVS is automatically  
disabled. Although the ROVS is automatically disabled,  
the ROVS_EN_SDx bits are not automatically cleared.  
If ROVS_EN_SDx is set when SDx enters normal-power  
mode, the ROVS feature is automatically re-enabled.  
I  
I  
I  
= min (3.0A and 200µF x 25mV/µs)  
= min (3.0A and 5.0A)  
= 3.0A  
INRUSH  
INRUSH  
INRUSH  
Dynamic Voltage Scaling  
All step-down regulators feature dynamic voltage scaling  
(DVS). DVS allows the system controller to issue a new  
output voltage request to a regulator without managing  
the output voltage slew rate of that regulator. In other  
words, the system controller may change a regulator out-  
put voltage from 0.8V to 1.1V by writing the target voltage  
register to 1.1V. The DVS function then ramps the output  
voltage in a controlled manner to the new target voltage.  
Out-of-Phase Switching  
DVS for all step-down regulators is achieved through the  
I C interface. Additionally, GPIO5 can control DVS for  
2
The IC has five step-down converter power stages.  
Enabling the high-side switches of each power stages  
on alternate clock edges (i.e., out-of-phase) minimizes  
input current ripple, thus reducing the input capacitance  
required. Table 3 shows how the IC step-down converter  
power stages are assigned to alternate phases of the  
step-down converter’s master clock.  
SD0. Similarly, GPIO6 can control DVS for SD1. To control  
DVS for SD0 or SD1 through GPIO5 or GPIO6, the GPIO  
must be set in its alternative mode (AME5 = 1 or AME6  
= 1). When in their alternative mode, DIRx determines  
whether the GPIO input is active high or active low. With  
the GPIO input active, the step-down regulator’s target  
voltage is set by VDVSSDx. With the GPIO input inactive,  
the step-down regulator’s target voltage is set by VSDx.  
SKIP/FPWM Operation  
In the normal IC operating state, all step-down regulators  
automatically transition between skip mode and fixed-  
frequency operation as load current varies (i.e., skip  
mode with low load current and fixed-frequency with  
high load current). For operating modes where lowest  
output ripple is required at low load currents, forced PWM  
switching behavior can be independently enabled by  
setting FPWM_SDx. Note that forcing PWM behavior at  
light loads decreases the regulator efficiency.  
The rising and falling slew-rate during DVS is adjustable  
with SR_SDx[1:0] and nFSRAD_SDx. The typical use  
case for SR_SDx[1:0] and nFSRAD_SDx bits is to set  
them to the desired value during system initialization and  
then leave them that way during the normal operation  
of the system. These bits should not be changed while  
their associated step-down regulators are in the middle  
of an output voltage slew-rate event. When determining  
the ideal settings for these bits, consider the required  
transition time, the output capacitance on the regulator,  
the regulator output current needed to slew that output  
capacitance at the designated rate, and required input  
current. In general, larger output capacitances should use  
slower transition rates.  
Table 3. Out-of-Phase Switching Details  
HIGH-SIDE SWITCH ENABLE SIGNAL  
RISING EDGE  
FALLING EDGE  
SD0A, SD1  
SD2, SD3, SD0B  
Maxim Integrated  
79  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
Power-OK Comparators for  
Step-Down Regulators  
Input Capacitor Selection  
The input capacitor in a step-down converter reduces  
Each step-down regulator includes a power-OK (POK)  
comparator. The POK comparator signals (nPOK_SDx)  
indicate when each output has lost regulation (i.e., the  
current peaks drawn from the power source and reduces  
switching noise in the controller. The impedance of the  
input capacitor at the switching frequency must be less  
than that of the source impedance of the supply so that  
high-frequency switching currents do not pass through  
the input source.  
output voltage is below V  
). The POK signal has  
POK_SDx  
a noise immunity filter (t ). The POK comparator  
POKNFSD  
is also masked during the soft-start time and during the  
DVS time to prevent false POK interrupts.  
The step-down regulator power inputs are critical dis-  
continuous current paths that require careful bypassing.  
In the PCB layout, place the step-down regulator input  
bypass capacitors as close as possible to each pair of  
switching regulator power input pins (IN_SDx to PG_SDx)  
on the same side of the PCB as the IC (i.e., don’t make  
input capacitor connections through vias).  
When any of the POK signals (nPOK_Lx) go high, a  
maskable interrupt is generated. POK is the only interrupt  
available for the IC step-down regulators. The block level  
step-down interrupt register is IRQSD and the top level  
LDO interrupt is IRQ_SD. See the Status and Interrupts  
section for more information.  
The input capacitor must meet the input ripple cur-  
rent requirement imposed by the step-down converter.  
Ceramic capacitors are preferred due to their low ESR  
and resilience to power-up surge currents. Choose the  
input capacitor so that its temperature rise due to input  
ripple current does not exceed about +10°C. For a step-  
down DC-DC converter, the maximum input ripple current  
is half of the output current. This maximum input ripple  
current occurs when the step-down converter operates at  
Inductor Selection  
Choose the step-down regulator inductance to be 1.0μH  
for all step-down regulators as shown in Figure 40 and  
Figure 41. The IC works well with physically small induc-  
tors, however, care must be taken when choosing the  
proper inductor saturation current and equivalent series  
resistance (ESR).  
The minimum recommended saturation current require-  
ment is 600mA, however, typical applications require-  
larger saturation current to support their loads. The  
peak-to-peak inductor ripple current (I ) during PWM  
operation is calculated as shown in Equation 1. The  
50% duty factor (V = 2 x V  
).  
IN  
OUT  
Bypass each step-down regulator input with a 4.7μF or  
2.2μF ceramic capacitor from IN_SDx to PG_SDx as  
shown in Figure 40 and Figure 41. Use capacitors that  
maintain their capacitance over temperature and DC  
bias. Ceramic capacitors with an X7R or X5R tempera-  
ture characteristic generally perform well. The capacitor  
voltage rating should be 6.3V or greater.  
P-P  
inductor’s peak ripple current (I  
) due to the load  
L-PEAK  
(I  
) is shown in Equation 2. A well-designed system  
LOAD  
need only have an inductor saturation current of I  
.
L-PEAK  
Note that is some cases, the maximum expected system  
current can occur based on the step-down regulator  
startup, dynamic voltage slew-rate, or output short circuit.  
Output Capacitor Selection  
Equation 1. Inductor Peak-to-Peak Ripple Current  
The step-down regulator output capacitance keeps output  
ripple small and ensures control loop stability. The output  
capacitor must have low impedance at the switching  
frequency. Ceramic capacitors are recommended due  
to their low equivalent series resistance (ESR) and good  
frequency response impedance. The required output  
capacitance for each of the IC step-down regulators are  
shown in their respective Electrical Characteristics tables  
(COSDx). The typical value shown corresponds to the  
capacitors nominal output capacitance. The minimum  
value shown corresponds to the output capacitance that  
is required for stability.  
V
( V V  
)
OUT  
OUT  
V
IN  
I
=
PP  
× f  
×L  
SW  
IN  
Equation 2. Inductor Peak Ripple Current  
I
PP  
2
I
= I  
+
LOAD  
LPEAK  
Reduce the inductor’s series resistance for maximum  
efficiency. For designs that require a small solution size,  
the step-down regulators tolerate relatively high series  
resistance (~100mΩ). Using an inductor with high series  
resistance reduces the overall efficiency of the buck and  
causes additional thermal dissipation.  
As the case sizes of ceramic surface-mount capacitors  
decrease, their capacitance vs. DC bias voltage char-  
acteristic becomes poor. Due to this characteristic, it is  
Maxim Integrated  
80  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
possible for 0805 capacitors to perform well while 0603  
capacitors of the same value might not. The nominal out-  
put capacitor requirement for the IC is shown in the “typi-  
cal” value of the Electrical Characteristics table; however,  
after their DC bias voltage derating, the output capaci-  
tance must have at least the “minimum” value shown in  
the Electrical Characteristics table.  
Linear Regulator  
The IC has nine linear regulators (LDOs).  
Table 1 summarizes the basic characteristics of the linear  
regulators in addition to the other regulators on the device.  
Figure 40 shows the external component values for the  
linear regulators. Figure 2 shows a Simplified Functional  
Diagram of the entire device including the linear regula-  
tors. Figure 10 shows a more detailed functional diagram  
of just linear regulators. The nine LDOs of the MAX77863  
are derived of five basic topologies as shown in Table 5.  
In applications where the parasitic impedance between  
the step-down regulator’s local output capacitance and its  
point-of-load (POL) input capacitor is small (i.e., <10mΩ),  
the POL’s input capacitor contributes to the step-down  
regulator’s stability. This means that with respect to SD2’s  
output capacitor, it is possible to use one local 10µF  
output capacitor and one 10µF POL input capacitor  
to satisfy the typical 20µF requirement for SD2 output  
capacitance.  
The four NMOS regulators are capless designs that are  
stable with or without an output decoupling capacitor.  
Additionally, the PMOS regulators have adjustable com-  
pensation that allows for the use of remote output capaci-  
tors.  
All regulators can be operated in low-power mode, where  
the no load quiescent current drops to 1.5µA. In low-pow-  
er mode, each output supports a maximum load of 5mA.  
Active-Discharge Resistors  
Each step-down regulator has an active-discharge resis-  
tor feature that can be enabled/disabled with nADE_  
SDx_. Enabling the active discharge feature helps ensure  
a complete and timely power down of all system peripher-  
als. The default condition of the active-discharge resistor  
All regulators have an output voltage power-OK interrupt  
signal that is integrated into the IC interrupt architecture.  
Features  
Nine Linear Regulators  
feature is enabled such that whenever V  
is below  
MBATT  
V
all regulators are disabled with their active-  
MBATTUVLO  
General Performance  
discharge resistors turned on. When V  
1.0V, the NMOS transistors that control the active-dis-  
charge resistors lose their gate drive and become open.  
is less than  
MBATT  
• ±3% Output Accuracy Over Load/Line/Temperature  
• 50mV Drop-Out at Full Load  
• 70dB PSRR at 10kHz  
• 1.5µA Low-Power Mode  
SD3 Default Voltage (D_SD3)  
• Short-Circuit and Thermal-Overload Protection  
• Dynamically Programmable Output Voltage  
• Power-OK Interrupt  
• Programmable Soft-Start Rate: 100mV/µs or  
5mV/µs  
The default output voltage of SD3 is pin programmable  
with the D_SD3 tri-level logic input. As shown in Table  
4, it programs either 1.2V, 1.35V, or a factory OTP  
setting. The logic level of D_SD3 is latched each time  
the MBATT voltage rises above the main-battery under-  
• Soft-Start into Pre-Biased Output  
voltage-lockout threshold (V  
> V  
). The  
MBATTUVLO  
MBATT  
time required for the D_SD3 to latch in the correct logic  
state is t . Changes to D_SD3 after the logic  
level is latched have no effect.  
Four N-Channel Regulators (LDO0/1/7/8)  
DSD3LTCH  
• 0.8V to 5.5V Input Range  
• 29µA Quiescent Supply Current  
• No Output Capacitor Required in Normal Operating  
Mode (Cap Required for Low-Power Mode)  
Table 4. D_SD3 Logic  
D_SD3 LOGIC LEVEL  
MBATT (logic high)  
Unconnected  
SD3 DEFAULT VOLTAGE  
Five Standard P-Channel Regulators (LDO2/3/4/5/6)  
• 1.7V to 5.5V Input Range  
• 20µA Quiescent Supply Current  
• Remote Capacitor Design with Register Adjustable  
Compensation to Optimize Transient Performance  
1.35V  
Factory OTP setting such as 1.5V  
1.2V  
GND (logic low)  
Maxim Integrated  
81  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
Basic LDO Topologies  
The nine LDOs of the IC are derived of five basic topolo-  
gies as shown in Table 5.  
IN_LDO2  
LOCAL  
LDO  
BIAS  
GLOBAL  
BIAS  
LDO2  
150mA  
PMOS  
The PMOS regulators (PDRVx) operate and draw power  
from their power inputs (IN_LDOxx), which have a  
OUT_LDO2  
minimum operating supply voltage of 1.7V (V  
).  
IN_LDOx  
The control registers and some input circuitry operate  
from the main system supply (MBATT) and hold their  
IN_LDO0-1  
OUT_LDO0  
MBATT  
contents when the regulator input voltage (V  
drops to 0V.  
)
IN_LDOx  
LDO0  
150mA  
NMOS  
The NMOS regulators (NDRVx) gate drive operates from  
the main system supply (MBATT), while the load current  
is provided by the regulator input (IN_LDOxx). The input  
MBATT  
voltage (V  
) for the NMOS regulators extends  
IN_LDOx  
LDO1  
150mA  
NMOS  
OUT_LDO1  
FPS  
down to 0.8V. To provide adequate gate drive for the  
NMOS output device, the NMOS output voltage should  
be more than 1.5V lower than the main system supply  
IN_LDO3-5  
OUT_LDO3  
voltage (V  
). The control registers are also powered  
MBATT  
from MBATT.  
LDO3  
300mA  
PMOS  
NMOS regulators work into dropout with the V  
to  
IN_LDOx  
V
voltage determined by I  
x R  
where  
OUT_LDOx  
LOAD  
DO  
R
is the dropout resistance (typically 200mΩ). As drop-  
DO  
out voltage decreases (by reducing load) below 0.3V, the  
PSRR and load regulation degrades.  
LDO5  
150mA  
PMOS  
OUT_LDO5  
All PMOS regulators are compensated at their output  
and require a remote output capacitance large enough  
to prevent oscillation, as specified in the Electrical  
IN_LDO4-6  
OUT_LDO4  
Characteristics table (C  
). The NMOS regulators are  
OUTx  
LDO4  
150mA  
PMOS  
internally compensated, but an additional output capacitor  
can be added to improve immunity to high-frequency  
noise and allow stable low-power mode operation.  
LDO6  
150mA  
PMOS  
Table 5. Basic LDO Topologies  
OUT_LDO6  
NAME  
DESCRIPTION  
LDO  
Power device: PMOS  
Output current: 150mA  
LDO2, LDO4, LDO5,  
LDO6  
IN_LDO7-8  
OUT_LDO7  
PDRV1  
MBATT  
LDO7  
450mA  
NMOS  
Power device: PMOS  
Output current: 300mA  
PDRV2  
NDRV1  
NDRV2  
NDRV3  
LDO3  
Power device: NMOS  
Output current: 150mA  
LDO0, LDO1  
LDO8  
MBATT  
Power device: NMOS  
Output current: 300mA  
LDO8  
300mA  
NMOS  
OUT_LDO8  
I2C and IRQ  
Power device: NMOS  
Output current: 450mA  
LDO7  
Figure 10. Linear Regulator Functional Diagram  
Maxim Integrated  
82  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
the regulator gracefully increases the capacitor voltage  
to the required target voltage such as 1.2V. This is unlike  
other regulators without the start into prebias feature  
where they can force the output capacitor voltage to 0V  
before the soft-start ramp begins.  
LDO Power Modes  
Linear regulators and step-down regulators have very  
similar power mode controls. Each linear regulator is  
independently controlled with PWR_MD_Lx[1:0] and  
each step-down regulator is independently controlled with  
PWR_MD_SDx[1:0] (see the Dynamic Voltage Scaling  
section for more information about step-down regulators).  
In addition, to enable and disable control each linear  
regulator has a special low-power mode that reduced  
the quiescent current to 1.5µA. In low-power mode, each  
During a soft-start event or a DVS transition, the regula-  
tors output current increases by C  
x dV/dt. In the  
OUT  
event that the load current, plus the additional current  
imposed by the soft-start or DVS transition, reach the  
regulator’s current limit, the current limit is enforced.  
When the current limit is enforced, the advertised transi-  
tion rate (dV/dt) does not occur.  
regulator supports a load of up to 5mA (I  
load regulation performance degrades proportionally with  
the reduced load current.  
). The  
MAXxx  
Power-OK Comparators for  
Linear Regulators  
Each linear regulator includes a power-OK (POK) com-  
parator. The POK comparator signals (POK_Lx) indicate  
when each output has lost regulation (i.e., the output  
Several usage options are available for low-power mode.  
To force individual regulators to low-power mode, set  
PWR_MD_Lx to 0b10. To force a group of regulators  
to enter and exit low-power mode in unison, set their  
individual PWR_MD_Lx_ bits to 0b10. When set for this  
“group and/or dynamic” low-power mode, the low-power  
mode is enabled when the global low-power mode signal  
is high. The global low-power mode signal is driven by  
the GLBL_LPM bit or through a GPIO0 (see the Global  
Low-Power Mode section for more information).  
voltage is below V  
). The POK signal has a 25µs  
POKTHL  
noise immunity filter (t  
).  
POKNFLDO  
When any of the POK signals (POK_Lx) go low, a mask-  
able interrupt is generated. POK is the only interrupt  
available for the MAX77863 LDOs. The block level LDO  
interrupt register is IRQ_LVL2_Lx and the top level LDO  
interrupt is IRQ_LDO. See the Status and Interrupts  
section for more information.  
When a linear regulator is configured to be part of a flex-  
ible power sequence (FPSSRC_Lx), the power mode  
bits (PWR_MD_Lx) are still used to configure low-power  
mode and normal-power mode, but the flexible power  
sequencer itself controls weather the regulator is enabled  
or disabled. See the PWR_MD_Lx[1:0] bit descriptions  
for complete information.  
Active-Discharge Resistors  
Each linear regulator has an active-discharge resistor  
feature that can be enabled/disabled with ADE_Lx_.  
Enabling the active discharge feature helps ensure a  
complete and timely power down of all system peripher-  
als. The default condition of the active-discharge resistor  
Soft-Start and  
Dynamic Voltage Scaling  
feature is enabled such that whenever V  
is below  
MBATT  
The linear regulators have a programmable soft-start rate.  
When a linear regulator is enabled, the output voltage  
ramps to its final voltage at a slew rate of either 5mV/µs  
or 100mV/µs, depending on the state of the SS_Lx bit.  
The 5mV/µs ramp rate limits the input inrush current to  
around 10mA on a 300mA regulator with a 2.2µF output  
capacitor and no load. The 100mV/µs ramp rate results  
in a 200mA inrush current on a 300mA regulator with a  
2.2µF output capacitor and no load, but achieves regula-  
tion within 50µs. The soft-start ramp rate is also the rate of  
change at the output when changing dynamically between  
two output voltages while enabled (dynamic voltage scal-  
ing: DVS).  
V
all regulators are disabled with their active-  
MBATTUVLO  
discharge resistors turned on. When V  
1.0V, the NMOS transistors that control the active-dis-  
charge resistors lose their gate drive and become open.  
is less than  
MBATT  
Overvoltage Clamp  
Each LDO has an overvoltage clamp that allows it to  
sink current when the output voltage is above its target  
voltage. This overvoltage clamp for a given LDO is  
disabled when that LDO is in low-power mode. If an  
LDO is in normal-power mode, then the overvoltage  
clamp is enabled/disabled with OVCLMP_EN_Lx (default  
enabled). The following bulleted list briefly describes  
three typical application scenarios that pertain to the  
overvoltage clamp.  
The LDO soft-start circuitry supports starting into a  
prebiased output. For example, if the output capacitor has  
an initial voltage of 0.4V when the regulator is enabled,  
Maxim Integrated  
83  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
Typical application scenarios for the overvoltage clamp:  
designing the PCB and placing the output capacitor. The  
default compensation is factory programmable; addition-  
ally, the compensation is register adjustable when the  
LDO is off. For each LDOs output capacitor recommen-  
LDOs Load Leaking Current into the LDOs Output:  
Some LDO loads leak current into an LDO output  
during certain operating modes. This is typically seen  
with microprocessor loads. For example, a micropro-  
cessor with 3.3V, 2.5V, 1.8V, and 1.0V supply rails  
is running in standby mode. In this mode, the higher  
voltage rails can leak currents of several milliamps  
into the lower voltage rails. If the 1.0V rail is supplied  
by an LDO, the LDO output voltage rises based on the  
amount of leakage current. With the LDO overvoltage  
clamp enabled, when the output voltage rises above  
its target regulation voltage, the overvoltage clamp  
sinks current from the output capacitor, which brings  
the output voltage back within regulation.  
dation (C  
) see Table 1.  
OUTx  
In many LDO designs, there is little-to-no flexibility in  
the physical placement of the output capacitor on the  
PCB. However, the LDO implementation within the IC  
provides adjustable compensation for the P-channel  
LDOs. This adjustable compensation allows flexibility  
in the placement of the output capacitor on the PCB,  
however, as the output capacitor is placed farther from  
the device, slower compensation values are required  
to maintain stability; these slower compensation values  
decrease performances.  
Negative Load Transient to 0A: When the LDO load  
current quickly ramps to 0A (i.e., 300mA to 0A load  
transient with 1µs transition time), the output voltage  
can overshoot (i.e., sore). Since the LDO cannot turn  
off its pass device with an intently fast load transition,  
the LDO output voltage overshoots. In this instance,  
when the output voltage sores above target regulation  
voltage, the overvoltage clamp sinks current from the  
output capacitor, which brings the output voltage back  
within regulation.  
For optimum p-channel LDO performance, place the  
output capacitor as close to the LDO output as possible  
and program COMP_Lx = 0b00. In situations where the  
full LDO performance is not required, the output capacitor  
can be place farther away from the LDO output with slow-  
er compensation values. This option becomes especially  
useful when the LDO output capacitor can be eliminated  
and the load’s local input capacitor becomes the only  
capacitance on the LDO output node. See the COMP_Lx  
bit descriptions for more information.  
Negative Dynamic Voltage Transition: When the LDO  
output target voltage is decreased (i.e., 1.2V to 0.8V)  
when the system loading is light, the energy in the  
output capacitor tends to hold the output voltage up.  
When the output voltage is above its target regulation  
voltage, the overvoltage clamp sinks current from the  
output capacitor, which brings the output voltage back  
within regulation.  
Warning: The COMP_Lx bits should only be changed  
when the LDO is disabled. If the compensation bits are  
changed when the LDO is enabled, the output voltage  
glitches as the compensation changes.  
N-Channel Linear Regulator  
Output Capacitor  
N-channel LDOs (NDRVx as shown in Table 5) techni-  
cally do not require any output capacitor to maintain sta-  
ble output voltage regulation if they are in normal mode  
(i.e., they can be capless). However, an n-channel LDO  
does require an output capacitor to maintain stable output  
voltage regulation in low-power mode. In either mode  
(normal or low-power) the LDO performs best with an  
Output Capacitor Selection  
The output capacitor selection differs slightly between a  
P-channel and an N-channel LDO.  
P-Channel Linear Regulator  
Output Capacitor  
P-channel LDOs (PDRx as shown in Table 5) require an  
output capacitor to maintain stable output voltage regula-  
tion. Adjustable compensation allows for flexibility when  
output capacitor (C  
) as recommended in Table 1.  
OUTx  
Note that the COMP_Lx[1:0] bits for n-channel LDOs  
must be set to 0b00.  
Maxim Integrated  
84  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
programming matrix. Each GPIO is programmable to  
operate in a special alternative mode as shown in Table 6.  
BIAS  
A small section of bias circuitry is required to be on  
when any of the LDOs are enabled. Figure 11 shows  
that any LDO enable signal OR the L_B_EN enables the  
LDO bias circuits. In addition, whenever the LDO bias is  
enabled, the global bias for the IC is also enabled. The  
Features  
Eight GPIO  
Two Input Power Sources  
• 4 GPIOs per input  
LDO bias circuitry takes t  
to turn on. If the LDO bias  
LBIAS  
• Input Voltage Range from 1.7V to 5.5V  
circuit is off and an LDO is enabled, the total time before  
the output starts slewing up is t + t . If the LDO  
bias is on and an LDO is enabled, the total time before  
LBIAS  
LON  
GPI  
• GPI to Global Low-Power Mode Control  
the output starts slewing is t  
.
LON  
• GPI to SD0 DVS Signal  
• GPI to SD1 DVS Signal  
• GPI to Interrupt  
If the sequencing of a group of regulators is particularly  
important, it may be desirable to force the LDO bias to  
be on with the L_B_EN bit to ensure that LDOs enable in  
a consistent manner with the shortest latency. Note that  
whenever L_B_EN is set, the global bias circuits and LDO  
bias circuits are enabled. The combined bias circuitry  
• GPI to Flexible Power Sequencer  
• Flexible Edge Trigger Support  
• Selectable Debounce Time  
• Optional Pullup/Pulldown  
current is I  
. To ensure that the system always  
QBIAS  
operates with the lowest quiescent current possible, it is a  
good idea to clear L_B_EN when it is not needed.  
GPO  
General Purpose Input/Output (GPIO)  
• Push-Pull  
• Open-Drain  
Buffered Reference Output  
• GPO to 32kHz Output Option  
• 12mA Sink Current Allows for LED Drive  
The IC has eight GPIO channels. The Simplified  
Functional Diagram shows a simplified functional diagram  
of the GPIO functional block. Figure 12 shows a detailed  
functional diagram of the GPIOs. Table 7 is the GPIO  
ENABLE FOR ANY  
OTHER FUNCTION  
PWR_MD0_L0  
PWR_MD1_L0  
GLOBAL  
EN  
BIAS  
PWR_MD0_L1  
PWR_MD1_L1  
L_B_EN  
PWR_MD0_L7  
PWR_MD1_L7  
LDO  
BIAS  
EN  
PWR_MD0_L8  
PWR_MD1_L8  
Figure 11. LDO Bias Enable Circuitry  
Maxim Integrated  
85  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
GPIO_INx  
GPIO_INx  
PUEx  
PUEx  
DVS_SD0  
DVS_SD1  
IRQ  
GPIO  
CONTROL  
RPU  
PPDRVx  
FPS  
LPM  
DBNCx  
REFE_IRQx  
EDGEx  
RET  
I2C  
FET*  
GPIOx  
RESET  
DIx  
*DB  
DIRx  
DOx  
LOGIC  
RPD  
PDEx  
DGND  
DGND  
ABUF_EN  
GPIO_INx  
REF  
*DB = DEBOUNCE  
RET = RISING EDGE TRIGGER  
FET = FALLING EDGE  
TRIGGER  
Figure 12. GPIO Simplified Block Diagram  
See the “GPIOx GPI” section of Table 7 for the full details  
of how to program a GPI.  
GPO  
When configured as a general-purpose output (GPO), the  
GPO is programmable to be push-pull or open-drain. See  
the “GPIOx GPO” section of Table 7 for the full details of  
how to program a GPO.  
GPI Interrupts  
The GPI edge(s) that triggers interrupts are selectable  
with REFE_IRQx. When a GPI interrupt is enabled and  
the selected edge(s) are detected, EDGEx is set in the  
IRQ_LVL2_GPIO register and IRQ_GPIO is set in the  
top-level interrupt register. If the top-level interrupt mask  
is cleared (IRQ_GPIOM), the external interrupt signal  
nIRQ is asserted.  
GPI  
When configured as a general-purpose input (GPI), the  
GPI is programmable to have either a high-impedance,  
100kΩ pulldown, or 100kΩ pullup. Additionally, interrupt  
inputs with programmable debounce timers are available.  
Maxim Integrated  
86  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
Alternate Mode  
Table 6. Alternate Modes for GPIOs  
In addition to the GPO and GPI configurations, each  
GPIO has an alternate mode as shown in Table 7 and  
AME_GPIO: Alternate Mode Enable GPIO Configuration  
Register register description.  
GPIOx  
ALTERNATE MODES  
Low-power mode control input  
GPIO0  
Active-high, open-drain,  
flexible power sequencer output  
GPIO1  
GPIO2  
GPIO3  
When a GPIO is in an alternate mode the device may  
internally force the direction (i.e., output or input) and or  
logic level of the GPIO. However other options such as  
debounce times and rising/falling edge triggered interrupt  
settings are still valid in alternate mode. See the register  
descriptions and “alternative mode” sections of the Table 7  
for the full details of how to program an alternative mode.  
Active-high, open-drain,  
flexible power sequencer output  
Active-high, open-drain,  
flexible power sequencer output  
GPIO4  
GPIO5  
GPIO6  
32kHz output (32K_OUT1)  
When GPIO7 is an alternative mode it is a 1.25V refer-  
ence output. As a reference output, the GPIO7 output  
drivers are high-z, the input buffer is disabled to prevent  
leakage, and the interrupt feature is disabled. It is recom-  
mended that user disable the pullup and pulldown resis-  
tors for GPIO7 when it operates in alternate mode. Note  
that when using GPIO7 as a reference output, minimize  
the capacitance at this node. The maximum acceptable  
capacitance is 0.1µF.  
SD0 dynamic voltage scaling input  
SD1 dynamic voltage scaling input  
Reference output 1.25V buffered reference  
output  
GPIO7  
Table 7. GPIO Programming Matrix  
GPIOx GPI  
Comment  
DBNCx[1:0]  
REFE_IRQx[1:0]  
Interrupt options  
DOx  
0
DIx  
DIRx  
PPDRVx  
0
PUEx  
0
PDEx  
0
AMEx  
0
Debounce  
times  
Input logic  
level  
GPI  
1 = GP1  
GPI with Internal  
Pullup  
Debounce  
times  
Input logic  
level  
Interrupt options  
Interrupt options  
0
1
1 = GP1  
1 = GP1  
0
0
1
0
0
1
0
0
GPI with Internal  
Pulldown  
Debounce  
times  
Input logic  
level  
GPIOx GPO  
Output  
logic  
level  
1-push-  
pull  
GPO Push-Pull  
0
0
0
0
0
0
0 = GPO  
0 = GPO  
0
0
0
0
0
0
Output  
logic  
level  
0-open-  
drain  
GPO Open-Drain  
GPIO0 ALTERNATIVE MODE LOW-POWER MODE CONTROL INPUT  
Comment  
DENC0[1:0]  
REFE_IRQ0[1:0]  
DO0  
DI0  
DIR0  
PPDRV0 PUE0  
PDE0  
0
AME0  
1
GPI1 Low-Power  
Mode Input,  
Low-Power Mode  
Debounce  
times  
0 =  
active-low  
Interrupt options  
0
0
0
0
GPI1 Low-Power  
Mode Input, Low-  
Power Mode,  
Debounce  
times  
0 =  
active-low  
Interrupt options  
0
0
0
1
0
1
Internal Pullup  
Maxim Integrated  
87  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
Table 7. GPIO Programming Matrix (continued)  
GPIO0 ALTERNATIVE MODE LOW-POWER MODE CONTROL INPUT (continued)  
GPI1 Low-Power  
Mode Input,  
Normal-Power  
Mode  
Debounce  
times  
0 =  
active-low  
Interrupt options  
Interrupt options  
Interrupt options  
Interrupt options  
0
0
0
0
1
1
0
0
0
0
0
0
0
1
0
1
0
0
0
0
1
1
1
1
GPI1 Low-Power  
Mode Input,  
Normal-Power  
Mode, Internal  
Pullup  
Debounce  
times  
0 =  
active-low  
GPI1 Low-Power  
Mode Input,  
Normal-Power  
Mode  
1 =  
active-  
high  
Debounce  
times  
GPI1 Low-Power  
Mode Input,  
Normal-Power  
Mode, Internal  
Pullup  
1 =  
active-  
high  
Debounce  
times  
GPI1 Low-Power  
Mode Input,  
Low-Power Mode  
1 =  
active-  
high  
Debounce  
times  
Interrupt options  
Interrupt options  
0
0
1
1
0
0
0
1
0
0
1
1
GPI1 Low-Power  
Mode Input,  
Low-Power Mode,  
Internal Pullup  
1 =  
active-  
high  
Debounce  
times  
GPIO1/2/3 ALTERNATIVE MODE ACTIVE-HIGH FLEXIBLE POWER SEQUENCER OUTPUT  
Comment  
DENCx[1:0]  
REFE_IRQx[1:0]  
DOx  
DIx  
DIRx  
PPDRVx  
PUEx  
0
PDEx  
0
AMEx  
1
GPO Flexible  
Power Sequencer  
Output, Push-Pull  
1 =  
push-  
pull  
Set by  
FPS  
0
0
0
0
GPO Flexible  
Power Sequencer  
Output, Open-Drain  
0 =  
open-  
drain  
Set by  
FPS  
0
0
0
0
0
0
1
GPIO4 ALTERNATIVE MODE 32kHz OUTPUT (32K_OUT1)  
Comment  
DBNC4[1:0]  
REFE_IRQ4[1:0]  
DO4  
DI4  
0
DIR4  
0
PPDRV4 PUE4  
1 =  
PDE4  
0
AME4  
1
GPO 32kHz  
Output, Push-Pull  
Set by  
XIN  
0
0
push-  
pull  
0
GPO 32kHz  
Output,  
Open-Drain  
0 =  
open-  
drain  
Set by  
XIN  
0
0
0
0
0
0
1
Maxim Integrated  
88  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
Table 7. GPIO Programming Matrix (continued)  
GPIO5 ALTERNATIVE MODE SD0 DYNAMIC VOLTAGE SCALING INPUT  
Comment  
DBNC5[1:0]  
REFE_IRQ5[1:0]  
Interrupt options  
DO5  
0
DI5  
DIR5  
PPDRV5 PUE5  
PDE5  
0
AME5  
1
GPI SD0 DVS  
Input, VSD0 =  
VDVSSD0  
Debounce  
times  
0 =  
active-low  
0
0
0
0
0
0
0
0
0
0
1
0
1
0
1
0
1
GPI SD0 DVS  
Input, VSD0  
= VDVSSD0,  
Internal Pullup  
Debounce  
times  
0 =  
active-low  
Interrupt options  
Interrupt options  
Interrupt options  
Interrupt options  
Interrupt options  
Interrupt options  
Interrupt options  
0
0
0
0
0
0
0
0
1
1
0
0
1
1
0
0
0
0
0
0
0
1
1
1
1
1
1
1
GPI SD0 DVS  
Input, VSD0 =  
VSD0  
Debounce  
times  
0 =  
active-low  
GPI SD0 DVS  
Input, VSD0 =  
VSD0, Internal  
Pullup  
Debounce  
times  
0 =  
active-low  
GPI SD0 DVS  
Input, VSD0 =  
VSD0  
1 =  
active-  
high  
Debounce  
times  
GPI SD0 DVS  
Input, VSD0 =  
VSD0, Internal  
Pullup  
1 =  
active-  
high  
Debounce  
times  
GPI SD0 DVS  
Input, VSD0 =  
VDVSSD0  
1 =  
active-  
high  
Debounce  
times  
GPI SD0 DVS  
Input, VSD0  
= VDVSSD0,  
Internal Pullup  
1 =  
active-  
high  
Debounce  
times  
GPIO6 ALTERNATIVE MODE SD1 DYNAMIC VOLTAGE SCALING INPUT  
Comment  
DBNC6[1:0]  
REFE_IRQ6[1:0]  
DO6  
DI6  
DIR6  
PPDRV6 PUE6  
PDE6  
0
AME6  
1
GPI SD1 DVS  
Input, VSD1 =  
VDVSSD1  
Debounce  
times  
0 =  
active-low  
Interrupt options  
0
0
0
0
0
0
1
0
GPI SD1 DVS  
Input, VSD1  
= VDVSSD1,  
Internal Pullup  
Debounce  
times  
0 =  
active-low  
Interrupt options  
Interrupt options  
0
0
0
1
0
0
1
1
GPI SD1 DVS  
Input, VSD1 =  
VSD1  
Debounce  
times  
0 =  
active-low  
Maxim Integrated  
89  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
Table 7. GPIO Programming Matrix (continued)  
GPIO6 ALTERNATIVE MODE SD1 DYNAMIC VOLTAGE SCALING INPUT (continued)  
GPI SD1 DVS  
Input, VSD1 =  
VSD1, Internal  
Pullup  
Debounce  
times  
0 =  
active-low  
Interrupt options  
Interrupt options  
Interrupt options  
Interrupt options  
Interrupt options  
0
0
0
0
0
1
0
0
1
1
0
0
0
0
0
1
0
1
0
1
0
0
0
0
0
1
1
1
1
1
GPI SD1 DVS  
Input, VSD1 =  
VSD1  
1 =  
active-  
high  
Debounce  
times  
GPI SD1 DVS  
Input, VSD1 =  
VSD1, Internal  
Pullup  
1 =  
active-  
high  
Debounce  
times  
GPI SD1 DVS  
Input, VSD1 =  
VDVSSD1  
1 =  
active-  
high  
Debounce  
times  
GPI SD1 DVS  
Input, VSD1  
= VDVSSD1,  
Internal Pullup  
1 =  
active-  
high  
Debounce  
times  
GPIO7 ALTERNATIVE MODE REFERENCE OUTPUT 1.25V BUFFERED REFERENCE OUTPUT  
Comment  
DBNC7[1:0]  
0
REFE_IRQ7[1:0]  
0
DO7  
0
DI7  
0
DIR7  
0
PPDRV7 PUE7  
PDE7  
0
AME7  
1
GPIO7 = 1.25V  
Output  
0
0
Real-Time Clock (RTC)  
Features  
The real-time clock (RTC) is responsible for keeping track  
of the time. It records seconds, minutes, hours, days,  
months, and years with a calendar structure that accounts  
for leap years. The RTC is further equipped with two  
alarms and has a host of maskable interrupt capabilities.  
Gregorian calendar with leap year correction  
Two alarms  
Maskable interrupts  
• 1s and 60s  
• Alarm 1 and 2  
• SMPL  
Through a set of configuration registers, various modes of  
operation are possible. RTC supports both “Binary” and  
“Binary Coded Decimal”, and supports features such as  
AM/PM and 24/12 modes of operation. Additional sudden  
momentary power loss (SMPL) is available.  
Binary and BCD Modes  
12/24 hour modes  
Sudden momentary power loss (SMPL)  
Double buffered read/write registers allow asynchro-  
nous register access  
Operates down to 1.65V  
Maxim Integrated  
90  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
Read/Write Operations  
The RTC has double buffered read/write registers that allow the register access to be asynchronous to the RTC  
Figure 13).  
(
WRITE BUFFERS  
TIMEKEEPER COUNTERS  
READ BUFFERS  
SEC  
SEC  
SEC  
MIN  
MIN  
MIN  
HOUR  
HOUR  
HOUR  
MUX  
SHARED BUS  
SHARED BUS  
YEAR  
YEAR  
YEAR  
RBUDF  
RBUDR  
UDF  
UDR  
UDR_SYNC  
SYNCHRONIZERS  
RBUDR_SYNC  
DATA FROM WRITE BUFFERS TRANSFERRED TO  
TIMEKEEPER COUNTERS WHEN UDR_SYNC IS HIGH  
DATA FROM TIMEKEEPER COUNTERS TRANSFERRED  
TO READ BUFFERS WHEN RBUDR_SYNC IS HIGH  
CLOCK  
DIVIDER  
32kHz  
256Hz  
SMPL  
Figure 13. RTC Simplified Functional Diagram  
Maxim Integrated  
91  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
In order to safely write to various registers on-board the RTC, all RTC registers (except RTCINT register, bit 0 of  
UPDATE0 the register, and bit 4 of UPDATE0 the register) have a corresponding “Write Buffer”. When the user writes to  
the RTC, the user is actually performing a write to these “Write Buffers”. Therefore, in writing to RTC there are two steps  
needed to update a particular register or set of registers:  
1) User writes desired value(s) to the register(s) located between 0x07 and 0x1B. Behind the scenes, only the “Write  
Buffers” are updated with these new values.  
2) The user then writes a 1 to UDR bit 0 of the “UPDATE0 register” at address 0x04 to transfer the modified “Write Buf-  
fers” to the corresponding time registers.  
The logic subsequently would perform a transfer of data from the “Write Buffers” to the actual registers and then clears  
the “UDR” bit automatically as well as clearing the “Write Buffers” (marking them as not modified).  
Under the hood, the logic first does a double synchronization of the UDR bit to the 32.768kHz clock before using it as an  
enable bit (UDR_sync in Figure 13) to transfer from “Write buffers” to the actual registers thus allowing a safe update of  
these two unsynchronized clock events.  
Example 7. Pseudo code for setting clock to Saturday, Jan 01, 2011, 1:00:00 PM  
Set RTCCNTL to 0x01  
Set RTCUPDATE0 to 0x01  
Set RTCSEC to 0x00  
//12hr mode, BCD mode  
// transfer RTCCNTL modification to RTC  
// 0 second  
Set RTCMIN to 0x00  
// 0 minute  
Set RTCHOUR to 0x41  
Set RTCDOW to 0x40  
Set RTCMONTH to 0x01  
Set RTCYEAR to 0x11  
Set RTCDOM to 0x01  
Set RTCUPDATE0 to 0x01  
Wait 16ms for write to complete  
// 1 PM  
// Saturday  
// January  
// 11  
// First  
// transfer write buffers to counters  
Set RTCSEC to 0x…  
//new write  
Example 8. Pseudo code for setting ALARM1 to every Wednesday at 7:30:00 AM  
Set RTCCNTL to 0x01  
//12hr mode, BCD mode  
// transfer RTCCNTL modification to RTC  
//0 sec, enabled  
Set RTCUPDATE0 to 0x01  
Set RTCSECA1 to 0x80  
Set RTCMINA1 to 0xB0  
Set RTCHOURA1 to 0x87  
Set RTCDOWA1 to 0x08  
Set RTCMONTHA1 to 0x00  
Set RTCYEARA1 to 0x00  
Set RTCDOMA1 to 0x00  
Set RTCUPDATE0 to 0x01  
Wait 16ms for write to complete  
//30 minute, enabled  
//7 AM, enabled  
//Wednesday, enabled  
//Disabled  
//Disabled  
//Disabled  
// transfer write buffers to counters  
Set RTCSEC to 0x…  
//new write  
Maxim Integrated  
92  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
Reading from RTC  
Corresponding to most timing registers there are a series of “Read Buffers”.  
In order to safely read from various registers on-board the RTC, all RTC registers (except RTCINT register and bit 0 and  
4 of UPDATE0 register) have a corresponding “Read Buffer”. When the user reads from the RTC, the user is actually  
performing a read from these “Read Buffers”. Therefore, there are two steps needed to read a particular register or set  
of registers:  
1. The user writes a 1 to RBUDR bit 4 of the “UPDATE0 Register” at address 0x04 to transfer most timing registers to  
the “Read Buffers”. Behind the scenes, the “Read Buffers” are updated.  
2. The user then reads from the desired register location.  
After step 1, the logic subsequently performs a transfer of data from the actual registers to the “Read Buffers” and then  
clears the “RBUDR” bit.  
Under the hood, the logic first does a double synchronization of the RBUDR bit to the 32.768kHz clock before using it as  
a clock (RBUDR_sync in Figure 13) to transfer from the actual registers to the “Read Buffers” thus allowing a safe update  
of these two unsynchronized clock events.  
Example 9. Pseudo code for reading the time  
Set RTCUPDATE0 to 0x10  
Wait 16ms for read to complete  
Read RTCSEC  
// transfer timekeeper counters to read buffers  
// second  
// minute  
Read RTCMIN  
Read RTCHOUR  
// hour  
Read RTCDOW  
// Day of Week  
// Month  
Read RTCMONTH  
Read RTCYEAR  
// Year  
Read RTCDOM  
// Day of Month  
Example 10. Pseudo code for reading ALARM1 setting  
Set RTCUPDATE0 to 0x10  
Wait 16ms for read to complete  
Read RTCSECA1  
// transfer timekeeper counters to read buffers  
// sec  
Read RTCMINA1  
// minute  
// hour  
Read RTCHOURA1  
Read RTCDOWA1  
// Day of Week  
// Month  
Read RTCMONTHA1  
Read RTCYEARA1  
Read RTCDOMA1  
// Year  
// Day of Month  
SMPL (Sudden Momentary Power Loss)  
The SMPL function allows the system to recover if power is briefly lost due to a poor battery connection. If V  
MBATT  
falls below and returns above the UVLO threshold within the SMPL timer threshold (SMPLT[1:0]) and SMPL is enabled  
(SMPL_EN = 1), SMPL initiates a power-up sequence and the SMPL interrupt bit is set. If the SMPL timer expires before  
V
returns, the SMPL enable bit is automatically cleared in order to prevent power-up on subsequent SMPL events.  
MBATT  
To ensure proper operation of the SMPL state machine, initialization software should clear and set SMPL_EN after each  
power-on event.  
Maxim Integrated  
93  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
32kHz Crystal Oscillator and  
Buffered Outputs  
Features  
Low-jitter mode provides 15ns cycle-by-cycle jitter  
The IC contains a crystal oscillator driver with internal  
load capacitance selectable by 32KLOAD[1:0] (Figure  
14). PWR_MD_32K controls whether the crystal driver is  
in low-power mode or low-jitter mode. In low-power mode,  
the oscillator quiescent current is 1.5µA and in low-jitter  
mode the cycle-by-cycle jitter is 15ns. The crystal driver  
On-chip crystal oscillator load capacitors  
32kHz digital outputs  
Oscillator OK status  
Operates down to 1.5V  
Backup Battery Charger  
is supplied from the internal V  
node which is equal to  
.
RTC  
V
if V  
> V  
The backup battery charger is a constant voltage (CV)  
and constant current (CC) style charger with a series out-  
put resistance as shown in Figure 14. The backup battery  
charger is enabled and disabled with BBCEN. The charge  
current, charger voltage, output current, and output resis-  
tance are adjustable with the BBCCTRL register. The  
backup-battery charger is suitable for the following types  
of backup cells:  
MBATT  
MBATT MBATTUVLO  
The crystal driver generates two 32kHz buffered outputs.  
One 32kHz output has a dedicated pin (32K_OUT0). The  
other output (32K_OUT1) is available through GPIO4  
and is useful for peripherals such as BT/WLAN chipsets  
(see AME4). The configuration of the output stage for  
32K_OUT0 is factory programmable with OTP. The pri-  
mary OTP option (OTP_32K_OUT = 0) configures the  
output stage for a push-pull output between ground and  
GPIO_INB. OTP_32K_OUT = 1 sets 32K_OUT0 for an  
open-drain output. The output stage for 32K_OUT1 is  
determined by their respective GPIO blocks.  
Super capacitor (a.k.a., gold cap, double-layer  
electrolytic)  
Standard capacitors (tantalum … etc.)  
Rechargeable lithium manganese cells  
There are three options for the internal load capacitance  
from XIN to XGND and XOUT to XGND: 10pF, 12pF, and  
22pF. XIN and XOUT each have approximately 3pF of  
parasitic capacitance. The total load capacitance on the  
crystal is shown in Table 1.  
Features  
800µA maximum CC-CV backup battery charger  
2.5V—3.5V adjustable backup battery setting with  
± 3% tolerance  
The crystal driver also generates a status bit (32K_OK),  
when the 32kHz clock is OK (typically 1 second after initial  
start up).  
Seamless transition of RTC supply from V  
to  
MBATT  
drops below V  
MBATT MBATT_UVLO  
V
when V  
BBATT  
threshold  
Table 8. 32kHz Crystal Oscillator Load Capacitance  
PARASITIC  
CAPACITANCE FROM  
XIN TO XGND AND XOUT XIN TO XGND AND XOUT XIN TO XGND AND XOUT  
INTERNAL LOAD  
CAPACITANCE FROM  
EXTERNAL LOAD  
CAPACITANCE FROM  
TOTAL LOAD  
CAPACITANCE ON THE  
32kLOAD  
CRYSTAL (pF)  
TO XGND (pF)  
TO XGND (pF)  
TO XGND (pF)  
0x00  
0x01  
0x02  
0x02  
0x02  
0x03  
0x03  
3
3
3
3
3
3
3
12  
None  
None  
10  
7.5  
12.5  
6.5  
22  
None  
None  
None  
None  
10  
12  
7.5  
22  
12.5  
12.5  
6.5  
22  
None  
Maxim Integrated  
94  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
VMBATTUVLO  
VMBATTOK  
MBATT  
LDO WITH REVERSE  
CURRENT BLOCKING  
BBCVS[1:0]  
VRTCUVLO  
VRTC  
SELECT LDO  
IF AND ONLY IF  
VRTCOK  
BBCEN  
BBCLOWIEN  
BBCCS[1:0]  
V
V
MBATT > VBBATT  
AND  
BBATT < VBBCVS  
BACKUP BATTERY  
CHARGER  
CURRENT LIMIT  
BBCRS[1:0]  
BBATT  
32kLOAD  
GPIO_INB  
32K_OUT0_EN  
32K_OK  
CRYSTAL  
LOAD  
CAPACITORS  
32kHz  
RTC  
RST  
STABILITY  
DETECTOR +  
1ms DELAY  
CRYSTAL  
DRIVER  
*
*
XIN  
**32k_OUT0  
GPIO  
XOUT  
RST  
XGND  
GND  
PWR_MD_32K[1:0]  
THE CRYSTAL DRIVER IS SUPPLIED BY VRTC.  
*OPTIONAL CRYSTAL OSCILLATOR LOAD CAPACITORS  
**THE PUSH-PULL OUTPUT DRIVER STAGE IS SHOWN (OTP_32K = 0)  
Figure 14. Backup Battery Charger, 32kHz Crystal Oscillator and RTC  
Maxim Integrated  
95  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
Result:  
ON/OFF Controller  
The ON/OFF controller monitors multiple wakeup sources  
to intelligently enable all resources that are necessary  
for the AP to boot (i.e., FPS0 and FPS1). As shown in  
Figure 18, the on/off controller monitors wakeup events on  
the EN0, EN1, EN2, ACOK, nRST_IO, and LID hardware  
inputs. Additionally, internal wakeup events are also moni-  
tored: SMPL, ALARM1, and ALARM2 internal signals.  
Wakeup events go through logic to affect flexible power  
sequencers 0 and 1 (FPS0, FPS1). Many wakeup signals  
can be masked (WK_ACOK, WL_LID, WK_ALARM1,  
WL_ALARM2, WK_EN0).  
At 0s, EN0 is asserted.  
After the debounce time (30ms), an EN0 assertion  
interrupt is generated.  
After the 1s, the EN0 1s interrupt is generated.  
After 6s, the MRWRN is generated.  
After 8s, the manual reset event is initiated and all the  
regulators shutdown.  
After 8.03s, the registers are reset.  
After 8.13s, a wakeup event is generated and the non-  
volatile event recorder’s (NVERC) HDRST is set.  
Many signals within the on/off controller generate inter-  
rupts and are recorded in status registers.  
After 12s, the EN0 is deasserted.  
After the debounce time (30ms) an EN0 deassertion  
EN0  
interrupt is generated.  
EN0 is a digital input to the ON/OFF controller that  
Example 12: 20s EN0 assertion with an 8s manual reset  
time.  
(
Figure 18) typically comes from the system’s on key.  
The EN0 polarity is factory programmable with OTP  
(OTP_EN0AL) to be active-high or active-low (Figure 20).  
Comments:  
EN0 is internally debounced (t  
). Programming  
A 20s EN0 assertion with an 8s manual reset time  
DBEN0  
EN0DLY allows an additional delay in the EN0 signal path  
(t ).  
causes the part to turn off ONCE and restart.  
1SECEN0  
Settings:  
Manual Reset with EN0  
Manual reset is enabled (MREN = 1) and manual reset  
time is set for 8s (MRT[2:0] = 0b101).  
An extended EN0 event forces MRO high which activates  
a global shutdown (see the Global Resources section for  
more information on global shutdown). Note that an OTP  
bit OTP_MR sets what the device does after the shut-  
down. With OTP_MR = 1, the device automatically wakes  
up after a manual reset event.  
Stimulus:  
EN0 is asserted for 20s and then deasserted.  
Result:  
At 0s, EN0 is asserted.  
The extended EN0 event duration on EN0 is program-  
mable from 2s to 12s with MRT[2:0]. A warning interrupt  
(MRWRN) is generated one timer interval before the  
manual reset time (i.e., MRT[2:0]-1).  
After the debounce time (30ms), an EN0 assertion  
interrupt is generated.  
After the 1s, the EN0 1s interrupt is generated.  
After 6s, the MRWRN is generated.  
Example 11: 12s EN0 assertion with an 8s manual reset  
time.  
After 8s, the manual reset event is initiated and all the  
regulators shutdown.  
Comments:  
After 8.03s, the registers are reset.  
A 12s EN0 assertion with an 8s manual reset time  
After 8.13s, a wakeup event is generated and the non-  
causes the part to turn off once and restart.  
volatile event recorder’s (NVERC) HDRST is set.  
Settings:  
After 20s, the EN0 is deasserted.  
Manual reset is enabled (MREN = 1) and manual reset  
After the debounce time (30ms), an EN0 deassertion  
time is set for 8s (MRT[2:0] = 0b101).  
interrupt is generated.  
Stimulus:  
EN0 is asserted for 12s and then deasserted.  
Maxim Integrated  
96  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
Example 13: 20s EN0 assertion with an 8s manual reset  
After 8.13s, a wakeup event is generated and the non-  
time followed by a 20s EN0 assertion.  
volatile event recorder’s (NVERC) HDRST is set.  
Comments:  
After 20s, the EN0 is deasserted.  
The initial 20s EN0 assertion causes the part to turn  
After the debounce time (20.03s) an EN0 deassertion  
off and restart once.  
interrupt is generated.  
The second EN0 assertion causes the part to turn off  
After 20.1, EN0 is asserted again.  
and restart again.  
This causes the process to repeat from step #1.  
Settings:  
EN1  
Manual reset is enabled (MREN = 1) and manual reset  
EN1 is a digital input to the ON/OFF controller (Figure 18  
)
time is set for 8s (MRT[2:0] = 0b101).  
that typically comes from the system’s AP. EN1 is used  
to control sleep modes as shown in Figure 27. The EN1  
polarity is factory programmable with OTP (OTP_EN1AL)  
to be active-high or active-low (Figure 21).  
Stimulus:  
EN0 is asserted for 20s and then deasserted for  
100ms.  
EN0 is asserted again for 20s and then deasserted.  
EN2  
Result:  
EN2 is an active-high digital input to the ON/OFF con-  
troller (Figure 18, Figure 22) that typically comes from  
At 0s, EN0 is asserted.  
the system’s AP. Generally, EN2 can directly control the  
enable for SD0 when configured correctly. To configure  
EN2 to control the enable of SD0, set FPSSCR_SD0[1:0]  
= 0b00, PWR_MD_SD0[1:0] = 0b00, and then drive EN2  
logic-low or logic-high to move between case 2 vs. case 5  
as shown in Table 9. If EN2 is not needed to control SD0,  
then connect it to ground and use the other flexible power  
sequencer and/or registers to control SD0 as shown in  
Table 9.  
After the debounce time (30ms), an EN0 assertion  
interrupt is generated.  
After the 1s, the EN0 1s interrupt is generated.  
After 6s, the MRWRN is generated.  
After 8s, the manual reset event is initiated and all the  
regulators shutdown.  
After 8.03s, the registers are reset.  
Table 9. SD0 Power Mode Logic  
CASE  
OFF STATE  
EN2  
X
0
FPSx  
PWR_MD_SD0[1:0] FPSSRC_SD0[1:0]  
SD0 POWER MODE  
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
X
X
X
Disabled  
Disabled  
X
0b00  
0b01  
0b10  
0b11  
0b00  
0b01  
0b10  
0b11  
X
= 0b11  
= 0b11  
= 0b11  
= 0b11  
X
2
X
X
X
1
X
Group and/or dynamic low power mode  
Low-power mode  
3
X
4
X
Normal operating mode  
Normal operating mode  
Group and/or dynamic low-power mode  
Low-power mode  
5
X
6
1
X
X
7
1
X
X
8
1
X
X
Normal operating mode  
Disabled  
9
0
0
≠0b11  
≠0b11  
≠0b11  
≠0b11  
≠0b11  
10  
11  
12  
13  
X
X
X
X
1
0b00  
0b01  
0b10  
0b11  
Normal operating mode  
Group and/or dynamic low-power mode  
Low-power mode  
1
1
1
Normal operating mode  
FPSx = 0 means that the specific FPS is disabled through software.  
Maxim Integrated  
97  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
ACOK  
SMPL, ALARM1, and ALARM2  
ACOK is a digital input to the ON/OFF controller  
Figure 15) that typically comes from the system’s battery  
SMPL, ALARM1, and ALARM2 are signal generated from  
the RTC and used by the ON/OFF controller as shown in  
(
charger. ACOK indicates the presence/absence of the  
external charge adapter. The ACOK polarity is factory  
programmable with OTP (OTP_ACOKAL) to be active-  
high or active-low with the appropriate internal pullup/  
down (Figure 23).  
(Figure 18). See the Real-Time Clock (RTC) section for  
more information on these signals.  
SHDN  
The shutdown input (SHDN) is a digital input to the ON/  
OFF controller that causes the IC to reset through a global  
shutdown event (Figure 1). The signal for SHDN typically  
comes from a temperature sensor that measures the inter-  
nal die temperature of the AP. The SHDN polarity is factory  
programmable with OTP (OTP_SHDNAL) to be active-high  
or active-low with the appropriate internal pullup/down  
LID  
LID is a digital input to the ON/OFF controller (Figure 18  
)
that typically comes from the system’s battery door. LID  
indicates whether the battery door is open or closed. The  
LID polarity is factory programmable with OTP (OTP_  
LIDAL) to be active-high or active-low with the appropriate  
internal pullup/down (Figure 24).  
(Figure 25). A system shutdown based on SHDN is record-  
ed in the non-volatile power-off event recorder (NVREC).  
ACOK_F (Rising Edge Triggered)  
ACOK_R (Rising Edge Triggered)  
VDD  
Q
WAKEUP  
Other Wakeup  
Signals  
ACOK  
ACOK_TTL  
MBATT_OK  
DFF  
ACOK_POL  
MASK_ACOK  
ACOK_POL = ‘0’  
ACOK_POL = ‘1’  
Rising Edge Trigger  
Falling Edge Trigger  
Figure 15. Functional Block Diagram for ACOK  
LID_F (Rising Edge  
Triggered)  
One-Shot  
WAKEUP  
Other Wakeup  
Signals  
LID_R (Rising Edge  
Triggered)  
R
Q
SR  
LATCH  
S
VDD  
QB  
DFF  
LID  
LID_TTL  
MBATTOK  
LID_POL  
MASK_ACOK  
LID_POL = ‘0’  
LID_POL = ‘1’  
Rising Edge Trigger  
Falling Edge Trigger  
Figure 16. Functional Block Diagram for LID  
Maxim Integrated  
98  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
SHDN_TTL  
GLBLSHDN  
SHDN  
SHDN_POL  
SHDN_POL = ‘0’  
SHDN_POL = ‘1’  
Rising Edge Trigger  
Falling Edge Trigger  
Figure 17. Functional Block Diagram for SHDN  
FPS0 and FPS1 are enabled on ALARM2_R if WK_  
ALRM1R is high, MBATT_OK is high, MBATTLOW  
is low, MBLPD is high, and the IC is not in global  
shutdown.  
MBATT_OK and MBATTLOW  
MBATT_OK and MBATTLOW are digital signals  
that come from the systems’ main-battery monitor  
(
Figure 1). MBATT_OK gates several wakeup sources  
such that they cannot enable FPS0, FPS1, and SD0 until  
the battery is above the system undervoltage-lockout  
FPS0 and FPS1 are enabled on ALARM2_R if WK_  
ALRM1R is high, MBATT_OK is high, MBLPD is low  
and the IC is not in global shutdown.  
threshold (V  
). MBATTLOW prevents FPS0,  
MBATTUVLO  
FPS1, and SD0 from being enabled when the main-  
battery is below a programmed minimum voltage.  
FPS0 and FPS1 are enabled on SMPL_EVENT if  
SMPL_EN is high, MBATT_OK is high, MBATTLOW  
is low, MBLPD is high, and the IC is not in global  
shutdown.  
FPS0  
Flexible Power Sequencer 0 is the enable signal for the  
resources that need to be enabled when the AP is in its  
normal operating mode and its sleep mode. When the AP  
is in normal operating mode, both FPS0 and FPS1 are  
FPS0 and FPS1 are enabled on SMPL_EVENT if  
SMPL_EN is high, MBATT_OK is high, MBLPD is low  
and the IC is not in global shutdown.  
enabled and FPS2 is cycled on/off as needed. Figure 18  
Figure 19 and Table 10 describe the behavior of FPS0 in  
addition to the following text description:  
,
FPS0 and FPS1 are enabled on LID if WK_LID is high,  
MBATT_OK is high, MBATTLOW is low, MBLPD is  
high, and the IC is not in global shutdown.  
FPS0 and FPS1 are enabled on EN0 rising edge if  
MBATTLOW is low, MBLPD is high, and the IC is not  
in global shutdown.  
FPS0 and FPS1 are enabled on LID if WK_LID is high,  
MBATT_OK is high, MBLPD is low and the IC is not in  
global shutdown.  
FPS0 and FPS1 are enabled on EN0 rising edge if  
MBLPD is low and the device is not in global shut-  
down.  
FPS0 and FPS1 are enabled on ACOK if WK_ACOK  
is high, MBATT_OK is high, MBATTLOW is low,  
MBLPD is high, and the IC is not in global shutdown.  
FPS0 and FPS1 are enabled on ALARM1_R if WK_  
ALRM0R is high, MBATT_OK is high, MBATTLOW  
is low, MBLPD is high, and the IC is not in global  
shutdown.  
FPS0 and FPS1 are enabled on ACOK if WK_ACOK  
is high, MBATT_OK is high, MBLPD is low and the IC  
is not in global shutdown.  
FPS0 is disabled on global shutdown.  
FPS0 is disabled when PWR_OFF is set.  
FPS0 and FPS1 are enabled on ALARM1_R if WK_  
ALRM0R is high, MBATT_OK is high, MBLPD is low  
and the IC is not in global shutdown.  
FPS0 is disable if MBLPD is high and MBATTLOW is  
high.  
Maxim Integrated  
99  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
FPS1 is enabled on EN1 rising edge if, MBATTLOW  
FPS1  
is low, MBLPD is high, and the IC is not in global  
shutdown.  
Flexible Power Sequencer 1 is the enable signal for the  
resources that need to be enabled when the AP is in its  
normal operating mode and disabled when the AP is in  
sleep mode. When the AP is in normal operating mode,  
both FPS0 and FPS1 are enabled and FPS2 is cycled on/  
off as needed.  
FPS1 is enabled on EN1 rising edge if MBLPD is low,  
and the IC is not in global shutdown.  
FPS1 is disabled on global shutdown.  
FPS1 is disabled on EN1 falling edge if SLPEN is high.  
FPS1 is disabled when PWR_OFF is set.  
Figure 18, Figure 19, and Table 10 describe the behavior  
of FPS1 in addition to the following text description:  
FPS1 is disabled if MBLPD is high and MBATTLOW  
See all FPS1 enable conditions listed in the FPS0  
section. Note that if only FPS0 is on but a wakeup  
event occurs, then FPS1 is enabled.  
is high.  
Table 10. ON/OFF Controller State Diagram Transitions  
TRANSITION  
CONDITION  
The fundamental system voltages and resources are available. Move to the OFF state.  
1
• The battery voltage is not undervoltage (V  
> V  
)
MBATT  
MBATTUVLO  
A wakeup signal has been received. Move the “OK?” state to check to see if the system is okay to wakeup.  
• A debounced EN0 press (i.e., edge) has been detected OR  
• ALARM1_R event occurs and WK_ALRM0R is set OR  
• ALARM2_R event occurs and WK_ALRM1R is set OR  
• SMPL_EVENT occurs and SMPL_EN is set OR  
2
• LID event (i.e., edge) occurs and WK_LID is set OR  
• ACOK event (i.e., edge) occurs and WK_ACOK is set OR  
• WAKEUP flag is set by the previous sequenced shutdown  
The basic system resources are okay.  
• All ‘2B’ transition conditions are not true AND all ‘2C’ transition conditions are not true AND MBATTLOW = 0  
2A  
Failed attempt to power up because the battery voltage is too low.  
The battery voltage is low (MBATTLOW = 1) AND the ‘2’ transition was not ACOK. OR  
The battery voltage monitor is set for main-battery low power down (MBLPD = 1) AND the battery voltage is low  
(MBATTLOW = 1) AND the ‘2’ transition is ACOK. OR  
The battery voltage monitor is AND not set for main-battery low power down (MPLPD = 0) AND the battery voltage  
is low (MBATTLOW = 1) AND the ‘2’ transition was ACOK, then the machine remains in the “OK?” state waiting for  
MBATTLOW = 0. Once MBATTLOW = 0, then a transition along path ‘2A’ occurs.  
2B  
This ‘2B’ transition condition cancels the wakeup requests that occurred in transition ‘2’.  
Failed attempt to power up because a basic system resource was not okay.  
• The battery voltage is undervoltage (V  
< V  
) OR  
MBATT  
MBATTUVLO  
• The battery voltage is overvoltage (V  
> V  
) OR  
MBATT  
MBATTOVLO  
2C  
• AVSD input is overvoltage (V  
> V  
) OR  
) OR  
AVSD  
MBATTOVLO  
• The junction temperature is too high (T > T  
J
JSHDN  
• SHDN pin is asserted (SHDN = 1)  
Maxim Integrated  
100  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
Table 10. ON/OFF Controller State Diagram Transitions (continued)  
TRANSITION  
CONDITION  
Enter sleep mode.  
3
• Sleep mode is enabled (SLPEN = 1) and EN1 transitions from high to low.  
Exit sleep mode.  
• Sleep mode is enabled (SLPEN = 1) and EN1 transitions from low to high.  
• A debounced EN0 press has been detected OR  
• ALARM1_R event occurs and WK_ALRM0R is set OR  
• ALARM2_R event occurs and WK_ALRM1R is set OR  
• LID event occurs and WK_LID is set OR  
4
• ACOK event occurs and WK_ACOK is set  
Enter the power-down sequence with register reset (see Figure 4).  
• The low battery power-down is enabled (MBLPD = 1) AND the battery voltage is low (MBATTLOW = 1) OR  
• Hardware reset input (RSI) event detected OR  
• Manual reset event detected OR  
• Watchdog timer expires OR  
• SFT_RST = 1 OR  
5
6
• PWR_OFF = 1  
Immediate shutdown (see Figure 4).  
• The battery voltage is undervoltage (V  
< V  
) OR  
) OR  
MBATT  
MBATTUVLO  
• The battery voltage is overvoltage (V  
> V  
MBATT  
MBATTOVLO  
• AVSD input is overvoltage (V  
> V  
) OR  
) OR  
AVSD  
MBATTOVLO  
• The junction temperature is too high (T > T  
J
JSHDN  
• SHDN pin is asserted (SHDN = 1)  
Maxim Integrated  
101  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
MBA TT  
MBA TTLOW  
MBLPD  
MBA TT_OK  
MBA TTLOW  
MBLPD  
MBA TT_OK  
SDx ENABLE  
LDOx ENABLE  
GPIOx ENABLE  
RSO  
FPS0  
FPS1  
AVSD  
GLOBAL  
FLEXIBLE  
POWER  
SEQUENCER  
RESOURCES  
SHDN  
RSO  
RSI  
WK_EN0  
EN0  
nRST_IO  
GLBLSHDN  
WK_ACOK  
ACOK  
EN2  
EN1  
EN2  
EN1  
WK_LID  
LID  
WK_ALRM0R  
ALARM0_R  
ENSD0  
WK_ALRM1R  
ALARM1_R  
RTC  
ON/OFF  
CONTROLLER  
MBA TT_OK  
SMPL_EVENT  
WAKEUP  
1.5µs  
DELAY  
WAKEUP  
INTERRUPT  
LATCHES  
ACOK  
LID  
ACOK  
SLPEN  
EN1  
EN2  
ACOK_R  
ACOK_F  
WDTE N  
OTP_WDTE N  
RSO  
WDTT  
RSI  
MRO  
INTERRUPT  
LATCHES  
LID  
OTP_WDTT  
WATCHDOG  
TIMER  
WATCHDOG  
SFT_RST  
PWR_OFF  
GLBLSHDN  
WATCHDOG  
WDTC[1:0]  
LID_F  
FPS0  
FPS1  
WDTS LPC  
DEBOUNCE OUTPUT  
DURING POR IS LOW  
MBA TT  
EN0DLY  
EN0  
MRWRN  
MRO  
DEBOUNCE  
RISING/FALLING  
EN0  
EN0  
TIMER  
t
DBNC  
MRT[2:0]  
R
PDEN0  
10kΩ  
EN0_R  
EN0 IS SHOWN AS ACTIVE-HIGH. OTP_EN0AL = 0  
ACOK IS SHOWN AS ACTIVE-HIGH. OTP_ACOKAL = 0  
LID IS SHOWN AS ACTIVE-HIGH. OTP_LIDAL = 0  
Figure 18. Simplified Block Diagram: ON/OFF Controller  
Maxim Integrated  
102  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
START  
RESET  
1
IMMEDIATE  
SHUTDOWN  
RESET  
GLOBAL SHUTDOWN  
OFF  
FPS0 = 0  
FPS1 = 0  
STATE  
ACTION  
6
2B  
2
NO  
NO  
DECISION  
OK?  
2A  
2C  
YES  
OFF PAGE  
POWER DOWN  
SEQUENCE  
(FIGURE 24)  
CONNECTION  
POWER UP  
SEQUENCE  
ON  
FPS0 = 1  
FPS1 = 1  
5
6
3
3
SLEEP EXIT  
SEQUENCE  
SLEEP ENTRY  
SEQUENCE  
SLEEP  
FPS0 = 1  
FPS1 = 0  
5
4
6
Figure 19. State Diagram: ON/OFF Controller  
Maxim Integrated  
103  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
OTP OPTION FOR ACTIVE-LOW EN0 (OTP_EN0AL = 1)  
OTP OPTION FOR ACTIVE-HIGH EN0 (OTP_EN0AL = 0)  
MBA TT  
R
PUEN0  
10kΩ  
EN0  
EN0  
PDEN0  
R
10kΩ  
Figure 20. EN0 Simplified Input Stage: Active-High or Low  
OTP OPTION FOR ACTIVE LOW EN0 (OTP_EN1AL = 1)  
OTP OPTION FOR ACTIVE HIGH EN0 (OTP_EN1AL = 0)  
AP  
AP  
VIO  
VIO  
EN1  
GPIO  
GPIO  
EN1  
Figure 21. EN1 Simplified Input Stage: Active-High or Low  
AP  
VIO  
EN2  
GPIO  
Figure 22. EN2 Simplified Input Stage: Active-High or Low  
Maxim Integrated  
104  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
OTP OPTION FOR ACTIVE-LOW ACOK (OTP_ACOKAL = 1)  
OTP OPTION FOR ACTIVE-HIGH ACOK (OTP_ACOKAL = 0)  
MBA TT  
R
PUACOK  
ACOK  
ACOK  
100kΩ  
ACOK  
nACOK  
R
PDACOK  
FROM SYSTEM’S  
FROM SYSTEM’S  
100kΩ  
BATTERY CHARGER  
BATTERY CHARGER  
Figure 23. ACOK Simplified Input Stage: Active-High or Low  
OTP OPTION FOR ACTIVE-LOW LID (OTP_LIDAL = 1)  
OTP OPTION FOR ACTIVE-HIGH LID (OTP_LIDAL = 0)  
MBATT  
R
PULID  
100kΩ  
LID  
LID  
LID  
nLID  
R
PDLID  
FROM SYSTEM LID OR  
BATTERY DOOR SWITCH  
100kΩ  
Figure 24. LID Simplied Input Stage: Active-High or Low  
Maxim Integrated  
105  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
OTP OPTION FOR ACTIVE-LOW SHDN (OTP_SHDNAL = 1)  
MBATT  
VCC  
MBATT  
AP  
R
PUSHDN  
100kΩ  
SHDN  
ALERT  
DXP  
GND  
DIODE TO  
nSHDN  
TEMPERATURE  
CONVERSION +  
COMPARATOR  
MAX6642  
OTP OPTION FOR ACTIVE-HIGH SHDN (OTP_SHDNAL = 0)  
SHDN  
SHDN  
R
PDSHDN  
FROM SYSTEM’S THERMAL  
OVERLOAD DETECTOR  
100kΩ  
Figure 25. SHDN Simplified Input Stage: Active-High or Low  
Maxim Integrated  
106  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
NOT DRAWN TO SCALE  
Notes 1  
POWER-UP  
5
NORMAL OPERATION  
8 9  
POWER-DOWN  
2
3
4
6 7  
0V  
0V  
0V  
3.6V  
V
BATT  
2.8V  
2.8V  
V
BBATT  
3.3V  
V
RTC  
32kHz OSC  
t
OSU  
V
EN0  
t
DBNC  
(OTP_EN0AL = 0)  
nIRQ  
(OPEN-DRAIN PULLED UP  
TO SD2)  
BIAS  
t
BEN  
FPS0  
T
FPS0  
= 1.28ms  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
V
V
(FPS0)  
(FPS0)  
GPIO1  
OUT_LDO4  
OUT_LDO6  
V
(FPS0)  
OUT_SD2  
32k_OUT0  
nRST_IO  
(OPEN-DRAIN PULLED UP  
TO SD2)  
FPS1  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
T
FPS1  
= 1.28ms  
V
(FPS1)  
(FPS1)  
(FPS1)  
(FPS1)  
(FPS1)  
OUT_SD1  
V
OUT_LDO1  
OUT_LDO5  
OUT_LDO3  
OUT_LDO0  
V
V
V
AP SOFTWARE  
EN1 AND EN2  
t
AP0  
DON’T CARE  
DON’T CARE  
V
t
SUSD0  
SD0  
V
OTHER  
(ENABLED BY SOFTWARE)  
PWR_OFF  
NOTES  
1
2
3
4
5
6 7  
8
9
10  
11  
12  
1) THE AP AND ENTIRE SYSTEM IS OFF WITH NO BACKUP BATTERY AND NO MAIN BATTERY INSTALLED.  
2) A HALF-CHARGED LITHIUM MANGANESE CELL IS INSTALLED FROM BBATT TO GND. V RISES TO ~V  
2
. THE RTC RELATED PORTION OF THE I C REGISTER MAP  
RTC  
BBATT  
POWERS UP TO ITS DEFAULT VALUE. THE OSCILLATOR STARTS TO FUNCTION AND THE RTC BLOCK BEGINS TO FUNCTION.  
3) THE MAIN BATTERY IS CONNECTED. V  
RISES UP TO ITS 3.3V REGULATION LEVEL. THE BACKUP-BATTERY CHARGER DEFAULTS TO “ON” WITH A 2.5V REGULATION  
RTC  
2
THRESHOLD. THE NON-RTC RELATED I C REGISTERS GO TO THEIR DEFAULT VALUES.  
4) AN EXTERNAL EVENT PULLS EN0 HIGH. THE DEVICE DEBOUNCES EN0 AND STARTS THE BIAS FOLLOWED BY FPS0 AND FPS1.  
5) FPS0 STARTS THE FUNDAMENTAL REGULATORS AT THE SAME TIME AS FPS1 STARTS THE SECONDARY REGULATORS.  
6) FPS0 DEASSERTS nRST_IO ON ITS RISING EDGE #5. WITH nRST_IO HIGH, THE AP STARTS RUNNING SOFTWARE.  
7) AP ASSERTS EN1 AND EN2. EN1 KEEPS THE FPS1 REGULATORS ENABLED. EN2 STARTS SD0.  
8) WITH SD0 ENABLED, THE AP CONTINUES TO RUN SOFTWARE. IT CHECKS THE nIRQ INTERRUPT CAUSING nIRQ TO GO HIGH. IT POWERS UP THE “OTHER” RESOURCES OF  
THE DEVICE AS REQUIRED.  
9) THE AP AND ENTIRE SYSTEM ARE ON IN NORMAL OPERATING MODE.  
10) THE AP DECIDES IT WANTS TO POWER DOWN AND IT POWERS DOWN THE OPTIONAL RESOURCES OF THE SYSTEM AND PMIC.  
11) WITH ALL THE OPTIONAL RESOURCES POWERED DOWN, THE AP SETS TO “OFF” BIT AND PULLS EN1 AND EN2 LOW. EN2 LOW TURNS DISABLES SD0. THE OFF BIT STARTS  
THE POWER DOWN SEQUENCE OF FPS0 AND EN1 LOW STARTS THE POWER DOWN SEQUENCE OF FPS1.  
12) AFTER THE FPS0 AND FPS1 POWER DOWN SEQUENCES ARE FINISHED, THE BIAS TURNS OFF AND THE AP IS OFF.  
Figure 26. Application Processor Power-Up and Power-Down Timing  
Maxim Integrated  
107  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
NOT DRAWN TO SCALE  
NORMAL  
ENTERING-SLEEP  
SLEEP  
4
EXITING SLEEP  
NOTES  
1
2
3
5
6
V
BATT  
V
BBATT  
V
RTC  
32kHz OSC  
V
EN0  
t
DBNC  
(OTP_EN0AL = 0)  
nIRQ  
(OPEN-DRAIN PULLED UP TO SD2)  
BIAS  
FPS0  
V
V
OUT_LDO4  
(FPS0)  
OUT_LDO6  
(FPS0)  
V
OUT_SD2  
(FPS0)  
32k_OUT0  
GPIO1  
nRST_IO  
(OPEN-DRAIN PULLED UP TO SD2)  
T
=
FPS0  
1.28ms  
FPS1  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
V
OUT_SD1  
(FPS1)  
V
OUT_LDO1  
(FPS1)  
V
V
V
OUT_LDO5  
(FPS1)  
OUT_LDO3  
(FPS1)  
OUT_LDO0  
(FPS1)  
AP SOFTWARE  
t
AP0  
EN1 AND EN2  
V
SD0  
t
SUSD0  
V
OTHER  
(ENABLED BY SOFTWARE)  
PWR_OFF  
NOTES  
1
2
11  
4
5
6
1) THE AP AND ENTIRE SYSTEM ARE ON AND IN NORMAL OPERATING MODE.  
2) THE AP DECIDES IT WANTS TO POWER DOWN AND IT POWERS DOWN THE OPTIONAL RESOURCES OF THE SYSTEM AND PMIC.  
3) WITH ALL THE OPTIONAL RESOURCES POWERED DOWN, THE AP AND PULLS EN1 AND EN2 LOW. EN2 LOW TURNS DISABLES SD0. EN1 LOW STARTS THE POWER DOWN  
SEQUENCE OF FPS1.  
4) AFTER THE FPS1 POWER DOWN SEQUENCES ARE FINISHED, THE AP IS IN SLEEP.  
5) AN EN0 BUTTON PRESS GENERATES A WAKEUP EVENT THAT TURNS FPS1 ON.  
6) WITH THE FPS1 POWER UP SEQUENCE FINISHED, THE AP IS IN ITS NORMAL OPERATING MODE.  
Figure 27. Application Processor Entering and Exiting Sleep Timing  
Maxim Integrated  
108  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
is used to generate the eight combinations of the FPS  
timing period TFPSx[2:0]. This oscillator is turned on once  
a valid wakeup signal is received.  
Nonvolatile Power-OFF Event Recorder  
Several events within an IC based system can auton-  
omously cause a power off (i.e., global shutdown).  
The source of the power down event is recorded in  
a non-volatile register such that when the system’s  
microprocessor powers on again it can determine the  
source of the previous power-off condition. Maxim recom-  
mends that as part of the software’s initialization code, it  
check the NVERC register. This power-off event recorder  
register is non-volatile as long as the RTCs coin cell  
(BBATT) remains within its valid voltage range. Unlike  
most interrupt registers, the NVERC register does not  
have a corresponding interrupt mask and status register.  
Additionally, it does not affect the nIRQ pin. No status  
register is provided since all NVERC events result in a  
global shutdown which would subsequently reset any  
related status.  
Each regulator, GPIO1, GPIO2, GPIO3, and nRST_IO  
has a flexible power sequence slave register (FPS_x)  
which allows its enable source to be specified as a flex-  
ible power sequencer timer or a software bit. When a  
FPSSRCx specifies the enable source to be a flexible  
power sequencer, the power up and power down delays  
are configured by FPSPUx[2:0] and FPSPDx[2:0]. can  
be specified in that regulators flexible power sequencer  
configuration register.  
If any of the FPS hardware inputs (EN0, EN1) are not  
needed, connect them to ground. Grounding these inputs  
when they are not needed ensures that they do not acci-  
dentally turn on any voltage regulators—furthermore, it  
improves the thermal impedance of the IC package.  
Flexible Power Sequencer (FPS)  
Table 11 shows one possible configuration of the flex-  
ible power sequencer. Figure 26 and Figure 27 show the  
timing diagrams for the default flexible power sequencer  
settings.  
The FPS allows each regulator to power up under hard-  
ware or software control. Additionally, each regulator  
can power on independently or among a group of other  
regulators with an adjustable power-up and power-down  
delays (sequencing). GPIO1, GPIO2, and GPIO3 can be  
programmed to be part of a sequence allowing external  
regulators to be sequenced along with internal regulators.  
nRST_IO can be programmed to be part of a sequence.  
Features  
Three Sequencers  
Power-Up and Power-Down Sequencing Control  
Eight Power-Up Sequence Time Slots  
Eight Power-Down Sequence Time Slots  
Figure 26 shows LDO0, LDO1, LDO2, and LDO3 power-  
ing up under the control of flexible power sequencer 2.  
Adjustable Time Period Between Time Slots from 40µs  
The flexible sequencing structure consists of two hardware  
enable inputs (EN0, EN1), and three master sequencing  
timers. Each master sequencing timer is programmable  
through its configuration register to have a hardware  
enable source or a software enable source (CNFGFPSx).  
When enabled/disabled the master sequencing timer  
generates eight sequencing events. The time period  
between each event is programmable within the  
configuration register. An internal 800kHz silicon oscillator  
to 5,120µs in Eight Binary Weighted Steps  
Sequence Enable/Disable can be Controlled by  
Hardware and Software  
<10µs Sequencer Delay  
Capable of Controlling:  
• All Regulators  
• GPIO1, GPIO2, and GPIO3  
• nRST_IO  
Maxim Integrated  
109  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
t
t
FPSCOFF  
FPSCON  
ENFPS2  
t
t
FPSDOFF  
FPSDON  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
INTERNAL  
SEQUENCER  
50% DUTY  
EVENTS  
t
t
FPST  
FPST  
V
LDO0  
V
LDO1  
V
LDO2  
V
LDO3  
NOTES  
1
2
3
4
1) LDO0, LDO1, LDO2, AND LDO3 ARE OFF. EACH LDO’S ENABLE REGISTER SELECTS ACTIVE DISCHARGE ENABLED AND FPS2 AS THE ENABLE SOURCE. EACH LDO’S  
FLEXIBLE SEQUENCER CONFIGURATION REGISTER IS PROGRAMMED WITH THE POWER-UP AND POWER-DOWN TIMING DELAYS AS SHOWN IN THE FIGURE. THE  
CNFGFPS2 REGISTER SELECTS THE ENFPS2 BIT AS THE ENABLE SOURCE.  
2) THE ENFPS2 BIT IS SET HIGH WHICH CAUSES EIGHT INTERNAL SEQUENCING EVENTS. EACH REGULATOR IS ENABLED AT THE SEQUENCING EVENT THAT  
CORRESPONDS TO ITS FLEXIBLE SEQUENCER CONFIGURATION REGISTER.  
3) THE ENFPS2 BIT IS CLEARED TO LOW WHICH CAUSES AND EIGHT INTERNAL SEQUENCING EVENTS. EACH REGULATOR IS DISABLED AT THE SEQUENCING EVENT  
THAT CORRESPONDS TO ITS FLEXIBLE SEQUENCER CONFIGURATION REGISTER.  
4) LDO0, LDO1, LDO2, AND LDO3 ARE OFF.  
Figure 28. Example Timing Diagram: Flexible Power Sequencer  
Maxim Integrated  
110  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
Table 11. Example Configuration of the Flexible Power Sequencer  
FPS MASTER  
CONFIGURATION  
TIMER PERIOD  
(MS)  
ENABLE  
SOURCE  
FPS SLAVE  
CONFIGURATION  
ENABLE  
SOURCE  
POWER UP  
DELAYS  
POWER DOWN  
DELAYS  
FPS0  
FPS1  
FPS2  
1.28  
1.28  
N/A  
EN0  
EN1  
N/A  
SD0  
SD1  
Bit or EN2  
FPS1  
FPS1  
BIT  
N/A  
3
N/A  
4
SD2  
6
2
SD3  
N/A  
6
N/A  
2
LDO0  
FPS1  
FPS1  
BIT  
LDO1  
3
4
LDO2  
N/A  
6
N/A  
2
LDO3  
FPS1  
FPS0  
FPS1  
FPS0  
BIT  
LDO4  
2
5
LDO5  
3
3
LDO6  
4
3
LDO7  
N/A  
N/A  
4
N/A  
N/A  
3
LDO8  
BIT  
GPIO1  
GPIO2  
GPIO3  
nRESET_OUT  
FPS0  
FPS0  
AME3 = 0  
FPS0  
0
7
N/A  
7
N/A  
1
Commitment Time  
If the FPS begins a power-up sequence, it is committed  
to completing that sequence (see t in Figure 28).  
In other words, if the FPS begins a power-up sequence,  
and then a power-down event (such as RSI) is initiated  
before the power-up is complete, that power-down event  
waits in a queue and executes after the FPS power-up  
sequence is complete. Similarly, if the FPS begins a  
power-down sequence, it is committed to completing that  
Table 12. Changing Enable Sources  
Behavior  
FPSCON  
EXISTING ENABLE NEW ENABLE  
REGULATOR  
SOURCE: STATE  
SOURCE: STATE  
BEHAVIOR  
FPS or software:  
enabled  
FPS or software:  
disabled  
Turns off within  
6.6µs  
FPS or software:  
disabled  
FPS or software:  
enabled  
Turns on within  
6.6µs  
sequence (see t  
in Figure 28). In other words,  
FPSCOFF  
FPS or software:  
enabled  
FPS: enabled  
Remains on  
Remains on  
Remains off  
if the FPS begins a power-down sequence, and then a  
power-up event (such as ACOK) is initiated before the  
power-down is complete, that power-up event waits in a  
queue and executes after the FPS power-up sequence is  
complete. Note that the above comments are applicable  
to all resources that can be assigned to the FPS (GPIO,  
BUCK, LDO).  
Software: enabled  
FPS: enabled  
FPS or software:  
disabled  
FPS or software:  
disabled  
Note an FPS enabled source is any of the seven flexible power  
sequencers, a software enabled source is the dedicated enable  
bit that is in location B0 of each regulator’s enabled register.  
Changing Regulator Enable Source  
The FPS allows the regulator enable sources to be  
changed at any time. Table 12 illustrates what happens  
when changing enable sources.  
Ten regulators are assigned to FPS#1 and enabled in a  
given sequence. No regulators are assigned to FPS#2  
but FPS#2 is enabled. Then, three of the regulator enable  
sources are changed from FPS#1 to FPS#2. Since both  
FPS#1 and FPS#2 are enabled during the change, the  
regulators remain on. Finally, the three regulators on  
FPS#2 can then be enabled/disabled independently.  
Example 14: Powering up ten regulators on sequencer 1  
and then reassigning three of them to sequencer 2.  
Maxim Integrated  
111  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
2
I C Interface and Interrupt Output  
Features  
2
2
The IC features a revision 3 I C-compatible, 2-wire  
serial interface consisting of a bidirectional serial data  
line (SDA) and a serial clock line (SCL). The IC acts as a  
slave-only device where it relies on the master to gener-  
ate a clock signal. SCL clock rates from 0Hz to 3.4MHz  
are supported.  
I C Revision 3 Compatible Serial Communications  
Channel  
• 0Hz to 100kHz (Standard Mode)  
• 0Hz to 400kHz (Fast Mode)  
• 0Hz to 1MHz (Fast-Mode Plus)  
• 0Hz to 3.4MHz (High-Speed Mode)  
2
I C is an open-drain bus and therefore SDA and SCL  
2
Does not Utilize I C Clock Stretching  
require pullup resistors. Optional resistors (24Ω) in series  
with SDA and SCL protect the device inputs from high-  
voltage spikes on the bus lines. Series resistors also  
minimize cross-talk and undershoot on bus signals.  
2
I C Watchdog Timer  
2
I C System Configuration  
2
The I C bus is a multi-master bus. The maximum number  
2
Figure 29 shows the functional diagram for the I C  
based communications controller. For additional informa-  
tion on I C, refer to the I C-bus specification and user  
manual that is available from NXP (document title:  
UM10204).  
of devices that can attach to the bus is only limited by bus  
capacitance.  
2
2
2
Figure 30 shows an example of a typical I C system. A  
device on the I C bus that sends data to the bus in called  
2
a ”transmitter”. A device that receives data from the bus  
is called a “receiver”. The device that initiates a data  
transfer and generates the SCL clock signals to control  
the data transfer is a “master.” Any device that is being  
addressed by the master is considered a “slave.” The IC  
2
is a slave on the I C bus and it can be both a transmitter  
and a receiver.  
COMMUNICATIONS CONTROLLER  
INI2C  
SCL  
INTERFACE  
DECODERS  
SHIFT REGISTERS  
BUFFERS  
SDA  
GND  
PERIPHERAL  
0
PERIPHERAL  
1
PERIPHERAL  
2
PERIPHERAL  
N-1  
PERIPHERAL  
N
Figure 29. Functional Logic Diagram: Communications Controller  
SDA  
SCL  
MASTER  
SLAVE  
SLAVE  
TRANSMITTER/  
RECEIVER  
MASTER  
TRANSMITTER/  
RECEIVER  
SLAVE  
TRANSMITTER  
TRANSMITTER/  
RECEIVER  
RECEIVER  
Figure 30. Functional Logic Diagram: Communications Controller  
Maxim Integrated  
112  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
2
transmission by issuing a not-acknowledge followed by  
a STOP condition (see the I C Acknowledge Bit section  
I C Interface Power  
2
2
The I C interface derives its power from INI2C. Typically,  
a power input such as INI2C would require a local 0.1µF  
ceramic bypass capacitor to ground. However, in highly  
integrated power distribution systems, a dedicated capac-  
itor may not be necessary. If the impedance between  
INI2C and the next closest capacitor (≥ 0.1µF) is less than  
100mΩ in series with 10nH, then a local capacitor is not  
needed. Otherwise, place a local 0.1µF ceramic bypass  
capacitor from INI2C to ground.  
for information on not-acknowledge). The STOP condi-  
tion frees the bus. To issue a series of commands to the  
slave, the master can issue repeated start (Sr) commands  
instead of a STOP command in order to maintain control  
of the bus. In general, a repeated start command is func-  
tionally equivalent to a regular start command.  
When a STOP condition or incorrect address is detected,  
the IC internally disconnects SCL from the serial interface  
until the next START condition, minimizing digital noise  
and feed-through.  
INI2C accepts voltages from 1.7V to 3.6V (V  
2
).  
INI2C  
Cycling V  
does not reset the I C registers.  
INI2C  
2
I C Acknowledge Bit  
2
I C Data Transfer  
2
Both the I C bus master and the IC (slave) generate  
One data bit is transferred during each SCL clock cycle.  
The data on SDA must remain stable during the high  
period of the SCL clock pulse. Changes in SDA while  
SCL is high are control signals (see the I C Interface and  
Interrupt Output section).  
acknowledge bits when receiving data. The acknowledge  
bit is the last bit of each nine-bit data packet. To generate  
an acknowledge (A), the receiving device must pull SDA  
low before the rising edge of the acknowledge-related  
clock pulse (ninth pulse) and keep it low during the high  
period of the clock pulse (Figure 33). To generate a not-  
acknowledge (nA), the receiving device allows SDA to be  
pulled high before the rising edge of the acknowledge-  
related clock pulse and leaves it high during the high  
period of the clock pulse.  
2
Each transmit sequence is framed by a START (S) condi-  
tion and a STOP (P) condition. Each data packet is nine  
bits long: eight bits of data followed by the acknowledge  
bit. Data is transferred with the MSB first.  
2
I C Start and Stop Conditions  
Monitoring the acknowledge bits allows for detection  
of unsuccessful data transfers. An unsuccessful data  
transfer occurs if a receiving device is busy or if a system  
fault has occurred. In the event of an unsuccessful data  
transfer, the bus master should reattempt communication  
at a later time.  
When the serial interface is inactive, SDA and SCL idle  
high. A master device initiates communication by issuing  
a START condition. A START condition is a high-to-low  
transition on SDA with SCL high. A STOP condition is a low-  
to-high transition on SDA, while SCL is high (Figure 32).  
A START condition from the master signals the begin-  
ning of a transmission to the IC. The master terminates  
S
Sr  
P
SDA  
t
t
SU;STO  
SU;STA  
SCL  
t
t
HD;STA  
HD;STA  
Figure 31. START and STOP Conditions  
NOT ACKNOWLEDGE (nA)  
ACKNOWLEDGE (A)  
S
SDA  
t
SU;DAT  
8
t
HD;DAT  
SCL  
1
2
9
Figure 32. Acknowledge Bits  
Maxim Integrated  
113  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
2
2
I C Slave Address  
I C General Call Address  
2
2
The IC implements 7-bit slave addressing. An I C bus  
master initiates communication with a slave device  
(MAX77863) by issuing a START condition followed  
by the slave address. As shown in Table 13, the IC  
slave addresses are factory programmable with OTP_  
I2CADDR[1:0]. With any one programming option of  
OTP_I2CADDR[1:0], the IC responds to only four slave  
addresses; all other slave addresses are ignored.  
The IC does not implement the I C specifications “gen-  
eral call address.” If the IC sees the general call address  
(0b0000_0000), it does not issue an acknowledge.  
2
I C Watchdog Timer  
2
The IC contains an I C watchdog timer to ensure reliable  
operation of the I C bus. This I C watchdog timer helps  
the system recover from I C bus hang-ups that can occur  
when devices on an I C bus operate out of sync from  
2
2
2
2
Figure 33 is an example of the slave address byte  
format using the RTCs slave address. As shown, the  
slave address byte consists of seven address bits and  
a read/write bit (R/nW). After receiving any of the slave  
addresses shown in Table 13, the IC issues an acknowl-  
edge by pulling SDA low during the ninth clock cycle.  
each other due to noise or poor system design.  
2
In many cases, I C bus hang-ups can be cleared by the  
master. The master can clear the I C bus by issuing nine  
consecutive stop commands. In all known cases, the  
device’s I C state machine is cleared whenever the mas-  
ter issues nine consecutive stop commands. However, to  
account for unforeseen system issues, the I C watchdog  
timer serves as a backup protection method for I C bus  
hang-ups.  
2
2
2
I C Clock Stretching  
2
2
2
In general, the clock signal generation for the I C bus is  
the responsibility of the master device. The I C specifica-  
2
tion allows slow slave devices to alter the clock signal by  
holding down the clock line. The process in which a slave  
device holds down the clock line is typically called clock  
stretching. The IC does not use any form of clock stretch-  
ing to hold down the clock line.  
2
The I C watchdog timer is disabled by default. With the  
2
I C watchdog timer disabled, the device meets the 0Hz  
SCL frequency requirements in the I C specification  
(UM10204). In many cases, this 0Hz capability is not  
needed. Activating the I C watchdog timer defeats the  
2
2
2
0Hz specification of I C.  
2
Table 13. MAX77863 I C Slave Addresses  
RTC SLAVE ADDRESS  
WRITE  
RTC SLAVE  
PMIC/GPIO SLAVE  
ADDRESS WRITE  
PMIC/GPIO SLAVE  
ADDRESS READ  
OTP_ I2C ADDR[1:0]  
ADDRESS READ  
0x91, 0b1001_0001  
0x95, 0b1001_0101  
0xD1, 0b1101_0001  
0xD5, 0b1101_0101  
0b00  
0b01  
0b10  
0b11  
0x90, 0b1001_0000  
0x94, 0b1001_0100  
0xD0, 0b1101_0000  
0xD4, 0b1101_0100  
0x38, 0b0011_1000  
0x3C, 0b0011_1100  
0x78, 0b0111_1000  
0x7C, 0b0111_1100  
0x39, 0b0011_1001  
0x3D, 0b0011_1101  
0x79, 0b0111_1001  
0x7D, 0b0111_1101  
Slave Address is constructed with M, O, M, M, M, O, M, R/nW  
where:  
M = bit fixed in metal  
O = factory programmable OTP bit  
R/nW = user controlled Read/Write bit  
ACKNOWLEDGE  
A
S
SDA  
SCL  
1
1
1
2
0
3
1
4
0
5
0
6
0
7
R/nW  
8
9
Figure 33. Slave Address Byte Example Using the Power Management Slave Address  
Maxim Integrated  
114  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
2
Enable the I C watchdog timer with the I2CTWD[1:0] bits.  
pullup resistor is dissipating power, and lower value pullup  
resistors dissipate more power (V /R).  
2
2
With the I C watchdog timer enabled, the device monitors  
the time between a START and STOP condition. If this  
Operating in high-speed mode requires some special  
considerations. For a full list of considerations, see the  
I C specification. The major considerations with respect  
2
time ever exceeds the programmed I C watchdog timer  
2
period, the MAX77863 I C state machine is reset.  
2
Note that the IC contains both a system watchdog timer  
and an I C watchdog timer. See the System Watchdog  
Timer section for more information.  
to the MAX77863 are:  
2
2
The I C bus master uses current source pullups to  
shorten the signal rise times.  
2
2
I C Communication Speed  
The I C slave must use a different set of input filters  
on its SDA and SCL lines to accommodate for the  
higher bus speed.  
The IC is compatible with all four communication speed  
ranges as defined by the revision 3 I C specification:  
2
The communication protocols need to utilize the high-  
0Hz to 100kHz (standard mode)  
0Hz to 400kHz (fast mode)  
speed master code.  
At power-up and after each stop condition, the device  
input filters are set for standard mode, fast mode, or fast-  
mode plus (i.e., 0Hz to 1MHz). To switch the input filters  
for high-speed mode, use the high-speed master code  
protocols that are described in the I C Communication  
Protocols section.  
0Hz to 1MHz (fast-mode plus)  
0Hz to 3.4MHz (high-speed mode)  
Operating in standard mode, fast mode, and fast-mode  
plus does not require any special protocols. The main  
consideration when changing the bus speed through  
this range is the combination of the bus capacitance and  
pullup resistors. Higher time constants created by the  
bus capacitance and pullup resistance (C x R) slow the  
bus operation. Therefore, when increasing bus speeds,  
the pullup resistance must be decreased to maintain a  
reasonable time constant. Refer to the “Pullup Resistor  
2
2
I C Communication Protocols  
The IC supports both writing and reading from its regis-  
2
ters. Table 13 shows the I C communication protocols  
for each functional block. The power management and  
GPIO functions use the same communications pro-  
tocols. The Real-Time Clock (RTC) section does not  
support the “writing multiple bytes using register-data  
pairs” protocol—instead, the Real-Time Clock (RTC)  
section supports the “writing to sequential registers”  
protocol.  
2
Sizing” section of the I C Revision 3 specification for  
detailed guidance on the pullup resistor selection. In gen-  
eral, for bus capacitances of 200pF, a 100kHz bus needs  
5.6kΩ pullup resistors, a 400kHz bus needs about 1.5kΩ  
pullup resistors, and a 1MHz bus needs 680Ω pullup  
resistors. Note that when the open-drain bus is low, the  
2
Table 14. I C Communication Protocols Supported by Different Functional Blocks  
POWER MANAGEMENT AND GPIO  
Writing to a single register  
RTC  
Writing to a single register  
Writing multiple bytes using register-data pairs  
Reading from a single register  
Writing to sequential registers  
Reading from a single register  
Reading from sequential registers  
Reading from sequential registers  
Maxim Integrated  
115  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
done writing it issues a stop or repeated start. This pro-  
tocol is recommended when writing the RTC timekeeping  
registers (RTC_SEC, RTC_MIN, RTC_HOURS, RTC_  
WEEKDAY, RTC_DATE, RTC_MONTH, RTC_YEAR1,  
RTC_YEAR2).  
Writing to a Single Register  
2
Figure 34 shows the protocol for the I C master device to  
write one byte of data to the IC. This protocol is the same  
as the SMBus specification’s “write byte” protocol.  
The “write byte” protocol is as follows:  
The “writing to sequential registers” protocol is as follows:  
1) The master sends a start command (S).  
1) The master sends a start command (S).  
2) The master sends the 7-bit slave address followed by  
a write bit (R/nW = 0).  
2) The master sends the 7-bit slave address followed by  
a write bit (R/nW = 0).  
3) The addressed slave asserts an acknowledge (A) by  
pulling SDA low.  
3) The addressed slave asserts an acknowledge (A) by  
pulling SDA low.  
4) The master sends an 8-bit register pointer.  
5) The slave acknowledges the register pointer.  
6) The master sends a data byte.  
4) The master sends an 8-bit register pointer.  
5) The slave acknowledges the register pointer.  
6) The master sends a data byte.  
7) The slave updates with the new data.  
7) The slave acknowledges the data byte. The next  
rising edge on SDA loads the data byte into its target  
register and the data becomes active.  
8) The slave acknowledges or not acknowledges the data  
byte. The next rising edge on SDA loads the data byte  
into its target register and the data becomes active.  
8) Steps 6 to 7 are repeated as many times as the  
master requires.  
9) The master sends a stop condition (P) or a repeated  
start condition (Sr). Issuing a P ensures that the bus in-  
put filters are set for 1MHz or slower operation. Issuing  
an Sr leaves the bus input filters in their current state.  
9) During the last acknowledge related clock pulse, the  
master can issue an acknowledge or a not-acknowl-  
edge.  
Writing to Sequential Registers  
10) The master sends a stop condition (P) or a repeat-  
ed start condition (Sr). Issuing a P ensures that the  
bus input filters are set for 1MHz or slower operation.  
Issuing an Sr leaves the bus input filters in their  
current state.  
Figure 35 shows the protocol for writing to sequential  
registers. This protocol is similar to the “write byte”  
protocol (Figure 34) except the master continues to write  
after it receives the first byte of data. When the master is  
LEGEND  
MASTER TO SLAVE  
SLAVE TO MASTER  
1
7
1
0
1
8
1
8
1
1
NUMBER OF BITS  
S
SLAVE ADDRESS  
A
REGISTER POINTER  
A
DATA  
A or nA  
P or Sr*  
R/nW  
THE DATA IS LOADED INTO  
THE TARGET REGISTER AND  
BECOMES ACTIVE DURING  
THIS RISING EDGE  
SDA  
SCL  
B1  
7
B0  
A
9
ACKNOWLEDGE  
8
*P FORCES THE BUS FILTERS TO SWITCH  
TO THEIR <= 1MHz MODE. Sr LEAVES THE  
BUS FILTERS IN THEIR CURRENT STATE  
Figure 34. Writing to a Single Register with the “Write Byte” Protocol  
Maxim Integrated  
116  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
LEGEND  
MASTER TO SLAVE  
SLAVE TO MASTER  
1
7
1
0
1
8
1
8
1
NUMBER OF BITS  
NUMBER OF BITS  
S
SLAVE ADDRESS  
A
REGISTER POINTER X  
A
DATA X  
A
α
α
R/nW  
8
1
8
1
DATA X+1  
A
DATA X+2  
A
α
8
1
8
1
1
NUMBER OF BITS  
DATA n-1  
A
DATA n  
A or nA  
P or Sr*  
α
β
THE DATA IS LOADED INTO  
THE TARGET REGISTER AND  
BECOMES ACTIVE DURING  
THIS RISING EDGE  
SDA  
B1  
7
B0  
A
9
B9  
ACKNOWLEDGE  
8
1
SCL  
DETAIL: α  
THE DATA IS LOADED INTO  
THE TARGET REGISTER AND  
BECOMES ACTIVE DURING  
THIS RISING EDGE  
SDA  
SCL  
B1  
7
B0  
A
9
ACKNOWLEDGE  
*P FORCES THE BUS  
8
FILTERS TO SWITCH TO  
THEIR <=1MHz MODE. Sr  
LEAVES THE BUS FILTERS IN  
THEIR CURRENT STATE  
DETAIL: β  
Figure 35. Writing to Sequential Register “x” to “n”  
Maxim Integrated  
117  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
3) The addressed slave asserts an acknowledge by  
pulling SDA low.  
Writing Multiple Bytes  
Using Register-Data Pairs  
2
Figure 36 shows the protocol for the I C master device  
to write multiple bytes to the IC using register-data pairs.  
4) The master sends an 8-bit register pointer.  
5) The slave acknowledges the register pointer.  
6) The master sends a data byte.  
2
This protocol allows the I C master device to address the  
slave only once and then send data to multiple registers  
in a random order. Registers can be written continuously  
until the master issues a stop condition.  
7) The slave acknowledges the data byte. The next  
rising edge on SDA loads the data byte into its target  
register and the data becomes active.  
The “Writing Multiple Bytes using Register-  
Data Pairs” protocol is not supported by the RTC  
functional block.  
8) Steps 4 to 7 are repeated as many times as the  
master requires.  
9) The master sends a stop condition. During the ris-  
ing edge of the stop related SDA edge, the data byte  
that was previously written is loaded into the target  
register and becomes active.  
The “multiple byte register-data pair” protocol is as follows:  
1) The master sends a start command.  
2) The master sends the 7-bit slave address followed by  
a write bit.  
LEGEND  
MASTER TO SLAVE  
SLAVE TO MASTER  
1
7
1
0
1
8
1
8
1
NUMBER OF BITS  
NUMBER OF BITS  
NUMBER OF BITS  
S
SLAVE ADDRESS  
A
REGISTER POINTER X  
A
DATA X  
A
α
α
β
R/nW  
8
1
8
1
REGISTER POINTER n  
A
DATA n  
A
8
1
8
1
1
REGISTER POINTER Z  
A
DATA Z  
A
P
THE DATA IS LOADED INTO  
THE TARGET REGISTER AND  
BECOMES ACTIVE DURING  
THIS RISING EDGE.  
B9  
1
SDA  
SCL  
B1  
7
B0  
A
9
ACKNOWLEDGE  
8
DETAIL: α  
THE DATA IS LOADED INTO  
THE TARGET REGISTER AND  
BECOMES ACTIVE DURING  
THIS RISING EDGE.  
A
9
SDA  
SCL  
B1  
7
B0  
ACKNOWLEDGE  
8
DETAIL: β  
Figure 36. Writing to Multiple Registers with the “Multiple Byte Register-Data Pair” Protocol  
Maxim Integrated  
118  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
all the data it requires it issues a not-acknowledge (nA)  
and a stop (P) to end the transmission. This continuous  
Reading from a Single Register  
2
Figure 37 shows the protocol for the I C master device  
to read one byte of data to the MAX77863. This protocol  
is the same as the SMBus specification’s “Read Byte”  
protocol.  
read protocol is recommended when reading from the  
RTC timekeeping registers (RTC_SEC, RTC_MIN, RTC_  
HOURS, RTC_WEEKDAY, RTC_DATE, RTC_MONTH,  
RTC_YEAR1, RTC_YEAR2). When reading the RTC  
timekeeping registers, secondary buffers are used to  
prevent errors when the internal registers update. The  
secondary buffers are loaded with the timekeeping regis-  
ter data during an address read byte to the RTC (0xD1)  
and when the register pointer rolls over to zero. The time  
information is read from these secondary registers, while  
the clock continues to run. This eliminates the need to  
reread the registers in case the main registers update  
during a read.  
The “read byte” protocol is as follows:  
1) The master sends a start command (S).  
2) The master sends the 7-bit slave address followed by  
a write bit (R/nW = 0).  
3) The addressed slave asserts an acknowledge (A) by  
pulling SDA low.  
4) The master sends an 8-bit register pointer.  
5) The slave acknowledges the register pointer.  
6) The master sends a repeated start command (Sr).  
The “Continuous Read from Sequential Registers” proto-  
col is as follows:  
7) The master sends the 7-bit slave address followed by  
a read bit (R/nW = 1).  
1) The master sends a start command (S).  
2) The master sends the 7-bit slave address followed by  
a write bit (R/nW = 0).  
8) The addressed slave asserts an acknowledge by pull-  
ing SDA low.  
3) The addressed slave asserts an acknowledge (A) by  
pulling SDA low.  
9) The addressed slave places 8-bits of data on the bus  
from the location specified by the register pointer.  
4) The master sends an 8-bit register pointer.  
5) The slave acknowledges the register pointer.  
6) The master sends a repeated start command (Sr).  
10) The master issues a not-acknowledge (nA).  
11) The master sends a stop condition (P) or a repeat-  
ed start condition (Sr). Issuing a P ensures that the  
bus input filters are set for 1MHz or slower operation.  
Issuing an Sr leaves the bus input filters in their  
current state.  
7) The master sends the 7-bit slave address followed by  
a read bit (R/nW = 1). When reading the RTC time-  
keeping registers, secondary buffers are loaded with  
the timekeeping register data during this operation.  
Note that when the IC receives a stop it does not modify  
its register pointer.  
8) The addressed slave asserts an acknowledge by pull-  
ing SDA low.  
Reading from Sequential Registers  
Figure 35 shows the protocol for reading from sequential  
registers. This protocol is similar to the “read byte” pro-  
tocol except the master issues an acknowledge to signal  
the slave that it wants more data—when the master has  
9) The addressed slave places 8-bits of data on the bus  
from the location specified by the register pointer.  
10) The master issues an acknowledge (A) signaling the  
slave that it wishes to receive more data.  
*P FORCES THE BUS FILTERS TO SWITCH  
TO THEIR <=1MHz MODE. Sr LEAVES THE  
BUS FILTERS IN THEIR CURRENT STATE.  
LEGEND  
MASTER TO SLAVE  
SLAVE TO MASTER  
8
NUMBER  
OF BITS  
1
7
1
0
1
1
1
7
1
1
1
8
1
1
S
SLAVE ADDRESS  
A
REGISTER POINTER X A Sr SLAVE ADDRESS  
R/nW  
A
DATA X  
nA P or Sr*  
R/nW  
Figure 37. Reading from a Single Register with the “Read Byte” Protocol  
Maxim Integrated  
119  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
11) Steps 9 to 10 are repeated as many times as the  
master requires. Following the last byte of data, the  
master must issue a not acknowledge (nA) to signal  
that it wishes to stop receiving data.  
4) The addressed slave issues a not acknowledge (nA).  
5) The master can now increase its bus speed up to  
3.4MHz and issue any read/write operation.  
6) The master can continue to issue high-speed read/  
write operations until a stop (P) is issued. To continue  
operations in high-speed mode, use repeated start  
(Sr) commands instead of stop (P) comments. Issuing  
a stop (P) sets the bus for 1MHz or slower operation.  
12) The master sends a stop condition (P) or a repeated  
start condition (Sr). Issuing a stop (P) ensures that  
the bus input filters are set for 1MHz or slower opera-  
tion. Issuing an Sr leaves the bus input filters in their  
current state.  
Factory OTP  
Note that when the IC receives a stop it does not modify  
its register pointer.  
To optimize system flexibility, the IC offers many one-  
time programmable (OTP) options. These OTP options  
can only be programmed by Maxim during the end-of-  
line production test. Many OTP options set the reset  
value of registers; in this case, the default value is  
listed by an “x” in the register table. Additional OTP  
options that are not part of the basic register set are  
summarized in Table 15. If non-standard OTP settings  
are desired, contact Maxim; minimum order quantities  
may apply.  
Engaging HS-Mode for  
Operation up to 3.4MHz  
Figure 39 shows the protocol for engaging HS-mode  
operation. HS-mode operation allows for a bus operating  
speed up to 3.4MHz.  
The “Engaging HS-Mode” protocol is as follows:  
1) Begin the protocol while operating at a bus speed of  
1MHz or lower.  
2) The master sends a start command (S).  
3) The master sends the 8-bit master code of 0b0000  
1XXX where 0bXXX are don’t care bits.  
LEGEND  
*P FORCES THE BUS FILTERS TO SWITCH TO  
THEIR <=1MHz MODE. Sr LEAVES THE BUS  
FILTERS IN THEIR CURRENT STATE.  
MASTER TO SLAVE  
SLAVE TO MASTER  
8
1
7
1
0
1
1
1
7
1
1
1
8
1
NUMBER OF BITS  
S
SLAVE ADDRESS  
A
REGISTER POINTER X A Sr SLAVE ADDRESS  
A
DATA X  
A
R/nW  
R/nW  
8
1
8
1
8
1
NUMBER OF BITS  
DATA X+1  
A
DATA X+2  
A
DATA X+3  
A
8
1
8
1
8
1
1
NUMBER OF BITS  
DATA n-2  
A
DATA n-1  
A
DATA n  
nA P or Sr*  
Figure 38. Reading Continuously from Sequential Registers “x” to “n”  
LEGEND  
MASTER TO SLAVE  
SLAVE TO MASTER  
1
8
1
1
ANY READ/WRITE PROTOCOL  
ANY READ/WRITE PROTOCOL  
FOLLOWED BY Sr  
ANY READ/WRITE  
PROTOCOL  
S
HS-MASTER CODE  
nA Sr  
Sr  
Sr  
P
FOLLOWED BY Sr  
FAST-MODE  
HS-MODE  
FAST-MODE  
Figure 39. Engaging HS-Mode  
Maxim Integrated  
120  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
Table 15. OTP Bit Descriptions  
FUNCTIONAL  
BIT NAME  
BLOCK  
DESCRIPTION  
32kHz  
Buffered  
Output  
32K_OUT0 Output Driver Stage Configuration  
0 = The 32K_OUT0 output driver is a push-pull stage between ground and GPIO_INB.  
1 = The 32K_OUT0 output driver is an open-drain stage.  
OTP_32K  
OTP_SD_SS  
OTP_EN0AL  
OTP_EN1AL  
OTP_ACOKAL  
OTP_LIDAL  
Step-Down Regulator Soft-Start Rate  
0 = 12.5mV/µs  
1 = 25mV/µs  
Step-Down  
Regulators  
Enable 0 Active Low (Figure 20)  
0 = EN0 is active-high  
1 = EN0 is active-low  
On/Off  
Controller  
Enable 1 Active-Low (Figure 20)  
0 = EN1 is active-high  
1 = EN1 is active-low  
On/Off  
Controller  
AC Okay Active-Low (Figure 23)  
0 = ACOK is active-high  
1 = ACOK is active-low  
On/Off  
Controller  
LID Active-Low (Figure 24)  
0 = LID is active-high  
1 = LID is active-low  
On/Off  
Controller  
SHDN Active-Low (Figure 25)  
0 = SHDN is active-high  
1 = SHDN is active-low  
On/Off  
Controller  
OTP_SHDNAL  
If OTP_WDTEN = 0, then WDTEN can be changed at any time.  
System  
Watchdog  
Timer  
If OTP_WDTEN = 1, then once WDTEN is set the watchdog timer cannot be disabled by  
clearing WDTEN. Once enabled, the system watchdog timer runs until a global shutdown  
occurs or the power off (PWR_OFF) functions is initiated.  
OTP_WDTEN  
OTP_WDTT  
System  
Watchdog  
Timer  
If OTP_WDTT = 0, then TWD[1:0] can be changed at any time.  
If OTP_WDTT = 1, then TWD[1:0] can only be changed when WDTEN = 0.  
Reset Output Deassert Delay Time  
0b00 = 1.28ms  
nRST_IO  
OTP_TRSTO[1:0]  
0b01 = 10.24ms  
0b10 = 40.96ms  
0b11 = 81.92ms  
2
2
I C  
OTP_I2CADDR[1:0]  
I C Address Selection Bits. See Table 13.  
Manual Reset Global Shutdown Control. See the Global Resources section for more  
information on global shutdown.  
Global  
Resources  
0 = The device shuts down due to a manual-reset event and stays off until a wakeup  
event is generated.  
OTP_MR  
1 = The device shuts down due to a manual-reset event and automatically generates its  
own wakeup.  
Maxim Integrated  
121  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
Register Descriptions  
REGISTER NAME  
CID0  
0x3C  
0x58  
Read  
Fixed  
2
I C Slave Address  
Register Address  
Access Type  
Reset Condition  
BIT  
NAME  
SR[7:0]  
DESCRIPTION  
Serial number least-significant byte  
SR[23:16] + SR[15:8] + SR[7:0] form a 24-bit serial number  
B[7:0]  
Global Configuration Register 1  
REGISTER NAME  
CNFGGLBL1  
0x3C  
2
I C Slave Address  
Register Address  
Reset Value  
0x00  
0b xx01 xx1x  
(“x” is an OTP bit)  
Access Type  
Read/write  
Reset Condition  
V
< V  
RTC VRTC_UVLO  
BIT  
NAME  
DESCRIPTION  
B7  
RSVD  
Reserved - Write to 0b1  
Main-Battery Low-Power Down  
B6  
MBLPD  
0 = MBATTLOW does not cause a global shutdown.  
1 = MBATTLOW rising forces a global shutdown.  
0x00 = 100mV  
0x01 = 200mV  
0b000 = 2.7V  
0b001 = 2.8V  
0b010 = 2.9V  
0b011 = 3.0V  
0x02 = 300mV  
0x03 = 400mV  
0b100 = 3.1V  
0b101 = 3.2V  
0b110 = 3.3V  
0b111 = 3.4V  
Low-Battery Comparator  
Hysteresis  
B[5:4]  
LBHYST  
Low-Battery DAC Falling  
B[3:1]  
LBDAC[2:0]  
LBRSTEN  
Threshold (V  
)
MONL  
Low-Battery Monitor to nRST_IO Enable (Figure 1)  
0 = The low-battery monitor only generates the MBATTLOW status bit and the  
MBATTLOW_R interrupt bit.  
B0  
1 = In addition to the bits mentioned above, the low-battery monitor also pulls nRST_IO low  
when V  
is less than V  
.
MON  
MONL  
Maxim Integrated  
122  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
CNFGGLBL2: Global Configuration Register 2  
REGISTER NAME  
CNFGGLBL2  
2
I C Slave Address  
0x3C  
0x01  
Register Address  
Reset Value  
0b 0000 0x11  
(“x” is an OTP bit)  
Access Type  
Read/write  
Reset Condition  
Global shutdown  
BIT  
NAME  
DESCRIPTION  
2
I C Watchdog Timer Period  
2
0b00 = I C watchdog timer is disabled.  
0b01 = 1.33ms  
0b10 = 35.7ms  
B[7:6]  
I2CTWD[1:0]  
GLBL_LPM  
0b11 = 41.7ms  
Global Low-Power Mode  
0 = The global low-power mode signal is logic low. Devices that have been programmed to follow  
the global low-power mode signal operates in their normal-power modes.  
1 = The global low-power mode signal is logic high. Devices that have been programmed to follow  
the global low-power mode signal operates in their low-power modes.  
B5  
Note that this bit is logically ORed with the alternative mode operation of GPIO0.  
B4  
B3  
Reserved. Write to 1. Read is don’t care.  
System Watchdog Timer Automatic Clear in the SLEEP Mode  
0 = The system watchdog timer does not automatically clear in the sleep state.  
1 = The system watchdog timer automatically clears in the sleep state.  
WDTSLPC  
WDTEN  
System Watchdog Timer Enable  
0 = System watchdog timer disabled.  
1 = System watchdog timer enabled.  
B2  
If OTP_WDTEN = 0, then WDTEN can be changed at any time.  
If OTP_WDTEN = 1, then once WDTEN is set the watchdog timer cannot be disabled by clearing  
WDTEN. Once enabled, the system watchdog timer runs until a global shutdown occurs.  
System Watchdog Timer Period  
0b00 = 2s  
0b01 = 16s  
0b10 = 64s  
0b11 = 128s  
B[1:0]  
TWD[1:0]  
If OTP_WDTT = 0, then TWD can be changed at any time. If the value of TWD needs to be  
changed, clear the system watchdog timer first (WDTC[1:0] = 0b01), then change the value of  
TWD.  
If OTP_WDTT = 1, then TWD can only be changed when WDTEN = 0.  
Maxim Integrated  
123  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
CNFGGLBL3: Global Configuration Register 3  
REGISTER NAME  
GLBLCNFG3  
2
I C Slave Address  
0x3C  
Register Address  
Reset Value  
0x02  
0x00  
Access Type  
Read/write  
Global shutdown  
Reset Condition  
BIT  
B7  
B6  
B5  
B4  
B3  
B2  
NAME  
DESCRIPTION  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
DEFAULT  
0
0
0
0
0
0
System Watchdog Timer Clear. Writing 0b01 to these bits clears the watchdog timer.  
These bits automatically reset to 0b00 after they are written to 0b01.  
0b00 = The system watchdog timer is not cleared.  
B[1:0]  
WDTC[1:0]  
0b00  
0b01 = The system watchdog timer is cleared.  
0b10 = The system watchdog timer is not cleared.  
0b11 = The system watchdog timer is not cleared.  
Maxim Integrated  
124  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
IRQTOP: Top Level Interrupt Register  
REGISTER NAME  
IRQTOP  
2
I C Slave Address  
0x3C  
Register Address  
Reset Value  
0x05  
0x00  
Access Type  
Read  
Special Features  
Reset Condition  
IRQTOP is cleared when read.  
Global shutdown  
BIT  
NAME  
DESCRIPTION  
DEFAULT  
Top-Level Global Interrupt  
B7  
IRQ_GLBL  
0 = No unmasked interrupts pending in the INTLBT register  
0
1 = There are unmasked interrupts pending in the INTLBT register  
Top-Level Step-Down Interrupt  
B6  
B5  
IRQ_SD  
0 = No unmasked interrupts pending in the IRQSD register  
1 = There are unmasked interrupts pending in the IRQSD register  
0
0
Top-Level LDO Interrupt  
0 = No unmasked interrupts pending in the IRQ_LVL2_L0-7 or IRQ_LVL2_L8  
registers.  
IRQ_LDO  
1 = There are unmasked interrupts pending in the IRQ_LVL2_L0-7 or  
IRQ_LVL2_L8 registers.  
Top-Level GPIO Interrupt  
B4  
B3  
IRQ_GPIO  
IRQ_RTC  
0 = No unmasked interrupts pending in the IRQ_LVL2_GPI register.  
1 = There are unmasked interrupts pending in the IRQ_LVL2_GPI register.  
0
0
Top-Level RTC Interrupt  
0 = No unmasked interrupts pending in the RTCINT register.  
1 = There are unmasked interrupts pending in the RTCINT register.  
Top-Level 32kHz Oscillator Interrupt  
0 = The 32kHz crystal oscillator has not failed since the last time this bit was read.  
1 = The 32kHz crystal oscillator has failed since the last time this bit was read.  
See the 32K_OK bit for the oscillator status.  
B2  
IRQ_32K  
0
Top-Level On/Off Controller Interrupt  
B1  
B0  
IRQ_ONOFF  
0 = No unmasked interrupts pending in the ONOFFIRQ register.  
1 = There are unmasked interrupts pending in the ONOFFIRQ register.  
0
0
Reserved  
Maxim Integrated  
125  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
IRQTOPM: Top Level Interrupt Mask Register  
IRQTOPM masks interrupts generated by the top level IRQ register IRQTOP. See Figure 2 for a logic diagram showing  
the IRQTOP and IRQTOPM bits.  
REGISTER NAME  
IRQTOPM  
0x3C  
2
I C Slave Address  
Register Address  
Reset Value  
0x0D  
0x75  
Access Type  
Read/write  
Global shutdown  
Reset Condition  
BIT  
NAME  
DESCRIPTION  
DEFAULT  
Top-Level Global Interrupt Mask. IRQ_GLBLM blocks the interrupts from the global  
resources (INTLBT register) from affecting the nIRQ pin as shown in Figure 2.  
Be careful not to confuse IRQ_GLBLM with GLBLM. GLBLM blocks all interrupts  
from affecting the nIRQ pin as shown in Figure 2.  
0 = Unmasked  
B7  
IRQ_GLBLM  
0
1 = Masked  
Top-Level Step-Down Interrupt Mask  
0 = Unmasked  
1 = Masked  
B6  
B5  
B4  
B3  
B2  
IRQ_SDM  
IRQ_LDOM  
IRQ_GPIOM  
IRQ_RTCM  
IRQ_32KM  
1
1
1
0
1
Top-Level LDO Interrupt Mask  
0 = Unmasked  
1 = Masked  
Top-Level GPIO Interrupt Mask  
0 = Unmasked  
1 = Masked  
Top-Level RTC Interrupt Mask  
0 = Unmasked  
1 = Masked  
Top-Level 32kHz Oscillator Interrupt Mask  
0 = Unmasked  
1 = Masked  
Top-Level On/Off Controller Interrupt Mask  
0 = Unmasked  
1 = Masked  
B1  
B0  
IRQ_ONOFFM  
0
1
Reserved  
Maxim Integrated  
126  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
INTENLBT  
INTENLBT enables/disables interrupts generated by the low-battery monitor and the 120°C and 140°C thermal monitor  
comparators.  
REGISTER NAME  
INTENLBT  
0x3C  
2
I C Slave Address  
Register Address  
Reset Value  
0x0E  
0x00  
Access Type  
Read/write  
Global shutdown  
Reset Condition  
BIT  
NAME  
DESCRIPTION  
DEFAULT  
B[7:4]  
Reserved  
0b0000  
Low-Battery Interrupt Mask  
0 = Unmasked  
1 = Masked  
B3  
B2  
B1  
LBM  
0
0
0
120°C Thermal Alarm 1 Interrupt Mask  
0 = Unmasked  
1 = Masked  
T
T
JALRM1M  
JALRM2M  
140°C Thermal Alarm 2 Interrupt Mask  
0 = Unmasked  
1 = Masked  
Global Interrupt Mask. IRQ_GLBLM blocks the interrupts from the global  
resources (INTLBT register) from affecting the nIRQ pin as shown in  
Figure 2. Be careful not to confuse IRQ_GLBLM with GLBLM. GLBLM blocks  
all interrupts from affecting the nIRQ pin as shown in Figure 2.  
0 = Unmasked  
B0  
GLBLM  
0
1 = Masked  
Maxim Integrated  
127  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
STATLBT: Low-Battery and Thermal Monitor Status  
STATLBT shows the status of the low-battery monitor and thermal monitors.  
REGISTER NAME  
STATLBT  
0x3C  
2
I C Slave Address  
Register Address  
Reset Value  
0x13  
0x10  
Access Type  
Read  
Reset Condition  
Global shutdown  
BIT  
NAME  
DESCRIPTION  
DEFAULT  
B[7:4]  
Reserved. These bits can be written to any value. They always read 0b0001.  
0b0001  
Main-Battery Low Voltage. See Figure 1 for a simplified drawing.  
B3  
B2  
B1  
B0  
MBATTLOW  
0 = V  
1 = V  
> V  
< V  
0
0
0
0
MON  
MON  
MONL  
MONL  
120°C Thermal Alarm Status Bit  
T
T
0 = T < T  
JALRM1  
J 120  
J
J120  
1 = T > T  
J
140°C Thermal Alarm Status Bit  
0 = T < T  
JALRM2  
J
J140  
J140  
1 = T > T  
J
Software Version Of The Unmasked nIRQ MOSFET Gate Drive (Figure 1)  
0 = Unmasked gate drive is logic-low.  
IRQ  
1 = Unmasked gate drive is logic-high.  
Maxim Integrated  
128  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
INTLBT: Low-Battery and Thermal Monitors Interrupt Register  
INTLBT shows the interrupts for the status of the low-battery monitor and thermal monitors.  
REGISTER NAME  
INTLBT  
0x3C  
2
I C Slave Address  
Register Address  
Reset Value  
0x06  
0x00  
Access Type  
Read  
Special Features  
Reset Condition  
Clear on read  
Global shutdown  
TRIGGER  
TYPE  
BIT  
NAME  
DESCRIPTION  
DEFAULT  
B[7:4]  
Reserved  
0b0000  
N/A  
Low-Main Battery Interrupt  
0 = V  
read.  
1 = V  
has not fallen below V  
since the last time this bit was  
MONL  
Rising  
edge  
MON  
B3  
B2  
MBATTLOW_R  
0
0
has fallen below V  
since the last time this bit was read.  
MON  
MONL  
Interrupt 120C Thermal Flag Bit  
0 = T has not risen above T since the list time this bit was read.  
JALRM1  
Rising  
edge  
T
T
JALRM1_R  
JALRM2_R  
J
1 = T has risen above T  
since the list time this bit was read.  
J
JALRM1  
Interrupt 140C Thermal Flag Bit  
0 = T has not risen above T  
Rising  
edge  
B1  
B0  
since the list time this bit was read.  
JALRM21  
0
0
J
1 = T has risen above T  
J
since the list time this bit was read.  
JALRM2  
Reserved  
N/A  
Maxim Integrated  
129  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
Step-Down Regulator Output Voltage Setting Registers  
REGISTER NAME  
VSDx  
2
I C Slave Address  
0x3C  
0x18: SD2  
0x19: SD3  
Register Address  
Reset Value  
SD2 0b 0xxx xx00 (“x” is an OTP bit)  
SD3: 0b xxxx xx00 (“x” is an OTP bit)  
Access Type  
Read/write  
Reset Condition  
Global shutdown  
BIT  
BIT NAME DESCRIPTION  
Target Voltage for SD2, SD3  
B[7:0]  
VSDx[7:0]  
See the Step-Down Regulator 8-Bit Output Target Output Voltages (SD2, SD3) table.  
Step-Down Regulator Output Voltage Setting Registers  
REGISTER NAME  
VSD0  
2
I C Slave Address  
0x3C.  
Register Address  
Reset Value  
0x16  
0b 0xxx xx00 (“x” is an OTP bit)  
Read/write  
Access Type  
Reset Condition  
Global shutdown  
BIT  
BIT NAME DESCRIPTION  
Target Voltage for SD0  
See the Step-Down Regulator 8-Bit Output Target Output Voltages (SD0) table.  
B[7:0]  
V[7:0]  
Step-Down Regulator Output Voltage Setting Registers  
REGISTER NAME  
VSD1  
2
I C Slave Address  
0x3C  
Register Address  
Reset Value  
0x17  
0b 0xxx xx00 (“x” is an OTP bit)  
Read/write  
Access Type  
Reset Condition  
Global shutdown  
BIT  
BIT NAME DESCRIPTION  
Target Voltage for SD1  
See the Step-Down Regulator 8-bit Output Target Output Voltages (SD1) table.  
B[7:0]  
V[7:0]  
Maxim Integrated  
130  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
Step-Down Regulator Dynamic Voltage Scaling Output Setting Registers  
REGISTER NAME  
VDVSSD0  
0x3C  
2
I C Slave Address  
Register Address  
Reset Value  
0x1B  
0x20  
Access Type  
Read/write  
Global shutdown  
Reset Condition  
BIT  
BIT NAME  
DESCRIPTION  
DEFAULT  
Dynamic Voltage Management Target Voltage for SD0. See the Step-Down  
Regulator 8-Bit Output Target Output Voltages (SD0) table.  
To control DVS for SD0 through GPIO5, set AME5 = 1. DIR5 sets whether GPIO5  
is active-high or active-low. With the GPIO5 input active, the step-down regulator’s  
target voltage is set by VDVSSD0. With the GPIO5 input inactive, the step-down  
regulator’s target voltage is set by VSD0.  
B[7:0]  
VDVSSD0[7:0]  
0x20  
Step-Down Regulator Dynamic Voltage Scaling Output Setting Registers  
REGISTER NAME  
VDVSSD1  
2
I C Slave Address  
0x3C  
Register Address  
Reset Value  
0x1C  
0x10  
Access Type  
Read/write  
Global shutdown  
Reset Condition  
BIT  
BIT NAME  
DESCRIPTION  
DEFAULT  
Dynamic Voltage Management Target Voltage for SD1. See the Step-Down  
Regulator 8-bit Output Target Output Voltages (SD1) table.  
To control DVS for SD1 through GPIO6, set AME6 = 1. DIR6 sets whether GPIO6  
is active-high or active-low. With the GPIO6 input active, the step-down regulator’s  
target voltage is set by VDVSSD1. With the GPIO6 input inactive, the step-down  
regulator’s target voltage is set by VSD0.  
B[7:0]  
VDVSSD1[7:0]  
0x10  
Maxim Integrated  
131  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
Step-Down Regulator 8-Bit Output Target Output Voltages (SD2, SD3)  
0x00 =  
0x20 =  
0x40 =  
0x60 =  
0x80 =  
0xA0 =  
0xC0 =  
0xE0 =  
reserved  
1.0000V  
1.4000V  
1.8000V  
2.2000V  
2.6000V  
3.0000V  
3.4000V  
0x01 =  
0x21 =  
0x41 =  
0x61 =  
0x81 =  
0xA1 =  
0xC1 =  
0xE1 =  
reserved  
1.0125V  
1.4125V  
1.8125V  
2.2125V  
2.6125V  
3.0125V  
3.4125V  
0x02 =  
0x22 =  
0x42 =  
0x62 =  
0x82 =  
0xA2 =  
0xC2 =  
0xE2 =  
0.6250V  
1.0250V  
1.4250V  
1.8250V  
2.2250V  
2.6250V  
3.0250V  
3.4250V  
0x03 =  
0x23 =  
0x43 =  
0x63 =  
0x83 =  
0xA3 =  
0xC3 =  
0xE3 =  
0.6375V  
1.0375V  
1.4375V  
1.8375V  
2.2375V  
2.6375V  
3.0375V  
3.4375V  
0x04 =  
0x24 =  
0x44 =  
0x64 =  
0x84 =  
0xA4 =  
0xC4 =  
0xE4 =  
0.6500V  
1.0500V  
1.4500V  
1.8500V  
2.2500V  
2.6500V  
3.0500V  
3.4500V  
0x05 =  
0x25 =  
0x45 =  
0x65 =  
0x85 =  
0xA5 =  
0xC5 =  
0xE5 =  
0.6625V  
1.0625V  
1.4625V  
1.8625V  
2.2625V  
2.6625V  
3.0625V  
3.4625V  
0x06 =  
0x26 =  
0x46 =  
0x66 =  
0x86 =  
0xA6 =  
0xC6 =  
0xE6 =  
0.6750V  
1.0750V  
1.4750V  
1.8750V  
2.2750V  
2.6750V  
3.0750V  
3.4750V  
0x07 =  
0x27 =  
0x47 =  
0x67 =  
0x87 =  
0xA7 =  
0xC7 =  
0xE7 =  
0.6875V  
1.0875V  
1.4875V  
1.8875V  
2.2875V  
2.6875V  
3.0875V  
3.4875V  
0x08 =  
0x28 =  
0x48 =  
0x68 =  
0x88 =  
0xA8 =  
0xC8 =  
0xE8 =  
0.7000V  
1.1000V  
1.5000V  
1.9000V  
2.3000V  
2.7000V  
3.1000V  
3.5000V  
0x09 =  
0x29 =  
0x49 =  
0x69 =  
0x89 =  
0xA9 =  
0xC9 =  
0xE9 =  
0.7125V  
1.1125V  
1.5125V  
1.9125V  
2.3125V  
2.7125V  
3.1125V  
3.5125V  
0x0A =  
0x2A =  
0x4A =  
0x6A =  
0x8A =  
0xAA =  
0xCA =  
0xEA =  
0.7250V  
1.1250V  
1.5250V  
1.9250V  
2.3250V  
2.7250V  
3.1250V  
3.5250V  
0x0B =  
0x2B =  
0x4B =  
0x6B =  
0x8B =  
0xAB =  
0xCB =  
0xEB =  
0.7375V  
1.1375V  
1.5375V  
1.9375V  
2.3375V  
2.7375V  
3.1375V  
3.5375V  
0x0C =  
0x2C =  
0x4C =  
0x6C =  
0x8C =  
0xAC =  
0xCC =  
0xEC =  
0.7500V  
1.1500V  
1.5500V  
1.9500V  
2.3500V  
2.7500V  
3.1500V  
3.5500V  
0x0D =  
0x2D =  
0x4D =  
0x6D =  
0x8D =  
0xAD =  
0xCD =  
0xED =  
0.7625V  
1.1625V  
1.5625V  
1.9625V  
2.3625V  
2.7625V  
3.1625V  
3.5625V  
0x0E =  
0x2E =  
0x4E =  
0x6E =  
0x8E =  
0xAE =  
0xCE =  
0xEE =  
0.7750V  
1.1750V  
1.5750V  
1.9750V  
2.3750V  
2.7750V  
3.1750V  
3.5750V  
0x0F =  
0x2F =  
0x4F =  
0x6F =  
0x8F =  
0xAF =  
0xCF =  
0xEF =  
0.7875V  
1.1875V  
1.5875V  
1.9875V  
2.3875V  
2.7875V  
3.1875V  
3.5875V  
Maxim Integrated  
132  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
Step-Down Regulator 8-Bit Output Target Output Voltages (SD2, SD3) (continued)  
0x10 =  
0x30 =  
0x50 =  
0x70 =  
0x90 =  
0xB0 =  
0xD0 =  
0xF0 =  
0.8000V  
1.2000V  
1.6000V  
2.0000V  
2.4000V  
2.8000V  
3.2000V  
3.6000V  
0x11 =  
0x31 =  
0x51 =  
0x71 =  
0x91 =  
0xB1 =  
0xD1 =  
0xF1 =  
0.8125V  
1.2125V  
1.6125V  
2.0125V  
2.4125V  
2.8125V  
3.2125V  
3.6125V  
0x12 =  
0x32 =  
0x52 =  
0x72 =  
0x92 =  
0xB2 =  
0xD2 =  
0xF2 =  
0.8250V  
1.2250V  
1.6250V  
2.0250V  
2.4250V  
2.8250V  
3.2250V  
3.6250V  
0x13 =  
0x33 =  
0x53 =  
0x73 =  
0x93 =  
0xB3 =  
0xD3 =  
0xF3 =  
0.8375V  
1.2375V  
1.6375V  
2.0375V  
2.4375V  
2.8375V  
3.2375V  
3.6375V  
0x14 =  
0x34 =  
0x54 =  
0x74 =  
0x94 =  
0xB4 =  
0xD4 =  
0xF4 =  
0.8500V  
1.2500V  
1.6500V  
2.0500V  
2.4500V  
2.8500V  
3.2500V  
3.6500V  
0x15 =  
0x35 =  
0x55 =  
0x75 =  
0x95 =  
0xB5 =  
0xD5 =  
0xF5 =  
0.8625V  
1.2625V  
1.6625V  
2.0625V  
2.4625V  
2.8625V  
3.2625V  
3.6625V  
0x16 =  
0x36 =  
0x56 =  
0x76 =  
0x96 =  
0xB6 =  
0xD6 =  
0xF6 =  
0.8750V  
1.2750V  
1.6750V  
2.0750V  
2.4750V  
2.8750V  
3.2750V  
3.6750V  
0x17 =  
0x37 =  
0x57 =  
0x77 =  
0x97 =  
0xB7 =  
0xD7 =  
0xF7 =  
0.8875V  
1.2875V  
1.6875V  
2.0875V  
2.4875V  
2.8875V  
3.2875V  
3.6875V  
0x18 =  
0x38 =  
0x58 =  
0x78 =  
0x98 =  
0xB8 =  
0xD8 =  
0xF8 =  
0.9000V  
1.3000V  
1.7000V  
2.1000V  
2.5000V  
2.9000V  
3.3000V  
3.7000V  
0x19 =  
0x39 =  
0x59 =  
0x79 =  
0x99 =  
0xB9 =  
0xD9 =  
0xF9 =  
0.9125V  
1.3125V  
1.7125V  
2.1125V  
2.5125V  
2.9125V  
3.3125V  
3.7125V  
0x1A =  
0x3A =  
0x5A =  
0x7A =  
0x9A =  
0xBA =  
0xDA =  
0xFA =  
0.9250V  
1.3250V  
1.7250V  
2.1250V  
2.5250V  
2.9250V  
3.3250V  
3.7250V  
0x1B =  
0x3B =  
0x5B =  
0x7B =  
0x9B =  
0xBB =  
0xDB =  
0xFB =  
0.9375V  
1.3375V  
1.7375V  
2.1375V  
2.5375V  
2.9375V  
3.3375V  
3.7375V  
0x1C =  
0x3C =  
0x5C =  
0x7C =  
0x9C =  
0xBC =  
0xDC =  
0xFC =  
0.9500V  
1.3500V  
1.7500V  
2.1500V  
2.5500V  
2.9500V  
3.3500V  
3.7500V  
0x1D =  
0x3D =  
0x5D =  
0x7D =  
0x9D =  
0xBD =  
0xDD =  
0xFD =  
0.9625V  
1.3625V  
1.7625V  
2.1625V  
2.5625V  
2.9625V  
3.3625V  
3.7625V  
0x1E =  
0x3E =  
0x5E =  
0x7E =  
0x9E =  
0xBE =  
0xDE =  
0xFE =  
0.9750V  
1.3750V  
1.7750V  
2.1750V  
2.5750V  
2.9750V  
3.3750V  
3.7750V  
0x1F =  
0x3F =  
0x5F =  
0x7F =  
0x9F =  
0xBF =  
0xDF =  
0xFF =  
0.9875V  
1.3875V  
1.7875V  
2.1875V  
2.5875V  
2.9875V  
3.3875V  
3.7875V  
Maxim Integrated  
133  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
Step-Down Regulator 8-Bit Output Target Output Voltages (SD0)  
0x00 = Reserved  
0x01 = Reserved  
0x02 = 0.6250V  
0x03 = 0.6375V  
0x04 = 0.6500V  
0x05 = 0.6625V  
0x06 = 0.6750V  
0x07 = 0.6875V  
0x08 = 0.7000V  
0x09 = 0.7125V  
0x0A = 0.7250V  
0x0B = 0.7375V  
0x0C = 0.7500V  
0x0D = 0.7625V  
0x0E = 0.7750V  
0x0F = 0.7875V  
0x10 = 0.8000V  
0x11 = 0.8125V  
0x12 = 0.8250V  
0x13 = 0.8375V  
0x14 = 0.8500V  
0x15 = 0.8625V  
0x16 = 0.8750V  
0x17 = 0.8875V  
0x18 = 0.9000V  
0x19 = 0.9125V  
0x1A = 0.9250V  
0x1B = 0.9375V  
0x1C = 0.9500V  
0x1D = 0.9625V  
0x1E = 0.9750V  
0x1F = 0.9875V  
0x20 = 1.0000V  
0x21 = 1.0125V  
0x22 = 1.0250V  
0x23 = 1.0375V  
0x24 = 1.0500V  
0x25 = 1.0625V  
0x26 = 1.0750V  
0x27 = 1.0875V  
0x28 = 1.1000V  
0x29 = 1.1125V  
0x2A = 1.1250V  
0x2B = 1.1375V  
0x2C = 1.1500V  
0x2D = 1.1625V  
0x2E = 1.1750V  
0x2F = 1.1875V  
0x30 = 1.2000V  
0x31 = 1.2125V  
0x32 = 1.2250V  
0x33 = 1.2375V  
0x34 = 1.2500V  
0x35 = 1.2625V  
0x36 = 1.2750V  
0x37 = 1.2875V  
0x38 = 1.3000V  
0x39 = 1.3125V  
0x3A = 1.3250V  
0x3B = 1.3375V  
0x3C = 1.3500V  
0x3D = 1.3625V  
0x3E = 1.3750V  
0x3F = 1.3875V  
0x40 = 1.4000V  
0x41 to 0xFF are reserved and  
writes to this space are ignored.  
Step-Down Regulator 8-bit Output Target Output Voltages (SD1)  
0x00 = Reserved  
0x01 = Reserved  
0x02 = 0.6250V  
0x03 = 0.6375V  
0x04 = 0.6500V  
0x05 = 0.6625V  
0x06 = 0.6750V  
0x07 = 0.6875V  
0x08 = 0.7000V  
0x09 = 0.7125V  
0x0A = 0.7250V  
0x0B = 0.7375V  
0x0C = 0.7500V  
0x0D = 0.7625V  
0x0E = 0.7750V  
0x0F = 0.7875V  
0x10 = 0.8000V  
0x11 = 0.8125V  
0x12 = 0.8250V  
0x13 = 0.8375V  
0x14 = 0.8500V  
0x15 = 0.8625V  
0x16 = 0.8750V  
0x17 = 0.8875V  
0x18 = 0.9000V  
0x19 = 0.9125V  
0x1A = 0.9250V  
0x1B = 0.9375V  
0x1C = 0.9500V  
0x1D = 0.9625V  
0x1E = 0.9750V  
0x1F = 0.9875V  
0x20 = 1.0000V  
0x21 = 1.0125V  
0x22 = 1.0250V  
0x23 = 1.0375V  
0x24 = 1.0500V  
0x25 = 1.0625V  
0x26 = 1.0750V  
0x27 = 1.0875V  
0x28 = 1.1000V  
0x29 = 1.1125V  
0x2A = 1.1250V  
0x2B = 1.1375V  
0x2C = 1.1500V  
0x2D = 1.1625V  
0x2E = 1.1750V  
0x2F = 1.1875V  
0x30 = 1.2000V  
0x31 = 1.2125V  
0x32 = 1.2250V  
0x33 = 1.2375V  
0x34 = 1.2500V  
0x35 = 1.2625V  
0x36 = 1.2750V  
0x37 = 1.2875V  
0x38 = 1.3000V  
0x39 = 1.3125V  
0x3A = 1.3250V  
0x3B = 1.3375V  
0x3C = 1.3500V  
0x3D = 1.3625V  
0x3E = 1.3750V  
0x3F = 1.3875V  
0x40 = 1.4000V  
0x41 = 1.4125V  
0x42 = 1.4250V  
0x43 = 1.4375V  
0x44 = 1.4500V  
0x45 = 1.4625V  
0x46 = 1.4750V  
0x47 = 1.4875V  
0x48 = 1.5000V  
0x49 = 1.5125V  
0x4A = 1.5250V  
0x4B = 1.5375V  
0x4C = 1.5500V  
0x4D to 0xFF are reserved and  
writes to this space are ignored.  
Maxim Integrated  
134  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
Step-Down Regulator ConfigurationRegister 1  
REGISTER NAME  
CNFG1SDx  
2
I C Slave Address  
0x3C  
0x1D: SD0  
0x1E: SD1  
0x1F: SD2  
0x20: SD3  
Register Address  
Reset Value  
0b 01xx 00x0 (“x” is an OTP bit)  
Read/write  
Access Type  
Reset Condition  
Global shutdown  
BIT  
BIT NAME  
DESCRIPTION  
SDx Slew Rate During DVS  
0x0 = 0b00 = 13.75mV/µs ramp rate  
0x1 = 0b01 = 27.50mV/µs ramp rate  
0x2 = 0b10 = 55.00mV/µs ramp rate  
B[7:6]  
SR_SDx[1:0]  
0x3 = 0b11 = 100mV/µs ramp rate (Note 10)  
The typical use case for SR_SDx is to set them to the desired value during system initialization and  
then leave them that way during the normal operation of the system. The SR_SDx bits should not be  
changed while its associated step-down regulator is in the middle of an output voltage slew rate event.  
See the Dynamic Voltage Scaling section for more information.  
SDx Power Mode Configuration  
When FPSSRC_SDx[1:0] = 0b11  
0b00 = Disabled. SDx is off.  
EN2 can override this setting and enable SD0 when it is high.  
0b01 = Group low-power mode. SDx operates in normal mode when the global low-power mode  
signal is low. When the global low-power mode signal is high, SDx operates in low-power mode.  
0b10 = Low-power mode. SDx is forced into low-power mode. The maximum load current is 5mA  
and the quiescent supply current is 5μA.  
0b11 = Normal operation mode. SDx is forced into its normal operating mode.  
When FPSSRC_SDx[1:0]≠0b11  
PWR_MD_SDx_  
[1:0]  
0b00 = SDx is disabled when the flexible power sequencer set by FPSSRC_SDx is disabled.  
SDx is enabled in normal-power mode when the flexible power sequencer is enabled.  
EN2 can override this setting and enable SD0 when it is high.  
B[5:4]  
0b01 = SDx is disabled when the flexible power sequencer set by FPSSRC_SDx is disabled.  
SDx is enabled when the flexible power sequencer is enabled. When SDx is enabled, it operates in  
normal mode when the global low-power mode signal is low, and it operates in low-power mode  
when the global low-power mode signal is logic high.  
0b10 = SDx is disabled when the flexible power sequencer set by FPSSRC_SDx is disabled.  
SDx is enabled in low-power mode when the flexible power sequencer is enabled.  
0b11 = Same as 0b00.  
Note that SD0 is also controlled with the EN2 hardware pin. See Table 9 for the ENSD0 and  
PWR_MD_SD0[1:0] enable logic.  
Maxim Integrated  
135  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
Step-Down Regulator ConfigurationRegister 1 (continued)  
BIT  
BIT NAME  
DESCRIPTION  
Active-Low SDx Active Discharge Enable  
0 = The active discharge function is enabled. When the step-down regulator is disabled, an internal  
100Ω discharge resistor is connected to the output to discharge the energy stored in the output  
capacitor. When the step-down regulator is enabled, the discharge resistor is disconnected from the  
output.  
B3  
nADE_SDx  
1 = The active discharge function is disabled. When the step-down regulator is disabled, the internal  
100Ω discharge resistor is not connected to the output, and the discharge rate is dependent on the  
output capacitance and the load present. When the step-down regulator is enabled, the discharge  
resistor is disconnected from the output.  
SDx Forced PWM Mode Enable  
0 = SDx regulator skips pulses under light load conditions, and operates at a fixed frequency with  
medium to heavy load conditions. The regulator automatically transitions between pulse skipping and  
fixed frequency as needed.  
B2  
B1  
FPWM_SDx  
1 = SDx regulator operates with fixed frequency under all load conditions.  
Reserved. This bit must always be cleared to 0.  
Active-Low SDx Falling Slew Rate Active-Discharge Enable  
This bit is a don’t care when a given step-down converter is in low-power mode. In low-power mode,  
the regulator behaves as if active discharge is always disabled.  
0 = Active-discharge enabled. SDx operates in forced PWM mode during the time the output voltage  
decreases. With forced PWM mode enabled, SDx can sink current from the output capacitor to ensure  
that the output voltage falls at the rate programmed by SR_SDx[1:0]. To ensure a smooth output  
voltage decrease, the PMW mode remains engaged for 50μs after the output voltage decreases to its  
B0  
nFSRADE_SDx target voltage.  
1 = Active-discharge disabled. SDx is allowed to operate in skip mode during the time the output  
voltage decreases (only if FPWM_SDx = 0). In skip mode, SDx cannot sink current from the output  
capacitor. Since SDx cannot sink current in skip mode the output voltage falling slew rate is a function  
of the external load on SDx. If the external load on SDx is heavy, then the output voltage falling slew  
rate is the rate programmed by SR_SDx[1:0]. If the external load on SDx is light, then the output  
voltage falling slew rate is a function of the output capacitance and the external load. Note that the  
SDx internal feedback string always imposes a 2µA load on the output.  
Maxim Integrated  
136  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
Step-Down Regulator ConfigurationRegister 2  
REGISTER NAME  
CNFG2SD  
2
I C Slave Address  
0x3C  
Register Address  
Reset Value  
0x22  
0x07  
Access Type  
Read/write  
Global shutdown  
Reset Condition  
BIT  
BIT NAME  
DESCRIPTION  
DEFAULT  
0b00  
B[7:6]  
B[5:3]  
Reserved. Write these bits to 0b00.  
Reserved. Write these bits to 0b000.  
0b000  
SD0 Remote Output Voltage Sense Enable  
0 = Disabled  
1 = Enabled  
B2  
ROVS_EN_SD0  
ROVS_EN_SD1  
1
Note that when SD0 is operating in low-power mode, the ROVS function is automatically  
disabled, however; this bit is not affected. If this bit is set, then ROVS automatically  
re-enables when SD0 enters its normal operating mode.  
SD1 Remote Sense Enable  
0 = Disabled  
1 = Enabled  
Note that when SD1 is operating in low-power mode, the ROVS function is automatically  
disabled, however; this bit is not affected. If this bit is set, then ROVS automatically  
re-enables when SD1 enters its normal operating mode.  
B1  
B0  
1
1
Reserved  
Maxim Integrated  
137  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
Step-Down Regulator Interrupt Request Register  
REGISTER NAME  
IRQSD  
2
I C Slave Address  
0x3C  
Register Address  
Reset Value  
0x07  
0x00  
Access Type  
Read  
Special Features  
Reset Condition  
Cleared upon read operation  
Global shutdown  
TRIGGER  
TYPE  
BIT  
NAME  
DESCRIPTION  
DEFAULT  
SD0 Power Fail Interrupt  
PFI_SD0 0 = VSD0 has not fallen below VPOK_SDx since the last time this bit was read.  
1 = VSD0 has fallen below VPOK_SDx since the last time this bit was read.  
Falling  
edge  
B7  
0
SD1 Power Fail Interrupt  
PFI_SD1 0 = VSD1 has not fallen below its target voltage since the last time this bit was read.  
1 = VSD1 has fallen below its target voltage since the last time this bit was read.  
Falling  
edge  
B6  
B5  
0
0
SD2 Power Fail Interrupt  
PFI_SD2 0 = VSD2 has not fallen below its target voltage since the last time this bit was read.  
1 = VSD2 has fallen below its target voltage since the last time this bit was read.  
Falling  
edge  
SD3 Power Fail Interrupt  
PFI_SD3 0 = VSD3 has not fallen below its target voltage since the last time this bit was read.  
1 = VSD3 has fallen below its target voltage since the last time this bit was read.  
Falling  
edge  
B4  
0
B[3:0]  
Reserved  
0b0000  
Maxim Integrated  
138  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
Step-Down Regulator Interrupt Request Register Mask  
REGISTER NAME  
IRQMASKSD  
0x3C  
2
I C Slave Address  
Register Address  
Reset Value  
0x0F  
0xFF  
Access Type  
Read/write  
N/A  
Special Features  
Reset Condition  
Global shutdown  
BIT  
NAME  
DESCRIPTION  
DEFAULT  
SD0 Power Fail Interrupt Mask  
0 = Unmasked  
B7  
PFIM_SD0  
1
1 = Masked  
SD1 Power Fail Interrupt Mask  
0 = Unmasked  
1 = Masked  
B6  
B5  
PFIM_SD1  
PFIM_SD2  
PFIM_SD3  
1
1
SD2 Power Fail Interrupt Mask  
0 = Unmasked  
1 = Masked  
SD3 Power Fail Interrupt Mask  
0 = Unmasked  
B4  
1
1 = Masked  
B[3:0]  
Reserved. Write 0b1111. Read is don’t care.  
0b1111  
Maxim Integrated  
139  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
Step-Down Regulator Status  
REGISTER NAME  
STATSD  
0x3C  
2
I C Slave Address  
Register Address  
Reset Value  
0x14  
0xFF  
Access Type  
Read  
Special Features  
Reset Condition  
N/A  
Global shutdown  
BIT  
NAME  
DESCRIPTION  
SD0 Power Okay Status  
DEFAULT  
B7  
nPOK_SD0  
0 = V  
1 = V  
above POK rising threshold–OK  
below POK rising threshold–not OK  
1
1
1
SD0  
SD0  
SD1 Power Okay Status  
B6  
B5  
nPOK_SD1  
nPOK_SD2  
nPOK_SD3  
0 = V  
above POK rising threshold–OK  
below POK rising threshold–not OK  
SD1  
1 = V  
SD1  
SD2 Power Okay Status  
0 = V  
above POK rising threshold–OK  
below POK rising threshold–not OK  
SD2  
1 = V  
SD2  
SD3 Power Okay Status  
B4  
0 = V  
above POK rising threshold–OK  
1
SD3  
1 = V  
below POK rising threshold–not OK  
SD3  
B[3:0]  
Reserved  
0b1111  
Maxim Integrated  
140  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
CNFG1_Lx: Linear Regulator Configuration Register (LDO0 to LDO8)  
REGISTER NAME  
CNFG1_Lx  
2
I C Slave Address  
0x3C  
0x23: LDO0  
0x25: LDO1  
0x27: LDO2  
0x29: LDO3  
0x2B: LDO4  
0x2D: LDO5  
0x2F: LDO6  
0x31: LDO7  
Register Address  
0x33: LDO8  
Reset Value  
0b 01xx 00x0 (“x” is an OTP bit)  
Read/write  
Access Type  
Reset Condition  
Global shutdown  
ACCESS DESCRIPTION  
BIT  
NAME  
TYPE  
(DEFAULT VALUE IS SET WITH OTP)  
LDOx Power Mode Configuration  
When FPSSRC_Lx[1:0] = 0b11  
0b00: Output disabled. LDOx is off.  
0b01: Group low-power mode. LDOx operates in normal mode when the global  
low-power mode signal is low. When the global low-power mode signal is high,  
LDOx operates in low-power mode.  
0b10: Low-power mode. LDOx is forced into low-power mode. The maximum load  
current is 5mA and the quiescent supply current is 1.5µA.  
0b11: Normal mode. LDOx is forced into its normal operating mode.  
When FPSSRC_Lx[1:0] ≠ 0b11  
0b00 = LDOx is disabled when the flexible power sequencer set by FPSSRC_Lx is  
disabled. LDOx is enabled in normal-power mode when the flexible power sequencer  
is enabled.  
7:6  
PWR_MD_Lx[1:0]  
R/W  
0b01 = LDOx is disabled when the flexible power sequencer set by FPSSRC_Lx  
is disabled. LDOx is enabled when the flexible power sequencer is enabled. When  
LDOx is enabled, it operates in normal mode when the global low-power mode signal  
is low, and it operates in low-power mode when the global low-power mode signal is  
logic high.  
0b10 = LDOx is disabled when the flexible power sequencer set by FPSSRC_Lx is  
disabled. LDOx is enabled in low-power mode when the flexible power sequencer is  
enabled.  
0b11 = Same as 0b00.  
Maxim Integrated  
141  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
CNFG1_Lx: Linear Regulator Configuration Register (LDO0 to LDO8) (continued)  
ACCESS DESCRIPTION  
BIT  
NAME  
TYPE  
(DEFAULT VALUE IS SET WITH OTP)  
Target voltage for LDO0, LDO1  
0x00 = 0.800V  
0x01 = 0.825V  
0x02 = 0.850V  
0x03 = 0.875V  
0x04 = 0.900V  
0x05 = 0.925V  
0x06 = 0.950V  
0x07 = 0.975V  
0x08 = 1.000V  
0x09 = 1.025V  
0x0A = 1.050V  
0x0B = 1.075V  
0x0C = 1.100V  
0x0D = 1.125V  
0x0E = 1.150V  
0x0F = 1.175V  
0x10 = 1.200V  
0x11 = 1.225V  
0x12 = 1.250V  
0x13 = 1.275V  
0x14 = 1.300V  
0x15 = 1.325V  
0x16 = 1.350V  
0x17 = 1.375V  
0x18 = 1.400V  
0x19 = 1.425V  
0x1A = 1.450V  
0x1B = 1.475V  
0x1C = 1.500V  
0x1D = 1.525V  
0x1E = 1.550V  
0x1F = 1.575V  
0x20 = 1.600V  
0x21 = 1.625V  
0x22 = 1.650V  
0x23 = 1.675V  
0x24 = 1.700V  
0x25 = 1.725V  
0x26 = 1.750V  
0x27 = 1.775V  
0x28 = 1.800V  
0x29 = 1.825V  
0x2A = 1.850V  
0x2B = 1.875V  
0x2C = 1.900V  
0x2D = 1.925V  
0x2E = 1.950V  
0x2F = 1.975V  
0x30 = 2.000V  
0x31 = 2.025V  
0x32 = 2.050V  
0x33 = 2.075V  
0x34 = 2.100V  
0x35 = 2.125V  
0x36 = 2.150V  
0x37 = 2.175V  
0x38 = 2.200V  
0x39 = 2.225V  
0x3A = 2.250V  
0x3B = 2.275V  
0x3C = 2.300V  
0x3D = 2.325V  
0x3E = 2.350V  
0x3F = 2.375V  
TV_Lx[5:0]  
(Target Voltage for  
FB String 1: LDO0,  
LDO1)  
5:0  
R/W  
Target voltage for LDO2, LDO3, LDO5, LDO6, LDO7, LDO8  
0x00 = 0.80V  
0x01 = 0.85V  
0x02 = 0.90V  
0x03 = 0.95V  
0x04 = 1.00V  
0x05 = 1.05V  
0x06 = 1.10V  
0x07 = 1.15V  
0x08 = 1.20V  
0x09 = 1.25V  
0x0A = 1.30V  
0x0B = 1.35V  
0x0C = 1.40V  
0x0D = 1.45V  
0x0E = 1.50V  
0x0F = 1.55V  
0x10 = 1.60V  
0x11 = 1.65V  
0x12 = 1.70V  
0x13 = 1.75V  
0x14 = 1.80V  
0x15 = 1.85V  
0x16 = 1.90V  
0x17 = 1.95V  
0x18 = 2.00V  
0x19 = 2.05V  
0x1A = 2.10V  
0x1B = 2.15V  
0x1C = 2.20V  
0x1D = 2.25V  
0x1E = 2.30V  
0x1F = 2.35V  
0x20 = 2.40V  
0x21 = 2.45V  
0x22 = 2.50V  
0x23 = 2.55V  
0x24 = 2.60V  
0x25 = 2.65V  
0x26 = 2.70V  
0x27 = 2.75V  
0x28 = 2.80V  
0x29 = 2.85V  
0x2A = 2.90V  
0x2B = 2.95V  
0x2C = 3.00V  
0x2D = 3.05V  
0x2E = 3.10V  
0x2F = 3.15V  
0x30 = 3.20V  
0x31 = 3.25V  
0x32 = 3.30V  
0x33 = 3.35V  
0x34 = 3.40V  
0x35 = 3.45V  
0x36 = 3.50V  
0x37 = 3.55V  
0x38 = 3.60V  
0x39 = 3.65V  
0x3A = 3.70V  
0x3B = 3.75V  
0x3C = 3.80V  
0x3D = 3.85V  
0x3E = 3.90V  
0x3F = 3.95V  
TV_Lx[5:0]  
(Target Voltage for  
FB String 2: LDO2,  
LDO3, LDO5, LDO6,  
LDO7, LDO8)  
R/W  
Maxim Integrated  
142  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
CNFG1_Lx: Linear Regulator Configuration Register (LDO0 to LDO8) (continued)  
ACCESS DESCRIPTION  
BIT  
NAME  
TYPE  
(DEFAULT VALUE IS SET WITH OTP)  
Target voltage for LDO4  
0x00 = 0.8000V  
0x01 = 0.8125V  
0x02 = 0.8250V  
0x03 = 0.8375V  
0x04 = 0.8500V  
0x05 = 0.8625V  
0x06 = 0.8750V  
0x07 = 0.8875V  
0x08 = 0.9000V  
0x09 = 0.9125V  
0x0A = 0.9250V  
0x0B = 0.9375V  
0x0C = 0.9500V  
0x0D = 0.9625V  
0x0E = 0.9750V  
0x0F = 0.9875V  
0x10 = 1.0000V  
0x11 = 1.0125V  
0x12 = 1.0250V  
0x13 = 1.0375V  
0x14 = 1.0500V  
0x15 = 1.0625V  
0x16 = 1.0750V  
0x17 = 1.0875V  
0x18 = 1.1000V  
0x19 = 1.1125V  
0x1A = 1.1250V  
0x1B = 1.1375V  
0x1C = 1.1500V  
0x1D = 1.1625V  
0x1E = 1.1750V  
0x1F = 1.1875V  
0x20 = 1.2000V  
0x21 = 1.2125V  
0x22 = 1.2250V  
0x23 = 1.2375V  
0x24 = 1.2500V  
0x25 = 1.2625V  
0x26 = 1.2750V  
0x27 = 1.2875V  
0x28 = 1.3000V  
0x29 = 1.3125V  
0x2A = 1.3250V  
0x2B = 1.3375V  
0x2C = 1.3500V  
0x2D = 1.3625V  
0x2E = 1.3750V  
0x2F = 1.3875V  
0x30 = 1.4000V  
0x31 = 1.4125V  
0x32 = 1.4250V  
0x33 = 1.4375V  
0x34 = 1.4500V  
0x35 = 1.4625V  
0x36 = 1.4750V  
0x37 = 1.4875V  
0x38 = 1.5000V  
0x39 = 1.5125V  
0x3A = 1.5250V  
0x3B = 1.5375V  
0x3C = 1.5500V  
0x3D = 1.5625V  
0x3E = 1.5750V  
0x3F = 1.5875V  
TV_Lx[5:0]  
(Target Voltage for FB  
String 3: LDO4)  
R/W  
Maxim Integrated  
143  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
CNFG2_Lx: Linear Regulator Configuration Register Details  
REGISTER NAME  
CNFG2_Lx  
2
I C Slave Address  
0x3C  
0x24: LDO0  
0x26: LDO1  
0x28: LDO2  
0x2A: LDO3  
0x2C: LDO4  
0x2E: LDO5  
0x30: LDO6  
0x32: LDO7  
Register Address  
0x34: LDO8  
Reset Value  
0b 01xx 00x0 (“x” is an OTP bit)  
Read/write  
Access Type  
Reset Condition  
Global shutdown  
ACCESS  
TYPE  
BIT  
NAME  
DESCRIPTION (Default value is set with OTP)  
Overvoltage Clamp Enable for LDOx  
0 = Overvoltage clamp disabled  
1 = Overvoltage clamp enabled (default)  
OVCLMP_  
EN_ Lx  
7
R/W  
Auto Low-Power Mode Enable Bit  
0 = Auto low-power mode is disabled  
1 = Auto low-power mode is enabled (default)  
Reserved. This bit defaults to 1 and should be left at 1.  
ALPM_EN_  
Lx  
Reserved  
6
R/W  
Adjustable compensation for PDRVx LDOs (LDO2 to LDO6). For LDO0, LDO01, LDO7, and LDO8  
these bits must be 0b00.  
LDO2 to LD06 support operation with a remote output capacitor. The optimum compensation for each  
LDO is dependent on the series R-L-C impedance from the LDO output (LDO_OUTx) and its ground  
(GND). The series resistance (R) is from parasitic resistance of the PCB and the ESR of the capacitor.  
A good rule of thumb for parasitic “R” on a PCB is 0.5mΩ per square for 1oz copper and 1.0mΩ per  
square for 0.5oz copper. The series inductance (L) is from the parasitic inductance of the PCB and the  
ESL of the capacitor. A good rule of thumb for parasitic “L” on the PCB is 5nH/cm of electrical length.  
The series C is the output capacitor itself.  
5
Note that the COMP_Lx bits should only be changed when the LDO is disabled. If the compensation  
bits are changed when the LDO is enabled, the output voltage glitches as the compensation changes.  
0b00 = Fast transconductance setting for internal amplifier. Use this setting when the LDOs output  
capacitor loop has a series R-L-C output impedance of 50mΩ, 5nH, and ≥ C  
(Table 1).  
OUT_x  
This output impedance corresponds to an output capacitor that is placed directly at the output pins  
of the LDO (i.e., not remote). Load transient performance with this setting is 55mV typical between  
OUTxx and GND (default).  
COMP_Lx_  
[1:0]  
R/W  
0b01 = Medium-fast transconductance setting for internal amplifier. Use this setting when the LDOs  
output capacitor loop has a series R-L-C output impedance of 150mΩ, 10nH, and ≥ C  
OUT_x  
(Table 1). This output impedance corresponds to an output capacitor that is relatively close to the  
output pins of the LDO (2cm electrical length). Load transient performance with this setting is 66mV  
typical between OUTxx and GND.  
0b10 = Medium-slow transconductance setting for internal amplifier. Use this setting when the LDOs  
output capacitor loop has a series R-L-C output impedance of 500mΩ, 35nH, and ≥ C  
OUT_x  
(Table 1). This output impedance corresponds to an output capacitor that is placed at the point of  
load which may be a few centimeters from the output pins of the LDO (7cm electrical length). Load  
transient performance with this setting is 99mV typical between OUTxx and GND.  
4
0b11 = Slow transconductance setting for internal amplifier. Use this setting when the LDOs output  
capacitor loop has a series R-L-C output impedance of 1000mΩ, 50nH, and ≥ C  
(Table 1).  
OUT_x  
This output impedance corresponds to an output capacitor that is placed very far away from the  
output pins of the LDO (10cm electrical length). Load transient performance with this setting is  
125mV typical between OUTxx and GND.  
Maxim Integrated  
144  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
CNFG2_Lx: Linear Regulator Configuration Register Details (continued)  
ACCESS  
TYPE  
BIT  
NAME  
DESCRIPTION (default value is set with OTP)  
Voltage Okay Status Bit for LDOx  
3
2
POK_Lxx  
R
0 = The voltage is less than the POK threshold.  
1 = The voltage is above the POK threshold.  
R/W  
Reserved. This bit must always be cleared to 0.  
Active Discharge Enable for LDOx  
0 = The active discharge function is disabled. When the regulator is disabled, the internal  
active-discharge resistor is not connected to its output and the output voltage decays at a  
rate that is determined by the output capacitance and the external load. When the regulator is  
enabled, the internal active-discharge resistor is not connected to its output.  
1 = The active discharge function is enabled. When the regulator is disabled, an internal  
active-discharge resistor is connected to its output which discharges the energy stored in the  
output capacitance. When this regulator is enabled, the internal active-discharge resistor is  
disconnected from its output.  
1
0
ADE_Lx  
R/W  
Soft-Start Slew Rate Configuration for LDOx  
(Applies to both start-up and output voltage setting changes)  
0 = Fast startup and dynamic voltage change–100mV/µs  
1 = Slow startup and dynamic voltage change–5mV/µs  
SS_Lx  
R/W  
CNFG3_LDO: Linear Regulator Global Configuration Register  
REGISTER NAME  
CNFG3_LDO  
0x3C  
2
I C Slave Address  
Register Address  
Reset Value  
0x35  
0x00  
Access Type  
Read/write  
Global shutdown  
Reset Condition  
ACCESS  
TYPE  
BIT  
NAME  
DESCRIPTION  
7:1  
R/W  
Reserved. Write 0b0000000. Read is a don’t care.  
LDO Bias Enable  
0
L_B_EN  
R/W  
0 = Bias is disabled if all LDOs are disabled (default).  
1 = Bias is enabled.  
Maxim Integrated  
145  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
IRQ_LVL2_Lx: Interrupt Registers  
REGISTER NAME  
IRQ_LVL2_Lx  
2
I C Slave Address  
0x3C  
0x08: IRQ_LVL2_L0-7  
0x09: IRQ_LVL2_L8  
Register Address  
Reset Value  
0x00  
Access Type  
Reset Condition  
Read/write  
Global shutdown  
ACCESS  
TYPE  
BIT  
NAME  
DESCRIPTION  
IRQ Interrupt Bit  
IRQ_LVL2_Lx  
R
1: An interrupt has occurred. Cleared when read.  
0: No interrupt has occurred since the last time this register was read.  
IRQ_LVL2_L8, Register Address = 0x09, Default = 0x00  
Bit 7: Reserved  
Bit 6: Reserved  
Bit 5: Reserved  
Bit 4: Reserved  
Bit 3: Reserved  
Bit 2: Reserved  
Bit 1: Reserved  
Bit 0: IRQ_LVL2_L8  
7:0  
IRQ_LVL2_Lx  
R
IRQ_LVL2_L0-7, Register Address = 0x08, Default = 0x00  
Bit 7: IRQ_LVL2_L7  
Bit 6: IRQ_LVL2_L6  
Bit 5: IRQ_LVL2_L5  
Bit 4: IRQ_LVL2_L4  
Bit 3: IRQ_LVL2_L3  
Bit 2: IRQ_LVL2_L2  
Bit 1: IRQ_LVL2_L1  
Bit 0: IRQ_LVL2_L0  
7:0  
IRQ_LVL2_Lx  
R
Maxim Integrated  
146  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
IRQ_MSK_Lx: Interrupt Mask Registers  
REGISTER NAME  
IRQ_MSK_Lx  
2
I C Slave Address  
0x3C  
0x10: IRQ_MSK_L0-7  
0x11: IRQ_MSK_L8  
Register Address  
Reset Value  
0xFF  
Access Type  
Reset Condition  
Read/write  
Global shutdown  
ACCESS  
TYPE  
BIT  
NAME  
DESCRIPTION  
Interrupt Mask Bit  
MSK_Lx  
R/W  
1: Interrupt is masked and nIRQ is not driven low due to an LDO event.  
0: Interrupt is unmasked.  
IRQ_MSK_L8, Register Address = 0x11, Default = 0xFF  
Bit 7: Reserved  
Bit 6: Reserved  
Bit 5: Reserved  
Bit 4: Reserved  
Bit 3: Reserved  
Bit 2: Reserved  
Bit 1: Reserved  
Bit 0: IRQ_MSK_L8  
7:0  
IRQ_MSK_L8  
R/W  
IRQ_MSK_L0-7, Register Address = 0x10, Default = 0xFF  
Bit 7: IRQ_MSK_L7  
Bit 6: IRQ_MSK_L6  
Bit 5: IRQ_MSK_L5  
Bit 4: IRQ_MSK_L4  
Bit 3: IRQ_MSK_L3  
Bit 2: IRQ_MSK_L2  
Bit 1: IRQ_MSK_L1  
Bit 0: IRQ_MSK_L0  
7:0  
IRQ_MSK_L0-7  
R/W  
Maxim Integrated  
147  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
CNFG_GPIOx: GPIO Configuration Register  
REGISTER NAME  
CNFG1_GPIOx  
2
I C Slave Address  
0x3C  
0x36 for GPIO0  
0x37 for GPIO1  
0x38 for GPIO2  
0x39 for GPIO3  
0x3A for GPIO4  
0x3B for GPIO5  
0x3C for GPIO6  
0x3D for GPIO7  
Register Address  
Reset Value  
When AMEx = 0 GPIO0/1/2/3/5/6/7 = 0x02, GPIO4 = 0x03  
When AMEx = 1 GPIO0/5/6 = 0x02, GPIO1/2/3 = 0x00, GPIO4 = 0x01, GPIO7 = 0x00  
Access Type  
Read/write  
Reset Condition  
Global shutdown  
BIT  
NAME  
DESCRIPTION  
When set for GPO (DIRx = 0):  
DBNCx are don’t care when GPO.  
When set for GPI (DIRx = 1):  
Debounce configuration. GPIx has the following debounce times for both rising and falling edges.  
0b00 = No debounce  
0b01 = 8ms  
B[7:6]  
DBNCx[1:0]  
0b10 = 16ms  
0b11 = 32ms  
When set for GPO (DIRx = 0):  
REFE_IRQx are don’t care when GPO.  
When set for GPI (DIRx = 1):  
Rising edge and falling edge interrupt configuration. GPIx has the interrupt behavior which is  
programmed with REFE_IRQx.  
B[5:4] REFE_IRQx[1:0]  
0b00 = Mask interrupt  
0b01 = Falling edge interrupt  
0b10 = Rising edge interrupt  
0b11 = Falling and rising edge interrupt  
When set for GPO (DIRx = 0):  
GPO output drive level is programmed with Dox.  
0 = Logic low  
1 = Logic high (DRVx = 1) and open-drain (DRVx = 0)  
B3  
DOx  
When set for GPI (DIRx = 1):  
0 = Clear DOx to 0 and set PUEx to 1 to enable the internal pullup.  
1 = Set DOx to 1 and set PDEx to 1 to enable the internal pulldown.  
See the GPIO programming matrix (Table 7. GPIO Programming Matrix) for more information.  
When set for GPO (DIRx = 0):  
DIx is a don’t care when GPO.  
When set for GPI (DIRx = 1):  
Input Drive Level. GPIOx input logic level is specified by DIx.  
0 = Input logic low  
B2  
DIx  
1 = Input logic high  
When DIRx = 1, this bit is read only, writes to this bit are ignored.  
Maxim Integrated  
148  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
CNFG_GPIOx: GPIO Configuration Register (continued)  
BIT  
NAME  
DESCRIPTION  
When AMEx = 0:  
GPIOx direction  
0 = General purpose output (GPO)  
1 = General purpose input (GPI)  
When AMEx = 1:  
B1  
DIRx  
When GPIO1/2/3/4 are set as an alternate mode output, write DIR1/2/3/4 (respectively) to 0 but note  
that the output is internally set to be active-high. When GPIO0/5/6 is set as an alternate mode input,  
DIR0/5/6 (respectively), determine if the signal is active-high or active-low.  
0 = Active-low  
1 = Active-high  
When set for GPO (DIRx = 0):  
Push-pull output drive. GPIO output configuration is determined by PPDRVx.  
0 = Open-drain  
1 = Push-pull  
B0  
PPDRVx  
When set for GPI (DIRx = 1):  
PPDRVx is a don’t care when GPI.  
PUE_GPIO: GPIO Pullup Enable Register  
REGISTER NAME  
PUE_GPIO  
0x3C  
2
I C Slave Address  
Register Address  
Reset Value  
0x3E  
0x00  
Access Type  
Read/write  
Global shutdown  
Reset Condition  
BIT  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
NAME  
PDE7  
PDE6  
PDE5  
PDE4  
PDE3  
PDE2  
PDE1  
PDE0  
DESCRIPTION  
DEFAULT  
0
0
0
0
0
0
0
0
GPOIx Pulldown Enable  
0 = Pulldown disabled  
1 = Pulldown enabled  
See the GPIO programming matrix (Table 7) for more information.  
It is recommended that users disable the pullup and pulldown resistors  
for GPIO7 when it operates in alternate mode.  
Maxim Integrated  
149  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
PDE_GPIO: GPIO Pulldown Register  
REGISTER NAME  
PDE_GPIO  
0x3C  
2
I C Slave Address  
Register Address  
Reset Value  
0x3F  
0x00  
Access Type  
Read/write  
Global shutdown  
Reset Condition  
BIT  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
NAME  
PDE7  
PDE6  
PDE5  
PDE4  
PDE3  
PDE2  
PDE1  
PDE0  
DESCRIPTION  
DEFAULT  
0
0
0
0
0
0
0
0
GPOIx Pulldown Enable  
0 = Pulldown disabled  
1 = Pulldown enabled  
See the GPIO programming matrix (Table 7) for more information.  
It is recommended that the MAX77863 user disable the pullup and pulldown  
resistors for GPIO7 when it operates in alternate mode.  
Maxim Integrated  
150  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
AME_GPIO: Alternate Mode Enable GPIO Configuration Register  
REGISTER NAME  
AME_GPIO  
2
I C Slave Address  
0x3C  
Register Address  
Reset Value  
0x40  
0b xxxx xxxx (“x” is an OTP bit)  
Read/write  
Access Type  
Reset Condition  
Global shutdown  
BIT  
NAME  
DESCRIPTION  
Alternate Mode Enable for GPIO7  
0 = Standard GPI or GPO as programmed by DIR7  
1 = 1.25V buffered reference output.  
DBNC7 is a don’t care  
REFE_IRQx is a don’t care  
B7  
AME7  
DO7 is a don’t care  
DI7 is a don’t care  
DIR7 is internally cleared to 0  
PPDRV7 is a don’t care  
It is recommended that the MAX77863 user disable the pullup and pulldown resistors for GPIO7  
when it operates in alternate mode.  
Alternate Mode Enable for GPIO6  
0 = Standard GPI or GPO as programmed by DIR5  
1 = SD1 dynamic voltage scaling input  
DBNC6 is valid  
B6  
AME6  
REFE_IRQ6 is valid  
DO6 is a don’t care  
DI6 is valid  
DIR6 sets active low or active high  
PPDRV6 is a don’t care  
Alternate Mode Enable for GPIO5  
0 = Standard GPI or GPO as programmed by DIR5  
1 = SD0 dynamic voltage scaling input  
DBNC5 is valid  
B5  
AME5  
REFE_IRQ5 is valid  
DO5 is a don’t care  
DI5 is valid  
DIR5 sets active-low or active-high  
PPDRV5 is a don’t care  
Maxim Integrated  
151  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
AME_GPIO: Alternate Mode Enable GPIO Configuration Register (continued)  
BIT  
NAME  
DESCRIPTION  
Alternate Mode Enable for GPIO4  
0 = Standard GPI or GPO as programmed by DIR4  
1 = 32kHz output (32k_OUT1)  
DBNC4 is a don’t care  
B4  
AME4  
REFE_IRQ4 is a don’t care  
D04 is a don’t care and the output logic level is set by the 32kHz oscillator.  
DI4 is a don’t care  
DIR4 is internally cleared to 0  
PPDRV4 is valid  
Alternate Mode Enable for GPIO3  
0 = Standard GPI or GPO as programmed by DIR3  
1 = Flexible power sequencer active-high output  
DBNC3 is a don’t care, write to 0b00  
REFE_IRQ3 is a don’t care, write to 0b00  
D03 is internally set by the flexible power sequencer in accordance with the FPS_GPIO3 register  
settings.  
B3  
AME3  
DI3 is a don’t care, write to 0  
DIR3 is a don’t care, write to 0  
PPDRV3 is valid  
Alternate Mode Enable for GPIO2  
0 = Standard GPI or GPO as programmed by DIR2  
1 = Flexible power sequencer active-high output  
DBNC2 is a don’t care, write to 0b00  
REFE_IRQ2 is a don’t care, write to 0b00  
D02 is internally set by the flexible power sequencer in accordance with the FPS_GPIO2  
register settings.  
B2  
AME2  
DI2 is a don’t care, write to 0  
DIR2 is a don’t care, write to 0  
PPDRV2 is valid  
Alternate Mode Enable for GPIO1  
0 = Standard GPI or GPO as programmed by DIR1  
1 = Flexible power sequencer active-high output  
DBNC1 is a don’t care, write to 0b00  
REFE_IRQ1 is a don’t care, write to 0x00  
D01 is internally set by the flexible power sequencer in accordance with the FPS_GPIO1 register  
settings.  
B1  
AME1  
DI1 is a don’t care, write to 0  
DIR1 is a don’t care, write to 0  
PPDRV1 is valid  
Alternate Mode Enable for GPIO0  
0 = Standard GPI or GPO as programmed by DIR0  
1 = Low-power mode control input  
DBNC0 is valid  
B0  
AME0  
REFE_IRQ0 is valid  
DO0 is a don’t care  
DI0 is valid  
DIR0 sets active-low or active-high  
PPDRV0 is a don’t care  
Maxim Integrated  
152  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
IRQ_LVL2_GPIO: GPIO Level 2 Interrupt Register  
REGISTER NAME  
IRQ_LVL2_GPIO  
2
I C Slave Address  
0x3C  
Register Address  
Reset Value  
0x0A  
0b00000000  
Read  
Access Type  
Special Features  
Reset Condition  
Clear on read  
Global shutdown  
BIT  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
NAME  
DESCRIPTION  
DEFAULT  
EDGE7  
EDGE6  
EDGE5  
EDGE4  
EDGE3  
EDGE2  
EDGE1  
EDGE0  
0
0
0
0
0
0
0
0
GPIOx Edge Detection Interrupt  
0 = No edges have been detected on GPIOx since the last time this bit was  
read.  
1 = An edge corresponding to REFE_IRQx has been detected on GPIOx  
since the last time this bit was read. Note that REFE_IRQx = 0b00 sets an  
interrupt mask which forces EDGEx to 0.  
Maxim Integrated  
153  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
RTCINT: RTC Interrupt Register  
REGISTER NAME  
RTCINT  
2
I C Slave Address  
0x68  
Register Address  
Reset Value  
0x00  
0b00000000  
Read Only  
Clear on read  
Access Type  
Special Features  
Reset Condition  
V
< V  
RTCUVLO  
RTC  
BIT  
BIT NAME  
DESCRIPTION  
DEFAULT  
RTC 60 Second Timer Expired Interrupt  
0 = 60s timer did not expire  
1 = 60s timer expired  
0
RTC60S  
0
RTC Alarm 1 Interrupt  
0 = No interrupt  
1 = Interrupt  
1
2
3
4
RTCA1  
RTCA2  
SMPL  
0
0
0
0
RTC Alarm 2 Interrupt  
0 = No interrupt  
1 = Interrupt  
SMPL Event Interrupt  
0 = No interrupt  
1 = Interrupt  
RTC Periodic 1 Second Timer Expired Interrupt  
0 = 1s timer did not expire  
RTC1S  
1 = 1s timer expired  
WTSR Interrupt  
0 = No interrupt  
1 = Interrupt  
Reserved. This bit is internally set to 0.  
5
WTSR  
RSVD  
0
7:6  
Reserved  
00  
Maxim Integrated  
154  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
RTCINTM: RTC Interrupt Register Mask  
REGISTER NAME  
RTCINTM  
0x68  
2
I C Slave Address  
Register Address  
Reset Value  
0x01  
0x3F  
Access Type  
Read/write  
This is a double buffered register. Writes to this register are only uploaded to the RTC when UDR is  
set. This register is only updated from the RTC when RDUDR is set.  
Special Feature  
Reset Condition  
V
< V  
RTCUVLO  
RTC  
BIT  
BIT NAME  
DESCRIPTION  
DEFAULT  
RTC 60 Second Timer Expired Interrupt Mask  
0 = Not masked  
1 = Masked  
0
RTC60SM  
RTCA1M  
RTCA2M  
SMPLINTM  
RTC1SM  
1
RTC Alarm 1 Interrupt Mask  
0 = Not masked  
1 = Masked  
1
2
3
4
1
1
1
1
RTC Alarm 2 Interrupt Mask  
0 = Not masked  
1 = Masked  
SMPL Event Interrupt Mask  
0 = Not masked  
1 = Masked  
RTC Periodic 1 Second Timer Expired Interrupt Mask  
0 = Not masked  
1 = Masked  
5
RVSD  
Reserved. This bit is a don’t care.  
Reserved  
1
7:6  
RSVDM  
0b00  
Maxim Integrated  
155  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
RTCCNTLM: RTC Control Mode Register  
REGISTER NAME  
RTCCNTLM  
0x68  
2
I C Slave Address  
Register Address  
Reset Value  
0x02  
0x03  
Access Type  
Read/write  
This is a double buffered register. Writes to this register are only uploaded to the RTC when UDR is set.  
This register is only updated from the RTC when RDUDR is set.  
Special Feature  
Reset Condition  
V
< V  
RTCUVLO  
RTC  
BIT  
BIT NAME  
DESCRIPTION  
DEFAULT  
Access Control Of Bcd Bit In Register Rtccntl  
0
BCDM  
0 = Writes to Bit 0 (BCD) of register address 0x03 (RTCCNTL) not allowed  
1 = Writes to Bit 0 (BCD) of register address 0x03 (RTCCNTL) allowed  
1
Access Control of HRMODE Bit in Register RTCCNTL  
1
HRMODEM  
RSVD  
0 = Writes to bit 0 (HRMODE) of register address 0x03 (RTCCNTL) not allowed  
1 = Writes to bit 0 (HRMODE) of register address 0x03 (RTCCNTL) allowed  
1
7:2  
Reserved  
000000  
RTCCNTL: RTC Control Register  
REGISTER NAME  
RTCCNTL  
0x68  
2
I C Slave Address  
Register Address  
Reset Value  
0x03  
0x00  
Access Type  
Read/write  
This is a double buffered register. Writes to this register are only uploaded to the RTC when UDR is  
set. This register is only updated from the RTC when RDUDR is set.  
Special Feature  
Reset Condition  
V
< V  
RTCUVLO  
RTC  
BIT  
BIT NAME  
DESCRIPTION  
DEFAULT  
Data Mode For Time And Calendar Updates  
0 = Binary  
1 = Binary-coded decimal (BCD)  
0
BCD  
0
If BCDM = 0, writes to BCD are not allowed.  
When switching between binary and BCD, the time contents are no longer valid  
and must be reinitialized.  
Hour Format Control  
0 = 12-hour mode  
1 = 24-hour mode  
Note that the AMPM bit is defined for the HOUR or HOURA register only which  
makes sense for the 12-hr mode as the 24-hr mode already has AM/PM implied.  
1
HRMODE  
RSVD  
0
If HRMODEM = 0, writes to HRMODE are not allowed.  
When switching between 12-hour and 24-hour mode, the registers do not  
automatically update. The user must reprogram all registers.  
7:2  
Reserved  
000000  
Maxim Integrated  
156  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
RTCUPDATE0: RTC Update 0 Register  
REGISTER NAME  
RTCUPDATE0  
0x68  
2
I C Slave Address  
Register Address  
Reset Value  
0x04  
0x0A  
Access Type  
Read/write  
Reset Condition  
V
< V  
RTC RTCUVLO  
BIT  
BIT NAME  
DESCRIPTION  
DEFAULT  
Access control to update RTC registers by transferring data from the “write buffers” to  
the actual registers.  
0 = No action  
0
UDR  
1 = Update register  
0
Typical transfer time from write buffers to the timekeeper counters is 15ms after UDR is  
set.  
UDR is internally cleared to after the registers data has been transferred.  
Flags Cleared Upon Read Control Bit  
1
FCUR  
0 = User must write 0 to clear UDF and RBUDF.  
1 = UDF and RBUDF cleared upon read.  
1
This Bit Freezes The Sec Counter From Incrementing  
0 = SEC counter increments normally.  
1 = SEC counter stops incrementing which stops all subsequent registers in the timer  
string (MIN, HOUR, DAY, etc). This setting effectively stops the clock.  
2
3
FREEZE_SEC  
Reserved  
0
1
Reserved  
Access control to update RTC registers by transferring data from the actual registers to  
the “read buffers.”  
0 = No action  
1 = Update “read buffers”  
Typical transfer time from timekeeper counters to read is 15ms after RBUDR is set.  
RBUDR is internally cleared to after the registers data has been transferred.  
4
RBUDR  
RSVD  
0
7:5  
Reserved  
000  
Maxim Integrated  
157  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
RTCUPDATE1: RTC Update 1 Register  
REGISTER NAME  
RTCUPDATE1  
2
I C Slave Address  
0x68  
Register Address  
Reset Value  
0x05  
0x00  
Access Type  
Read only  
Special Feature  
Reset Condition  
Clear on read when FCUR is set  
V
< V  
RTCUVLO  
RTC  
BIT  
BIT NAME  
DESCRIPTION  
DEFAULT  
This bit is an update flag that indicates when an actual transfer of data from the “write Buffers”  
to the corresponding register occurs. When this bit is 1, then the user can initiate a new write  
operation, otherwise it is not safe to do so.  
0 = Update not done  
1 = Update done  
0
UDF  
0
Typical update time is 15ms after the UDR bit is set.  
If FCUR bit (RTCUPDATE0 register) is 1, this bit is automatically cleared after a read  
operation. If FCUR is 0, the user must write a 0 to clear it.  
This bit is an update flag that indicates when an actual transfer of data from the actual  
registers to “Read Buffers” occurs. When this bit is 1, then the user can initiate a new read  
operation, otherwise it is not safe to do so.  
0 = Update not done  
1 = Update done  
1
RBUDF  
RSVD  
0
Typical update time is 15ms after the RBUDR bit is set.  
If FCUR bit (RTCUPDATE0 register) is 1, this bit is automatically cleared after a read  
operation. If FCUR is 0, the user must write a 0 to clear it.  
7:2  
Reserved  
000000  
Maxim Integrated  
158  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
RTCSMPL: RTC Sudden Momentary Power Loss Register  
REGISTER NAME  
RTCSMPL  
0x68  
2
I C Slave Address  
Register Address  
Reset Value  
0x06  
0x00  
Access Type  
Read/write  
Reset Condition  
V
< V  
RTC RTCUVLO  
BIT  
BIT NAME  
DESCRIPTION  
DEFAULT  
1:0  
RVSD  
Reserved  
0b00  
Sets the SMPL Timer Threshold  
0b00 = 0.5s  
3:2  
SMPLT[1:0]  
0b01 = 1.0s  
0b00  
0b10 = 1.5s  
0b11 = 2.0s  
5:4  
6
RSVD  
RVSD  
Reserved  
00  
0
Reserved. This bit is a don’t care.  
SMPL Feature Enable Control  
0 = SMPL disabled  
7
SMPL_EN  
0
1 = SMPL enabled  
RTCSEC: RTC Seconds Register  
REGISTER NAME  
RTCSEC  
0x68  
2
I C Slave Address  
Register Address  
Reset Value  
0x07  
0x00  
Access Type  
Read/write  
This is a double buffered register. Writes to this register are only uploaded to the RTC when UDR is set.  
This register is only updated from the RTC when RDUDR is set.  
Special Feature  
Reset Condition  
V
< V  
RTCUVLO  
RTC  
BIT  
6:0  
7
BIT NAME  
DESCRIPTION  
DEFAULT  
0000000  
0
RTC Seconds Counter Register  
In binary format (BCD = 0), valid values for B6 through B0 are 0 through 59.  
In BCD format, valid data for B6 through B4 are 0 through 5, and valid data for B3  
through B0 are 0 through 9.  
SEC[6:0]  
RSVD  
Reserved  
Maxim Integrated  
159  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
RTCMIN: RTC Minutes Register  
REGISTER NAME  
RTCMIN  
0x68  
2
I C Slave Address  
Register Address  
Reset Value  
0x08  
0x00  
Access Type  
Read/write  
This is a double buffered register. Writes to this register are only uploaded to the RTC when UDR is set.  
This register is only updated from the RTC when RDUDR is set.  
Special Feature  
Reset Condition  
V
< V  
RTCUVLO  
RTC  
BIT  
6:0  
7
BIT NAME  
DESCRIPTION  
DEFAULT  
0b0000000  
0
RTC Minutes Counter Register  
In binary format (BCD = 0), valid values for B6 through B0 are 0 through 59. In BCD  
format (BCD = 1), valid data for B6 through B4 are 0 through 5, and valid data for B3  
through B0 are 0 through 9.  
MIN[6:0]  
RSVD  
Reserved  
RTCHOUR: RTC Hours Register  
REGISTER NAME  
RTCHOUR  
0x68  
2
I C Slave Address  
Register Address  
Access Type  
Reset Value  
0x09  
Read/write  
0x01  
This is a double buffered register. Writes to this register are only uploaded to the RTC when UDR is set.  
This register is only updated from the RTC when RDUDR is set.  
Special Feature  
Reset Condition  
V
< V  
RTCUVLO  
RTC  
BIT  
BIT NAME  
DESCRIPTION  
Default  
RTC Hours Counter Register  
Note that there would be two possibilities for values chosen for B5 through B0  
depending on the current status of the HRMODE Bit:  
If HRMODE = 1 (24Hr Mode)  
Binary Mode (BCD = 0): B5 is zero, and B4 through B0 valid values are 0 through 23.  
BCD Mode (BCD = 1): Valid values for B5 through B4 are 0 through 2, and valid values  
for B3 through B0 are 0 through 9 (the full number does not exceed 23).  
If HRMODE = 0 (12 Hr Mode)  
5:0  
HOUR[5:0]  
0b000001  
Binary Mode (BCD = 0): B5 and B4 are 0, and valid values for B3 through B0 are 1  
through 12.  
BCD Mode (BCD = 1): Valid values for B5 through B4 are 0 through 1, and valid values  
for B3 through B0 are 0 through 9 (the full number does not exceed 12).  
AM/PM Selection. AMPM is only valid when the clock is set for 12-hour mode  
(HRMODE = 0). When the clock is set for 24-hour mode, this bit is a don’t care.  
0 = AM  
1 = PM  
6
7
AMPM  
RSVD  
0
0
Reserved  
Maxim Integrated  
160  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
RTCDOW: RTC Day-of-Week Register  
REGISTER NAME  
RTCDOW  
0x68  
2
I C Slave Address  
Register Address  
Reset Value  
0x0A  
0x01  
Access Type  
Read/write  
This is a double buffered register. Writes to this register are only uploaded to the RTC when UDR is set.  
This register is only updated from the RTC when RDUDR is set.  
Special Feature  
Reset Condition  
V
< V  
RTCUVLO  
RTC  
BIT  
0
BIT NAME  
DESCRIPTION  
DEFAULT  
SUN  
MON  
TUE  
WED  
THU  
FRI  
1
0
0
0
0
0
0
0
Bits B6 through B0 each represent one day of the week. As such, only one bit is set  
at a time.  
1
B[6:0] = 000_0001 represents Sunday  
B[6:0] = 000_0010 represents Monday  
B[6:0] = 000_0100 represents Tuesday  
B[6:0] = 000_1000 represents Wednesday  
B[6:0] = 001_0000 represents Thursday  
B[6:0] = 010_0000 represents Friday  
B[6:0] = 100_0000 represents Saturday  
2
3
4
5
6
SAT  
7
RSVD  
Reserved  
RTCMONTH: RTC Month Register  
REGISTER NAME  
RTCMONTH  
0x68  
2
I C Slave Address  
Register Address  
Reset Value  
0x0B  
0x01  
Access Type  
Read/write  
This is a double buffered register. Writes to this register are only uploaded to the RTC when UDR is  
set. This register is only updated from the RTC when RDUDR is set.  
Special Feature  
Reset Condition  
V
< V  
RTCUVLO  
RTC  
BIT  
4:0  
7:5  
BIT NAME  
DESCRIPTION  
Default  
0b00001  
0b000  
RTC Months Counter Register  
In Binary format (BCD = 0), valid values for B4 through B0 are 1 through 12. In BCD  
format (BCD = 1), valid data for B4 is either 0 or 1, and valid data for B3 through B0 are  
0 through 9 (the full value in BCD format does not exceed 12 and must be greater than  
zero).  
MONTH[4:0]  
RSVD  
Reserved  
Maxim Integrated  
161  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
RTCYEAR: RTC Year Register  
REGISTER NAME  
RTCYEAR  
0x68  
2
I C Slave Address  
Register Address  
Reset Value  
0x0C  
0x00  
Access Type  
Read/write  
This is a double buffered register. Writes to this register are only uploaded to the RTC when UDR is set.  
This register is only updated from the RTC when RDUDR is set.  
Special Features  
Reset Condition  
V
< V  
RTCUVLO  
RTC  
BIT  
BIT NAME  
DESCRIPTION  
DEFAULT  
RTC Years Counter Register  
In Binary format (BDC = 0), valid values for B7 through B0 are 0 through 99.  
In BCD format (BCD = 1), valid data for B7 through B4 are 0 through 9,  
and similarly valid data for B3 through B0 are 0 through 9.  
7:0  
YEAR[7:0]  
0b00000000  
RTCDOM: RTC Day-of-Month Register  
REGISTER NAME  
RTCDOM  
0x68  
2
I C Slave Address  
Register Address  
Reset Value  
0x0D  
0x01  
Access Type  
Read/Write  
This is a double buffered register. Writes to this register are only uploaded to the RTC when UDR is set.  
This register is only updated from the RTC when RDUDR is set.  
Special Features  
Reset Condition  
V
< V  
RTCUVLO  
RTC  
BIT  
5:0  
7:6  
BIT NAME  
DESCRIPTION  
DEFAULT  
0b000001  
0b000  
RTC Days in a Month Register  
In Binary format (BCD = 0), valid values for B5 through B0 are 1 through 31. In BCD  
format (BCD = 1), valid data for B4 through B5 are 0 through 3, and valid data for B3  
through B0 are 0 through 9 (the full value should be greater than 0 but not exceed  
31).  
Furthermore, there is a restriction on choosing the number of days in a month  
according to the selected month and year as shown below:  
For months 1, 3, 5, 7, 8, 10, and 12 the selected value for B5 through B0 must be 1  
through 31.  
For months 4, 6, 9, and 11 the selected value for B5 through B0 must be 1 through 30.  
For month 2, or month of Feb., the selected value for B5 through B0 must be 1  
through 28 for normal years, or must be 1 through 29 for leap years. Does not  
account for solar years. Leap years are those that are evenly divisible by 4. 0, 4, 8, .  
. . 24, 28, . . .72, 76 . . . 92, 96  
DAY[5:0]  
RSVD  
Reserved  
Note: It is the responsibility of the user to make sure that days selected for the month actually matches the intended  
number of days in the month. For example, a user should not select 31 days for the months of February, April, June,  
September, or November.  
Maxim Integrated  
162  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
RTCSECAx: RTC ALARMx Seconds Register  
REGISTER NAME  
RTCSECAx  
2
I C Slave Address  
0x68  
0x0E for RTCSECA1  
0x15 for RTCSECA2  
Register Address  
Reset Value  
Access Type  
0x00  
Read/write  
This is a double buffered register. Writes to this register are only uploaded to the RTC when UDR is  
set. This register is only updated from the RTC when RDUDR is set.  
Special Feature  
Reset Condition  
V
< V  
RTCUVLO  
RTC  
BIT  
BIT NAME  
DESCRIPTION  
Default  
RTC Seconds Alarm Register  
6:0  
SECAx[6:0]  
AESECAx  
If the value of SECAx is equal to the value of SEC and AESECAx = 1, an RTCAx  
alarm interrupt is generated.  
0b0000000  
Alarm Enable Control  
0 = Alarm disable  
1 = Alarm enable  
7
0
RTCMINAx: RTC ALARMx Minutes Register  
REGISTER NAME  
RTCMINAx  
2
I C Slave Address  
0x68  
0x0F for RTCMINA1  
0x16 for RTCMINA2  
Register Address  
Reset Value  
Access Type  
0x00  
Read/write  
This is a double buffered register. Writes to this register are only uploaded to the RTC when UDR is  
set. This register is only updated from the RTC when RDUDR is set.  
Special Feature  
Reset Condition  
V
< V  
RTCUVLO  
RTC  
BIT  
BIT NAME  
DESCRIPTION  
DEFAULT  
RTC Minutes Alarm Register  
6:0  
MINAx[6:0]  
AEMINAx  
If the value of MINAx is equal to the value of MIN and AEMINAx is 1, an RTCAx alarm  
interrupt is generated.  
0b0000000  
Alarm Enable Control  
0 = Alarm disable  
1 = Alarm enable  
7
0
Maxim Integrated  
163  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
RTCHOURAx: RTC ALARMx Hours Register  
REGISTER NAME  
RTCHOURAx  
2
I C Slave Address  
0x68  
0x10 for RTCHOURA1  
0x17 for RTCHOURA2  
Register Address  
Reset Value  
Access Type  
0x00  
Read/write  
This is a double buffered register. Writes to this register are only uploaded to the RTC when UDR is set.  
This register is only updated from the RTC when RDUDR is set.  
Special Feature  
Reset Condition  
V
< V  
RTCUVLO  
RTC  
BIT  
BIT NAME  
DESCRIPTION  
DEFAULT  
RTC Hours Alarm Register  
If the value of HOURAx is equal to the value of HOUR and AEHOURAx is 1, an  
RTCAx alarm interrupt is generated.  
If HRMODE = 1 (24-hr mode)  
Binary mode: B5 is zero, and B4 through B0 valid values are 0 through 23.  
BCD mode: Valid values for B5 through B4 are 0 through 2, and valid values for B3  
through B0 are 0 through 9 (the full number should not exceed 23).  
If HRMODE = 0 (12-hr mode)  
5:0  
HOURAx[5:0]  
0b000000  
Binary mode: B5 and B4 are 0, and valid values for B3 through B0 are 1 through 12.  
BCD mode: Valid values for B5 through B4 are 0 through 1, and valid values for B3  
through B0 are 0 through 9 (the full number should not exceed 12).  
AM/PM selection, only valid during 12-hr mode.  
6
7
AMPMAx  
0 = AM  
1 = PM  
0
0
Alarm Enable Control  
0 = Alarm disable  
1 = Alarm enable  
AEHOURAx  
Maxim Integrated  
164  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
RTCDOWA1: RTC ALARMx Day-of-Week Register  
REGISTER NAME  
RTCDOWAx  
2
I C Slave Address  
0x68  
0x11 for RTCDOWA1  
0x18 for RTCDOWA2  
Register Address  
Reset Value  
Access Type  
0x01  
Read/write  
This is a double buffered register. Writes to this register are only uploaded to the RTC when UDR is set.  
This register is only updated from the RTC when RDUDR is set.  
Special Feature  
Reset Condition  
V
< V  
RTCUVLO  
RTC  
BIT  
0
BIT NAME  
DESCRIPTION  
DEFAULT  
SUNAx  
MONAx  
TUEAx  
WEDAx  
THUAx  
FRIAx  
1
0
0
0
0
0
RTC Day Of Week Alarm Register  
If the value of RTCDOWAx is equal to the value of DOW and AEDOWAx is 1, an  
RTCAx alarm interrupt is generated.  
1
2
3
Bits B6 through B0 each represents one day of the week. This would dictate that only  
one bit at a time is allowed to be set as shown below:  
B[6:0] = 0b000_0001 represents Sunday  
4
5
B[6:0] = 0b000_0010 represents Monday  
B[6:0] = 0b000_0100 represents Tuesday  
B[6:0] = 0b000_1000 represents Wednesday  
B[6:0] = 0b001_0000 represents Thursday  
B[6:0] = 0b010_0000 represents Friday  
6
7
SATAx  
0
0
B[6:0] = 0b100_0000 represents Saturday  
Alarm Enable Control  
0 = Alarm disable  
1 = Alarm enable  
AEDOWAx  
Maxim Integrated  
165  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
RTCMONTHAx: RTC ALARMx Month Register  
REGISTER NAME  
RTCMONTHAx  
2
I C Slave Address  
0x68  
0x12 for RTCMONTHA1  
0x19 for RTCMONTHA2  
Register Address  
Reset Value  
Access Type  
0x01  
Read/write  
This is a double buffered register. Writes to this register are only uploaded to the RTC when UDR is  
set. This register is only updated from the RTC when RDUDR is set.  
Special Feature  
Reset Condition  
V
< V  
RTCUVLO  
RTC  
BIT  
4:0  
6:5  
7
BIT NAME  
DESCRIPTION  
DEFAULT  
0b00001  
0b00  
RTC Month Alarm Register  
If the value of MONTHAx is equal to the value of MONTH and AEMONTHAx is 1, an  
RTCAx alarm interrupt is generated.  
MONTHAx[4:0]  
RSVD  
Reserved  
Alarm Enable Control  
0 = Alarm disable  
1 = Alarm enable  
AEMONTHAx  
0
RTCYEARAx: RTC ALARMx Year Register  
REGISTER NAME  
RTCYEARAx  
2
I C Slave Address  
0x68  
0x13 for RTCYEARA1  
0x1A for RTCYEARA2  
Register Address  
Reset Value  
Access Type  
0x00  
Read/write  
This is a double buffered register. Writes to this register are only uploaded to the RTC when UDR is  
set. This register is only updated from the RTC when RDUDR is set.  
Special Features  
Reset Condition  
V
< V  
RTCUVLO  
RTC  
BIT  
BIT NAME  
DESCRIPTION  
DEFAULT  
RTC Year Alarm Register  
6:0  
YEARAx[6:0]  
AEYEARAx  
If the value of YEARAx is equal to the value of YEAR and AEYEARAx is 1, an  
RTCAx alarm interrupt is generated.  
0b0000000  
Alarm Enable Control  
0 = Alarm disable  
1 = Alarm enable  
7
0
Maxim Integrated  
166  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
RTCDOMAx: RTC ALARMx Day-of-Month Register  
REGISTER NAME  
RTCDOMAx  
2
I C Slave Address  
0x68  
0x14 for RTCDOMA1  
0x1B for RTCDOMA2  
Register Address  
Reset Value  
Access Type  
0x01  
Read/write  
This is a double buffered register. Writes to this register are only uploaded to the RTC when UDR is  
set. This register is only updated from the RTC when RDUDR is set.  
Special Feature  
Reset Condition  
V
< V  
RTCUVLO  
RTC  
BIT  
5:0  
6
BIT NAME  
DESCRIPTION  
DEFAULT  
RTC Day Of Month Alarm 1 Register  
If the value of DAYAx is equal to the value of DAY and AEDAYAx is 1, an  
RTCAx alarm interrupt is generated.  
DAYAx[5:0]  
RSVD  
0b000001  
Reserved  
0
0
Alarm Enable Control  
0 = Alarm disable  
1 = Alarm enable  
7
AEDAYAx  
Note: It is the responsibility of the user to make sure that days selected for the month actually matches the intended  
number of days in the month. For example, a user should not select 31 days for the months of February, April, June,  
September, or November.  
RTC Block Issues  
Issue 1: Does not account for solar year which induces a calendar error on Feb 29, 2100.  
Issue 2: Does not allow alarms in BCD to be set past year 2079.  
Issue 3: Does not have ability to set the century. This is not necessarily a problem but it means that the host has to  
control the century.  
Pedigree  
The RTC is shared between the PR83, PR80, and PQ63. PR61 and PR77 use a very similar RTC.  
Maxim Integrated  
167  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
CNFG1_32K: 32kHz Oscillator Configuration 1  
REGISTER NAME  
CNFG1_32K  
2
I C Slave Address  
0x3C  
Register Address  
Reset Value  
0x03  
0b x1xx 11xx (“x” is an OTP bit)  
Read/write  
Access Type  
B[7:4] are reset by V  
B[3:0] are reset by V  
< V  
< V  
RTC  
RTC  
RTCUVLO  
RTCUVLO  
Reset Condition  
or global shutdown  
BIT  
B7  
BIT NAME  
DESCRIPTION  
DEFAULT  
Status of Crystal Driver Output  
0 = Output frequency is not OK.  
1 = Output frequency is OK.  
This is read only.  
32K_OK  
0
1
B6  
Reserved  
Crystal Driver Load Capacitance  
0b00 = 12pF per node  
B[5:4]  
32KLOAD[1:0]  
0b01 = 22pF per node  
xx  
0b10 = No internal load cap selected  
0b11 = 10pF per node  
B3  
B2  
Reserved  
1
1
32kHz Oscillator Output Enable  
0 = Disabled  
32K_OUT0_EN  
1 = Enabled  
32kHz Oscillator Mode of Operation  
0b00 = Low-power mode  
0b01 = Global low-power mode. The oscillator operates in low-jitter mode when  
the global low-power mode signal is low. When the global low-power mode  
signal is high, the oscillator operates in low-power mode.  
0b10 = Same as 0b00  
B[1:0]  
PWR_MD_32K[1:0]  
xx  
0b11 = Low-jitter mode  
Maxim Integrated  
168  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
CNFGBBC: Backup Battery Configuration Register  
REGISTER NAME  
CNFGBBC  
0x3C  
2
I C Slave Address  
Register Address  
Reset Value  
0x04  
0x41  
Access Type  
Read/write  
Reset Condition  
V
< V  
RTC RTCUVLO  
BIT  
BIT NAME  
DESCRIPTION  
Default  
Output Resistor  
0x00 = 0.1kΩ0x01 = 1kΩ  
0x02 = 3kΩ  
7:6  
BBCRS[1:0]  
0b01  
0x03 = 6kΩ  
Low Charging Current Enable  
0 = Enable  
5
BBCLOWIEN  
0
1 = Disable  
Charging Voltage Limit Setting  
0x00 = 2.5V  
4:3  
BBCVS[1:0]  
0x01 = 3.0V  
0b00  
0x02 = 3.3V  
0x03 = 3.5V  
Charging Current Setting  
BBCLOWIEN = 0  
0x00 = 50ΜA  
0x01 = 50μA  
0x02 = 50μA  
2:1  
BBCCS[1:0]  
0x03 = 100μA  
BBCLOWIEN = 1  
0x00 = 200μA  
0x01 = 600μA  
0x10 = 800μA  
0x11 = 400μA  
0b00  
Backup Battery Charger Enable  
0 = Backup battery charger off  
1 = Backup battery charger on  
0
BBCEN  
1
Maxim Integrated  
169  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
ONOFFCNFG1: On/Off Controller Configuration Register 1  
REGISTER NAME  
ONOFFCNFG1  
0x3C  
2
I C Slave Address  
Register Address  
Reset Value  
0x41  
0b 0xxx x00x (“x” is an OTP bit)  
Read/write  
Access Type  
Reset Condition  
Global shutdown  
BIT  
NAME  
DESCRIPTION  
Software Reset. See Figure 4 for a flow diagram.  
0 = No action  
1 = Generates a global shutdown event that initiates the FPS0 and FPS1 power-down event  
and generates a reset.  
B7  
SFT_RST  
If both SFT_RST and PWR_OFF are set, the resulting action is SFT_RST. See the SFT_RST  
and PWR_OFF Logic table.  
B6  
RSVD  
Reserved. Write 1. Read is don’t care.  
Manual Reset Time  
0b000 = 2s  
0b001 = 3s  
0b010 = 4s  
0b011 = 5s  
0b100 = 6s  
0b101 = 8s  
0b110 = 10s  
0b111 = 12s  
B[5:3]  
MRT[2:0]  
Sleep Enable  
0 = Pulling EN1 low does not place the AP into sleep mode  
1 = Clears the latch that enables FPS1 from a wakeup event (“WAKE”). With this latch clear,  
the AP can be placed into sleep mode by pulling EN1 low.  
B2  
SLPEN  
SLPEN is automatically cleared when the MAX77863 “OFF” signal rises or when a wakeup  
event occurs.  
Power Off. See Figure 4  
0 = No action  
1 = Generates a global shutdown event that initiates the FPS0 and FPS1 power-down event  
but does not generate a reset. Note that PWR_OFF is cleared at the end of any global  
shutdown event that it generates.  
If both SFT_RST and PWR_OFF are set, the resulting action is SFT_RST. See the SFT_RST  
and PWR_OFF Logic table.  
B1  
B0  
PWR_OFF  
EN0DLY  
EN0 Delay  
0 = The only delay for EN0 is the debounce circuit.  
1 = In addition to the debounce circuit, there is an addition 1 second delay for EN0.  
SFT_RST and PWR_OFF Logic  
SFT_RST  
PWR_OFF  
BEHAVIOR  
0
0
1
1
0
1
0
1
No action  
Power off function  
Software reset function  
Reserved  
Maxim Integrated  
170  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
ONOFFCNFG2: On/Off Controller Configuration Register 2  
REGISTER NAME  
ONOFFCNFG2  
0x3C  
2
I C Slave Address  
Register Address  
Reset Value  
0x42  
0b 000x x111  
Read/write  
Global shutdown  
Access Type  
Reset Condition  
BIT  
NAME  
DESCRIPTION  
Automatic Wakeup Due To Software Reset (Figure 4)  
0 = Setting SFT_RST results in a power down and default off state where the device waits  
for a wakeup event.  
B7  
B6  
SFT_RST_WK  
WD_RST_WK  
1 = Setting SFT_RST results in a power cycle and the default on state.  
Automatic Wakeup Due To System Watchdog Reset (Figure 4)  
0 = A system watchdog timer expiring results in a power down and default-off state where the  
device waits for a wakeup event.  
1 = a system watchdog time expiring results in a power cycle and the default on state  
Active-Low, Low-Power Mode During Sleep Mask Bit  
0 = Masked. EN1 cannot affect EN1_LPM and LPM_BUS.  
1 = Unmasked. If the IC is not asserting RSO the EN1 signal can affect  
EN1_LPM and LPM_BUS. See Figure 8 for the simplified logic.  
B5  
nSLP_LPM_MSK  
nSLP_LPM_MSK is automatically cleared when the MAX77863 “OFF” signal rises.  
Wakeup on ACOK  
B4  
B3  
B2  
B1  
B0  
WK_ACOK  
WK_LID  
0 = An ACOK event does not generate a wakeup signal.  
1 = An ACOK event generates a wakeup signal.  
Wakeup on LID  
0 = A LID event does not generate a wakeup signal.  
1 = A LID event generates a wakeup signal.  
Wakeup on ALARM1_R  
0 = An ALARM1_R event does not generate a wakeup signal.  
1 = An ALARM1_R event generates a wakeup signal.  
WK_ALARM1R  
WK_ALARM2R  
WK_EN0  
Wakeup on ALARM2_R  
0 = An ALARM2_R event does not generate a wakeup signal.  
1 = An ALARM2_R event generates a wakeup signal.  
Wakeup on EN0  
0 = An EN0 event does not generate a wakeup signal.  
1 = An EN0 event generates a wakeup signal.  
Maxim Integrated  
171  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
ONOFFIRQ: On/Off Controller Interrupt Register  
REGISTER NAME  
ONOFFIRQ  
0x3C  
2
I C Slave Address  
Register Address  
Reset Value  
0x0B  
0x00  
Access Type  
Read  
Special Features  
Reset Condition  
Clear on read  
Global shutdown  
BIT  
NAME  
DESCRIPTION  
DEFAULT  
ACOK Rising Interrupt  
B7  
ACOK_R  
0 = No ACOK rising edges have occurred since the last time this bit was read.  
1 = An ACOK rising edge as occurred since the last time this bit was read.  
0
ACOK Falling Interrupt  
B6  
B5  
B4  
B3  
B2  
B1  
ACOK_F  
LID_R  
0 = No ACOK falling edges have occurred since the last time this bit was read.  
1 = An ACOK falling edge as occurred since the last time this bit was read.  
0
0
0
0
0
0
LID Rising Interrupt  
0 = No LID rising edges have occurred since the last time this bit was read.  
1 = An LID rising edge as occurred since the last time this bit was read.  
LID Falling Interrupt  
0 = No LID falling edges have occurred since the last time this bit was read.  
1 = An LID falling edge as occurred since the last time this bit was read.  
LID_F  
EN0 Rising Interrupt  
0 = No EN0 rising edges have occurred since the last time this bit was read.  
1 = An EN0 rising edge as occurred since the last time this bit was read.  
EN0_R  
EN0 Falling Interrupt  
0 = No EN0 falling edges have occurred since the last time this bit was read.  
1 = An EN0 falling edge as occurred since the last time this bit was read.  
EN0_F  
EN0 Active for 1s Interrupt  
0 = EN0 has not been active for 1 second since the last time this bit was read.  
1 = EN0 has been active for 1 second since the last time this bit was read.  
EN0_1SEC  
Manual Reset Warning Interrupt  
The time for the hard power off warning is one setting shorter than what is programmed  
by MRT[2:0] (i.e., HRDPOW[2:0]-1). When MRT[2:0] = 0b000, MRWRN is essentially a  
don’t care.  
B0  
MRWRN  
0
0 = EN0 has not been active for MRT[2:0]-1 since the last time this bit was read.  
1 = EN0 has been active for MRT[2:0]-1 since the last time this bit was read.  
Maxim Integrated  
172  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
ONOFFIRQM: On/Off Controller Interrupt Mask Register  
REGISTER NAME  
ONOFFIRQM  
0x3C  
2
I C Slave Address  
Register Address  
Reset Value  
0x12  
0x00  
Access Type  
Read/write  
Global shutdown  
Reset Condition  
BIT  
NAME  
DESCRIPTION  
DEFAULT  
ACOK Rising Interrupt Mask  
0 = Unmasked  
1 = Masked  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
ACOK_RM  
ACOK_FM  
LID_RM  
0
ACOK Falling Interrupt Mask  
0 = Unmasked  
1 = Masked  
0
0
0
0
0
0
0
LID Rising Interrupt Mask  
0 = Unmasked  
1 = Masked  
LID Falling Interrupt Mask  
0 = Unmasked  
1 = Masked  
LID_FM  
EN0 Rising Interrupt Mask  
0 = Unmasked  
1 = Masked  
EN0_RM  
EN0 Falling Interrupt Mask  
0 = Unmasked  
1 = Masked  
EN0_FM  
EN0 Active for 1s Interrupt Mask  
0 = Unmasked  
1 = Masked  
EN0_1SECM  
MRWRNM  
Manual Reset Warning Interrupt Mask  
0 = Unmasked  
1 = Masked  
Maxim Integrated  
173  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
ONOFFSTAT: On/Off Controller Status Register  
REGISTER NAME  
ONOFFSTAT  
0x3C  
2
I C Slave Address  
Register Address  
Reset Value  
0x15  
0x00  
Access Type  
Read  
Reset Condition  
Global shutdown  
BIT  
NAME  
DESCRIPTION  
Reserved  
DEFAULT  
B[7:3]  
0b00000  
EN0 Input Status  
For OTP_EN0AL = 0  
0 = EN0 is not active (logic low).  
1 = EN0 is active (logic high).  
B2  
B1  
B0  
EN0  
0
0
0
For OTP_EN0AL = 1  
0 = EN0 is not active (logic high).  
1 = EN0 is active (logic low).  
ACOK Input Status  
For OTP_ACOKAL = 0  
0 = ACOK is not active (logic low).  
1 = ACOK is active (logic high).  
ACOK  
For OTP_ACOKAL = 1  
0 = ACOK is not active (logic high).  
1 = ACOK is active (logic low).  
LID Input Status  
For OTP_LIDAL = 0  
0 = LID is not active (logic low).  
1 = LID is active (logic high).  
LID  
For OTP_LIDAL = 1  
0 = LID is not active (logic high).  
1 = LID is active (logic low).  
Maxim Integrated  
174  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
NVERC: Non-Volatile Event Recorder  
REGISTER NAME  
NVERC  
0x3C  
2
I C Slave Address  
Register Address  
Reset Value  
0x0C  
0x40  
Access Type  
Read only  
Clear on read  
Special Features  
Reset Condition  
V
< V  
RTCUVLO  
RTC  
BIT  
BIT NAME  
DESCRIPTION  
Shutdown Due to Reset Input  
DEFAULT  
B7  
RSTIN  
0 = The reset input signal (RSI) did not cause a global shutdown.  
1 = The reset input signal (RSI) caused a global shutdown.  
0
Shutdown Due to Main-Battery Undervoltage Lockout  
0 = Main-battery did not cause a global shutdown.  
1 = The main-battery caused a global shutdown by falling below its UVLO threshold  
B6  
B5  
MBU  
MBO  
1
0
(V  
< V  
). If the sudden momentary power loss (SMPL) function is  
MBATT  
MBATTUVLO  
enabled, the PMIC can automatically recover from a momentary power loss.  
See the Voltage Monitors section for more information.  
Shutdown Due to Main-Battery Overvoltage Lockout  
0 = Main-battery did not cause a global shutdown.  
1 = The main-battery caused a global shutdown by rising above its OVLO threshold  
(V  
< V  
).  
MBATT  
MBATTOVLO  
Shutdown Due to Main-Battery Low  
B4  
B3  
B2  
B1  
B0  
MBLSD  
TOVLD  
HDRST  
WTCHDG  
SHDN  
0 = Main-battery low did not cause a global shutdown.  
1 = Main-battery low caused a global shutdown because MBLPD is set and V  
0
0
0
0
0
< V  
.
MON  
MONL  
Shutdown Due to Junction Temperature Overload  
0 = the junction temperature did not cause a global shutdown  
1 = the junction temperature caused a global shutdown by rising above T  
JSHDN.  
Shutdown Due to Hard-Reset (a.k.a. Manual Reset)  
0 = The hard-reset function did not cause a global shutdown.  
1 = The hard-reset function caused a global shutdown.  
Shutdown Due to System Watchdog Timer  
0 = The system watchdog timer did not cause a global shutdown.  
1 = The system watchdog timer caused a global shutdown.  
Shutdown Due to Shutdown Pin (SHDN)  
0 = The shutdown pin did not cause a global shutdown.  
1 = The shutdown pin caused a global shutdown.  
Maxim Integrated  
175  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
NVERC: Non-Volatile Event Recorder (continued)  
REGISTER  
REGISTER  
ADDRESS  
B0  
NAME  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
(HEX)  
0x43  
0x44  
0x45  
0x4F  
0x50  
0x51  
0x52  
0x53  
0x54  
0x55  
0x56  
0x57  
CNFGFPS0  
CNFGFPS1  
CNFGFPS2  
FPS_SD0  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
TFPS0[2:0]  
TFPS1[2:0]  
SRCFPS0[1:0]  
SRCFPS1[1:0]  
SRCFPS2[1:0]  
ENFPS0  
ENFPS1  
ENFPS2  
TFPS2[2:0]  
FPSSRC_SD0[1:0]  
FPSSRC_SD1[1:0]  
FPSSRC_SD2[1:0]  
FPSSRC_SD3[1:0]  
FPSPU_SD0[2:0]  
FPSPU_SD1[2:0]  
FPSPU_SD2[2:0]  
FPSPU_SD3[2:0]  
RSVD  
FPSPD_SD0[2:0]  
FPS_SD1  
FPSPD_SD1[2:0]  
FPSPD_SD2[2:0]  
FPSPD_SD3[2:0]  
RSVD RSVD  
FPS_SD2  
FPS_SD3  
FPS_SD4  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
FPS_GPIO1  
FPS_GPIO2  
FPS_GPIO3  
FPS_RSO  
FPSSRC_GPIO1[1:0]  
FPSSRC_GPIO2[1:0]  
FPSSRC_GPIO3[1:0]  
FPSSRC_RSO[1:0]  
FPSPU_GPIO1[2:0]  
FPSPU_GPIO2[2:0]  
FPSPU_GPIO3[2:0]  
FPSPU RSO[2:0]  
FPSPD_GPIO1[2:0]  
FPSPD_GPIO2[2:0]  
FPSPD_GPIO3[2:0]  
FPSPD_RSO[2:0]  
Maxim Integrated  
176  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
CNFGFPSx : Flexible Power Sequencing x Master Configuration Register  
This register contains the configuration information for the flexible power sequencing master timer x configuration.  
REGISTER NAME  
CNFGFPS0/1  
2
I C Slave Address  
0x3C  
0x43: CNFGFPS0  
0x44: CNFGFPS1  
Register Address  
Reset Value  
0b 00xx xxxx (“x” is an OTP bit)  
Read/write  
Access Type  
Special Features  
Reset Condition  
Global shutdown  
BIT  
NAME  
DESCRIPTION  
MSB  
B7  
Reserved for future use.  
Reserved for future use.  
B6  
B5  
Timer Period. Specifies the time period between each sequencer event.  
0x00 = 0b000 = 40µs  
0x04 = 0b100 = 640µs  
B4  
0x01 = 0b001 = 80µs  
0x05 = 0b101 = 1,280µs  
TFPSx[2:0]  
0x02 = 0b010 = 160µs  
0x06 = 0b110 = 2,560µs  
B3  
0x03 = 0b011 = 320µs  
0x07 = 0b111 = 5,120µs  
Enable Source. Specifies the enable source for the sequencer.  
0b00 = EN0 hardware input  
0b01 = EN1 hardware input  
0b10 = ENFPSx software bit  
0b11 = Reserved  
B2  
B1  
SRCFPSx[1:0]  
ENFPSx  
Software Enable  
0 = Disable FPS0/1  
1 = Enable FPS0/1  
LSB  
B0  
X = ENFPSx is a don’t care if SRCFPS0/1[1:0]≠0b10  
Maxim Integrated  
177  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
CNFGFPSx : Flexible Power Sequencing x Master Configuration Register (continued)  
REGISTER NAME  
CNFGFPS2  
2
I C Slave Address  
0x3C  
Register Address  
Reset Value  
0x45: CNFGFPS2  
0b 00xx xxxx (“x” is an OTP bit)  
Read/Write  
Access Type  
Special Features  
Reset Condition  
Global Shutdown  
BIT  
NAME  
DESCRIPTION  
MSB  
B7  
Reserved for future use.  
B6  
Reserved for future use.  
Timer Period.  
B5  
Specifies the time period between each sequencer event.  
0x00 = 0b000 = 40µs  
0x01 = 0b001 = 80µs  
0x02 = 0b010 = 160µs  
0x03 = 0b011 = 320µs  
0x04 = 0b100 = 640µs  
0x05 = 0b101 = 1,280µs  
0x06 = 0b110 = 2,560µs  
0x07 = 0b111 = 5,120µs  
B4  
B3  
B2  
B1  
TFPS2[2:0]  
Enable Source. Specifies the enable source for the sequencer.  
0b00 = FPS2 enable follows FPS0  
0b01 = FPS2 enable follows FPS1  
0b10 = ENFPS2 software bit  
SRCFPS2[1:0]  
ENFPS2  
0b11 = Reserved  
Software Enable  
0 = Disable FPS2  
1 = Enable FPS2  
LSB  
B0  
X = ENFPS2 is a don’t care if SRCFPS2[1:0]≠0b10  
Maxim Integrated  
178  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
FPS_x: Flexible Power Sequencing Slave Configuration Register (FPSx)  
This register contains the configuration information for the flexible power sequencing slave configuration register x.  
REGISTER NAME  
FPS_x  
2
I C Slave Address  
0x3C  
Register Address  
Reset Value  
18 total FPSx registers–0x46 to 0x57  
0b xxxx xxxx (“x” is an OTP bit)  
Read/write  
Access Type  
Special Features  
Reset Condition  
Global shutdown  
BIT  
NAME  
DESCRIPTION  
Regulator Flexible Power Sequencer Source  
0b00 = FPS0  
0b01 = FPS1  
0b10 = FPS2  
B[7:6]  
FPSSRCx[1:0]  
0b11 = Not configured as part of a flexible power sequence:  
The LDO enables are controlled by PWR_MD_Lx.  
The step-down regulator enables are controlled by PWR_MD_SDx.  
nRST_IO is transparent with respect to the flexible power sequencers.  
Regulator Flexible Power Sequencer Power Up Period. Specifies the power up time  
slots.  
0x0 = 0b000 = 0  
0x1 = 0b001 = 1  
0x2 = 0b010 = 2  
0x3 = 0b011 = 3  
0x4 = 0b100 = 4  
0x5 = 0b101 = 5  
0x6 = 0b110 = 6  
0x7 = 0b111 = 7  
B[5:3]  
FPSPUx[2:0]  
Regulator Flexible Power Sequencer Power Up Period. Specifies the power up time  
slots.  
0x0 = 0b000 = 0  
0x1 = 0b001 = 1  
0x2 = 0b010 = 2  
0x3 = 0b011 = 3  
0x4 = 0b100 = 4  
0x5 = 0b101 = 5  
0x6 = 0b110 = 6  
0x7 = 0b111 = 7  
B[2:0]  
FPSPDx[2:0]  
Maxim Integrated  
179  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
Typical Application Circuit  
AVSD  
INA_SD0  
VMBA TT  
VSD2  
1µF  
IN_LDO0-1  
IN_LDO2  
4.7µF  
6.3V  
6.3V  
0402  
0603  
1µH > 4A  
PGND  
PGND  
GND  
LXA_SD0  
PGA_SD0  
VSD0  
22µF  
6.3V  
0805  
VMBA TT  
IN_LDO3-5  
IN_LDO4-6  
0.6V TO 1.4V  
6A CONTINUOUS  
8A PEAK  
1µF  
6.3V  
0402  
PGND  
INB_SD0  
VMBA TT  
GND  
GND  
4.7µF  
6.3V  
0603  
VSD3  
IN_LDO7-8  
1µF  
6.3V  
0402  
1µH > 4A  
PGND  
PGND  
LXB_SD0  
PGB_SD0  
MAX77863  
22µF  
6.3V  
0805  
0.8 TO 2.35V AT 150mA  
0.8 TO 2.35V AT 150mA  
0.8 TO 3.95V AT 150mA  
0.8 TO 3.95V AT 300mA  
0.8 TO 1.58V AT 150mA  
0.8 TO 3.95V AT 150mA  
0.8 TO 3.95V AT 150mA  
0.8 TO 2.35V AT 450mA  
0.8 TO 2.35V AT 300mA  
VLDO0  
OUT_LDO0  
OUT_LDO1  
OUT_LDO2  
OUT_LDO3  
OUT_LDO4  
OUT_LDO5  
OUT_LDO6  
OUT_LDO7  
OUT_LDO8  
FB_SD0  
SNSP_SD0  
SNSN_SD0  
PGND  
22µF  
4V  
VLDO1  
VLDO2  
VLDO3  
VLDO4  
VLDO5  
VLDO6  
VLDO7  
VLDO8  
ALL LDOs  
UTIL IZE THE  
POINT-OF-  
LOAD  
CAPACITOR  
FOR  
LOAD  
0603  
IN_SD1  
VMBA TT  
2.2µF  
6.3V  
0603  
PGND  
1µH > 3A  
PGND  
PGND  
STABILITY  
LX_SD1  
PG_SD1  
VSD1  
22µF  
6.3V  
0805  
0.6V TO 1.55V AT 3A  
MON  
MBA TT  
FB_SD1  
SNSP_SD1  
SNSN_SD1  
PGND  
22µF  
VMBA TT  
LOAD  
4V  
0.1µF  
0603  
6.3V  
0402  
1S2P  
Li+ OR  
Li-POLY  
GND  
IN_SD2  
VMBA TT  
2.2µF  
6.3V  
GND  
PGND  
0603  
PGND  
BBATT  
XOUT  
1µH > 2.5A  
PGND  
PGND  
0.1µF  
6.3V  
0402  
LX_SD2  
PG_SD2  
VSD2  
LITHIUM  
MANGANESE  
22µF  
6.3V  
0603  
0.6V TO 3.38V AT 2A  
10µF  
6.3V  
0603  
FB_SD2  
IN_SD3  
PGND  
LOAD  
GND  
XIN  
XGND  
VMBA TT  
2.2µF  
6.3V  
0603  
PGND  
GND  
1µH > 2.5A  
PGND  
PGND  
32kHz_OUT  
VSD2  
32k_OUT0  
INI2C  
LX_SD3  
PG_SD3  
VSD3  
22µF  
6.3V  
0603  
0.6V TO 3.38V AT 2A  
0.1µF  
6.3V  
0402  
10µF  
6.3V  
0603  
FB_SD3  
PGND  
LOAD  
GND  
SDA  
SCL  
nIRQ  
SDA  
SCL  
nIRQ  
GPIO_INA  
GPIO0  
GPIO1  
GPIO2  
GPIO3  
VMBA TT  
0.1µF  
PGND  
GPIO0  
GPIO1  
GPIO2  
GPIO3  
6.3V  
0402  
GND  
EN0  
EN1  
EN2  
GPIO_INB  
GPIO4  
GPIO5  
GPIO6  
GPIO7  
VSD2  
0.1µF  
6.3V  
0402  
GPIO4  
GPIO5  
GPIO6  
GPIO7  
D_SD3  
GND  
GND  
FROM UP THERMAL SENSOR  
FROM SYSTEM’S BATTERY CHARGER  
FROM SYSTEM’S BATTERY DOOR  
SHDN  
ACOK  
LID  
VSD2  
100k  
nRST_IO  
nRESET_OUT  
RESET  
BUTTON  
NICx  
GND  
XGND PGND  
GND  
GND  
Figure 40. MAX77863 Typical Application Circuit for 1s Battery Configuration  
Maxim Integrated  
180  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
Typical Application Circuit (continued)  
AC-TO-DC ADAPTER  
BATTERY  
EN_5V0  
STEP-D OW N  
REGULATOR  
CHARGER  
MBA TT  
LOW-IQ LDO  
2S1P  
Li+ OR  
Li-POLY  
VSD2  
IN_LDO0-1  
IN_LDO2  
AVSD  
INA_SD0  
SD5V0  
1µF  
6.3V  
0402  
4.7µF  
6.3V  
SD5V0  
0603  
1µF  
6.3V  
0402  
PGND  
VSD3  
GND  
1µH > 4A  
IN_LDO3-5  
IN_LDO4-6  
1µF  
6.3V  
0402  
LXA_SD0  
PGA_SD0  
VSD0  
GND  
22µF  
6.3V  
0805  
0.6V TO 1.4V  
6A CONTINUOUS  
8A PEAK  
GND  
IN_LDO7-8  
PGND  
PGND  
0.8 to 2.35V at 150mA  
0.8 to 2.35V at 150mA  
0.8 to 3.95V at 150mA  
0.8 to 3.95V at 300mA  
0.8 to 1.58V at 150mA  
0.8 to 3.95V at 150mA  
0.8 to 3.95V at 150mA  
0.8 to 2.35V at 450mA  
0.8 to 2.35V at 300mA  
VLDO0  
VLDO1  
VLDO2  
VLDO3  
VLDO4  
VLDO5  
VLDO6  
VLDO7  
VLDO8  
OUT_LDO0  
OUT_LDO1  
OUT_LDO2  
OUT_LDO3  
OUT_LDO4  
OUT_LDO5  
OUT_LDO6  
OUT_LDO7  
OUT_LDO8  
INB_SD0  
SD5V0  
4.7µF  
6.3V  
0603  
ALL LDOs  
UTIL IZE THE  
POINT-OF-  
LOAD  
CAPACITOR  
FOR  
MAX77863  
1µH > 4A  
PGND  
LXB_SD0  
PGB_SD0  
22µF  
6.3V  
0805  
PGND  
FB_SD0  
SNSP_SD0  
SNSN_SD0  
PGND  
STABILITY  
22µF  
4V  
0603  
LOAD  
MON  
MBA TT  
IN_SD1  
SD5V0  
0.1µF  
PGND  
2.2µF  
6.3V  
0603  
GND  
6.3V  
0402  
GND  
1µH > 3A  
GND  
PGND  
LITHIUM  
MANGANESE  
0.1µF  
6.3V  
0402  
BBATT  
XOUT  
XIN  
LX_SD1  
PG_SD1  
VSD1  
22µF  
6.3V  
0805  
0.6V TO 1.55V AT 3A  
PGND  
XGND  
FB_SD1  
SNSP_SD1  
SNSN_SD1  
GND  
PGND  
22µF  
GND  
32KHZ_OUT  
LOAD  
4V  
0603  
32k_OUT0  
INI2C  
VSD2  
0.1µF  
6.3V  
0402  
IN_SD2  
SD5V0  
PGND  
2.2µF  
6.3V  
0603  
GND  
1µH > 2.5A  
PGND  
PGND  
SDA  
SCL  
nIRQ  
SDA  
SCL  
nIRQ  
LX_SD2  
PG_SD2  
VSD2  
22µF  
6.3V  
0603  
0.6V TO 3.38V AT 2A  
10µF  
6.3V  
0603  
EN0  
EN1  
EN2  
FB_SD2  
IN_SD3  
LOAD  
PGND  
SD5V0  
D_SD3  
2.2µF  
6.3V  
0603  
GND  
PGND  
FROM UP THERMAL SENSOR THERM  
FROM SYSTEM’S BATTERY CHARGER  
FROM SYSTEM’S BATTERY DOOR  
SHDN  
ACOK  
LID  
1µH > 2.5A  
PGND  
PGND  
ACOK  
LID  
LX_SD3  
PG_SD3  
VSD3  
22µF  
6.3V  
0603  
0.6V TO 3.38V AT 2A  
GPIO_INA  
GPIO0  
GPIO1  
GPIO2  
GPIO3  
10µF  
6.3V  
0603  
FB_SD3  
NICx  
0.1µF  
6.3V  
0402  
GPIO0  
GPIO1  
EN_5V0  
GPIO3  
LOAD  
PGND  
GND  
GND  
100k  
PGND  
VSD2  
VSD2  
GPIO_INB  
GPIO4  
GPIO5  
GPIO6  
GPIO7  
0.1µF  
6.3V  
0402  
GPIO4  
GPIO5  
GPIO6  
GPIO7  
nRST_IO  
nRESET_OUT  
RESET  
BUTTON  
GND  
GND  
XGND PGND  
GND  
Figure 41. MAX77863 Typical Application Circuit for 2s Battery Configurations  
Maxim Integrated  
181  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
Ordering Information  
PART  
PIN-PACKAGE  
OPTIONS  
90-WLP, 0.4mm Pitch,  
10 x 9 Array, 4.1mm x 3.8mm x 0.7mm  
4 DC-to-DC  
OTP Version CID4 = 0x01  
MAX77863AEWJ+T  
All devices are specified over the -40°C to +85°C ambient operating temperature range.  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
T = Table and reel.  
Package Information  
For the latest package outline information and land patterns  
(footprints), go to www.maximintegrated.com/packages. Note  
that a “+”, “#”, or “-” in the package code indicates RoHS status  
only. Package drawings may show a different suffix character, but  
the drawing pertains to the package regardless of RoHS status.  
PACKAGE  
TYPE  
PACKAGE OUTLINE  
LAND  
PATTERN NO.  
CODE  
NO.  
90 Bump,  
WLP  
0.4mm Pitch,  
10 x 9 Array  
4.1 x 3.8 x  
0.7mm  
Maxim’s  
Application  
Note 1891:  
Wafer-Level  
Package (WLP)  
W903A4+1  
21-0573  
Maxim Integrated  
182  
www.maximintegrated.com  
MAX77863  
Complete System PMIC, Featuring 13 Regulators,  
8 GPIOs, RTC, and Flexible Power Sequencing for  
Multicore Applications  
Revision History  
REVISION REVISION  
PAGES  
CHANGED  
DESCRIPTION  
NUMBER  
DATE  
0
1
9/19  
Initial release  
2/20  
Fixed typo in title  
1–183  
For pricing, delivery, and ordering information, please visit Maxim Integrated’s online storefront at https://www.maximintegrated.com/en/storefront/storefront.html.  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses  
are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits)  
shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
©
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  
2020 Maxim Integrated Products, Inc.  
183  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY