MAX8614A [MAXIM]

Dual-Output (+ and -) DC-DC; 双输出( +和 - )的DC-DC
MAX8614A
型号: MAX8614A
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Dual-Output (+ and -) DC-DC
双输出( +和 - )的DC-DC

文件: 总15页 (文件大小:399K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-4014; Rev 0; 3/06  
Dual-Output (+ and -) DC-DC  
Converters for CCD  
General Description  
Features  
The MAX8614A/MAX8614B dual-output step-up DC-DC  
converters generate both a positive and negative sup-  
ply voltage that are each independently regulated. The  
positive output delivers up to 50mA while the inverter  
supplies up to 100mA with input voltages between 2.7V  
and 5.5V. The MAX8614A/MAX8614B are ideal for pow-  
ering CCD imaging devices and displays in digital  
cameras and other portable equipment.  
Dual Output Voltages (+ and -)  
Adjustable Up to +24V and Down to -10V at 5.5V  
Output Short/Overload Protection  
True Shutdown on Both Outputs  
Controlled Inrush Current During Soft-Start  
Selectable Power-On Sequencing  
Up to 90% Efficiency  
IN  
The MAX8614A/MAX8614B generate an adjustable  
positive output voltage up to +24V and a negative out-  
put down to 16V below the input voltage. The  
MAX8614B has a higher current limit than the  
MAX8614A. Both devices operate at a fixed 1MHz fre-  
quency to ease noise filtering in sensitive applications  
and to reduce external component size.  
1µA Shutdown Current  
1MHz Fixed-Frequency PWM Operation  
Fault-Condition Flag  
Thermal Shutdown  
Small, 3mm x 3mm, 14-Pin TDFN Package  
Additional features include pin-selectable power-on  
sequencing for use with a wide variety of CCDs, True  
Shutdown™, overload protection, fault flag, and internal  
soft-start with controlled inrush current.  
Ordering Information  
TEMP PIN-  
RANGE PACKAGE  
TOP  
ILIM  
PART  
MARK BST/INV  
The MAX8614A/MAX8614B are available in a space-  
saving 3mm x 3mm 14-pin TDFN package and  
are specified over the -40°C to +85°C extended  
temperature range.  
14 TDFN  
-40°C to  
MAX8614AETD+  
3mm x 3mm ABG  
0.44/0.33  
0.8/0.75  
+85°C  
(T1433-2)  
14 TDFN  
-40°C to  
Applications  
CCD Bias Supplies and OLED Displays  
3mm x 3mm  
+85°C  
MAX8614BETD+  
ABH  
(T1433-2)  
+Denotes lead-free package.  
Digital Cameras  
Camcorders and Portable Multimedia  
PDAs and Smartphones  
Typical Operating Circuit  
INPUT  
(2.7V TO 5.5V)  
True Shutdown is a trademark of Maxim Integrated Products, Inc.  
V
CC  
Pin Configuration  
V
-7.5V  
INV  
ONINV  
LXN  
ONBST  
AV  
CC  
TOP VIEW  
MAX8614A  
MAX8614B  
14 13 12 11 10  
9
8
FBN  
PVP  
REF  
REF  
AV  
CC  
MAX8614A  
MAX8614B  
SEQ  
FLT  
V
+15V  
BST  
LXP  
FBP  
+
2
3
1
4
5
6
7
GND  
PGND  
TDFN  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
Dual-Output (+ and -) DC-DC  
Converters for CCD  
ABSOLUTE MAXIMUM RATINGS  
CC  
V
, AV  
to GND...................................................-0.3V to +6V  
CC  
Continuous Power Dissipation (T = +70°C Multilayer Board)  
A
LXN to V  
-18V to +0.3V  
14-Pin 3mm x 3mm TDFN (derate 18.2mW/°C above  
CC .............................................................  
LXP to PGND..........................................................-0.3V to +33V  
REF, ONINV, ONBST, SEQ, FBN, FBP  
FLT to GND ..........................................-0.3V to (AV  
T = +70°C) ............................................................1454.4mW  
A
Operating Temperature Range ...........................-40°C to +85°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
+ 0.3)V  
+ 0.3)V  
CC  
CC  
PVP to GND................................................-0.3V to (V  
AV to V ..........................................................-0.3V to +0.3V  
CC  
CC  
PGND to GND .......................................................-0.3V to +0.3V  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
= V  
= V  
V
= 3.6V, PGND = SEQ = GND, C6 = 0.22µF, C1 = 2.2µF, C2 = 4.7µF, Figure 1, T = 0°C to +85°C,  
CC  
AVCC  
ONINV = ONBST A  
unless otherwise noted. Typical values are at T = +25°C.)  
A
PARAMETER  
CONDITIONS  
MIN  
2.7  
TYP  
MAX  
5.5  
UNITS  
AV  
and V  
Voltage Range  
CC  
(Note 1)  
V
V
CC  
UVLO Threshold  
UVLO Hysteresis  
V
rising  
2.42  
2.55  
25  
2.66  
CC  
mV  
Step-Up Output Voltage Adjust Range  
Inverter Output Voltage Adjust Range  
V
24  
0
V
V
AVCC  
-16  
V
- V  
(Note 2)  
INV  
CC  
MAX8614B  
MAX8614A  
MAX8614B  
MAX8614A  
MAX8614B  
MAX8614A  
0.7  
0.8  
0.44  
1.05  
0.61  
0.75  
0.33  
0.6  
0.9  
0.52  
1.20  
0.70  
0.85  
0.38  
1.1  
LXP Current Limit  
A
A
A
0.34  
0.90  
0.52  
0.65  
0.28  
LXP Short-Circuit Current Limit  
LXN Current Limit  
LXN On-Resistance  
LXP On-Resistance  
PVP On-Resistance  
Maximum Duty Cycle  
V
V
V
= 3.6V  
= 3.6V  
= 3.6V  
%
CC  
CC  
CC  
0.625  
0.15  
90  
0.3  
Step-up and inverter  
82  
I
I
I
I
0.75  
2
1.4  
3
AVCC  
VCC  
Quiescent Current (Switching, No Load)  
Quiescent Current (No Switching, No Load)  
mA  
µA  
400  
8
800  
15  
5
AVCC  
VCC  
T
T
= +25°C  
= +85°C  
0.1  
0.1  
A
Shutdown Supply Current  
FBP Line Regulation  
µA  
A
V
= 2.7V to 5.5V  
-20  
mV/D  
CC  
mV/  
(D - 0.5)  
FBN Line Regulation  
V
= 2.7V to 5.5V  
20  
CC  
2
_______________________________________________________________________________________  
Dual-Output (+ and -) DC-DC  
Converters for CCD  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= V  
= V  
V
= 3.6V, PGND = SEQ = GND, C6 = 0.22µF, C1 = 2.2µF, C2 = 4.7µF, Figure 1, T = 0°C to +85°C,  
CC  
AVCC  
ONINV = ONBST A  
unless otherwise noted. Typical values are at T = +25°C.)  
A
PARAMETER  
CONDITIONS  
, MAX8614B  
, MAX8614A  
, MAX8614B  
, MAX8614A  
MIN  
TYP  
-15  
-35  
17.5  
65  
MAX  
UNITS  
I
I
I
I
= I  
= I  
LXP  
LXP  
LXN  
LXN  
ILIMMIN  
FBP Load Regulation  
FBN Load Regulation  
mV/A  
ILIMMIN  
= I  
= I  
ILIMMIN  
mV/A  
ILIMMIN  
Oscillator Frequency  
Soft-Start Interval  
0.93  
1.24  
1
1.07  
1.26  
MHz  
ms  
Step-up and inverter  
10  
Overload-Protection Fault Delay  
FBP, FBN, REFERENCE  
REF Output Voltage  
100  
ms  
No load  
1.25  
10  
V
REF Load Regulation  
REF Line Regulation  
0µA < I  
< 50µA  
mV  
mV  
V
REF  
3.3V < V  
No load  
No load  
< 5.5V  
2
5
AVCC  
FBP Threshold Voltage  
FBN Threshold Voltage  
0.995  
-10  
1.010  
0
1.025  
+10  
+50  
mV  
T
A
T
A
T
A
T
A
T
A
T
A
T
A
T
A
T
A
T
A
T
A
T
A
= +25°C  
= +85°C  
= +25°C  
= +85°C  
= +25°C  
= +85°C  
= +25°C  
= +85°C  
= +25°C  
= +85°C  
= +25°C  
= +85°C  
-50  
+5  
FBP Input Leakage Current  
FBN Input Leakage Current  
LXN Input Leakage Current  
LXP Input Leakage Current  
PVP Input Leakage Current  
FLT Input Leakage Current  
V
1.025V  
FBP =  
nA  
nA  
µA  
µA  
µA  
+5  
-50  
-5  
+5  
+50  
+5  
+5  
+5  
+1  
20  
0.5  
1
FBN = -10mV  
+5  
+0.1  
+0.1  
+0.1  
+0.1  
+0.1  
+0.1  
+0.1  
+0.1  
10  
V
V
V
V
= -12V  
= 23V  
= 0V  
LXN  
LXP  
PVP  
FLT  
-5  
-5  
-1  
= 3.6V  
µA  
FLT Input Resistance  
ONINV, ONBST, SEQ LOGIC INPUTS  
Logic-Low Input  
Fault mode, T = +25°C  
A
2.7V < V  
2.7V < V  
< 5.5V  
< 5.5V  
V
V
AVCC  
AVCC  
Logic-High Input  
1.6  
Bias Current  
T
= +25°C  
0.1  
µA  
A
_______________________________________________________________________________________  
3
Dual-Output (+ and -) DC-DC  
Converters for CCD  
ELECTRICAL CHARACTERISTICS  
(V  
= V  
= V  
V
= V = 3.6V, PGND = SEQ = GND, C6 = 0.22µF, C1 = 2.2µF, C2 = 6.7µF, Figure 1, T = -40°C  
CC  
AVCC  
ONINV = ONBST EN A  
to +85°C, unless otherwise noted.) (Note 3)  
PARAMETER  
CONDITIONS  
MIN  
3
TYP  
MAX  
5.5  
UNITS  
A
VCC  
= V  
Voltage Range  
CC  
(Note 1)  
V
V
V
V
UVLO Threshold  
V
rising  
2.42  
2.82  
24  
CC  
Step-Up Output Voltage Adjust Range  
Inverter Output Voltage Adjust Range  
V
AVCC  
-16  
V
- V  
(Note 2)  
0
INV  
CC  
MAX8614B  
MAX8614A  
MAX8614B  
MAX8614A  
MAX8614B  
MAX8614A  
0.7  
0.34  
0.9  
0.9  
LXP Current Limit  
A
A
A
0.52  
1.2  
LXP Short-Circuit Current Limit  
LXN Current Limit  
0.52  
0.65  
0.28  
0.70  
0.85  
0.38  
1.1  
LXN On-Resistance  
PVP On-Resistance  
Maximum Duty Cycle  
V
V
= 3.6V  
= 3.6V  
%
CC  
CC  
0.3  
Step-up and inverter  
82  
I
I
I
I
1.4  
3
AVCC  
VCC  
Quiescent Current (Switching, No Load)  
Quiescent Current (No Switching, No Load)  
mA  
800  
15  
AVCC  
VCC  
µA  
Oscillator Frequency  
0.93  
1.07  
MHz  
FBP, FBN, REFERENCE  
REF Output Voltage  
No load  
No load  
No load  
1.235  
0.995  
-10  
1.260  
1.025  
+10  
V
V
FBP Threshold Voltage  
FBN Threshold Voltage  
ONINV, ONBST SEQ LOGIC INPUTS  
Logic-Low Input  
mV  
2.7V < V  
2.7V < V  
< 5.5V  
< 5.5V  
0.5  
V
V
AVCC  
AVCC  
Logic-High Input  
1.6  
Note 1: Output current and on-resistance are specified at 3.6V input voltage. The IC operates to 2.7V with reduced performance.  
Note 2: The specified maximum negative output voltage is referred to V , and not to GND. With V  
= 3.3V, the maximum negative  
CC  
CC  
output is then -12.7V.  
Note 3: Specifications to -40°C are guaranteed by design, not production tested.  
4
_______________________________________________________________________________________  
Dual-Output (+ and -) DC-DC  
Converters for CCD  
Typical Operating Characteristics  
(T = +25°C, V  
= V  
= 3.6V, SEQ = GND, Figure 1, unless otherwise noted.)  
AVCC  
A
CC  
MAXIMUM OUTPUT CURRENT  
vs. INPUT VOLTAGE  
MAXIMUM OUTPUT CURRENT  
vs. INPUT VOLTAGE  
POSITIVE OUTPUT EFFICIENCY  
vs. OUTPUT CURRENT  
300  
250  
200  
150  
100  
50  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
350  
300  
250  
200  
150  
100  
50  
V
= 5V  
CC  
V
= -5V  
INV  
V
= 10V  
OUT  
V
= 3V  
CC  
V
= 15V  
OUT  
V
= 4.2V  
CC  
V
= -7.5V  
INV  
V
= 3.6V  
CC  
V
= -10V  
INV  
V
= 20V  
4.0  
OUT  
L = 2.2µH, C = 2.2µF  
0
0
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
0.1  
1
10  
100  
2.5  
3.0  
3.5  
4.5  
5.0  
5.5  
INPUT VOLTAGE (V)  
OUTPUT CURRENT (mA)  
INPUT VOLTAGE (V)  
POSITIVE OUTPUT EFFICIENCY  
vs. OUTPUT CURRENT  
NEGATIVE OUTPUT EFFICIENCY  
vs. OUTPUT CURRENT  
NEGATIVE OUTPUT EFFICIENCY  
vs. OUTPUT CURRENT  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
= 5V  
CC  
V
= 3.6V  
V
= 3.6V  
CC  
CC  
V
= 3V  
V
= 3V  
CC  
CC  
V
= 3.6V  
= 4.2V  
CC  
V
CC  
V
= 4.2V  
V
= 4.2V  
CC  
CC  
V
= 3V  
CC  
V
= 5V  
CC  
V
= 5V  
CC  
L = 10µH, C = 10µF  
L = 4.7µH, C = 4.7µF  
L = 10µH, C = 10µF  
0.1  
1
10  
100  
0.1  
1
10  
100  
0.1  
1
10  
100  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
OUTPUT EFFICIENCY  
vs. OUTPUT CURRENT  
OUTPUT EFFICIENCY  
vs. OUTPUT CURRENT  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
V
= 5V  
CC  
V
= 5V  
CC  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
= 4.2V  
CC  
V
= 3V  
CC  
V
= 3V  
CC  
V
= 4.2V  
CC  
V
= 3.6V  
V
= 3.6V  
CC  
CC  
BOTH OUTPUTS LOADED EQUALLY  
L1 = 2.2µH, C1 = 2.2µF, L2 = 4.7µH, C2 = 4.7µF  
BOTH OUTPUTS LOADED EQUALLY  
L1 = 10µH, C1 = 10µF, L2 = 10µH, C2 = 10µF  
0.1 10 100  
1
0.1 10 100  
1
1000  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
_______________________________________________________________________________________  
5
Dual-Output (+ and -) DC-DC  
Converters for CCD  
Typical Operating Characteristics (continued)  
(T = +25°C, V  
= V  
= 3.6V, SEQ = GND, Figure 1, unless otherwise noted.)  
AVCC  
A
CC  
CHANGE IN OUTPUT VOLTAGE  
vs. OUTPUT CURRENT (NEGATIVE OUTPUT)  
CHANGE IN OUTPUT VOLTAGE  
vs. LOAD CURRENT (POSITIVE OUTPUT)  
0
-0.5  
-1.0  
-1.5  
-2.0  
-2.5  
-3.0  
-3.5  
0
V
- = -7.5V  
OUT  
V
= 5V  
CC  
-0.5  
V
= 5V  
IN  
V
= 4.2V  
-1.0  
-1.5  
-2.0  
-2.5  
-3.0  
-3.5  
CC  
V
= 4.2V  
IN  
V
= 3V  
CC  
V
= 3V  
IN  
V
= 3.6V  
V
= 3.6V  
CC  
IN  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
150  
OUTPUT CURRENT (mA)  
LOAD CURRENT (mA)  
NO-LOAD SUPPLY CURRENT  
vs. INPUT VOLTAGE  
SOFT-START WAVEFORMS  
MAX8614A/B toc12  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
SEQ = GND  
V
ONINV  
V
ONBST  
5V/div  
0V  
AV  
CC  
10V/div  
V
BST  
0V  
5V/div  
V
INV  
V
CC  
I
IN  
100mA/div  
0V  
4ms/div  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
INPUT VOLTAGE (V)  
LINE TRANSIENT  
SOFT-START WAVEFORMS  
MAX8614A/B toc14  
MAX8614A/B toc13  
SEQ = AV  
CC  
V
V
ONINV  
ONBST  
50mV/div  
AC-COUPLED  
5V/div  
0V  
V
BST  
10V/div  
V
BST  
V
IN  
3.5V TO 4.5V  
TO 3.5V  
0V  
3.5V  
5V/div  
V
INV  
50mV/div  
AC-COUPLED  
V
INV  
I
IN  
100mA/div  
0V  
40µs/div  
4ms/div  
6
_______________________________________________________________________________________  
Dual-Output (+ and -) DC-DC  
Converters for CCD  
Typical Operating Characteristics (continued)  
(T = +25°C, V  
A
= V  
= 3.6V, SEQ = GND, Figure 1, unless otherwise noted.)  
AVCC  
CC  
LOAD TRANSIENT (POSITIVE OUTPUT)  
LOAD TRANSIENT (NEGATIVE OUTPUT)  
MAX8614A/B toc15  
MAX8614A/B toc16  
20mV/div  
AC-COUPLED  
V
BST  
V
50mV/div  
INV  
AC-COUPLED  
100mV/div  
AC-COUPLED  
100mV/div  
AC-COUPLED  
V
V
BST  
INV  
INV  
I
BST  
20mA/div  
0V  
50mA/div  
0V  
I
20mA TO 50mA  
TO 20mA  
20mA TO 100mA  
TO 20mA  
4µs/div  
4µs/div  
SWITCHING WAVEFORMS (POSITIVE OUTPUT)  
SWITCHING WAVEFORMS (POSITIVE OUTPUT)  
MAX8614A/B toc18  
MAX8614A/B toc17  
V
V
BST  
BST  
50mV/div  
50mV/div  
AC-COUPLED  
AC-COUPLED  
10V/div  
0V  
10V/div  
0V  
V
I
LX  
LX  
V
LX  
500mA/div  
0A  
I
LX  
500mA/div  
0A  
I
= 50mA  
BST  
I
= 20mA  
BST  
400ns/div  
400ns/div  
SWITCHING WAVEFORMS (NEGATIVE OUTPUT)  
SWITCHING WAVEFORMS (NEGATIVE OUTPUT)  
MAX8614A/B toc19  
MAX8614A/B toc20  
V
INV  
50mV/div  
AC-COUPLED  
V
50mV/div  
AC-COUPLED  
INV  
10V/div  
0V  
10V/div  
0V  
V
LX  
V
LX  
500mA/div  
0A  
500mA/div  
0A  
I
LX  
I
LX  
I
= 20mA  
INV  
I
= 100mA  
INV  
400ns/div  
400ns/div  
_______________________________________________________________________________________  
7
Dual-Output (+ and -) DC-DC  
Converters for CCD  
Typical Operating Characteristics (continued)  
(T = +25°C, V  
= V  
= 3.6V, SEQ = GND, Figure 1, unless otherwise noted.)  
AVCC  
A
CC  
SWITCHING FREQUENCY  
vs. TEMPERATURE  
REFERENCE VOLTAGE  
vs. TEMPERATURE  
1.006  
1.005  
1.004  
1.003  
1.002  
1.001  
1.000  
0.999  
0.998  
0.997  
0.996  
1.2490  
1.2485  
1.2480  
1.2475  
1.2470  
1.2465  
1.2460  
1.2455  
1.2450  
V
= -7.5V  
INV  
I
= 100mA  
OUT  
V
= +15V  
= 50mA  
BST  
I
OUT  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Pin Description  
PIN  
NAME  
FUNCTION  
Enable Logic Input. Connect ONBST to AV  
as an independent control of the step-up converter.  
for automatic startup of the step-up converter, or use ONBST  
CC  
1
ONBST  
Negative Output Feedback Input. Connect a resistor-divider between the negative output and REF with the  
center to FBN to set the negative output voltage.  
2
FBN  
3
4
5
AV  
Bias Supply. AV  
powers the IC. AV must be connected to V  
.
CC  
CC  
CC  
CC  
REF  
1.25V Reference Voltage Output. Bypass with a 0.22µF ceramic capacitor to GND.  
Ground. Connect GND to PGND with a short trace.  
GND  
Fault Open-Drain Output. Connect a 100kresistor from FLT to AV . FLT is active low during a fault event  
and is high impedance in shutdown.  
CC  
6
7
8
9
FLT  
Positive Output-Voltage Feedback Input. Connect a resistor-divider between the positive output and GND  
with the center to FBP to set the positive output voltage. FBP is high impedance in shutdown.  
FBP  
SEQ  
Sequence Logic Input. When SEQ = low, power-on sequence can be independently controlled by ONBST  
and ONINV. When SEQ = high, the positive output powers up before the negative output.  
Enable Logic Input. Connect ONINV to AV  
independent control of the inverter.  
for automatic startup of the inverter, or use ONINV as an  
CC  
ONINV  
10  
11  
LXP  
Positive Output Switching Inductor Node. LXP is high impedance in shutdown.  
Power Ground. Connect PGND to GND with a short trace.  
PGND  
True-Shutdown Load Disconnect Switch. Connect one side of the inductor to PVP and the other side to LXP.  
PVP is high impedance in shutdown.  
12  
13  
PVP  
Power Input Supply. V  
CC  
supplies power for the step-up and inverting DC-DC converters. V  
must be  
CC  
V
CC  
connected to AV  
.
CC  
14  
LXN  
EP  
Negative Output Switching Inductor Node. LXN is high impedance in shutdown.  
Exposed Pad. Connect exposed paddle to ground.  
8
_______________________________________________________________________________________  
Dual-Output (+ and -) DC-DC  
Converters for CCD  
Functional Diagram  
ERROR  
AMPLIFIER  
MAX8614A  
MAX8614B  
PWM  
V
CC  
COMPARATOR  
INVERTER  
CONTROL  
LOGIC  
LXN  
INVERTER  
CURRENT SENSE  
FBN  
REF  
REFERENCE  
1.25V  
ONBST  
ONINV  
1.01V  
BIAS  
AND  
CONTROL  
BLOCK  
FLT  
SOFT-START  
SEQ  
AV  
CC  
1MHz  
OSCILLATOR  
PVP  
LXP  
ERROR  
AMPLIFIER  
PWM  
COMPARATOR  
STEP-UP  
CONTROL  
LOGIC  
PGND  
FBP  
STEP-UP  
CURRENT SENSE  
GND  
Step-Up Converter  
Detailed Description  
The step-up converter generates a positive output volt-  
age up to 24V. An internal power switch, internal True-  
Shutdown load switch (PVP), and external catch diode  
allow conversion efficiencies as high as 90%. The inter-  
nal load switch disconnects the battery from the load  
by opening the battery connection to the inductor, pro-  
viding True Shutdown. The internal load switch stays on  
at all times during normal operation. The load switch is  
used in the control scheme for the converter and can-  
not be bypassed.  
The MAX8614A/MAX8614B generate both a positive and  
negative output voltage by combining a step-up and an  
inverting DC-DC converter on one IC. Both the step-up  
converter and the inverter share a common clock. Each  
output is independently regulated.  
Each output is separately controlled by a pulse-width-  
modulated (PWM) current-mode regulator. This allows  
the converters to operate at a fixed frequency (1MHz)  
for use in noise-sensitive applications. The 1MHz  
switching rate allows for small external components.  
Both converters are internally compensated and are  
optimized for fast transient response (see the Load-  
Transient Response/Voltage Positioning section).  
_______________________________________________________________________________________  
9
Dual-Output (+ and -) DC-DC  
Converters for CCD  
from 0 to 1V (where 1V is the desired feedback voltage  
Inverter  
for the step-up converter) while the inverter reference is  
ramped down from 1.25V to 0 (where 0 is the desired  
feedback voltage for the inverter).  
The inverter generates output voltages down to -16V  
below V . An internal power switch and external catch  
CC  
diode allow conversion efficiencies as high as 85%.  
During startup, the step-up converter True-Shutdown  
load switch turns on before the step-up-converter refer-  
ence voltage is ramped up. This effectively limits inrush  
current peaks to below 500mA during startup.  
Control Scheme  
Both converters use a fixed-frequency, PWM current-  
mode control-scheme. The heart of the current-mode  
PWM controllers is a comparator that compares the  
error-amp voltage-feedback signal against the sum of  
the amplified current-sense signal and a slope-com-  
pensation ramp. At the beginning of each clock cycle,  
the internal power switch turns on until the PWM com-  
parator trips. During this time the current in the inductor  
ramps up, storing energy in the inductor’s magnetic  
field. When the power switch turns off, the inductor  
releases the stored energy while the current ramps  
down, providing current to the output.  
Undervoltage Lockout (UVLO)  
The MAX8614A/MAX8614B feature undervoltage-lock-  
out (UVLO) circuitry, which prevents circuit operation  
and MOSFET switching when AV  
is less than the  
CC  
UVLO threshold (2.55V, typ). The UVLO comparator  
has 25mV of hysteresis to eliminate chatter due to the  
source supply output impedance.  
Power-On Sequencing (SEQ)  
The MAX8614A/MAX8614B have pin-selectable inter-  
nally programmed power-on sequencing. This  
sequencing covers all typical sequencing options  
required by CCD imagers.  
Fault Protection  
The MAX8614A/MAX8614B have robust fault and over-  
load protection. After power-up the device is set to  
detect an out-of-regulation state that could be caused by  
an overload or short condition at either output. If either  
output remains in overload for more than 100ms, both  
converters turn off and the FLT flag asserts low. During a  
short-circuit condition longer than 100ms on the positive  
output, foldback current limit protects the output. During  
a short-circuit condition longer than 100ms on the nega-  
tive output, both converters turn off and the FLT flag  
asserts low. The converters then remain off until the  
device is reinitialized by resetting the controller.  
When SEQ = 0, power-on sequence can be indepen-  
dently controlled by ONINV and ONBST. When SEQ =  
0 and ONINV and ONBST are pulled high, both outputs  
reach regulation simultaneously. The inverter is held off  
while the step-up True-Shutdown switch slowly turns on  
to pull PVP to V . The positive output rises to a diode  
CC  
drop below V . Once the step-up output reaches this  
CC  
voltage, the step-up and the inverter then ramp their  
respective references over a period of 7ms. This brings  
the two outputs into regulation at approximately the  
same time.  
The MAX8614A/MAX8614B also have thermal shutdown.  
When the device temperature reaches +170°C (typ) the  
device shuts down. When it cools down by 20°C (typ),  
the converters turn on.  
When SEQ = 1 and ONBST and ONINV are pulled high,  
the step-up output powers on first. The inverter is held  
off until the step-up completes its entire soft-start cycle  
and the positive output is in regulation. Then the invert-  
er starts its soft-start cycle and achieves regulation in  
about 7ms.  
Enable (ONBST/ONINV)  
Applying a high logic-level signal to ONBST/ONINV  
turns on the converters using the soft-start and power-  
on sequencing described below. Pulling ONBST/  
ONINV low puts the IC in shutdown mode, turning off  
the internal circuitry. When ONBST/ONINV goes high  
(or if power is applied with ONBST/ONINV high), the  
power-on sequence is set by SEQ. In shutdown, the  
device consumes only 0.1µA and both output loads are  
disconnected from the input supply.  
True Shutdown  
The MAX8614A/MAX8614B completely disconnect the  
loads from the input when in shutdown mode. In most  
step-up converters the external rectifying diode and  
inductor form a DC current path from the battery to the  
output. This can drain the battery even in shutdown if a  
load is connected at the step-up converter output. The  
MAX8614A/MAX8614B have an internal switch between  
Soft-Start and Inrush Current  
The step-up converter and inverter in the MAX8614A/  
MAX8614B feature soft-start to limit inrush current and  
minimize battery loading at startup. This is accom-  
plished by ramping the reference voltage at the input of  
each error amplifier. The step-up reference is ramped  
the input V  
and the inductor node, PVP. When this  
CC  
switch turns off in shutdown there is no DC path from  
the input to the output of the step-up converter. This  
load disconnect is referred to as “True Shutdown.” At  
10 ______________________________________________________________________________________  
Dual-Output (+ and -) DC-DC  
Converters for CCD  
the inverter output, load disconnect is implemented by  
turning off the inverter’s internal power switch.  
V
V  
IMV  
V  
FBN  
FBN  
R3 = R4 ×  
V
REF  
Current-Limit Select  
The MAX8614B allows an inductor current limit of 0.8A  
on the step-up converter and 0.75A on the inverter. The  
MAX8614A allows an inductor current limit of 0.44A on  
the step-up converter and 0.33A on the inverter. This  
allows flexibility in designing for higher load-current  
applications or for smaller, more compact designs  
when less power is needed. Note that the currents list-  
ed above are peak inductor currents and not output  
currents. The MAX8614B output current is 50mA at  
+15V and 100mA at -7.5V. The MAX8614A output cur-  
rent is 25mA at +15V and 50mA at -7.5V.  
where V  
= 1.25V and V  
= 0V.  
REF  
FBN  
Inductor Selection  
The MAX8614A/MAX8614B high switching frequency  
allows for the use of a small inductor. The 4.7µH and  
2.2µH inductors shown in the Typical Operating Circuit is  
recommended for most applications. Larger inductances  
reduce the peak inductor current, but may result in skip-  
ping pulses at light loads. Smaller inductances require  
less board space, but may cause greater peak current  
due to current-sense comparator propagation delay.  
Use inductors with a ferrite core or equivalent. Powder  
iron cores are not recommended for use with high switch-  
ing frequencies. The inductor’s incremental saturation rat-  
ing must exceed the selected current limit. For highest  
efficiency, use inductors with a low DC resistance (under  
200m); however, for smallest circuit size, higher resis-  
tance is acceptable. See Table 1 for a representative list  
of inductors and Table 2 for component suppliers.  
Load Transient/Voltage Positioning  
The MAX8614A/MAX8614B match the load regulation to  
the voltage droop seen during load transients. This is  
sometimes called voltage positioning. This results in min-  
imal overshoot when a load is removed and minimal volt-  
age drop during a transition from light load to full load.  
The use of voltage positioning allows superior load-  
transient response by minimizing the amplitude of over-  
shoot and undershoot in response to load transients.  
DC-DC converters with high control-loop gains maintain  
tight DC load regulation but still allow large voltage  
drops of 5% or greater for several hundred microsec-  
onds during transients. Load-transient variations are  
seen only with an oscilloscope (see the Typical  
Operating Characteristics). Since DC load regulation is  
read with a voltmeter, it does not show how the power  
supply reacts to load transients.  
Diode Selection  
The MAX8614A/MAX8614B high switching frequency  
demands a high-speed rectifier. Schottky diodes, such  
as the CMHSH5-2L or MBR0530L, are recommended.  
Make sure that the diode’s peak current rating exceeds  
the selected current limit, and that its breakdown volt-  
age exceeds the output voltage. Schottky diodes are  
preferred due to their low forward voltage. However,  
ultrahigh-speed silicon rectifiers are also acceptable.  
Table 2 lists component suppliers.  
Applications Information  
Capacitor Selection  
Adjustable Output Voltage  
The positive output voltage is set by connecting FBP to  
a resistive voltage-divider between the output and GND  
(Figure 1). Select feedback resistor R2 in the 30kto  
100krange. R1 is then given by:  
Output Filter Capacitor  
The primary criterion for selecting the output filter  
capacitor is low effective series resistance (ESR). The  
product of the peak inductor current and the output fil-  
ter capacitor’s ESR determines the amplitude of the  
high-frequency ripple seen on the output voltage.  
These requirements can be balanced by appropriate  
selection of the current limit.  
V
BST  
R1 = R2  
1  
V
FBP  
For stability, the positive output filter capacitor, C1,  
should satisfy the following:  
where V  
= 1.01V.  
FBP  
The negative output voltage is set by connecting FBN  
to a resistive voltage-divider between the output and  
REF (Figure 1). Select feedback resistor R4 in the 30kΩ  
to 100krange. R3 is then given by:  
2
C1 > (6L I  
) / ( R D+ V  
)
BSTMAX  
CS  
BST  
where R = 0.015 (MAX8614B), and 0.035 (MAX8614A).  
CS  
D+ is 1 minus the step-up switch duty cycle and is:  
D+ = V  
/ V  
BST  
CC  
______________________________________________________________________________________ 11  
Dual-Output (+ and -) DC-DC  
Converters for CCD  
Table 1. Inductor Selection Guide  
OUTPUT VOLTAGES  
AND LOAD CURRENT  
INDUCTOR  
L (µH)  
DCR (m)  
I
(A)  
SIZE (mm)  
SAT  
TOKO  
DB3018C, 1069AS-2R0  
2.0  
4.3  
4.3  
4.7  
10  
72  
126  
47  
1.4  
3 x 3 x 1.8  
3 x 3 x 1.8  
TOKO  
DB3018C, 1069AS-4R3  
0.97  
1.2  
1
TOKO  
S1024AS-4R3M  
15V, 50mA  
-7.5V, 100mA  
4 x 4 x 1.7  
Sumida  
CDRH2D14-4R7  
170  
100  
3.2 x 3.2 x 1.55  
4 x 4 x 1.7  
TOKO  
S1024AS-100M  
0.8  
Sumida  
CDRH2D11-100  
10  
10  
10  
400  
295  
300  
0.35  
0.46  
0.45  
3.2 x 3.2 x 1.2  
3.2 x 3.2 x 1.55  
3.2 x 2.5 x 2  
15V, 20mA  
-7.5V, 40mA  
Sumida  
CDRH2D14-100  
Murata  
LQH32CN100K33  
D- = V  
/ V  
INV  
CC  
Table 2. Component Suppliers  
Table 2 lists representative low-ESR capacitor suppliers.  
SUPPLIER  
INDUCTORS  
Murata  
PHONE  
WEBSITE  
Input Bypass Capacitor  
Although the output current of many MAX8614A/  
MAX8614B applications may be relatively small, the  
input must be designed to withstand current transients  
equal to the inductor current limit. The input bypass  
capacitor reduces the peak currents drawn from the  
voltage source, and reduces noise caused by the  
MAX8614A/MAX8614B switching action. The input  
source impedance determines the size of the capacitor  
required at the input. As with the output filter capacitor,  
a low-ESR capacitor is recommended. A 4.7µF, low-  
ESR capacitor is adequate for most applications,  
although smaller bypass capacitors may also be  
acceptable with low-impedance sources or if the source  
770-436-1300 www.murata.com  
847-545-600 www.sumida.com  
847-297-0070 www.tokoam.com  
Sumida  
TOKO  
DIODES  
Central  
Semiconductor  
(CMHSH5-2L)  
631-435-1110 www.centralsemi.com  
602-303-5454 www.motorola.com  
Motorola  
(MBR0540L)  
CAPACITORS  
Taiyo Yuden  
TDK  
408-573-4150 www.t-yuden.com  
888-835-6646 www.TDK.com  
supply is already well filtered. Bypass AV  
separately  
CC  
from V  
with a 0.1µF ceramic capacitor placed as  
CC  
close as possible to the AV  
and GND pins.  
CC  
For stability, the inverter output filter capacitor, C2,  
should satisfy the following:  
PC Board Layout and Routing  
Proper PC board layout is essential due to high-current  
levels and fast-switching waveforms that radiate noise.  
Breadboards or protoboards should never be used  
when prototyping switching regulators.  
C2 > (6L V  
I
) /  
REF INVMAX  
(R D- (V  
- V ) V  
)
CS  
REF  
INV INV  
where R  
= 0.0175 (MAX8614B), and 0.040  
CS  
(MAX8614A). D- is 1 minus the inverter switch duty cycle  
and is:  
12 ______________________________________________________________________________________  
Dual-Output (+ and -) DC-DC  
Converters for CCD  
V
BATT  
(2.7V ~ 5V)  
C4  
4.7µF  
V
INV  
13  
D2  
CMHSH5-21  
V
CC  
14  
1
9
R3  
187kΩ  
1%  
V
INV  
ONBST  
ONINV  
LXN  
-7.5V AT 100mA  
C2  
4.7µF  
2
FBN  
L2  
4.7µH  
R4  
30.9kΩ  
1%  
MAX8614A  
MAX8614B  
REF  
3
AV  
CC  
12  
10  
C5  
0.1µF  
4
PVP  
LXP  
REF  
FLT  
FBP  
C3  
1µF  
C6  
0.22µF  
V
BATT  
L1  
2.2µH  
D1  
R5  
100kΩ  
CMHSH5-21  
V
BST  
6
7
+15V AT 50mA  
C1  
2.2µF  
FAULT  
V
BST  
R1  
1.4MΩ  
1%  
8
SEQ  
R2  
100kΩ  
1%  
GND  
PGND  
11  
5
Figure 1. Typical Application Circuit  
It is important to connect the GND pin, the input  
bypass-capacitor ground lead, and the output filter  
capacitor ground lead to a single point (star ground  
configuration) to minimize ground noise and improve  
regulation. Also, minimize lead lengths to reduce stray  
capacitance, trace resistance, and radiated noise, with  
preference given to the feedback circuit, the ground  
circuit, and LX_. Place feedback resistors R1–R4 as  
close to their respective feedback pins as possible.  
Place the input bypass capacitor as close as possible  
to AV  
and GND.  
CC  
Chip Information  
PROCESS: BiCMOS  
______________________________________________________________________________________ 13  
Dual-Output (+ and -) DC-DC  
Converters for CCD  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
D2  
D
A2  
PIN 1 ID  
N
0.35x0.35  
b
[(N/2)-1] x e  
REF.  
PIN 1  
INDEX  
AREA  
E
E2  
DETAIL A  
e
A1  
k
C
C
L
L
A
L
L
e
e
PACKAGE OUTLINE, 6,8,10 & 14L,  
TDFN, EXPOSED PAD, 3x3x0.80 mm  
1
-DRAWING NOT TO SCALE-  
21-0137  
G
2
14 ______________________________________________________________________________________  
Dual-Output (+ and -) DC-DC  
Converters for CCD  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
COMMON DIMENSIONS  
SYMBOL  
MIN.  
0.70  
2.90  
2.90  
0.00  
0.20  
MAX.  
0.80  
3.10  
3.10  
0.05  
0.40  
A
D
E
A1  
L
k
0.25 MIN.  
0.20 REF.  
A2  
PACKAGE VARIATIONS  
DOWNBONDS  
ALLOWED  
PKG. CODE  
T633-1  
N
6
D2  
E2  
e
JEDEC SPEC  
MO229 / WEEA  
MO229 / WEEA  
MO229 / WEEC  
MO229 / WEEC  
MO229 / WEEC  
b
[(N/2)-1] x e  
1.90 REF  
1.90 REF  
1.95 REF  
1.95 REF  
1.95 REF  
2.00 REF  
2.40 REF  
2.40 REF  
1.50±0.10 2.30±0.10 0.95 BSC  
1.50±0.10 2.30±0.10 0.95 BSC  
1.50±0.10 2.30±0.10 0.65 BSC  
1.50±0.10 2.30±0.10 0.65 BSC  
1.50±0.10 2.30±0.10 0.65 BSC  
0.40±0.05  
0.40±0.05  
0.30±0.05  
0.30±0.05  
0.30±0.05  
NO  
NO  
T633-2  
6
T833-1  
8
NO  
T833-2  
8
NO  
T833-3  
8
YES  
NO  
T1033-1  
T1433-1  
T1433-2  
10  
14  
14  
1.50±0.10 2.30±0.10 0.50 BSC MO229 / WEED-3 0.25±0.05  
1.70±0.10 2.30±0.10 0.40 BSC  
1.70±0.10 2.30±0.10 0.40 BSC  
- - - -  
- - - -  
0.20±0.05  
0.20±0.05  
YES  
NO  
PACKAGE OUTLINE, 6,8,10 & 14L,  
TDFN, EXPOSED PAD, 3x3x0.80 mm  
2
-DRAWING NOT TO SCALE-  
21-0137  
G
2
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 15  
© 2006 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY