MAX8566_11 [MAXIM]

High-Efficiency, 10A, PWM Internal-Switch Step-Down Regulator 32-Lead TQFN Package; 高效率, 10A , PWM内置开关降压稳压器的32引脚TQFN封装
MAX8566_11
型号: MAX8566_11
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

High-Efficiency, 10A, PWM Internal-Switch Step-Down Regulator 32-Lead TQFN Package
高效率, 10A , PWM内置开关降压稳压器的32引脚TQFN封装

稳压器 开关
文件: 总20页 (文件大小:272K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-3690; Rev 3; 3/11  
High-Efficiency, 10A, PWM  
Internal-Switch Step-Down Regulator  
MAX856  
General Description  
Features  
o Internal 8mΩ On-Resistance MOSFETs  
The MAX8566 high-efficiency switching regulator deliv-  
ers up to 10A load current at output voltages from 0.6V  
o 10A Output PWM Step-Down Regulator  
to (0.87 x V ). The IC operates from 2.3V to 3.6V input  
IN  
o
1% Output Accuracy over Load, Line, and  
supplies, making it ideal for point-of-load applications.  
The total output-voltage set error is less than 1ꢀ over  
load, line, and temperature.  
Temperature  
o Operates from 2.3V to 3.6V Input Supply  
o Adjustable Output from 0.6V to (0.87 x V )  
IN  
The MAX8566 operates in pulse-width-modulation  
(PWM) mode with a 250kHz to 2.4MHz switching fre-  
quency range that is programmable by an external  
resistor. The IC can be synchronized to an external  
clock in the same frequency range using the SYNC  
input. The high operating frequency minimizes the size  
o 250kHz to 2.4MHz Adjustable Frequency or SYNC  
Input  
o Allows All-Ceramic-Capacitor Design  
o SYNCOUT Drives 2nd Regulator 180° Out-of-Phase  
o Prebiased or Monotonic Soft-Start  
o Programmable Soft-Start Time  
of external components. Using low-R  
n-channel  
DS(ON)  
MOSFETs for both high- and low-side switches main-  
tains high efficiency at both heavy-load and high-  
switching frequencies.  
o Output Tracking or Sequencing  
o Sourcing and Sinking Output Current  
o Power-Good Output  
The MAX8566 employs a voltage-mode control archi-  
tecture with a high-bandwidth (> 10MHz) error amplifi-  
er. The voltage-mode control architecture makes  
switching frequencies greater than 1MHz possible,  
achieving all-ceramic-capacitor designs to minimize PC  
board space. The error amplifier works with Type 3  
compensation to fully utilize the bandwidth of the high-  
frequency switching to obtain fast transient response.  
Adjustable soft-start time provides flexibility to minimize  
input startup inrush current. An open-drain, power-  
good (PWRGD) signal goes high when the output  
reaches 90ꢀ of its regulation point.  
o 32-Lead TQFN Package  
o REFIN for DDR-Termination Application  
Ordering Information  
PART  
TEMP RANGE  
PIN-PACKAGE  
MAX8566ETJ+  
-40°C to +85°C  
32 TQFN-EP*  
+Denotes lead(Pb)-free/RoHS-compliant package.  
*EP = Exposed pad.  
Typical Operating Circuit  
The MAX8566 provides a SYNCOUT output to synchro-  
nize a second MAX8566 or a second regulator switch-  
ing 180° out-of-phase with the first to reduce the input  
ripple current, which consequently reduces the input-  
capacitance requirements. The MAX8566 also pro-  
vides an external reference input (REFIN) for  
output-tracking applications.  
INPUT  
2.25V TO 3.6V  
REFIN FOR  
TRACKING  
REFIN  
SS  
PGND  
PGND  
PGND  
PGND  
LX  
SYSTEM  
ENABLE  
EN  
The MAX8566 is available in a 32-pin, 5mm x 5mm TQFN  
package. The MAX8566 and all the required external  
components fit into a footprint of less than 0.80in2.  
SYNC  
FREQ  
SYNCOUT  
GND  
FB  
SYNC INPUT  
MAX8566ETJ+  
PROGRAMMABLE  
FREQUENCY  
STEP-DOWN REGULATOR  
TQFN 5mm x 5mm  
L1  
SYNC OUTPUT 180°  
LX  
OUTPUT  
UP TO 10A  
330nH/10A  
LX  
Applications  
ASIC/CPU/DSP Core Voltages  
POL Power Supplies  
C5  
2 x 22µF  
6.3V  
LX  
MONOTONIC SS  
SELECTION  
POWER-GOOD  
OUTPUT  
DDR Power Supplies  
Base-Station Power Supplies  
Fiber Power Supplies  
Telecom Power Supplies  
COMPENSATION  
Network Power Supplies  
Pin Configuration appears at end of data sheet.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,  
or visit Maxim’s website at www.maxim-ic.com.  
High-Efficiency, 10A, PWM  
Internal-Switch Step-Down Regulator  
ABSOLUTE MAXIMUM RATINGS  
EN/SS, EN, IN, SYNC, V  
,
Continuous Power Dissipation (T = +85°C)  
A
DD  
LSS, PWRGD to GND ..........-0.3V to +4V (4.5V nonswitching)  
SYNCOUT, SS, COMP, FB, REFIN,  
FREQ to GND .........................................-0.3V to (V + 0.3V)  
DD  
LX Current (Note 1).................................................-12A to +12A  
BST to LX.................................-0.3V to +4V (4.5V nonswitching)  
PGND to GND .......................................................-0.3V to +0.3V  
TQFN (derate 33.3mW/°C above +70°C) ..................2666.7W  
Operating Temperature Range ...........................-40°C to +85°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
Soldering Temperature (reflow) .......................................+260°C  
Note 1: LX has internal clamp diodes to PGND and IN. Applications that forward bias these diodes should take care not to exceed  
MAX856  
the IC’s package power-dissipation limits.  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V = V  
= V = 3.3V, V = 0.5V, V  
= 0V, T = 0°C to +85°C, typical values are at T = +25°C, unless otherwise noted.)  
A
IN  
DD  
EN  
FB  
SYNC  
A
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
IN/V  
DD  
IN and V Voltage Range  
DD  
2.3  
2.3  
3.6  
3.6  
2.2  
V
V
LSS Voltage Range  
Quiescent current, V = 0.7V  
0.7  
14  
FB  
IN Supply Current  
mA  
mA  
µA  
V
f
S
= 1MHz, no load  
Quiescent current, V = 0.7V  
1.8  
16  
4
FB  
V
Supply Current  
DD  
f
= 1MHz, V  
= V  
LSS DD  
S
T
- V ) =  
BST LX  
= +25°C  
50  
2.2  
A
Total Shutdown Current into IN  
and V  
V
= V  
= V  
= (V  
IN  
DD  
LSS  
3.6V, V = 0V  
DD  
EN  
T = 0°C to +85°C  
3
A
V
V
rising  
falling  
2.0  
1.90  
DD  
DD  
V
Undervoltage-Lockout  
LX starts/stops switching, 2µs  
deglitch  
DD  
Threshold  
1.72  
BST  
T = +25°C  
10  
V
= V  
= V  
= 3.6V, V =  
LX  
A
IN  
DD  
BST  
Shutdown Supply Current  
µA  
ns  
3.6V or 0V, V = 0V  
EN  
T = 0°C to +85°C  
A
0.05  
20  
PWM COMPARATOR  
Comparator Propagation Delay  
COMP  
10mV overdrive  
Clamp Voltage, High  
Slew Rate  
V
= 2.3V to 3.6V, V = 0.7V  
1.80  
0.75  
2.0  
1.4  
30  
2.15  
100  
V
V/µs  
IN  
FB  
Shutdown Resistance  
ERROR AMPLIFIER  
FB Regulation Voltage  
From COMP to GND, V = 0V  
EN  
V
V
= 1V to 2V, V  
= 2.5V and 3.3V  
DD  
0.594  
0
0.6  
0.606  
V
V
COMP  
V
-
DD  
= 2.3V to 2.6V  
= 2.6V to 3.6V  
DD  
DD  
1.65  
Error-Amplifier Common-Mode  
Input Range  
V
-
DD  
V
0
1.7  
Error-Amplifier Maximum Output  
Current  
0.8  
mA  
2
_______________________________________________________________________________________  
High-Efficiency, 10A, PWM  
Internal-Switch Step-Down Regulator  
MAX856  
ELECTRICAL CHARACTERISTICS (continued)  
(V = V  
IN  
= V = 3.3V, V = 0.5V, V  
= 0V, T = 0°C to +85°C, typical values are at T = +25°C, unless otherwise noted.)  
A
DD  
EN  
FB  
SYNC  
A
PARAMETER  
CONDITIONS  
= 0.7V, T = +25°C  
MIN  
TYP  
40  
MAX  
200  
UNITS  
nA  
FB Input Bias Current  
V
V
FB  
A
REFIN Input Bias Current  
= 0.6V, T = +25°C  
70  
250  
nA  
REFIN  
A
V
1.65  
-
DD  
V
V
= 2.3V to 2.6V  
= 2.6V to 3.6V  
0
0
DD  
DD  
REFIN Common-Mode Range  
V
V
1.7  
-
DD  
LX (ALL PINS COMBINED)  
V
V
V
V
= V  
= V  
= V  
= V  
- V = 3.3V  
8
12  
8
16  
20  
IN  
IN  
IN  
IN  
BST  
BST  
LSS  
LSS  
LX  
On-Resistance, High Side  
I
I
= -2A  
= 2A  
m  
LX  
LX  
- V = 2.5V  
LX  
= 3.3V  
= 2.5V  
16  
On-Resistance, Low Side  
Current-Limit Threshold  
mΩ  
12  
15  
5
20  
V
V
= 2.5V or 3.3V, high side  
12  
20  
A
IN  
IN  
V
= 3.6V  
= 0V  
200  
LX  
= 3.6V, V = 0V,  
= +25°C  
EN  
Leakage Current  
µA  
T
A
V
-200  
+5  
LX  
R
R
= 50kΩ  
0.8  
1.7  
1
1.2  
2.3  
75  
FREQ  
Switching Frequency  
V
V
= 2.5V or 3.3V  
= 2.5V or 3.3V  
MHz  
IN  
IN  
= 23.3kΩ  
2
FREQ  
Minimum Off-Time  
50  
95  
10  
ns  
A
Maximum Duty Cycle  
R
R
= 50k, V = 2.5V or 3.3V  
87  
FREQ  
FREQ  
IN  
Minimum Duty Cycle  
= 50k, V = 2.5V or 3.3V  
IN  
RMS LX Output Current  
ENABLE/SOFT-START  
EN Input Logic-Low Threshold  
EN Input Logic-High Threshold  
10  
0.4  
0.7  
V
V
1.65  
30  
1.90  
Monotonic start  
No monotonic start  
= 0V or 3.6V, V = 3.6V, T = +25°C  
45  
20  
1
ꢀ of  
MODE Input Threshold  
V
= 2.3V to 3.6V  
DD  
V
DD  
EN, MODE Input Current  
Soft-Start Charging Current  
SS Discharge Resistance  
V
V
= V  
0.01  
8
µA  
µA  
kΩ  
EN  
SS  
MODE  
DD  
A
= 0.3V  
5
11  
8
_______________________________________________________________________________________  
3
High-Efficiency, 10A, PWM  
Internal-Switch Step-Down Regulator  
ELECTRICAL CHARACTERISTICS (continued)  
(V = V  
IN  
= V = 3.3V, V = 0.5V, V  
= 0V, T = 0°C to +85°C, typical values are at T = +25°C, unless otherwise noted.)  
A
DD  
EN  
FB  
SYNC  
A
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
SYNC  
Capture Range  
V
V
= 2.3V to 3.6V  
= 2.3V to 3.6V  
0.25  
100  
100  
0.4  
2.40  
MHz  
ns  
DD  
DD  
t
t
LO  
Pulse Width  
HI  
MAX856  
V
V
0.95  
1
IH  
IL  
Input Threshold  
Input Current  
V
V
= 2.3V to 3.6V  
V
DD  
1.6  
+10  
+1  
I
I
-1  
-1  
IH  
= 0V or 3.6V, V  
= 3.6V  
DD  
µA  
SYNC  
T
A
= +25°C  
+0.01  
IL,  
SYNCOUT  
Frequency Range  
V
= 2.3V to 3.6V  
0.25  
160  
2.40  
230  
MHz  
DD  
Phase Shift from SYNC or  
Internal Oscillator  
Frequency = 1MHz  
180  
Degrees  
V
0.4  
-
V
0.05  
-
DD  
DD  
V
V
OH  
OL  
I
V
=
1mA,  
SYNCOUT  
Output Voltage  
V
= 2.3V to 3.6V  
DD  
0.05  
0.4  
THERMAL SHUTDOWN  
Thermal-Shutdown Threshold  
Thermal-Shutdown Hysteresis  
POWER GOOD  
When LX stops switching  
+165  
20  
°C  
°C  
ꢀ of  
V
Threshold Voltage  
V
falling, 3mV hysteresis  
86  
30  
90  
93  
REFIN  
FB  
or 0.6V  
Falling-Edge Deglitch  
Output Low Voltage  
Leakage Current  
50  
80  
0.3  
1
µs  
V
I
= 4mA  
0.15  
0.01  
PWRGD  
V
= 3.6V, V = 0.9V, T = +25°C  
µA  
PWRGD  
FB  
A
4
_______________________________________________________________________________________  
High-Efficiency, 10A, PWM  
Internal-Switch Step-Down Regulator  
MAX856  
ELECTRICAL CHARACTERISTICS  
(V = V  
IN  
= V = 3.3V, V = 0.5V, V  
= 0V, T = -40°C to +85°C, unless otherwise noted. Note 2)  
A
DD  
EN  
FB  
SYNC  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
IN/V  
DD  
IN and V Voltage Range  
DD  
2.325  
2.325  
3.600  
3.600  
2.2  
V
LSS Voltage Range  
IN Supply Current  
V
Quiescent current, V = 0.7V  
mA  
mA  
FB  
V
Supply Current  
Quiescent current, V = 0.7V  
FB  
4
DD  
V
V
rising  
falling  
2.2  
DD  
DD  
V
Undervoltage-Lockout  
LX starts/stops switching,  
2µs rising/falling-edge delay  
DD  
V
Threshold  
1.72  
COMP  
Clamp Voltage, High  
Slew Rate  
V
= 2.3V to 3.6V, V = 0.7V  
1.80  
0.75  
2.18  
100  
V
V/µs  
IN  
FB  
Shutdown Resistance  
ERROR AMPLIFIER  
FB Regulation Voltage  
From COMP to GND, V = 0V  
EN  
V
V
= 1V to 2V, V = 2.3V or 3.6V  
0.591  
0
0.609  
V
V
COMP  
IN  
V
-
DD  
= 2.325V to 2.6V  
= 2.6V to 3.6V  
DD  
DD  
1.65  
Error-Amplifier Common-Mode  
Input Range  
V
-
DD  
V
0
0.8  
0
1.7  
Error-Amplifier Maximum Output  
Current  
mA  
V
V
-
DD  
V
V
= 2.325V to 2.5V  
= 2.6V to 3.6V  
DD  
DD  
1.65  
REFIN Common-Mode Range  
V
-
DD  
0
1.7  
LX (ALL PINS COMBINED)  
V
V
V
V
= V  
= V  
= V  
= V  
- V = 3.3V  
16  
20  
15  
20  
20  
IN  
IN  
IN  
IN  
BST  
BST  
LSS  
LSS  
LX  
On-Resistance, High Side  
I
I
= -2A  
m  
LX  
LX  
- V = 2.5V  
LX  
= 3.3V  
= 2.5V  
On-Resistance, Low Side  
Current-Limit Threshold  
= 2A  
mΩ  
V
= 2.5V or 3.3V  
12  
A
IN  
_______________________________________________________________________________________  
5
High-Efficiency, 10A, PWM  
Internal-Switch Step-Down Regulator  
ELECTRICAL CHARACTERISTICS (continued)  
(V = V  
IN  
= V = 3.3V, V = 0.5V, V  
= 0V, T = -40°C to +85°C, unless otherwise noted. Note 2)  
A
DD  
EN  
FB  
SYNC  
PARAMETER  
CONDITIONS  
MIN  
0.8  
TYP  
MAX  
1.2  
2.3  
90  
UNITS  
R
FREQ  
R
FREQ  
= 50kΩ  
Switching Frequency  
V
V
= 2.5V or 3.3V  
= 2.5V or 3.3V  
MHz  
IN  
IN  
= 23.3kΩ  
1.7  
Minimum Off-Time  
ns  
A
Maximum Duty Cycle  
RMS Output Current  
ENABLE/SOFT-START  
R
= 50k, V = 2.5V or 3.3V  
87  
FREQ  
IN  
MAX856  
10  
EN Input Logic-Low Threshold  
EN Input Logic-High Threshold  
0.7  
V
V
1.65  
30  
Monotonic start  
45  
20  
1
ꢀ of  
DD  
MODE Input Threshold  
V
= 2.3V to 3.6V  
IN  
V
No monotonic start  
EN, MODE Input Current  
Soft-Start Charging Current  
SYNC  
V
V
or V  
= 0V or 3.6V, V  
= 3.6V  
µA  
µA  
EN  
SS  
MODE  
DD  
= 0.3V  
5
12  
Capture Range  
V
V
= 2.3V to 3.6V  
= 2.3V to 3.6V  
0.25  
100  
100  
0.4  
2.40  
1.6  
MHz  
ns  
IN  
IN  
t
t
LO  
Pulse Width  
HI  
V
IH  
IL  
Input Threshold  
V
= 2.3V to 3.6V  
V
IN  
V
6
_______________________________________________________________________________________  
High-Efficiency, 10A, PWM  
Internal-Switch Step-Down Regulator  
MAX856  
ELECTRICAL CHARACTERISTICS (continued)  
(V = V  
IN  
= V = 3.3V, V = 0.5V, V  
= 0V, T = -40°C to +85°C, unless otherwise noted. Note 2)  
A
DD  
EN  
FB  
SYNC  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
SYNCOUT  
Frequency Range  
V
= 2.3V to 3.6V  
0.25  
160  
2.40  
MHz  
DD  
Phase Shift from SYNC or  
Internal Oscillator  
Frequency = 1MHz  
230 Degrees  
V
0.4  
-
DD  
V
V
OH  
OL  
I
V
= 1mA,  
= 2.3V to 3.6V  
SYNCOUT  
Output Voltage  
V
DD  
0.4  
POWER-GOOD  
ꢀ of  
93  
Threshold Voltage  
V
falling, 3mV hysteresis  
85  
30  
FB  
V
REF  
µs  
V
Falling-Edge Deglitch  
80  
PWRGD Output Voltage  
I
= 4mA  
0.3  
PWRGD  
Note 2: Specifications to -40°C are guaranteed by design and not production tested.  
Typical Operating Characteristics  
(Typical values are at V = V  
= 3.3V, V  
= 1.8V, R  
= 50k, I  
= 10A, and T = +25°C.)  
OUT A  
IN  
DD  
OUT  
FREQ  
EFFICIENCY vs. LOAD CURRENT  
EFFICIENCY vs. LOAD CURRENT  
= 2.5V, V = 3.3V  
EFFICIENCY vs. LOAD CURRENT  
V
IN  
= V = 2.5V  
V
IN  
V
IN  
= V = 3.3V  
LSS  
LSS  
LSS  
100  
95  
90  
85  
80  
75  
70  
65  
60  
100  
95  
90  
85  
80  
75  
70  
65  
60  
100  
95  
90  
85  
80  
75  
70  
65  
60  
V
= 2.5V  
= 1.8V  
OUT  
OUT  
V
= 1.8V  
OUT  
V
= 1.8V  
= 1.5V  
OUT  
V
V
= 1.5V  
OUT  
V
OUT  
V
= 0.8V  
OUT  
0.1  
1
10  
100  
0.1  
1
10  
100  
0.1  
1
10  
100  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
_______________________________________________________________________________________  
7
High-Efficiency, 10A, PWM  
Internal-Switch Step-Down Regulator  
Typical Operating Characteristics (continued)  
(Typical values are at V = V  
= 3.3V, V  
= 1.8V, R  
= 50k, I  
= 10A, and T = +25°C.)  
OUT A  
IN  
DD  
OUT  
FREQ  
LOAD REGULATION  
FREQUENCY vs. TEMPERATURE  
REFERENCE VOLTAGE vs. TEMPERATURE  
0.10  
0.05  
0.65  
0.64  
0.63  
0.62  
0.61  
0.60  
0.59  
0.58  
0.57  
0.56  
0.55  
2.5  
2.0  
1.5  
1.0  
0.5  
0
R
= 23.3k  
FREQ  
0
MAX856  
V
= 2.5V  
OUT  
-0.05  
-0.10  
-0.15  
-0.20  
-0.25  
-0.30  
-0.35  
-0.40  
V
= 1.8V  
OUT  
R
R
= 50kΩ  
FREQ  
V
= 0.8V  
OUT  
= 100kΩ  
FREQ  
0
1
2
3
4
5
6
7
8
9
10  
-40  
0
40  
80  
120  
-40  
-15  
10  
35  
60  
85  
LOAD CURRENT (A)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
SHUTDOWN SUPPLY CURRENT  
vs. INPUT VOLTAGE  
MAXIMUM OUTPUT CURRENT  
vs. OUTPUT VOLTAGE  
EXPOSED PADDLE TEMPERATURE  
vs. LOAD CURRENT  
10  
9
8
7
6
5
4
3
2
1
0
15.0  
14.5  
14.0  
13.5  
13.0  
12.5  
12.0  
11.5  
11.0  
10.5  
10.0  
V
= 0V  
EN  
120  
70  
T
= +85°C  
= +25°C  
A
T
A
20  
T
= -40°C  
A
-30  
-80  
MAX8566 EV KIT PCB  
200LFM  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0  
INPUT VOLTAGE (V)  
0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5  
OUTPUT VOLTAGE (V)  
0
2
4
6
8
10  
LOAD CURRENT (A)  
OUTPUT SHORT-CIRCUIT CURRENT  
vs. INPUT VOLTAGE  
LINE REGULATION  
10.0  
9.5  
9.0  
8.5  
8.0  
7.5  
7.0  
6.5  
6.0  
0.5  
0.4  
0.3  
0.2  
0.1  
I
= 0A  
LOAD  
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
I
= 4.5A  
LOAD  
I
= 10A  
LOAD  
2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00  
2.25 2.45 2.65 2.85 3.05 3.25 3.45 3.65 3.85  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
8
_______________________________________________________________________________________  
High-Efficiency, 10A, PWM  
Internal-Switch Step-Down Regulator  
MAX856  
Typical Operating Characteristics (continued)  
(Typical values are at V = V  
= 3.3V, V  
= 1.8V, R  
= 50k, I  
= 10A, and T = +25°C.)  
OUT A  
IN  
DD  
OUT  
FREQ  
GAIN/PHASE OF THE VOLTAGE LOOP  
LOAD TRANSIENT (0 TO 5A)  
MAX8566 toc13  
MAX8566 toc12  
147 kHz  
V
OUT  
0dB  
AC-COUPLED  
(50mV/div)  
GAIN  
(10dB/div)  
5A  
0
56°  
0°  
I
OUT  
PHASE  
(45°/div)  
(2A/div)  
1
10  
100  
1000  
t = 10µs/div  
FREQUENCY (kHz)  
STARTUP INTO 0.18LOAD  
(R = 0.18)  
FULL-LOAD SWITCHING WAVEFORMS  
LOAD  
MAX8566 toc14  
MAX8566 toc15  
7A  
(PEAK)  
IN  
12A  
10A  
I
L
I
(2A/div)  
(5A/div)  
0A  
3.3V  
V
EN  
V
OUT  
(2V/div)  
0V  
1.8V  
(10mV/div)  
V
OUT  
3V  
3V  
(1V/div)  
V
0V  
LX  
(2V/div)  
0V  
V
PWRGD  
0V(2V/div)  
0A  
t = 400ns/div  
t = 400µs/div  
_______________________________________________________________________________________  
9
High-Efficiency, 10A, PWM  
Internal-Switch Step-Down Regulator  
Typical Operating Characteristics (continued)  
(Typical values are at V = V  
= 3.3V, V  
= 1.8V, R  
= 50k, I  
= 10A, and T = +25°C.)  
OUT A  
IN  
DD  
OUT  
FREQ  
SOFT-START WITH REFIN  
SYNCHRONIZED OPERATION (NO LOAD)  
MAX8566 toc16  
MAX8566 toc17  
6.5A  
I
IN  
I
IN  
(AC-COUPLED)  
(20mA/div)  
(5A/div)  
MAX856  
0A  
0A  
0A  
I
L1  
V
0.6V  
(2A/div)  
REFIN  
(500mV/div)  
I
L2  
0V  
1.8V  
(2A/div)  
V
OUT  
V
3.3V  
0V  
3.3V  
LX1  
3V  
(1V/div)  
(5V/div)  
V
(5V/div)  
V
0V  
PWRGD  
LX2  
(2V/div)  
0V  
0V  
t = 400µs/div  
t = 400ns/div  
SOFT-START TIME  
vs. SOFT-START CAPACITANCE  
STARTUP INTO PREBIASED OUTPUT  
(R  
= 0.18)  
LOAD  
MAX8566 toc19  
800  
700  
600  
500  
400  
300  
200  
100  
0
7.5A  
(PEAK)  
I
IN  
(5A/div)  
0A  
3.3V  
V
EN  
(12V/div)  
0V  
1.8V  
0.9V  
V
OUT  
(1V/div)  
3V  
V
0V  
PWRGD  
(2V/div)  
0V  
0
1
2
3
4
5
6
7
8
9
10  
t = 400µs/div  
C
(µF)  
SS  
10 ______________________________________________________________________________________  
High-Efficiency, 10A, PWM  
Internal-Switch Step-Down Regulator  
MAX856  
Pin Description  
PIN  
NAME  
FUNCTION  
Monotonic Startup Enable/Disable. Connect MODE to GND or to the center tap of an external  
resistor-divider to enable/disable monotonic startup mode.  
1
MODE  
Error-Amplifier Output. Connect the necessary compensation network from COMP to FB. COMP is  
internally pulled to GND when the IC is in shutdown mode.  
2
3
COMP  
Power-Good Output. Open-drain output that is high impedance when V 90% of 0.6V. Otherwise,  
FB  
PWRGD is internally pulled low. PWRGD is internally pulled low when the IC is in shutdown mode,  
PWRGD  
V
DD  
is below the UVLO threshold, or the IC is in thermal shutdown.  
High-Side MOSFET Driver Supply. Bypass BST to LX with a 0.1µF capacitor. BST is connected to  
LSS through an internal pMOS switch.  
4
BST  
LX  
Inductor Connection. All LX pins are internally connected together. Connect all LX pins to the  
switched side of the inductor. LX is high impedance when the IC is in shutdown mode.  
5–12  
13–17  
Power Ground. All PGND pins are internally connected. Connect all PGND pins externally to the  
power ground plane.  
PGND  
Input Power Supply. All IN pins are internally connected. Connect all IN pins externally to an input  
supply from 2.3V to 3.6V. Bypass IN to PGND with 20µF of ceramic capacitance.  
18–22  
23  
IN  
LSS  
Low-Side MOSFET-Driver Supply Voltage. Connect LSS to a 2.3V to 3.6V supply voltage.  
IC Supply Voltage Input. Connect V to IN through an external 2resistor. Bypass V to GND  
with a 4.7µF capacitor.  
DD  
DD  
24  
V
DD  
External Reference Input. Connect to an external reference. FB regulates to the voltage at REFIN.  
Connect REFIN to SS to use the internal reference.  
25  
26  
27  
28  
29  
REFIN  
SS  
Soft-Start Input. Connect a capacitor from SS to GND to set the soft-start time. See the Soft-Start and  
REFIN section.  
Enable Input. Active-high logic input to enable/disable the MAX8566. Connect EN to IN to enable  
the IC. Connect EN to GND to disable the IC.  
EN  
Synchronization Input. Synchronize to an external clock with a frequency of 250kHz to 2.4MHz.  
Leave SYNC unconnected to disable the synchronization function.  
SYNC  
FREQ  
Oscillator Frequency Selection. Connect a resistor from FREQ to GND to select the switching  
frequency. See the Frequency Select (FREQ) section.  
Oscillator Output. The SYNCOUT output is 180° out-of-phase from the internal oscillator or the  
30  
SYNCOUT SYNC signal to facilitate running a second regulator 180° out-of-phase with the first to reduce input  
ripple current.  
31  
32  
GND  
Analog Circuit Ground  
Feedback Input. Connect FB to the center tap of an external resistor-divider from the output to GND  
to set the output voltage.  
FB  
Exposed Pad. Internally connected to GND. Connect to a large ground plane to maximize thermal  
performance. Not indented as an electrical connection point.  
EP  
______________________________________________________________________________________ 11  
High-Efficiency, 10A, PWM  
Internal-Switch Step-Down Regulator  
V
DD  
SHUTDOWN  
CONTROL  
UVLO  
CIRCUITRY  
MAX856  
EN  
CURRENT-LIMIT  
COMPARATOR  
BST  
ILIM THRESHOLD  
LX  
BIAS  
GENERATOR  
IN  
P
VOLTAGE  
REFERENCE  
L
SS  
N
LX  
CONTROL  
LOGIC  
SS  
SOFT-START  
THERMAL  
SHUTDOWN  
N
ERROR  
AMPLIFIER  
PWM  
COMPARATOR  
-
PGND  
LSS  
REFIN  
FB  
+
-
MODE  
+
FREQ  
COMP  
SYNC  
OSCILLATOR  
SYNCOUT  
COMP LOW  
DETECTOR  
SHDN  
PWRGD  
FB  
MAX8566  
N
0.54V  
GND  
Figure 1. Functional Diagram  
12 ______________________________________________________________________________________  
High-Efficiency, 10A, PWM  
Internal-Switch Step-Down Regulator  
MAX856  
low-side MOSFETs. The break-before-make logic and  
Detailed Description  
the timing for charging the bootstrap capacitors are  
The MAX8566 high-efficiency, voltage-mode switching  
calculated by the controller logic block. The error signal  
from the voltage error amplifier is compared with the  
ramp signal generated by the oscillator at the PWM  
comparator and thus the required PWM signal is pro-  
duced. The high-side switch is turned on at the begin-  
ning of the oscillator cycle and turns off when the ramp  
regulator is capable of delivering up to 10A of output  
current. The MAX8566 provides output voltages from  
0.6V to (0.87 x V ) from 2.3V to 3.6V input supplies,  
IN  
making it ideal for on-board point-of-load applications.  
The output voltage accuracy is better than 1ꢀ over  
load, line, and temperature.  
voltage exceeds the V  
signal or the current-limit  
COMP  
The MAX8566 features a wide switching frequency  
range, allowing the user to achieve all-ceramic-capaci-  
tor designs and faster transient responses. The high  
operating frequency minimizes the size of external  
components. The MAX8566 also features a wide 2.3V  
to 3.6V input voltage range, making it ideal for point-of-  
load applications with both 3.3V and 2.5V input volt-  
ages. The MAX8566 is available in a small (5mm x  
5mm), 32-pin TQFN package. The SYNCOUT function  
allows end users to operate two MAX8566s at the same  
switching frequency with 180° out-of-phase operation  
to minimize the input ripple current, consequently  
reducing the input capacitance requirements. The  
REFIN function makes the MAX8566 an ideal candidate  
for DDR and tracking power supplies. Using internal  
threshold is exceeded. The low-side switch is then  
turned on for the remainder of the oscillator cycle.  
Current Limit  
The internal, high-side MOSFET has a typical 15A peak  
current-limit threshold. When current flowing out of LX  
exceeds this limit, the high-side MOSFET turns off and  
the synchronous rectifier turns on. The synchronous  
rectifier remains on until the inductor current falls below  
the low-side current limit. This lowers the duty cycle  
and causes the output voltage to droop until the current  
limit is no longer exceeded.  
The MAX8566 uses a hiccup mode to prevent over-  
heating during short-circuit output conditions. The  
device enters hiccup mode when V  
drops below  
FB  
low-R  
(8m) n-channel MOSFETs for both high-  
DS(ON)  
420mV and the current limit is reached. The IC turns off  
for 3.4ms and then enters soft-start. If the short-circuit  
condition remains after the soft-start time, the IC shuts  
down for another 3.4ms. The IC repeats this behavior  
until the short-circuit condition is removed.  
and low-side switches maintains high efficiency at both  
heavy-load and high-switching frequencies. In addition,  
the MAX8566 features a low-side-driver supply input  
(LSS) to boost the efficiency with a higher driver volt-  
age (3.3V) for 2.5V input applications.  
Soft-Start and REFIN  
The MAX8566 utilizes an adjustable soft-start function  
to limit inrush current during startup. An 8µA (typ) cur-  
rent source charges an external capacitor connected to  
SS to increase the capacitor voltage in a controlled  
manner. The soft-start time is adjusted by the value of  
the external capacitor from SS to GND. The required  
capacitance value is determined as:  
The MAX8566 employs the voltage-mode control archi-  
tecture with a high bandwith (> 10MHz) error amplifier.  
The voltage-mode control architecture allows above  
2MHz switching, reducing board area. The op-amp  
voltage error amplifier works with Type 3 compensation  
to fully utilize the bandwidth of the high-frequency  
switching to obtain fast transient response. Adjustable  
soft-start time provides flexibilities to minimize input  
startup inrush current. An open-drain power-good  
8µA × t  
(PWRGD) output goes high when V reaches 0.54V.  
FB  
SS  
C =  
0.6V  
Principle of Operation  
The controller logic block is the central processor that  
determines the duty cycle of the high-side MOSFET  
under different line, load, and temperature conditions.  
Under normal operation, where the current limit and  
temperature protection are not triggered, the controller  
logic block takes the output from the PWM comparator  
and generates the driver signals for both high-side and  
where t is the required soft-start time in seconds.  
SS  
The MAX8566 also features an external reference input  
(REFIN). The IC regulates FB to the voltage applied to  
REFIN. The internal soft-start is not available when  
using an external reference. A method of soft-start  
when using an external reference is shown in Figure 2.  
Connect REFIN to SS to use the internal 0.6V reference.  
______________________________________________________________________________________ 13  
High-Efficiency, 10A, PWM  
Internal-Switch Step-Down Regulator  
High-Side MOSFET Driver Supply (BST)  
The gate-drive voltage for the high-side, n-channel  
switch is generated by a flying-capacitor boost circuit.  
The capacitor between BST and LX is charged from the  
R1  
REFIN  
V
supply while the low-side MOSFET is on. When  
C
R2  
LSS  
MAX8566  
the low-side MOSFET is switched off, the stored voltage  
of the capacitor is stacked above LX to provide the  
necessary turn-on voltage for the high-side internal  
MOSFET.  
MAX856  
Frequency Select (FREQ)  
The switching frequency is resistor programmable from  
250kHz to 2.4MHz. Set the switching frequency of the  
Figure 2. Soft-Start Implementation with External Reference  
Undervoltage Lockout (UVLO)  
IC with a resistor from FREQ to GND (R  
calculated as:  
). R  
is  
FREQ  
FREQ  
The UVLO circuitry inhibits switching when V  
is  
DD  
below 2V. Once V  
rises above 2V, UVLO clears and  
DD  
the soft-start function activates. A 100mV hysteresis is  
built in for glitch immunity.  
50kΩ  
0.95µs  
1
f
s
R
=
×
0.05µs  
FREQ  
Monotonic Startup Modes (MODE)  
When starting up into a precharged output, the MAX8566  
does not discharge the output prior to entering soft-start  
where f is the desired switching frequency in Hz.  
S
SYNC Function (SYNC, SYNCOUT)  
The MAX8566 features a SYNC function that allows the  
switching frequency to be synchronized to any frequen-  
cy between 250kHz to 2.4MHz. Drive SYNC with a  
(known as monotonic startup). Drive MODE to 1/3 of V  
DD  
to enable monotonic startup mode. Connect MODE to  
GND to disable monotonic startup mode.  
C5  
0.047µF  
C24  
OPEN  
L1  
0.47µH  
23  
4
V
OUT  
BST  
LSS  
IN  
1.8V AT 10A  
18  
5
V
IN  
LX  
LX  
2.3V TO 3.6V  
19  
20  
21  
22  
6
7
8
9
C7  
22µF  
C3  
0.22µF  
C6  
IN  
22µF  
2kΩ  
C1  
10µF  
C2  
10µF  
IN  
IN  
IN  
LX  
LX  
LX  
R4  
100Ω  
3300pF  
10  
11  
12  
17  
16  
R1  
10Ω  
LX  
LX  
C8  
MAX8566  
24  
120pF  
R5  
V
DD  
LX  
24.9kΩ  
C4  
1µF  
PGND  
PGND  
R2  
20kΩ  
15  
POWER-GOOD  
OUTPUT  
PGND  
3
14  
13  
R6  
12.4kΩ  
PWRGD  
EN  
PGND  
PGND  
27  
32  
2
R17  
20kΩ  
FB  
R7  
16.9kΩ  
C9  
330pF  
1
MODE  
REFIN  
SYNC  
FREQ  
COMP  
25  
R18  
10kΩ  
28  
29  
30  
26  
SYNCOUT  
SS  
C10  
22pF  
GND  
31  
R3  
50kΩ  
C11  
0.022µF  
Figure 3. Typical Application Circuit  
14 ______________________________________________________________________________________  
High-Efficiency, 10A, PWM  
Internal-Switch Step-Down Regulator  
MAX856  
square wave at the desired synchronization frequency.  
Inductor Design  
A rising edge on SYNC triggers the internal SYNC cir-  
cuitry. The frequency of the input into SYNC must be  
higher than the internal oscillator frequency set by  
Choose an inductor with the following equation:  
V
× V V  
(
)
OUT  
IN  
OUT  
L =  
R
. Leave SYNC disconnected to disable the func-  
FREQ  
f × V × LIR × I  
s
IN  
OUT(MAX)  
tion and operate on the internal oscillator.  
The MAX8566 has a SYNCOUT output that generates a  
clock signal that is 180° out-of-phase with its internal  
oscillator, or the signal applied to SYNC. This allows for  
another regulator to be synchronized 180° out-of-phase  
to reduce the input ripple current.  
where LIR is the ratio of the inductor ripple current to  
average continuous current at the minimum duty cycle.  
Choose the LIR between 20ꢀ to 40ꢀ for best perfor-  
mance and stability.  
Use a low-loss inductor with the lowest possible DC  
resistance that fits in the allotted dimensions. Powered  
iron ferrite core types are often the best choice for per-  
formance. With any core material the core must be  
large enough not to saturate at the peak inductor cur-  
Power-Good Output (PWRGD)  
PWRGD is an open-drain output that goes high imped-  
ance once the soft-start ramp has concluded, provided  
V
is above 0.54V. PWRGD pulls low when V  
is  
FB  
FB  
rent (I  
). Calculate I  
as follows:  
PEAK  
PEAK  
below 0.54V for at least 50µs. PWRGD is low during  
shutdown.  
LIR  
2
I
= 1+  
× I  
OUT(MAX)  
PEAK  
Low-Side MOSFET Driver Supply (LSS)  
The MAX8566 provides an external input for the low-  
side MOSFET driver supply (LSS). This allows for high-  
er gate-drive voltages to maximize converter efficiency  
at low input voltages.  
Output Capacitor Selection  
The key selection parameters for the output capacitor  
are capacitance, ESR, ESL, and voltage rating require-  
ments. These affect the overall stability, output ripple  
voltage, and transient response of the DC-DC convert-  
er. The output ripple occurs due to variations in the  
charge stored in the output capacitor, the voltage drop  
due to the capacitor’s ESR, and the voltage drop due to  
the capacitor’s ESL. Calculate the output voltage ripple  
due to the output capacitance, ESR, and ESL as:  
Shutdown Mode  
Drive EN to GND to shut down the IC and reduce qui-  
escent current to 4µA. During shutdown, the output is  
high impedance. Drive EN high to enable the  
MAX8566.  
Thermal Protection  
Thermal-overload protection limits total power dissipa-  
tion in the device. When the junction temperature  
V
= V  
+ V  
+ V  
RIPPLE  
RIPPLE(C)  
RIPPLE(ESR) RIPPLE(ESL)  
where the output ripple due to output capacitance,  
ESR, and ESL are:  
exceeds T = +165°C a thermal sensor forces the  
J
device into shutdown, allowing the die to cool. The ther-  
mal sensor turns the device on again after the junction  
temperature cools by 20°C, causing a pulsed output  
during continuous overload conditions. The soft-start  
sequence begins after a thermal-shutdown condition.  
I
PP  
V
=
RIPPLE(C)  
8 × C  
× f  
s
OUT  
V
= I  
× ESR  
RIPPLE(ESR)  
RIPPLE(ESL)  
PP  
Applications Information  
I
PP  
V
=
× ESL  
t
V
DD  
Decoupling  
ON  
To decrease the noise effects due to the high switching  
frequency and maximize the output accuracy of the  
I
t
PP  
or V  
=
× ESL, whichever isgreater.  
RIPPLE(ESL)  
OFF  
MAX8566, decouple V  
DD  
the capacitor as close to V  
with a 4.7µF capacitor from  
DD  
V
to GND and a 2resistor from V  
to V . Place  
DD IN  
as possible.  
DD  
______________________________________________________________________________________ 15  
High-Efficiency, 10A, PWM  
Internal-Switch Step-Down Regulator  
The peak inductor current (I ) is:  
determines the zero. The double pole and zero fre-  
quencies are given as follows:  
P-P  
V
V  
OUT  
V
OUT  
IN  
I
=
×
1
PP  
f × L  
V
f
= f  
=
s
IN  
P1_LC  
P2_LC  
R
R
+ ESR  
O
2π × L × C  
×
O
Use these equations for initial capacitor selection.  
Determine final values by testing a prototype or an  
evaluation circuit. A smaller ripple current results in less  
output voltage ripple. Since the inductor ripple current  
is a factor of the inductor value, the output voltage rip-  
ple decreases with larger inductance. Use ceramic  
capacitors for low ESR and low ESL at the switching  
frequency of the converter. The low ESL of ceramic  
capacitors makes ripple voltages negligible.  
+ R  
O
L
1
f
=
Z_ESR  
2π × ESR × C  
O
MAX856  
where R is equal to the sum of the output inductor’s  
L
DCR and the internal switch resistance, R  
typical value for R  
. A  
DS(ON)  
is 8m. R is the output load  
DS(ON)  
O
resistance, which is equal to the rated output voltage  
divided by the rated output current. ESR is the total  
equivalent series resistance of the output filtering  
capacitor. If there is more than one output capacitor of  
the same type in parallel, the value of the ESR in the  
above equation is equal to that of the ESR of a single  
output capacitor divided by the total number of output  
capacitors.  
Load-transient response depends on the selected out-  
put capacitance. During a load transient, the output  
instantly changes by ESR x I  
. Before the controller  
LOAD  
can respond, the output deviates further, depending on  
the inductor and output capacitor values. After a short  
time (see the Typical Operating Characteristics), the  
controller responds by regulating the output voltage  
back to its predetermined value. The controller  
response time depends on the closed-loop bandwidth.  
A higher bandwidth yields a faster response time, pre-  
venting the output from deviating further from its regu-  
lating value. See the Compensation Design section for  
more details.  
The high switching frequency range of the MAX8566  
allows the use of ceramic output capacitors. Since the  
ESR of ceramic capacitors is typically very low, the fre-  
quency of the associated transfer-function zero is high-  
er than the unity-gain crossover frequency, f , and the  
C
zero cannot be used to compensate for the double pole  
created by the output filtering inductor and capacitor.  
The double pole produces a gain drop of 40dB and a  
phase shift of 90 degrees per decade. The error ampli-  
fier must compensate for this gain drop and phase shift  
to achieve a stable high-bandwidth closed-loop sys-  
tem. Therefore, use Type 3 compensation as shown in  
Figure 4. Type 3 compensation possesses three poles  
Input Capacitor Selection  
The input capacitor reduces the current peaks drawn  
from the input power supply and reduces switching  
noise in the IC. The impedance of the input capacitor at  
the switching frequency should be less than that of the  
input source so high-frequency switching currents do  
not pass through the input source but are instead  
shunted through the input capacitor. High source  
impedance requires high input capacitance. The input  
capacitor must meet the ripple-current requirement  
imposed by the switching currents. The RMS input rip-  
ple current is given by:  
and two zeros with the first pole, f , located at zero  
P1_EA  
frequency (DC). Locations of other poles and zeros of  
the Type 3 compensation are given by:  
1
f
=
Z1_EA  
Z2_EA  
2π × R1 × C1  
1
f
=
V
× V V  
(
)
OUT  
IN  
OUT  
2π × R3 × C3  
1
2π × R1 × C2  
1
I
= I  
×
RIPPLE  
LOAD  
V
IN  
f
=
=
P2_EA  
where I  
is the input RMS ripple current.  
Compensation Design  
RIPPLE  
f
P3_EA  
2π × R2 × C3  
The power transfer function consists of one double pole  
and one zero. The double pole is introduced by the out-  
put filtering inductor, L, and the output filtering capaci-  
The above equations are based on the assumptions  
that C1>>C2, and R3>>R2, which are true in most  
applications. Placement of these poles and zeros is  
tor, C . The ESR of the output filtering capacitor  
O
16 ______________________________________________________________________________________  
High-Efficiency, 10A, PWM  
Internal-Switch Step-Down Regulator  
MAX856  
Due to the underdamped nature of the output LC dou-  
ble pole, set the two zero frequencies of the Type 3  
compensation less than the LC double-pole frequency  
to provide adequate phase boost. Set the two zero fre-  
L
quencies to 80ꢀ of the LC double-pole frequency.  
LX  
Hence:  
R2  
L × C × R + ESR  
(
)
1
O
O
MAX8566  
R1 =  
×
R3  
0.8 × C1  
R
+ R  
C3  
L
O
FB  
L × C × R + ESR  
(
)
1
O
O
C1  
C2  
R1  
C3 =  
×
COMP  
0.8 × R3  
R
+ R  
R4  
L
O
Set the second compensation pole, f  
yields:  
, at f  
P2_EA  
Z_ESR  
C
× C1 × ESR  
O
C2 =  
R1 × C1C × ESR  
O
Figure 4. Type 3 Compensation Network  
Set the third compensation pole at 1/2 of the switching  
frequency to gain some phase margin. Calculate R2 as  
follows:  
determined by the frequencies of the double pole and  
ESR zero of the power transfer function. It is also a func-  
tion of the desired closed-loop bandwidth. The following  
section outlines the step-by-step design procedure to  
calculate the required compensation components.  
1
R2 =  
π × C3 × f  
S
Begin by setting the desired output voltage. The output  
voltage is set using a resistor-divider from the output to  
GND with FB at the center tap (R3 and R4 in Figure 4).  
Use 20kfor R4 and calculate R3 as:  
The above equations provide accurate compensation  
when the zero-cross frequency is significantly higher  
than the double-pole frequency. When the zero-cross  
frequency is near the double-pole frequency, the actual  
zero-cross frequency is higher than the calculated fre-  
quency. In this case, lowering the value of R1 reduces  
the zero-cross frequency. Also, set the third pole of the  
Type 3 compensation close to the switching frequency  
if the zero-cross frequency is above 200kHz to boost  
the phase margin. Note that the value of R4 can be  
altered to make the values of the compensation compo-  
nents practical. The recommended range for R4 is  
10kto 50k.  
V
0.6V  
OUT  
R3 = R4 ×  
1  
The zero-cross frequency of the closed-loop, f , should  
C
be less than 20ꢀ of the switching frequency, f .  
S
Higher zero-cross frequency results in faster transient  
response. It is recommended that the zero-cross fre-  
quency of the closed loop should be chosen between  
10ꢀ and 20ꢀ of the switching frequency. Once f is  
C
chosen, C1 is calculated from the following equation:  
PCB Layout Considerations  
and Thermal Performance  
V
IN  
1.5625 ×  
The MAX8566EVKIT provides an optimal layout and  
should be followed closely. For custom design, follow  
these guidelines:  
V
P-P  
C1 =  
R
R
L
f
× 2 × π × R3 × 1+  
C
O
1) Place decoupling capacitors (V  
and SS) as close  
DD  
to the IC as possible. Keep the power ground plane  
(connected to PGND) and signal ground plane (con-  
nected to GND) separate.  
where V  
is the ramp peak-to-peak voltage (1V typ).  
P-P  
______________________________________________________________________________________ 17  
High-Efficiency, 10A, PWM  
Internal-Switch Step-Down Regulator  
OPEN-LOOP  
GAIN  
COMPENSATION  
TRANSFER  
FUNCTION  
THE THIRD  
POLE  
DOUBLE POLE  
MAX856  
GAIN  
(dB)  
THE SECOND  
POLE  
POWER-STAGE  
TRANSFER FUNCTION  
THE FIRST AND  
SECOND ZEROS  
FREQUENCY  
Figure 5. Transfer Function for Type 3 Compensation  
2) Connect input and output capacitors to the power  
ground plane; connect all other capacitors to the sig-  
nal ground plane.  
4) Connect IN, LX, and PGND separately to a large  
copper area to help cool the IC to further improve  
efficiency and long-term reliability.  
3) Keep the high-current paths as short and wide as  
possible. Keep the path of switching current short  
and minimize the loop area formed by LX, the output  
capacitors, and the input capacitors.  
5) Ensure all feedback connections are short and  
direct. Place the feedback resistors and compensa-  
tion components as close to the IC as possible.  
6) Route high-speed switching nodes away from sensi-  
tive analog areas (FB, COMP).  
18 ______________________________________________________________________________________  
High-Efficiency, 10A, PWM  
Internal-Switch Step-Down Regulator  
MAX856  
Chip Information  
Pin Configuration  
PROCESS: BiCMOS  
TOP VIEW  
Package Information  
24  
23  
22 21 20 19  
18  
17  
For the latest package outline information and land patterns,  
go to www.maxim-ic.com/packages. Note that a “+”, “#”, or  
“-” in the package code indicates RoHS status only. Package  
drawings may show a different suffix character, but the drawing  
pertains to the package regardless of RoHS status.  
REFIN 25  
16 PGND  
SS 26  
EN 27  
15  
14  
PGND  
PGND  
PACKAGE  
TYPE  
32 TQFN-EP  
PACKAGE  
CODE  
T3255+4  
OUTLINE  
NO.  
21-0140  
LAND  
SYNC 28  
13 PGND  
PATTERN NO.  
MAX8566  
29  
30  
12  
11  
FREQ  
LX  
LX  
90-0012  
SYNCOUT  
GND 31  
10 LX  
*EP  
7
32  
9
FB  
LX  
+
1
2
3
4
5
6
8
THIN QFN  
*CONNECT EP TO GND.  
______________________________________________________________________________________ 19  
High-Efficiency, 10A, PWM  
Internal-Switch Step-Down Regulator  
Revision History  
REVISION REVISION  
DESCRIPTION  
PAGES  
CHANGED  
NUMBER  
DATE  
0
6/05  
Initial release  
Made corrections to Ordering Information, Pin Description, Compensation Design section,  
Pin Configuration, and Package Information  
1, 11, 17,  
19, 20, 21  
1
2/09  
2
3
12/10  
3/11  
Modified the Typical Application Circuit (Figure 3) to change the 2.4kresistor to 2kΩ  
14  
17  
MAX856  
Corrected error in C1 equation and added descriptive verbiage  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
20 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2011 Maxim Integrated Products  
Maxim is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX8568A

Complete Backup-Management ICs for Lithium and NiMH Batteries
MAXIM

MAX8568AETE

Complete Backup-Management ICs for Lithium and NiMH Batteries
MAXIM

MAX8568AETE-T

Battery Charge Controller, BICMOS, 3 X 3 MM, 0.80 MM HEIGHT, MO-220WEED-2, TQFN-16
MAXIM

MAX8568A_05

Complete Backup-Management ICs for Lithium and NiMH Batteries
MAXIM

MAX8568B

Complete Backup-Management ICs for Lithium and NiMH Batteries
MAXIM

MAX8568BETE

Complete Backup-Management ICs for Lithium and NiMH Batteries
MAXIM

MAX8568BETE

0.9A BATTERY CHARGE CONTROLLER, QCC16, 3 X 3 MM, 0.80 MM HEIGHT, MO-220WEED-2, TQFN-16
ROCHESTER

MAX8568BETE-T

Battery Charge Controller, BICMOS, 3 X 3 MM, 0.80 MM HEIGHT, MO-220WEED-2, TQFN-16
MAXIM

MAX8569

200mA Step-Up Converters in 6-Pin SOT23 and TDFN
MAXIM

MAX8569A

200mA Step-Up Converters in 6-Pin SOT23 and TDFN
MAXIM

MAX8569AETT

200mA Step-Up Converters in 6-Pin SOT23 and TDFN
MAXIM

MAX8569AETT+

200mA Step-Up Converters in 6-Pin SOT23 and TDFN
MAXIM