MAX792LCPE [MAXIM]

Power Supply Supervisor ; 电源监控\n
MAX792LCPE
型号: MAX792LCPE
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Power Supply Supervisor
电源监控\n

监控
文件: 总16页 (文件大小:272K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-0147; Rev. 3; 4/00  
Microprocessor and Nonvolatile  
Memory Supervisory Circuits  
General Description  
Features  
The MAX792/MAX820 microprocessor (µP) supervisory  
circuits provide the most functions for power-supply  
and watchdog monitoring in systems without battery  
backup. Built-in features include the following:  
Manual-Reset Input  
200ms Power-OK/Reset Time Delay  
Independent Watchdog Timer—Preset or Adjustable  
On-Board Gating of Chip-Enable Signals  
Memory Write-Cycle Completion  
• µP reset: Assertion of RESET and RESET outputs during  
power-up, power-down, and brownout conditions.  
RESET is guaranteed valid for VCC down to 1V.  
10ns (max) Chip-Enable Gate Propagation Delay  
Voltage Monitor for Overvoltage Warning  
• Manual-reset input.  
• Two-stage power-fail warning: A separate low-line  
comparator compares VCC to a preset threshold  
120mV above the reset threshold; the low-line and  
reset thresholds can be programmed externally.  
2% Reset and Low-Line Threshold Accuracy  
(MAX820, external programming mode)  
Ordering Information  
• Watchdog fault output: Assertion of WDO if the watchdog  
input is not toggled within a preset timeout  
period.  
PART**  
TEMP. RANGE  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
PIN-PACKAGE  
16 Plastic DIP  
16 Narrow SO  
Dice*  
MAX792_CPE  
MAX792_CSE  
MAX792_C/D  
• Pulsed watchdog output: Advance warning of  
impending WDO assertion from watchdog timeout that  
causes hardware shutdown.  
Ordering Information continued at end of data sheet.  
* Dice are tested at T = +25°C, DC parameters only.  
**These parts offer a choice of five different reset threshold volt-  
ages. Select the letter corresponding to the desired nominal  
reset threshold voltage and insert it into the blank to complete the  
part number.  
• Write protection of CMOS RAM, EEPROM, or other  
memory devices.  
A
The MAX792 and MAX820 are identical, except the  
MAX820 guarantees higher low-line and reset threshold  
accuracy ( 2ꢀ).  
SUFFIX  
RESET THRESHOLD (V)  
Applications  
Computers  
Controllers  
L
M
T
S
R
4.62  
4.37  
3.06  
2.91  
2.61  
Intelligent Instruments  
Critical µP Power Monitoring  
Typical Operating Circuit  
V
CC  
0.1µF  
3
V
V
CC  
CC  
13  
14  
CE OUT  
4
5
RESET IN/INT  
µP  
RAM  
MAX792  
ADDRESS  
DECODER  
CE IN  
LLIN/  
A0-A15  
REFOUT  
6
OVO  
LOW LINE  
RESET  
10  
1
NMI  
7
8
OVI  
RESET  
9
MR  
SWT  
GND  
12  
GND  
________________________________________________________________ Maxim Integrated Products  
1
For free samples and the latest literature, visit www.maxim-ic.com or phone 1-800-998-8800.  
For small orders, phone 1-800-835-8769.  
Microprocessor and Nonvolatile  
Memory Supervisory Circuits  
ABSOLUTE MAXIMUM RATINGS  
Input Voltage (with respect to GND)  
Operating Temperature Ranges:  
V
.......................................................................-0.3V to +6V  
MAX792_C__/MAX820_C__...............................0°C to +70°C  
MAX792_E__/MAX820_E__.............................-40°C to +85°C  
MAX792_MJE__/MAX820_MJE__.................-55°C to +125°C  
Storage Temperature Range.............................-65°C to +160°C  
Lead Temperature (soldering, 10s) .................................+300°C  
CC  
All Other Inputs.......................................-0.3V to (V  
Input Current  
GND ................................................................................25mA  
All Other Outputs ............................................................25mA  
+ 0.3V)  
CC  
Continuous Power Dissipation (T = +70°C)  
A
Plastic DIP (derate 10.53mW/°C above +70°C) ..........842mW  
Narrow SO (derate 9.52mW/°C above +70°C) ............762mW  
CERDIP (derate 10.00mW/°C above +70°C)...............800mW  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
= 2.75V to 5.5V, T = T  
to T  
MIN  
, unless otherwise noted.)  
MAX  
CC  
A
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Operating Voltage Range  
(Note 1)  
2.75  
V
Supply Current  
70  
150  
µA  
RESET COMPARATOR  
MAX792L, MAX820L  
MAX792M, MAX820M  
MAX792R, MAX820R  
MAX792S, MAX820S  
MAX792T, MAX820T  
4.50  
4.25  
2.55  
2.85  
3.00  
4.55  
4.30  
2.55  
2.85  
3.00  
1.25  
1.274  
4.62  
4.37  
2.61  
2.91  
3.06  
4.75  
4.50  
2.70  
3.00  
3.15  
4.70  
4.45  
2.66  
2.96  
3.11  
1.35  
1.326  
Reset Threshold Voltage—  
Internal Threshold Mode  
V
MAX820L, T = +25°C, V  
A
falling  
falling  
falling  
falling  
falling  
CC  
(V  
)
TH  
MAX820M, T = +25°C, V  
CC  
CC  
CC  
CC  
A
MAX820R, T = +25°C, V  
A
MAX820S, T = +25°C, V  
A
MAX820T, T = +25°C, V  
A
MAX792, V  
MAX820, V  
= 5V or V  
= 5V or V  
= 3V  
1.30  
1.30  
Reset Threshold Voltage  
External Threshold Mode (V  
CC  
CC  
CC  
CC  
V
)
TH  
= 3V  
RESET IN/INT Mode Threshold  
(Note 2)  
Internal threshold mode  
60  
25  
mV  
0.01  
0.016 x V  
70  
nA  
V
RESET IN/INT Leakage Current  
Reset Threshold Hysteresis  
Reset Comparator Delay  
TH  
V
V
falling  
rising  
µs  
ms  
CC  
Reset Active Timeout Period  
140  
200  
280  
0.3  
0.4  
CC  
I
I
I
I
I
I
I
= 50µA, V  
= 1.6mA  
= 1V, V  
falling  
0.01  
SINK  
CC  
CC  
0.1  
SINK  
V
V
RESET Output Voltage  
= 1mA  
V
- 1  
SOURCE  
SOURCE  
CC  
= 100µA  
V
- 0.5  
CC  
= 1.6mA  
0.1  
0.4  
SINK  
RESET Output Voltage  
= 1mA  
V
- 1  
SOURCE  
SOURCE  
CC  
= 100µA  
V
- 0.5  
CC  
2
_______________________________________________________________________________________  
Microprocessor and Nonvolatile  
Memory Supervisory Circuits  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= 2.75V to 5.5V, T = T  
to T  
MIN  
, unless otherwise noted.)  
MAX  
CC  
A
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
LOW-LINE COMPARATOR  
MAX792/MAX820L/M  
MAX792/MAX820R/S/T  
50  
40  
120  
100  
210  
210  
Low-Line Threshold Voltage  
(Internal Threshold Mode)—V  
mV  
V
TH  
MAX792, V  
= 5V OR V  
= 5V OR V  
= 3V  
= 3V  
1.25  
1.274  
1.30  
1.30  
1.35  
1.326  
CC  
CC  
CC  
CC  
Low-Line Threshold Voltage  
(External Programming Mode)  
MAX820, V  
Low-Line Hysteresis  
(Internal Threshold Mode)  
20  
mV  
LLIN/REFOUT Leakage Current  
External Programming Mode  
0.01  
450  
25  
nA  
µs  
V
Low-Line Comparator Delay  
V
falling  
CC  
I
= 3.2mA  
0.4  
50  
SINK  
LOWLINE Voltage  
I
= 1µA  
V
CC  
- 1  
SOURCE  
Output source current, V  
= 5.5V  
10  
µA  
LOWLINE Short-Circuit Current  
CC  
WATCHDOG FUNCTION  
SWT connected to V  
SWT connected to V  
V
1.00  
1.00  
1.60  
1.60  
2.25  
2.25  
CC, CC = 5V  
sec  
ms  
ns  
V
V
CC, CC = 3V  
4.7nF capacitor connected from SWT to GND  
,
70  
Watchdog Timeout Period  
V
CC = 3V  
4.7nF capacitor connected from SWT to GND  
,
100  
V
V
CC = 5V  
V
V
100  
300  
CC = 5V  
Watchdog Input Pulse Width  
= 0V, V = V  
IL  
IH  
CC  
CC = 3V  
I
I
I
I
= 50µA, V  
= 1.6mA  
= 1V, V  
falling  
0.01  
0.1  
0.30  
0.4  
SINK  
CC  
CC  
SINK  
WDO Output Voltage  
= 1mA  
V
- 1  
SOURCE  
SOURCE  
CC  
= 100µA  
V
- 0.5  
CC  
70  
ns  
WDPO to WDO Delay  
WDPO Duration  
0.5  
1.7  
0.01  
0.1  
6.0  
0.3  
0.4  
ms  
I
I
I
I
= 50µA, V  
= 1V, V  
falling  
SINK  
CC  
CC  
= 1.6mA  
SINK  
V
WDPO Output Voltage  
= 1mA  
V
- 1  
SOURCE  
SOURCE  
CC  
= 100µA  
V
- 0.5  
CC  
V
0.75 x V  
IH  
IL  
IH  
IL  
CC  
V
= 4.25V  
CC  
CC  
V
V
V
0.8  
WDI Threshold Voltage  
WDI Input Current  
V
0.9 x V  
CC  
V
= 2.55V  
0.2  
1
µA  
_______________________________________________________________________________________  
3
Microprocessor and Nonvolatile  
Memory Supervisory Circuits  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= +2.75V to +5.5V, T = T  
to T  
MIN  
, unless otherwise noted.)  
MAX  
CC  
A
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
OVERVOLTAGE COMPARATOR  
OVI Input Threshold  
V
CC  
= 5V or V  
= 3V  
CC  
1.25  
1.30  
0.01  
1.35  
25  
V
OVI Leakage Current  
nA  
I
I
= 3.2mA  
0.4  
SINK  
V
OVO Output Voltage  
OVO Short-Circuit Current  
OVI to OVO Delay  
= 1µA  
V
CC  
- 1  
SOURCE  
Output source current, V  
= 5.5V  
10  
13  
55  
50  
µA  
µs  
CC  
V
V
= 100mV, OVI rising  
OD  
OD  
= 100mV, OVI falling  
CHIP-ENABLE GATING  
V
V
V
V
0.75 x V  
0.75 x V  
IH  
IL  
IH  
IL  
CC  
V
V
= 4.25V  
= 2.55V  
CC  
0.8  
V
CE IN Threshold Voltage  
CC  
CC  
0.2  
1
Disabled mode  
Enabled mode  
0.005  
75  
µA  
CE IN Leakage Current  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
= 5V  
= 3V  
= 5V  
= 3V  
= 5V  
= 3V  
150  
300  
2.5  
0.4  
10  
CE IN to CE OUT Resistance  
150  
0.5  
mA  
ns  
CE OUT Short-Circuit Current  
Disabled mode, CE  
= 0V  
OUT  
0.05  
0.2  
6
Chip-Enable Propagation Delay 50source impedance driver,  
(Note 3)  
C
= 50pF  
LOAD  
8
13  
I
= -100µA  
= 10µA  
falling  
V
- 1  
Chip-Enable Output Voltage  
High (Reset Active)  
OUT  
CC  
V
I
V
CC  
- 0.5  
OUT  
V
15  
µs  
Reset Active to CE OUT High  
MANUAL RESET  
CC  
25  
µs  
µs  
V
MR Minimum Pulse Width  
12  
1.3  
23  
MR to RESET Propagation Delay  
MR Threshold Range  
1.1  
5
1.5  
80  
V
to V  
= 4.25V  
= 5.5V  
CC  
CC  
µA  
MR Pull-Up Current  
MR = 0V  
V
CC  
= 2.5V  
1
Note 1: The minimum operating voltage is 2.75V; however, the MAX792R and MAX820R are guaranteed to operate down to their  
preset reset thresholds.  
Note 2: Pulling RESET IN/INT below 60mV selects internal threshold mode and connects the internal voltage divider to the reset  
and low-line comparators. External programming mode allows an external resistor divider to set the low-line and reset  
thresholds (see Figure 4).  
Note 3: The Chip-Enable Propagation delay is measured from the 50ꢀ point at CE IN to the 50ꢀ point at CE OUT.  
4
_______________________________________________________________________________________  
Microprocessor and Nonvolatile  
Memory Supervisory Circuits  
__________________________________________Typical Operating Characteristics  
(T = +25°C, unless otherwise noted.)  
A
OVERVOLTAGE COMPARATOR  
PROPAGATION DELAY vs. TEMPERATURE  
RESET COMPARATOR  
PROPAGATION DELAY vs. TEMPERATURE  
SUPPLY CURRENT vs. TEMPERATURE  
100  
70  
60  
80  
70  
SWT = VCC  
ALL OUTPUTS  
UNLOADED  
90  
V
= 5V  
CC  
80  
70  
60  
50  
V
= 4V  
CC  
50  
60  
V
CC  
= 3V  
40  
30  
20  
40  
30  
50  
40  
V
V
TO V  
OL  
V
FALLING  
IH  
IN  
CC  
V
CC  
= 2V  
= 20mV  
15mV OVERDRIVE  
10  
0
OVERDRIVE = 15mV  
EXTERNAL PROGRAMMING MODE  
-60 -30  
0
30  
60  
90 120 150  
-60  
-30  
0
30  
60 90 120 150  
-60 -30  
0
30  
60  
90  
120 150  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
LOW-LINE COMPARATOR  
PROPAGATION DELAY vs. TEMPERATURE  
POWER-UP RESET DELAY  
vs. TEMPERATURE  
NOMINAL WATCHDOG TIMEOUT  
PERIOD vs. V  
CC  
300  
250  
600  
500  
3.0  
2.5  
2.0  
V
= 5V  
CC  
200  
150  
100  
400  
300  
V
CC  
= 3V  
1.5  
1.0  
200  
100  
V
FALLING  
CC  
50  
0
15mV OVERDRIVE  
EXTERNAL PROGRAMMING MODE  
-60  
-30  
0
30 60 90 120 150  
-60 -30  
0
30  
60  
90 120 150  
2
3
4
5
TEMPERATURE (°C)  
TEMPERATURE (°C)  
V
CC  
(V)  
_________________________________________________________________________________________________  
5
Microprocessor and Nonvolatile  
Memory Supervisory Circuits  
Typical Operating Characteristics (continued)  
(T = +25°C, unless otherwise noted.)  
A
INTERNAL-MODE RESET THRESHOLD  
vs. TEMPERATURE (NORMALIZED)  
REF OUT VOLTAGE  
vs. TEMPERATURE  
CHIP-ENABLE ON-RESISTANCE  
vs. TEMPERATURE  
1.125  
1.100  
1.075  
1.33  
1.32  
1.31  
1.30  
1.29  
200  
180  
160  
140  
120  
100  
80  
V
CE IN  
= 3V  
CC  
V
= 1.5V  
1.050  
1.025  
1.000  
0.975  
1.28  
1.27  
60  
0.950  
V
CC  
= 5V  
= 2.5V  
THE RESET THRESHOLD IS SHOWN  
NORMALIZED TO 1, REPRESENTING  
ALL AVAILABLE MAX792/MAX820  
40  
V
CE IN  
0.925  
0.900  
1.26  
1.25  
RESET IN / INT = 0V  
20  
0
-60 -30  
0
30  
60  
90 120 150  
-60  
-30  
0
30  
60  
90 120 150  
-60 -30  
0
30  
60  
90 120 150  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
WATCHDOG TIMEOUT PERIOD  
vs. SWT LOAD CAPACITANCE  
CHIP-ENABLE PROPAGATION DELAY  
vs. CE OUT LOAD CAPACITANCE  
100k  
10k  
20  
15  
10  
5
V
V
= +5V  
CC  
CE IN  
= 0V TO 5V  
DRIVER SOURCE  
IMPEDANCE = 50Ω  
V
CC  
= 5V  
1k  
100  
10  
V
CC  
= 3V  
0
1n  
10n  
100n  
1m  
0
25 50 75 100 125 150 175 200 225 250  
C
SWT  
(F)  
C
LOAD  
(pF)  
6
_______________________________________________________________________________________  
Microprocessor and Nonvolatile  
Memory Supervisory Circuits  
______________________________________________________________Pin Description  
PIN  
NAME  
RESET  
RESET  
FUNCTION  
Active-Low Reset Output goes low whenever V  
falls below the reset threshold in internal thresh-  
CC  
old programming mode, or RESET IN falls below 1.30V in external threshold programming mode.  
RESET remains low for 200ms typ after the threshold is exceeded on power-up.  
1
2
3
Reset is the inverse of RESET.  
V
Input Supply Voltage  
CC  
Reset-Input/Internal-Mode Select. Connect this input to GND to select internal threshold mode.  
Select external programming mode by pulling this input 600mV or higher through an external volt-  
age divider.  
4
5
RESET IN/INT  
Low-Line Input/Reference Output connects directly to the low-line comparator in external program-  
ming mode (RESET IN/INT 600mV). Connects directly to the internal 1.30V reference in internal  
threshold mode (RESET IN/INT 60mV).  
LLIN/REF OUT  
Overvoltage Comparator Output goes low when OVI is greater than 1.30V. This is an uncommitted  
comparator and has no effect on any other internal circuitry.  
6
7
OVO  
Inverting Input to the Overvoltage Comparator. When OVI is greater than 1.30V, OVO goes low.  
OVI  
Connect OVI to GND or V  
when not used.  
CC  
Set Watchdog-Timeout Input. Connect this input to V  
to select the default 1.6sec watchdog  
CC  
timeout period. Connect a capacitor between this input and GND to select another watchdog-  
timeout period. Watchdog timeout period = k x (capacitor value in nF)mV, where k = 27 for  
8
SWT  
V
CC  
= 5V and k = 16.2 for V  
= 3V. If the watchdog function is unused, connect SWT to V  
.
CC  
CC  
Manual-Reset Input. This input can be tied to an external momentary pushbutton switch, or to a  
logic gate output. Internally pulled up to V  
9
MR  
.
CC  
Low-Line Output. LOW LINE goes low 120mV above the reset threshold in internal threshold mode,  
or when LLIN/REFOUT goes below 1.30V in external programming mode.  
10  
LOW LINE  
Watchdog Input. If WDI remains either high or low for longer than the watchdog timeout period,  
11  
12  
13  
WDI  
GND  
WDPO pulses low and WDO goes low. WDO remains low until the next transition at WDI. Connect to  
GND or V  
if unused.  
CC  
Ground  
Chip-Enable Output. CE OUT goes low only when CE IN is low and reset is not asserted. If CE IN is  
low when reset is asserted, CE OUT will stay low for 15µs or until CE IN goes high, whichever  
occurs first.  
CE OUT  
Chip-Enable Input—the input to the chip-enable transmission gate. Connect to GND or V  
used.  
if not  
CC  
14  
15  
16  
CE IN  
WDO  
Watchdog Output. WDO goes low if WDI remains either high or low longer than the watchdog time-  
out period. WDO returns high on the next transition at WDI.  
Watchdog-Pulse Output. Upon the absence of a transition at WDI, WDPO will pulse low for a mini-  
mum of 500µs. WDPO precedes WDO by typically 70ns.  
WDPO  
_______________________________________________________________________________________  
7
Microprocessor and Nonvolatile  
Memory Supervisory Circuits  
Detailed Description  
External Programming Mode  
Connecting RESET IN/INT to a voltage above 600mV  
selects external programming mode. In this mode, the  
low-line and reset comparators disconnect from the inter-  
nal voltage divider and connect to LLIN/REFOUT and  
RESET IN/INT, respectively (Figure 1). This mode allows  
flexibility in determining where in the operating voltage  
range the NMI and reset are generated. Set the low-line  
and reset thresholds with an external resistor divider, as in  
Figure 4b or Figure 4c. RESET typically remains valid for  
VCC down to 2.5V; RESET is guaranteed to be valid with  
VCC down to 1V.  
Manual-Reset Input  
Many µP-based products require manual-reset capabil-  
ity, allowing the operator to initiate a reset. The manu-  
al/external-reset input (MR) can connect directly to a  
switch without an external pull-up resistor or debounc-  
ing network. MR internally connects to a 1.30V com-  
parator, and has a high-impedance pull-up to VCC, as  
shown in Figure 1. The propagation delay from assert-  
ing MR to reset asserted is typically 12µs. Pulsing MR  
low for a minimum of 25µs asserts the reset function  
(see Reset Function section). The reset output remains  
active as long as MR is held low, and the reset timeout  
period begins after MR returns high (Figure 2). To pro-  
vide extra noise immunity in high-noise environments,  
pull MR up to VCC with a 100kresistor.  
Calculate the values for the resistor voltage divider in  
Figure 4b using the following equations:  
1) R3 = (1.30 x VCC MAX)/(VLOW LINE x IMAX  
)
2) R2 = [(1.30 x VCC MAX)/(VRESET x IMAX)] - R3  
3) R1 = (VCC MAX/IMAX) - (R2 + R3).  
Use MR as either a digital logic input or as a second low-  
line comparator. Normal TTL/CMOS levels can be  
wire-OR connected via pull-down diodes (Figure 3),  
and open-drain/collector outputs can be wire-ORed  
directly.  
First choose the desired maximum current through the  
voltage divider (IMAX) when VCC is at its highest (VCC  
MAX). There are two things to consider here. First, IMAX  
contributes to the overall supply current for the circuit, so  
you would generally make it as small as possible.  
Second, IMAX cannot be too small or leakage currents will  
adversely affect the programmed threshold voltages; 5µA  
is often appropriate. Determine R3 after you have chosen  
Monitoring the Regulated Supply  
The MAX792/MAX820 offer two modes for monitoring  
the regulated supply and providing reset and non-  
maskable interrupt (NMI) signals to the µP: internal  
threshold mode uses the factory preset low-line and  
reset thresholds, and external programming mode  
allows the low-line and reset thresholds to be pro-  
grammed externally using a resistor voltage divider  
(Figure 4).  
I
MAX. Use the value for R3 to determine R2, then use both  
R2 and R3 to determine R1.  
For example, to program a 4.75V low-line threshold and a  
4.4V reset threshold, first choose IMAX to be 5µA when  
VCC = 5.5V and substitute into equation 1.  
R3 = (1.30 x 5.5)/(4.75 x 5E-6) = 301.05k.  
301kis the nearest standard 0.1ꢀ value. Substitute  
into equation 2:  
Internal Threshold Mode  
Connecting the reset-input/internal-mode select pin  
(RESET IN/INT) to ground selects internal threshold  
mode (Figure 4a). In this mode, the low-line and reset  
thresholds are factory preset by an internal voltage  
divider (Figure 1) to the threshold voltages specified in  
the Electrical Characteristics (Reset Threshold Voltage  
and Low-Line Threshold Voltage). Connect the low-line  
output (LOWLINE) to the µP NMI pin, and connect the  
active-high reset output (RESET) or active-low reset  
output (RESET) to the µP reset input pin.  
R2 = [(1.30 x 5.5)/(4.4 x 5E-6)] - 301k= 23.95k.  
The nearest 0.1ꢀ resistor value is 23.7k. Finally, sub-  
stitute into equation 3:  
R1 = (5.5/5E-6) - (23.7k+ 301k) = 775k.  
The nearest 0.1ꢀ value resistor is 787k. Determine the  
actual low-line threshold by rearranging equation 1 and  
plugging in the standard resistor values. The actual low-  
line threshold is 4.75V and the actual reset threshold is  
4.40V. An additional resistor allows the MAX792/MAX820  
to monitor the unregulated supply and provide an NMI  
before the regulated supply begins to fall (Figure 4c).  
Additionally, the low-line input/reference-output pin  
(LLIN/REFOUT) connects to the internal 1.30V refer-  
ence in internal threshold mode. Buffer LLIN/REFOUT  
with a high-impedance buffer to use it with external  
circuitry. In this mode, when VCC is falling, LOWLINE is  
guaranteed to be asserted prior to reset assertion.  
Both of these thresholds will vary from circuit to circuit  
with resistor tolerance, reference variation, and compara-  
tor offset variation. The initial thresholds for each circuit  
will also vary with temperature due to reference and off-  
set drift. For highest accuracy, use the MAX820.  
8
_______________________________________________________________________________________  
Microprocessor and Nonvolatile  
Memory Supervisory Circuits  
V
CC  
3
2
V
CC  
RESET  
*
RESET  
COMPARATOR  
4
RESET IN/  
INT  
RESET  
GENERATOR  
1
RESET  
V
CC  
5
9
LLIN/  
10  
REFOUT  
LOW LINE  
V
CC  
V
CC  
LOW-LINE  
COMPARATOR  
CHIP-ENABLE  
OUTPUT  
CONTROL  
P
V
CC  
MR  
MANUAL  
RESET  
COMPARATOR  
1.30V  
V
CC  
INTERNAL/  
EXTERNAL  
MODE  
CONTROL  
60mV  
INTERNAL  
EXTERNAL  
P
13  
14  
CE IN  
CE OUT  
TIMEBASE FOR  
RESET AND  
WATCHDOG  
N
16  
15  
WDPO  
WDO  
8
WATCHDOG  
TIMER  
SWT  
WDI  
11  
WATCHDOG  
TRANSITION  
DETECTOR  
V
CC  
MAX792  
MAX820  
OVERVOLTAGE  
COMPARATOR  
6
OVO  
7
OVI  
12  
* SWITCHES ARE SHOWN IN INTERNAL  
THRESHOLD MODE POSITION  
GND  
Figure 1. MAX792/MAX820 Block Diagram  
_______________________________________________________________________________________  
9
Microprocessor and Nonvolatile  
Memory Supervisory Circuits  
V
IN  
25µs MIN  
MR  
3
V
CC  
12µs TYP  
RESET  
4
2
RESET IN/INT  
TO µP  
RESET  
CE IN OV  
CE OUT  
MAX792  
LLIN/REFOUT  
1
5
TO µP  
RESET  
15µs TYP  
10  
TO µP NMI  
LOW LINE  
Figure 2. Manual-Reset Timing Diagram  
GND  
12  
MANUAL RESET  
9
MR  
Figure 4a. Connection for Internal Threshold Mode  
*
OTHER  
V
IN  
RESET  
MAX792  
MAX820  
*
SOURCES  
.
.
.
3
R1  
R2  
V
CC  
2
TO µP  
RESET IN/INT  
RESET  
RESET  
*
DIODES NOT REQUIRED ON OPEN-DRAIN OUTPUTS  
Figure 3. Diode "OR" connections allow multiple reset sources  
to connect to MR.  
MAX792  
1
TO µP  
LLIN/REFOUT  
Low-Line Output  
R3  
10  
In internal threshold mode, the low-line comparator  
monitors VCC with a threshold voltage typically 120mV  
above the reset threshold, and with 15mV of hysteresis.  
For normal operation (VCC above the reset threshold),  
LOWLINE is pulled to VCC. Use LOWLINE to provide an NMI  
to the µP, as described in the previous section, when  
VCC begins to fall (Figure 4).  
TO µP NMI  
LOW LINE  
GND  
12  
R3 = 1.30V x V  
CC MAX  
x I  
V
LOW LINE MAX  
R2 = 1.30V x V  
CC MAX  
I
= THE MAXIMUM DESIRED CURRENT  
THROUGH THE VOLTAGE DIVIDED.  
R3  
MAX  
V
x I  
RESET MAX  
Reset Function  
R1 = V  
CC MAX  
(R2 + R3)  
I
MAX  
The MAX792/MAX820 provide both RESET and RESET  
outputs. The RESET and RESET outputs ensure that the  
µP powers up in a known state, and prevent code-exe-  
cution errors during power-up, power-down, or  
brownout conditions.  
Figure 4b. Connection for External Threshold Programming Mode  
When reset is asserted, all the internal counters are  
reset, the watchdog output (WDO) and watchdog-pulse  
output (WDPO) are set high, and the set watchdog-time-  
out input (SWT) is set to (VCC - 0.6V) if it is not already  
connected to VCC (for internal timeouts). The chip-  
enable transmission gate is also disabled while reset is  
asserted; the chip-enable input (CE IN) becomes high  
impedance and the chip-enable output (CE OUT) is  
The reset function will be asserted during the following  
conditions:  
1) VCC less than the programmed reset threshold.  
2) MR less than 1.30V typ.  
3) Reset remains asserted for 200ms typ after VCC  
rises above the reset threshold or after MR has  
exceeded 1.30V typ.  
pulled up to VCC  
.
10 ______________________________________________________________________________________  
Microprocessor and Nonvolatile  
Memory Supervisory Circuits  
1
REGULATOR  
TO µP RESET  
RESET  
10k  
MAX792  
MAX820  
V
CC  
R3  
R4  
2
RESET IN/INT  
RESET  
RESET  
TO µP  
R1  
MAX792  
MAX820  
1
LLIN/REFOUT  
TO µP  
Figure 5. Adding an external pull-down resistor ensures RESET  
is valid with VCC down to GND.  
R2  
10  
LOW LINE  
TO µP NMI  
GND  
VOLTAGE REGULATOR  
V
V
= 1.3 R1 + R2  
LOW LINE  
(
)
R2  
= 1.3 R3 + R4  
RESET  
(
)
3
CC  
R4  
V
Figure 4c. Alternative Connection for External Programming Mode  
MAX792  
MAX820  
Reset Outputs (RESET and RESET)  
7
OVI  
The RESET output is active low and typically sinks 1.6mA  
at 0.1V. When deasserted, RESET sources 1.6mA at typi-  
cally VCC - 1.5V. The RESET output is the inverse of  
RESET. RESET is guaranteed to be valid down to VCC = 1V,  
and an external 10kpull-down resistor on RESET  
ensures that it will be valid with VCC down to GND  
(Figure 5). As VCC goes below 1V, the gate drive to the  
RESET output switch reduces accordingly, increasing the  
rDS(ON) and the saturation voltage. The 10kpull-down  
resistor ensures that the parallel combination of switch  
plus resistor will be around 10kand the saturation  
voltage will be below 0.4V while sinking 40µA. When  
using an external pull-down resistor of 10k, the high  
state for the RESET output with VCC = 4.75V is typically  
4.60V.  
OVO  
6
OVERVOLTAGE  
1.30V  
GND  
12  
Figure 6. Detecting an Overvoltage Condition  
Watchdog Function  
The watchdog monitors µP activity via the watchdog  
input (WDI). If the µP becomes inactive, WDO and WDPO  
are asserted. To use the watchdog function, connect  
WDI to a µP bus line or I/O line. If WDI remains high or  
low for longer than the watchdog timeout period (1.6s  
nominal), WDPO and WDO are asserted, indicating a soft-  
ware fault condition (see Watchdog-Pulse Output and  
Watchdog Output sections).  
Overvoltage Comparator  
The overvoltage comparator is an uncommitted com-  
parator that has no effect on the operation of other chip  
functions. Use this input to provide overvoltage indica-  
tion by connecting a voltage divider from the input sup-  
ply, as in Figure 6.  
Connect OVI to ground if the overvoltage function is not  
used. OVO goes low when OVI goes above 1.30V. With  
OVI below 1.30V, OVO is actively pulled to VCC and can  
source1µA.  
Watchdog Input  
If the watchdog function is unused, connect WDI to VCC  
or GND. A change of state (high-to-low, low-to-high, or  
a minimum 100ns pulse) at WDI during the watchdog  
period resets the watchdog timer. The watchdog timer  
______________________________________________________________________________________ 11  
Microprocessor and Nonvolatile  
Memory Supervisory Circuits  
MIN 100ns (V = 5V)  
CC  
MIN 300ns (V = 3V)  
CC  
1.6s  
V
CC  
3
CC  
WDI  
0.1µF  
V
V
CC  
WDPO  
µP POWER  
MAX792  
MAX820  
70ns  
1
RESET  
I/O  
RESET  
WDO  
11  
16  
WDI  
WDPO  
V
CC  
= 5V  
V
CC  
Q
Q
CLOCK  
15  
9
WDO  
D
MR  
Figure 7. WDI, WDO, and WDPO Timing Diagram  
GND  
12  
CLEAR  
TWO  
+5V  
*
CONSECUTIVE  
WATCHDOG  
FAULT  
default is 1.6s. Select alternative timeout periods by  
connecting an external capacitor from SWT to GND  
(see Selecting an Alternative Watchdog Timeout sec-  
tion). When VCC is below the reset threshold, the watch-  
dog function is disabled.  
0.1µF  
INDICATION  
REACTIVATE  
* FOR SYSTEM RESET ON EVERY  
WATCHDOG FAULT, OMIT THE  
FLIP-FLOP, AND DIODEOR  
CONNECT WDO TO MR.  
4.7k  
Watchdog Output  
WDO remains high if there is a transition or pulse at WDI  
during the watchdog timeout period. The watchdog  
function is disabled and WDO is a logic high when VCC  
is below the reset threshold. If a system reset is desired  
on every watchdog fault, simply diode-OR connect WDO  
to MR (Figure 8). When a watchdog fault occurs in this  
mode, WDO goes low, pulling MR low and causing a  
reset pulse to be issued. As soon as reset is asserted,  
the watchdog timer clears and WDO goes high. With  
WDO connected to MR, a continuous high or low on WDI  
will cause 200ms reset pulses to be issued every  
1.6sec (SWT connected to VCC). When reset is not  
asserted, if no transition occurs at WDI during the  
watchdog timeout period, WDO goes low 70ns after the  
falling edge of WDPO and remains low until the next tran-  
sition at WDI (Figure 7). A single additional flip-flop can  
force the system into a hardware shutdown if there are  
two successive watchdog faults (Figure 8). When the  
MAX792/MAX820 are operated from a 5V supply, WDO  
has a 2 x TTL output characteristic.  
Figure 8. Two consecutive watchdog faults latch the system in  
reset.  
WDI, WDO remains low and the next WDPO following a  
second watchdog timeout period clocks a logic low to  
the Q output, pulling MR low and causing the  
MAX792/MAX820 latch in reset. If the watchdog timer is  
reset by a transition at WDI, WDO will go high and the  
flip-flop’s Q output will remain high. Thus a system  
shutdown is only caused by two successive watchdog  
faults.  
Selecting an Alternative Watchdog Timeout Period  
The SWT input controls the watchdog timeout period.  
Connecting SWT to VCC selects the internal 1.6sec  
watchdog timeout period. Select an alternative watch-  
dog timeout period by connecting a capacitor between  
SWT and GND. Do not leave SWT floating and do not  
connect it to ground. The following formula determines  
the watchdog timeout period:  
Watchdog-Pulse Output  
As described in the preceding section, WDPO can be  
used as the clock input to an external D flip-flop. Upon  
the absence of a watchdog edge or pulse at WDI at the  
end of a watchdog timeout period, WDPO will pulse low  
for 1.7ms. The falling edge of WDPO precedes WDO by  
70ns. Since WDO is high when WDPO goes low, the flip-  
flop’s Q output remains high after WDO goes low (Figure  
8). If the watchdog timer is not reset by a transition at  
Watchdog Timeout Period =  
k x (capacitor value in nF)ms  
where k = 27 for VCC = 3V, and k = 16.2 for VCC = 5V.  
This applies for capacitor values in excess of 4.7nF. If  
the watchdog function is unused, connect SWT to VCC  
.
12 ______________________________________________________________________________________  
Microprocessor and Nonvolatile  
Memory Supervisory Circuits  
Chip-Enable Signal Gating  
V
CC  
The MAX792/MAX820 provide internal gating of chip-  
enable (CE) signals, which prevents erroneous data  
from corrupting CMOS RAM in the event of an under-  
voltage condition. The MAX792/MAX820 use a series  
transmission gate from CE IN to CE OUT (Figure 1).  
RESET  
THRESHOLD  
CE IN  
During normal operation (reset not asserted), the CE  
transmission gate is enabled and passes all CE transi-  
tions. When reset is asserted, this path becomes dis-  
abled, preventing erroneous data from corrupting the  
CMOS RAM. The 10ns max CE propagation delay from  
CE IN to CE OUT enables the MAX792/MAX820 to be  
used with most µPs. If CE IN is low when reset asserts,  
CE OUT remains low for a short period to permit com-  
pletion of the current write cycle.  
CE OUT  
15µs  
70µs  
70µs  
RESET  
RESET  
Figure 9. Reset and Chip-Enable Timing  
Chip-Enable Input  
The CE transmission gate is disabled and CE IN is high  
impedance (disabled mode) while reset is asserted.  
+5V  
3
During a power-down sequence when VCC passes the  
reset threshold, the CE transmission gate disables and  
CE IN immediately becomes high impedance if the volt-  
age at CE IN is high. If CE IN is low when reset is assert-  
ed, the CE transmission gate will disable at the moment  
CE IN goes high or 15µs after reset is asserted,  
whichever occurs first (Figure 9). This permits the cur-  
rent write cycle to complete during power-down.  
V
CC  
MAX792  
MAX820  
14  
13  
CE IN  
CE OUT  
C
LOAD  
50DRIVER  
GND  
12  
During a power-up sequence, the CE transmission gate  
remains disabled and CE IN remains high impedance  
regardless of CE IN activity, until reset is deasserted fol-  
lowing the reset timeout period.  
Figure 10. CE Propagation Delay Test Circuit  
While disabled, CE IN is high impedance. When the CE  
transmission gate is enabled, the impedance of CE IN  
will appear as a 75(VCC = 5V) resistor in series with  
the load at CE OUT.  
Chip-Enable Output  
When the CE transmission gate is enabled, the imped-  
ance of CE OUT is equivalent to 75in series with the  
source driving CE IN. In the disabled mode, the 75Ω  
transmission gate is off and an active pull-up connects  
from CE OUT to VCC. This source turns off when the  
transmission gate is enabled.  
The propagation delay through the CE transmission  
gate depends on VCC, the source impedance of the  
drive connected to CE IN, and the loading on CE OUT  
(see the Chip-Enable Propagation Delay vs. CE OUT  
Load Capacitance graph in the Typical Operating  
Characteristics). The CE propagation delay is produc-  
tion tested from the 50ꢀ point on CE IN to the 50ꢀ  
point on CE OUT using a 50driver and 50pF of load  
capacitance (Figure 10). For minimum propagation  
delay, minimize the capacitive load at CE OUT, and use  
a low-output-impedance driver.  
Applications Information  
Connect a 0.1µF ceramic capacitor from VCC to GND,  
as close to the device pins as possible. This reduces  
the probability of resets due to high-frequency power-  
supply transients. In a high-noise environment, addi-  
tional bypass capacitance from VCC to ground may be  
required. If long leads connect to the chip inputs,  
ensure that these lines are free from ringing, etc., which  
would forward bias the chip’s protection diodes.  
______________________________________________________________________________________ 13  
Microprocessor and Nonvolatile  
Memory Supervisory Circuits  
+5V  
R *  
P
CE  
CE  
CE  
CE  
CE  
CE  
CE  
CE  
3
CC  
RAM 1  
RAM 2  
BUFFER  
V
TO OTHER  
SYSTEM RESET  
INPUTS  
V
CC  
MAX792  
MAX820  
3
V
V
CC  
CC  
14  
13  
CE IN  
CE OUT  
4.7k  
µP  
1
RESET  
RESET  
RAM 3  
RAM 4  
GND  
12  
MAX792  
MAX820  
GND  
GND  
12  
* MAXIMUM R VALUE DEPENDS ON  
P
THE NUMBER OF RAMS.  
MINIMUM R VALUE IS 1kΩ  
P
ACTIVE-HIGH CE  
LINES FROM LOGIC  
Figure 12. Interfacing to µPs with Bidirectional RESET Pins  
Figure 11. Alternate CE Gating  
going V  
pulses, starting at 5V and ending below the  
CC  
Alternative Chip-Enable Gating  
reset threshold by the magnitude indicated (reset-  
comparator overdrive). The graph shows the maximum  
Using memory devices with both CE and CE inputs  
allows the MAX792/MAX820 CE propagation delay  
to be bypassed. To do this, connect CE IN to ground,  
pull up CE OUT to VCC, and connect CE OUT to the CE  
input of each memory device (Figure 11). The CE input  
of each memory device then connects directly to the  
chip-select logic, which does not have to be gated by  
the MAX792/MAX820.  
pulse width a negative-going V  
transient may typi-  
CC  
cally have without causing a reset pulse to be issued.  
As the amplitude of the transient increases (i.e., goes  
farther below the reset threshold), the maximum allow-  
able pulse width decreases. Typically, a V  
that goes 100mV below the reset threshold and lasts for  
30µs or less will not cause a reset pulse to be issued.  
transient  
CC  
A 100nF bypass capacitor mounted close to the V  
CC  
pin provides additional transient immunity.  
Interfacing to µPs with Bidirectional  
Reset Inputs  
µPs with bidirectional reset pins, such as the Motorola  
68HC11 series, can contend with the MAX792/MAX820  
RESET output. If, for example, the MAX792/MAX820 RESET  
output is asserted high and the µP wants to pull it low,  
indeterminate logic levels may result. To avoid this,  
connect a 4.7kresistor between the MAX792/MAX820  
RESET output and the µP reset I/O, as in Figure 12.  
Buffer the MAX792/MAX820 RESET output to other sys-  
tem components.  
100  
V
A
= 5V  
80  
60  
CC  
= +25°C  
T
40  
Negative-Going V  
Transients  
CC  
While issuing resets to the µP during power-up, power-  
down, and brownout conditions, these supervisors are  
20  
0
relatively immune to short-duration negative-going V  
CC  
transients (glitches). It is usually undesirable to reset  
the µP when V experiences only small glitches.  
10  
100  
1000  
10,000  
CC  
RESET COMPARATOR OVERDRIVE, (V - VCC) (mV)  
TH  
Figure 13 shows maximum transient duration vs. reset-  
comparator overdrive, for which reset pulses are not  
generated. The graph was produced using negative-  
Figure 13. Maximum Transient Duration Without Causing a  
Reset Pulse vs. Reset-Comparator Overdrive  
14 ______________________________________________________________________________________  
Microprocessor and Nonvolatile  
Memory Supervisory Circuits  
Pin Configuration  
_Ordering Information (continued)  
PART**  
TEMP. RANGE  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-55°C to +125°C  
-0°C to +70°C  
-0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-55°C to +125°C  
PIN-PACKAGE  
16 Plastic DIP  
16 Narrow SO  
16 CERDIP  
TOP VIEW  
MAX792_EPE  
MAX792_ESE  
MAX792_EJE  
MAX792_MJE  
MAX820_CPE  
MAX820_CSE  
MAX820_EPE  
MAX820_ESE  
MAX820_EJE  
MAX820_MJE  
RESET  
RESET  
WDPO  
16  
1
2
3
4
5
6
7
8
WDO  
15  
16 CERDIP  
V
CC  
CE IN  
14  
MAX792  
MAX820  
16 Plastic DIP  
16 Narrow SO  
16 Plastic DIP  
16 Narrow SO  
16 CERDIP  
RESET IN/INT  
CE OUT  
GND  
13  
12  
11  
10  
9
LLIN/REFOUT  
OVO  
WDI  
OVI  
LOW LINE  
MR  
SWT  
16 CERDIP  
* Dice are tested at T = +25°C.  
A
DIP/SO  
**These parts offer a choice of five different reset threshold volt-  
ages. Select the letter corresponding to the desired nominal  
reset threshold voltage and insert it into the blank to complete  
the part number.  
___________________Chip Topography  
SUFFIX  
RESET THRESHOLD (V)  
L
M
T
4.62  
4.37  
3.06  
2.91  
2.61  
RESET  
WDO  
CE IN  
RESET  
WDPO  
S
R
CE OUT  
GND  
V
CC  
RESET IN/  
INT  
0.078"  
(1.981mm)  
LLIN/  
REF OUT  
OVO  
WDI  
OVI SWT MR LOW LINE  
0.070"  
(1.778mm)  
TRANSISTOR COUNT: 950  
SUBSTRATE CONNECTED TO V  
CC  
______________________________________________________________________________________ 15  
Microprocessor and Nonvolatile  
Memory Supervisory Circuits  
________________________________________________________Package Information  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
16 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2000 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY