MAX8614BATDV [MAXIM]

Dual-Output ( and -) DC-DC Converters for CCD;
MAX8614BATDV
型号: MAX8614BATDV
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Dual-Output ( and -) DC-DC Converters for CCD

CD
文件: 总16页 (文件大小:1270K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EVALUATION KIT AVAILABLE  
Click here for production status of specific part numbers.  
MAX8614A/MAX8614B  
Dual-Output (+ and -) DC-DC  
Converters for CCD  
General Description  
Features  
The MAX8614A/MAX8614B dual-output step-up DC-DC  
converters generate both a positive and negative  
supply voltage that are each independently regulated.  
The positive output delivers up to 50mA while the inverter  
supplies up to 100mA with input voltages between 2.7V  
and 5.5V. The MAX8614A/MAX8614B are ideal for  
powering CCD imaging devices and displays in digital  
cameras and other portable equipment.  
Dual Output Voltages (+ and -)  
Adjustable Up to +24V and Down to -10V at 5.5V  
Output Short/Overload Protection  
True Shutdown on Both Outputs  
Controlled Inrush Current During Soft-Start  
Selectable Power-On Sequencing  
Up to 90% Efficiency  
1µA Shutdown Current  
1MHz Fixed-Frequency PWM Operation  
Fault-Condition Flag  
IN  
The MAX8614A/MAX8614B generate an adjustable  
positive output voltage up to +24V and a negative  
output down to 16V below the input voltage.  
The MAX8614B has a higher current limit than the  
MAX8614A. Both devices operate at a fixed 1MHz  
frequency to ease noise filtering in sensitive applications  
and to reduce external component size.  
Thermal Shutdown  
Small, 3mm x 3mm, 14-Pin TDFN Package  
Ordering Information  
Additional features include pin-selectable power-on  
sequencing for use with a wide variety of CCDs, True  
Shutdown™, overload protection, fault flag, and internal  
soft-start with controlled inrush current.  
ILIM  
BST/  
INV  
TEMP PIN-  
RANGE PACKAGE MARK  
TOP  
PART  
-40°C to  
+85°C  
0.44/  
0.33  
MAX8614AETD+  
MAX8614BETD+  
MAX8614BATD/V+  
14 TDFN  
14 TDFN  
14 TDFN  
ABG  
ABH  
ABT  
The MAX8614A/MAX8614B are available in a space  
saving 3mm x 3mm, 14-pin TDFN package and are speci-  
fied over the -40°C to +85°C/125°C extended temperature  
ranges.  
-40°C to  
+85°C  
0.8/  
0.75  
-40°C to  
+125°C  
0.8/  
0.75  
Applications  
CCD Bias Supplies and OLED Displays  
Digital Cameras  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
/V denotes an automotive qualified part that conforms to AEC-Q100.  
Camcorders and Portable Multimedia  
PDAs and Smartphones  
Typical Operating Circuit  
INPUT  
(2.7V TO 5.5V)  
True Shutdown is a trademark of Maxim Integrated Products, Inc.  
Pin Configuration  
V
CC  
V
INV  
-7.5V  
ONINV  
LXN  
ONBST  
AVCC  
REF  
TOP VIEW  
14 13 12 11 10  
9
8
MAX8614A  
MAX8614B  
FBN  
PVP  
REF  
MAX8614A  
MAX8614B  
AVCC  
SEQ  
FLT  
V
BST  
+15V  
LXP  
FBP  
+
2
3
1
4
5
6
7
GND  
PGND  
ꢀDꢁꢂ  
19-4014; Rev 3; 12/19  
MAX8614A/MAX8614B  
Dual-Output (+ and -) DC-DC  
Converters for CCD  
Absolute Maximum Ratings  
V
, AVCC to GND.................................................-0.3V to +6V  
Continuous Power Dissipation (T = +70°C Multilayer Board)  
A
CC  
LXN to V ...........................................................-18V to +0.3V  
14-Pin 3mm x 3mm TDFN (derate 18.2mW/°C above  
CC  
LXP to PGND ........................................................-0.3V to +33V  
REF, ONINV, ONBST, SEQ, FBN, FBP  
T = +70°C)............................................................1454.4mW  
A
Operating Temperature Range................-40°C to +85°C/125°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range............................ -65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
FLT to GND ....................................... -0.3V to (AVCC + 0.3)V  
PVP to GND ............................................. -0.3V to (V  
+ 0.3)V  
CC  
AVCC to V ........................................................-0.3V to +0.3V  
CC  
PGND to GND......................................................-0.3V to +0.3V  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional opera-  
tion of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
Electrical Characteristics  
(V  
= V  
= V  
= V  
= 3.6V, PGND = SEQ = GND, C6 = 0.22μF, C1 = 2.2μF, C2 = 4.7μF, Figure 1, T = 0°C to +85°C,  
CC  
AVCC  
ONINV  
ONBST A  
unless otherwise noted. Typical values are at T = +25°C.)  
A
PARAMETER  
CONDITIONS  
MIN  
2.7  
TYP  
MAX  
5.5  
UNITS  
AVCC and V  
Voltage Range  
(Note 1)  
V
V
CC  
UVLO Threshold  
V
rising  
2.42  
2.55  
25  
2.66  
CC  
UVLO Hysteresis  
mV  
V
Step-Up Output-Voltage Adjust Range  
Inverter Output-Voltage Adjust Range  
V
24  
0
AVCC  
V
- V  
(Note 2)  
-16  
V
INV  
CC  
MAX8614B  
MAX8614A  
MAX8614B  
MAX8614A  
MAX8614B  
MAX8614A  
0.7  
0.8  
0.44  
1.05  
0.61  
0.75  
0.33  
0.6  
0.9  
LXP Current Limit  
A
A
A
0.34  
0.90  
0.52  
0.65  
0.28  
0.52  
1.20  
0.70  
0.85  
0.38  
1.1  
LXP Short-Circuit Current Limit  
LXN Current Limit  
LXN On-Resistance  
LXP On-Resistance  
PVP On-Resistance  
Maximum Duty Cycle  
V
V
V
= 3.6V  
= 3.6V  
= 3.6V  
%
CC  
CC  
CC  
0.625  
0.15  
90  
0.3  
Step-up and inverter  
82  
I
I
I
I
0.75  
2
1.4  
3
AVCC  
VCC  
Quiescent Current  
(Switching, No Load)  
mA  
µA  
400  
8
800  
15  
5
AVCC  
VCC  
Quiescent Current  
(No Switching, No Load)  
T = +25°C  
0.1  
A
Shutdown Supply Current  
µA  
T = +85°C  
0.1  
A
FBP Line Regulation  
FBN Line Regulation  
V
= 2.7V to 5.5V  
= 2.7V to 5.5V  
-20  
mV/D  
CC  
CC  
mV/  
(D - 0.5)  
V
20  
Maxim Integrated  
2  
www.maximintegrated.com  
MAX8614A/MAX8614B  
Dual-Output (+ and -) DC-DC  
Converters for CCD  
Electrical Characteristics (continued)  
(V  
= V  
= V  
= V  
= 3.6V, PGND = SEQ = GND, C6 = 0.22μF, C1 = 2.2μF, C2 = 4.7μF, Figure 1, T = 0°C to +85°C,  
CC  
AVCC  
ONINV  
ONBST A  
unless otherwise noted. Typical values are at T = +25°C.)  
A
PARAMETER  
CONDITIONS  
, MAX8614B  
, MAX8614A  
, MAX8614B  
, MAX8614A  
MIN  
TYP  
-15  
-35  
17.5  
65  
MAX  
UNITS  
I
I
I
I
= I  
= I  
LXP  
LXP  
LXN  
LXN  
ILIMMIN  
FBP Load Regulation  
FBN Load Regulation  
mV/A  
ILIMMIN  
= I  
ILIMMIN  
ILIMMIN  
mV/A  
= I  
Oscillator Frequency  
0.93  
1.24  
1
1.07  
1.26  
MHz  
ms  
Soft-Start Interval  
Step-up and inverter  
10  
Overload-Protection Fault Delay  
FBP, FBN, REFERENCE  
REF Output Voltage  
100  
ms  
No load  
1.25  
10  
V
REF Load Regulation  
REF Line Regulation  
FBP Threshold Voltage  
FBN Threshold Voltage  
0µA < I  
< 50µA  
mV  
mV  
V
REF  
3.3V < V  
No load  
No load  
< 5.5V  
2
5
AVCC  
0.995  
-10  
1.010  
0
1.025  
+10  
+50  
mV  
T = +25°C  
-50  
+5  
A
FBP Input Leakage Current  
FBN Input Leakage Current  
LXN Input Leakage Current  
LXP Input Leakage Current  
PVP Input Leakage Current  
FLT Input Leakage Current  
V
=1.025V  
nA  
nA  
µA  
µA  
µA  
FBP  
T = +85°C  
+5  
A
T = +25°C  
-50  
-5  
+5  
+50  
+5  
+5  
+5  
+1  
20  
0.5  
1
A
FBN = -10mV  
T = +85°C  
+5  
A
T = +25°C  
+0.1  
+0.1  
+0.1  
+0.1  
+0.1  
+0.1  
+0.1  
+0.1  
10  
A
V
V
V
V
= -12V  
= 23V  
= 0V  
LXN  
LXP  
PVP  
FLT  
T = +85°C  
A
T
= +25°C  
-5  
A
T = +85°C  
A
T = +25°C  
-5  
A
T = +85°C  
A
T = +25°C  
-1  
A
= 3.6V  
µA  
T = +85°C  
A
FLT Input Resistance  
ONINV, ONBST, SEQ LOGIC INPUTS  
Logic-Low Input  
Fault mode, T = +25°C  
A
2.7V < V  
2.7V < V  
< 5.5V  
< 5.5V  
V
V
AVCC  
Logic-High Input  
1.6  
AVCC  
Bias Current  
T = +25°C  
0.1  
µA  
A
Maxim Integrated  
3  
www.maximintegrated.com  
MAX8614A/MAX8614B  
Dual-Output (+ and -) DC-DC  
Converters for CCD  
Electrical Characteristics  
(V  
= V  
= V  
= V  
= V = 3.6V, PGND = SEQ = GND, C6 = 0.22μF, C1 = 2.2μF, C2 = 6.7μF, Figure 1, T = -40°C to  
CC  
AVCC  
ONINV  
ONBST  
E
N
A
+85°C, unless otherwise noted.) (Note 3)  
PARAMETER  
CONDITIONS  
MIN  
3
TYP  
MAX  
5.5  
UNITS  
AVCC = V  
Voltage Range  
(Note 1)  
V
V
V
V
CC  
UVLO Threshold  
V
rising  
2.42  
2.82  
24  
CC  
Step-Up Output Voltage Adjust Range  
Inverter Output Voltage Adjust Range  
V
AVCC  
-16  
V
- V  
(Note 2)  
0
INV  
CC  
MAX8614B  
MAX8614A  
MAX8614B  
MAX8614A  
MAX8614B  
MAX8614A  
0.7  
0.34  
0.9  
0.9  
LXP Current Limit  
A
A
A
0.52  
1.2  
LXP Short-Circuit Current Limit  
LXN Current Limit  
0.52  
0.65  
0.28  
0.70  
0.85  
0.38  
1.1  
LXN On-Resistance  
PVP On-Resistance  
Maximum Duty Cycle  
V
V
= 3.6V  
= 3.6V  
%
CC  
0.3  
CC  
Step-up and inverter  
82  
I
I
I
I
1.4  
3
AVCC  
VCC  
Quiescent Current (Switching, No Load)  
mA  
800  
15  
AVCC  
VCC  
Quiescent Current  
(No Switching, No Load)  
µA  
Oscillator Frequency  
0.93  
1.07  
MHz  
FBP, FBN, REFERENCE  
REF Output Voltage  
No load  
No load  
No load  
1.235  
0.995  
-10  
1.260  
1.025  
+10  
V
V
FBP Threshold Voltage  
FBN Threshold Voltage  
ONINV, ONBST SEQ LOGIC INPUTS  
Logic-Low Input  
mV  
2.7V < V  
2.7V < V  
< 5.5V  
< 5.5V  
0.5  
V
V
AVCC  
Logic-High Input  
1.6  
AVCC  
Maxim Integrated  
4  
www.maximintegrated.com  
MAX8614A/MAX8614B  
Dual-Output (+ and -) DC-DC  
Converters for CCD  
Electrical Characteristics  
(V  
= V  
= V  
= V = V = 3.6V, PGND = SEQ = GND, C6 = 0.22µF, C1 = 2.2µF, C2 = 6.7µF, Figure 1, MAX8614BATD/V+,  
CC  
AVCC  
ONINV  
ONBST EN  
T
= -40°C to +125°C, unless otherwise noted)(Note 3)  
A
PARAMETER  
CONDITIONS  
MIN  
3
TYP  
MAX  
5.5  
UNITS  
AVCC = V  
Voltage Range  
(Note 1)  
V
V
V
V
CC  
UVLO Threshold  
V
rising  
2.42  
2.82  
24  
CC  
Step-Up Output Voltage Adjust Range  
Inverter Output Voltage Adjust Range  
V
AVCC  
-16  
V
- V  
(Note 2)  
0
INV  
CC  
0.7  
0.34  
0.9  
0.9  
LXP Current Limit  
A
A
A
0.52  
1.2  
LXP Short-Circuit Current Limit  
LXN Current Limit  
0.52  
0.65  
0.28  
0.70  
0.85  
0.38  
1.1  
LXN On-Resistance  
PVP On-Resistance  
Maximum Duty Cycle  
V
V
= 3.6V  
= 3.6V  
%
CC  
0.3  
CC  
Step-up and inverter  
82  
I
I
I
I
1.4  
3
AVCC  
VCC  
Quiescent Current (Switching, No Load)  
mA  
800  
15  
AVCC  
VCC  
Quiescent Current  
(No Switching, No Load)  
µA  
Oscillator Frequency  
0.93  
1.07  
MHz  
FBP, FBN, REFERENCE  
REF Output Voltage  
No load  
No load  
No load  
1.235  
0.995  
-10  
1.260  
1.025  
+10  
V
V
FBP Threshold Voltage  
FBN Threshold Voltage  
ONINV, ONBST SEQ LOGIC INPUTS  
Logic-Low Input  
mV  
2.7V < V  
2.7V < V  
< 5.5V  
< 5.5V  
0.5  
V
V
AVCC  
Logic-High Input  
1.6  
AVCC  
Note 1: Output current and on-resistance are specified at 3.6V input voltage. The IC operates to 2.7V with reduced performance.  
Note 2: The specified maximum negative output voltage is referred to V , and not to GND. With V  
= 3.3V, the maximum  
CC  
CC  
negative output is then -12.7V.  
Note 3: Specifications to -40°C are guaranteed by design, not production tested.  
Maxim Integrated  
5  
www.maximintegrated.com  
MAX8614A/MAX8614B  
Dual-Output (+ and -) DC-DC  
Converters for CCD  
Typical Operating Characteristics  
(T = +25°C, V  
= V  
= 3.6V, SEQ = GND, Figure 1, unless otherwise noted.)  
A
CC  
AVCC  
MAXIMUM OUTPUT CURRENT  
vs. INPUT VOLTAGE  
MAXIMUM OUTPUT CURRENT  
vs. INPUT VOLTAGE  
POSITIVE OUTPUT EFFICIENCY  
vs. OUTPUT CURRENT  
350  
300  
250  
200  
150  
100  
50  
300  
250  
200  
150  
100  
50  
100  
V
= 5V  
CC  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
INV  
= -5V  
V
= 10V  
OUT  
V
= 3V  
CC  
V
= 15V  
OUT  
V
CC  
= 4.2V  
V
= -7.5V  
INV  
V
= 3.6V  
CC  
V
INV  
= -10V  
V
= 20V  
OUT  
L = 2.2µH, C = 2.2µF  
10 100  
0
0
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
0.1  
1
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
OUTPUT CURRENT (mA)  
POSITIVE OUTPUT EFFICIENCY  
vs. OUTPUT CURRENT  
NEGATIVE OUTPUT EFFICIENCY  
vs. OUTPUT CURRENT  
NEGATIVE OUTPUT EFFICIENCY  
vs. OUTPUT CURRENT  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
= 5V  
V
= 3.6V  
V
= 3.6V  
CC  
CC  
CC  
V
CC  
= 3V  
V
CC  
= 3V  
V
= 3.6V  
CC  
V
= 4.2V  
CC  
V
= 4.2V  
V
= 4.2V  
CC  
CC  
V
= 3V  
CC  
V
CC  
= 5V  
V
= 5V  
CC  
L = 10µH, C = 10µF  
L = 4.7µH, C = 4.7µF  
10  
L = 10µH, C = 10µF  
10  
0.1  
1
100  
0.1  
1
100  
0.1  
1
10  
100  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
OUTPUT EFFICIENCY  
vs. OUTPUT CURRENT  
OUTPUT EFFICIENCY  
vs. OUTPUT CURRENT  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
= 5V  
CC  
V
= 5V  
CC  
V
= 4.2V  
CC  
V
CC  
= 3V  
V
= 3V  
CC  
V
CC  
= 4.2V  
V
CC  
= 3.6V  
V
= 3.6V  
CC  
BOTH OUTPUTS LOADED EQUALLY  
L1 = 2.2µH, C1 = 2.2µF, L2 = 4.7µH, C2 = 4.7µF  
BOTH OUTPUTS LOADED EQUALLY  
L1 = 10µH, C1 = 10µF, L2 = 10µH, C2 = 10µF  
0.1  
1
10  
100  
0.1  
1
10  
100  
1000  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
Maxim Integrated  
6  
www.maximintegrated.com  
MAX8614A/MAX8614B  
Dual-Output (+ and -) DC-DC  
Converters for CCD  
Typical Operating Characteristics (continued)  
(T = +25°C, V  
= V  
= 3.6V, SEQ = GND, Figure 1, unless otherwise noted.)  
A
CC  
AVCC  
CHANGE IN OUTPUT VOLTAGE  
vs. LOAD CURRENT (POSITIVE OUTPUT)  
CHANGE IN OUTPUT VOLTAGE  
vs. OUTPUT CURRENT (NEGATIVE OUTPUT)  
0
-0.5  
-1.0  
-1.5  
-2.0  
-2.5  
-3.0  
-3.5  
0
-0.5  
-1.0  
-1.5  
-2.0  
-2.5  
-3.0  
-3.5  
V
- = -7.5V  
OUT  
V
CC  
= 5V  
V
IN  
= 5V  
V
= 4.2V  
CC  
V
= 4.2V  
IN  
V
= 3V  
CC  
V
IN  
= 3V  
V
= 3.6V  
CC  
V
= 3.6V  
IN  
0
25  
50  
75  
100  
125  
150  
0
25  
50  
75  
100  
125  
LOAD CURRENT (mA)  
OUTPUT CURRENT (mA)  
NO-LOAD SUPPLY CURRENT  
vs. INPUT VOLTAGE  
SOFT-START WAVEFORMS  
MAX8614A/B toc12  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
SEQ = GND  
V
ONINV  
V
ONBST  
5V/div  
0V  
AVCC  
10V/div  
V
BST  
0V  
5V/div  
V
INV  
V
CC  
I
IN  
100mA/div  
0V  
4ms/div  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
INPUT VOLTAGE (V)  
SOFT-START WAVEFORMS  
LINE TRANSIENT  
MAX8614A/B toc13  
MAX8614A/B toc14  
SEQ = AVCC  
V
ONINV  
50mV/div  
AC-COUPLED  
V
ONBST  
5V/div  
0V  
V
BST  
10V/div  
V
BST  
V
IN  
3.5V TO 4.5V  
TO 3.5V  
0V  
3.5V  
5V/div  
V
INV  
50mV/div  
AC-COUPLED  
I
IN  
V
INV  
100mA/div  
0V  
4ms/div  
40µs/div  
Maxim Integrated  
7  
www.maximintegrated.com  
MAX8614A/MAX8614B  
Dual-Output (+ and -) DC-DC  
Converters for CCD  
Typical Operating Characteristics (continued)  
(T = +25°C, V  
= V  
= 3.6V, SEQ = GND, Figure 1, unless otherwise noted.)  
A
CC  
AVCC  
LOAD TRANSIENT (POSITIVE OUTPUT)  
LOAD TRANSIENT (NEGATIVE OUTPUT)  
MAX8614A/B toc15  
MAX8614A/B toc16  
20mV/div  
AC-COUPLED  
V
BST  
50mV/div  
V
INV  
AC-COUPLED  
100mV/div  
AC-COUPLED  
100mV/div  
AC-COUPLED  
V
V
INV  
BST  
BST  
I
20mA/div  
0V  
50mA/div  
I
INV  
20mA TO 100mA  
TO 20mA  
20mA TO 50mA  
TO 20mA  
0V  
4µs/div  
4µs/div  
SWITCHING WAVEFORMS (POSITIVE OUTPUT)  
SWITCHING WAVEFORMS (POSITIVE OUTPUT)  
MAX8614A/B toc17  
MAX8614A/B toc18  
V
BST  
V
BST  
50mV/div  
50mV/div  
AC-COUPLED  
AC-COUPLED  
10V/div  
0V  
10V/div  
0V  
V
LX  
V
LX  
500mA/div  
0A  
I
I
LX  
LX  
500mA/div  
0A  
I
= 50mA  
I
= 20mA  
BST  
BST  
400ns/div  
400ns/div  
SWITCHING WAVEFORMS (NEGATIVE OUTPUT)  
SWITCHING WAVEFORMS (NEGATIVE OUTPUT)  
MAX8614A/B toc20  
MAX8614A/B toc19  
V
INV  
V
INV  
50mV/div  
50mV/div  
AC-COUPLED  
AC-COUPLED  
10V/div  
0V  
10V/div  
0V  
V
LX  
V
LX  
500mA/div  
0A  
500mA/div  
0A  
I
I
LX  
LX  
I
= 20mA  
I
= 100mA  
INV  
INV  
400ns/div  
400ns/div  
Maxim Integrated  
8  
www.maximintegrated.com  
MAX8614A/MAX8614B  
Dual-Output (+ and -) DC-DC  
Converters for CCD  
Typical Operating Characteristics (continued)  
(T = +25°C, V  
= V = 3.6V, SEQ = GND, Figure 1, unless otherwise noted.)  
A
CC  
AVCC  
SWITCHING FREQUENCY  
vs. TEMPERATURE  
REFERENCE VOLTAGE  
vs. TEMPERATURE  
1.2490  
1.2485  
1.2480  
1.2475  
1.2470  
1.2465  
1.2460  
1.2455  
1.2450  
1.006  
1.005  
1.004  
1.003  
1.002  
1.001  
1.000  
0.999  
0.998  
0.997  
0.996  
V
= -7.5V  
INV  
I
= 100mA  
OUT  
V
= +15V  
= 50mA  
BST  
I
OUT  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Pin Description  
PIN  
NAME  
FUNCTION  
Enable Logic Input. Connect ONBST to AVCC for automatic startup of the step-up converter,  
or use ONBST as an independent control of the step-up converter.  
1
ONBST  
Negative Output Feedback Input. Connect a resistor-divider between the negative output and  
REF with the center to FBN to set the negative output voltage.  
2
FBN  
3
4
5
AVCC  
REF  
Bias Supply. AVCC powers the IC. AVCC must be connected to V  
.
CC  
1.25V Reference Voltage Output. Bypass with a 0.22µF ceramic capacitor to GND.  
Ground. Connect GND to PGND with a short trace.  
GND  
Fault Open-Drain Output. Connect a 100kΩ resistor from FLT to AVCC.  
FLT is active low during a fault event and is high impedance in shutdown.  
6
7
8
9
FLT  
FBP  
Positive Output-Voltage Feedback Input. Connect a resistor-divider between the positive output and GND  
with the center to FBP to set the positive output voltage. FBP is high impedance in shutdown.  
Sequence Logic Input. When SEQ = low, power-on sequence can be independently controlled by ONBST  
and ONINV. When SEQ = high, the positive output powers up before the negative output.  
SEQ  
Enable Logic Input. Connect ONINV to AVCC for automatic startup of the inverter,  
or use ONINV as an independent control of the inverter.  
ONINV  
10  
11  
LXP  
Positive Output Switching Inductor Node. LXP is high impedance in shutdown.  
Power Ground. Connect PGND to GND with a short trace.  
PGND  
True-Shutdown Load Disconnect Switch. Connect one side of the inductor to PVP and the other side to LXP.  
PVP is high impedance in shutdown.  
12  
13  
PVP  
Power Input Supply. V  
supplies power for the step-up and inverting DC-DC converters.  
CC  
V
CC  
V
must be connected to AVCC.  
CC  
14  
LXN  
EP  
Negative Output Switching Inductor Node. LXN is high impedance in shutdown.  
Exposed Pad. Connect exposed pad to ground.  
Maxim Integrated  
9  
www.maximintegrated.com  
MAX8614A/MAX8614B  
Dual-Output (+ and -) DC-DC  
Converters for CCD  
Functional Diagram  
MAX8614A  
MAX8614B  
ERROR  
AMPLIFIER  
PWM  
COMPARATOR  
V
CC  
INVERTER  
CONTROL  
LOGIC  
LXN  
INVERTER  
CURRENT SENSE  
FBN  
REF  
REFERENCE  
1.25V  
ONBST  
1.01V  
ONINV  
BIAS  
AND  
CONTROL  
FLT  
SOFT-START  
BLOCK  
SEQ  
AVCC  
1MHz  
OSCILLATOR  
PVP  
LXP  
ERROR  
AMPLIFIER  
PWM  
COMPARATOR  
STEP-UP  
CONTROL  
LOGIC  
PGND  
FBP  
STEP-UP  
CURRENT SENSE  
GND  
Step-Up Converter  
Detailed Description  
The step-up converter generates a positive output  
voltage up to 24V. An internal power switch, internal  
True-Shutdown load switch (PVP), and external catch  
diode allow conversion efficiencies as high as 90%. The  
internal load switch disconnects the battery from the load  
by opening the battery connection to the inductor, provid-  
ing True Shutdown. The internal load switch stays on at  
all times during normal operation. The load switch is used  
in the control scheme for the converter and cannot be  
bypassed.  
The MAX8614A/MAX8614B generate both a positive and  
negative output voltage by combining a step-up and an  
inverting DC-DC converter on one IC. Both the step-up  
converter and the inverter share a common clock. Each  
output is independently regulated.  
Each output is separately controlled by a pulse-width-  
modulated (PWM) current-mode regulator. This allows  
the converters to operate at a fixed frequency (1MHz) for  
use in noise-sensitive applications. The 1MHz switching  
rate allows for small external components. Both convert-  
ers are internally compensated and are optimized for  
fast transient response (see the Load Transient/Voltage  
Positioning section).  
Maxim Integrated  
10  
www.maximintegrated.com  
MAX8614A/MAX8614B  
Dual-Output (+ and -) DC-DC  
Converters for CCD  
amplifier. The step-up reference is ramped from 0 to 1V  
(where 1V is the desired feedback voltage for the step-up  
converter), while the inverter reference is ramped down  
from 1.25V to 0 (where 0 is the desired feedback voltage  
for the inverter).  
Inverter  
The inverter generates output voltages down to -16V  
below V . An internal power switch and external catch  
CC  
diode allow conversion efficiencies as high as 85%.  
Control Scheme  
During startup, the step-up converter True-Shutdown load  
switch turns on before the step-up-converter reference  
voltage is ramped up. This effectively limits inrush current  
peaks to below 500mA during startup.  
Both converters use a fixed-frequency, PWM current-  
mode control scheme. The heart of the current-mode  
PWM controllers is a comparator that compares the  
error-amp voltage-feedback signal against the sum  
of the amplified current-sense signal and a slope-  
compensation ramp. At the beginning of each clock  
cycle, the internal power switch turns on until the PWM  
comparator trips. During this time the current in the  
inductor ramps up, storing energy in the inductor's  
magnetic field. When the power switch turns off, the  
inductor releases the stored energy while the current  
ramps down, providing current to the output.  
Undervoltage Lockout (UVLO)  
The MAX8614A/MAX8614B feature undervoltage-  
lockout (UVLO) circuitry, which prevents circuit opera-  
tion and MOSFET switching when AVCC is less than the  
UVLO threshold (2.55V, typ). The UVLO comparator has  
25mV of hysteresis to eliminate chatter due to the source  
supply output impedance.  
Power-On Sequencing (SEQ)  
Fault Protection  
The MAX8614A/MAX8614B have pin-selectable  
internally programmed power-on sequencing. This  
sequencing covers all typical sequencing options required  
by CCD imagers.  
The MAX8614A/MAX8614B have robust fault and over-  
load protection. After power-up, the device is set to  
detect an out-of-regulation state that could be caused by  
an overload or short condition at either output. If either  
output remains in overload for more than 100ms, both  
converters turn off and the FLT flag asserts low. During a  
short-circuit condition longer than 100ms on the positive  
output, foldback current limit protects the output. During a  
short-circuit condition longer than 100ms on the negative  
output, both converters turn off and the FLT flag asserts  
low. The converters then remain off until the device is  
reinitialized by resetting the controller.  
When SEQ = 0, power-on sequence can be indepen-  
dently controlled by ONINV and ONBST. When SEQ =  
0 and ONINV and ONBST are pulled high, both outputs  
reach regulation simultaneously. The inverter is held off  
while the step-up True-Shutdown switch slowly turns on to  
pull PVP to V . The positive output rises to a diode drop  
CC  
below V . Once the step-up output reaches this voltage,  
CC  
the step-up and the inverter then ramp their respective  
references over a period of 7ms. This brings the two out-  
puts into regulation at approximately the same time.  
The MAX8614A/MAX8614B also have thermal shutdown.  
When the device temperature reaches +170°C (typ), the  
device shuts down. When it cools down by 20°C (typ), the  
converters turn on.  
When SEQ = 1 and ONBST and ONINV are pulled high,  
the step-up output powers on first. The inverter is held off  
until the step-up completes its entire soft-start cycle and  
the positive output is in regulation. Then the inverter starts  
its soft-start cycle and achieves regulation in approxi-  
mately 7ms.  
Enable (ONBST/ONINV)  
Applying a high logic-level signal to ONBST/ONINV  
turns on the converters using the soft-start and pow-  
er-on sequencing described below. Pulling ONBST/  
ONINV low puts the IC in shutdown mode, turning off the  
internal circuitry. When ONBST/ONINV goes high (or if  
power is applied with ONBST/ONINV high), the power-on  
sequence is set by SEQ. In shutdown, the device con-  
sumes only 0.1µA and both output loads are disconnected  
from the input supply.  
True Shutdown  
The MAX8614A/MAX8614B completely disconnect the  
loads from the input when in shutdown mode. In most  
step-up converters, the external rectifying diode and  
inductor form a DC current path from the battery to the  
output. This can drain the battery even in shutdown if a  
load is connected at the step-up converter output. The  
MAX8614A/MAX8614B have an internal switch between  
Soft-Start and Inrush Current  
the input V  
and the inductor node, PVP. When this  
CC  
The step-up converter and inverter in the MAX8614A/  
MAX8614B feature soft-start to limit inrush current and  
minimize battery loading at startup. This is accomplished  
by ramping the reference voltage at the input of each error  
switch turns off in shutdown there is no DC path from  
the input to the output of the step-up converter. This load  
disconnect is referred to as "True Shutdown." At the  
Maxim Integrated  
11  
www.maximintegrated.com  
MAX8614A/MAX8614B  
Dual-Output (+ and -) DC-DC  
Converters for CCD  
inverter output, load disconnect is implemented by turning  
off the inverter's internal power switch.  
V
V  
V  
FBN  
IMV  
R3 = R4×  
V
REF  
FBN   
Current-Limit Select  
where V  
= 1.25V and V  
= 0V.  
REF  
FBN  
The MAX8614B allows an inductor current limit of 0.8A  
on the step-up converter and 0.75A on the inverter. The  
MAX8614A allows an inductor current limit of 0.44A  
on the step-up converter and 0.33A on the invert-  
er. This allows flexibility in designing for higher load-  
current applications or for smaller, more compact designs  
when less power is needed. Note that the currents  
listed above are peak inductor currents and not output  
currents. The MAX8614B output current is 50mA at +15V  
and 100mA at -7.5V. The MAX8614A output current is  
25mA at +15V and 50mA at -7.5V.  
Inductor Selection  
The MAX8614A/MAX8614B high switching frequency  
allows for the use of a small inductor. The 4.7µH and  
2.2µH inductors shown in the Typical Operating Circuit is  
recommended for most applications. Larger inductances  
reduce the peak inductor current, but may result in skip-  
ping pulses at light loads. Smaller inductances require  
less board space, but may cause greater peak current  
due to current-sense comparator propagation delay.  
Use inductors with a ferrite core or equivalent. Powder  
iron cores are not recommended for use with high switch-  
ing frequencies. The inductor's incremental saturation  
rating must exceed the selected current limit. For highest  
efficiency, use inductors with a low DC resistance (under  
200mΩ); however, for smallest circuit size, higher resis-  
tance is acceptable. See Table 1 for a representative list  
of inductors and Table 2 for component suppliers.  
Load Transient/Voltage Positioning  
The MAX8614A/MAX8614B match the load regulation  
to the voltage droop seen during load transients. This  
is sometimes called voltage positioning. This results in  
minimal overshoot when a load is removed and minimal  
voltage drop during a transition from light load to full load.  
The use of voltage positioning allows superior load-  
transient response by minimizing the amplitude of over-  
shoot and undershoot in response to load transients.  
DC-DC converters with high control-loop gains maintain  
tight DC load regulation, but still allow large voltage drops  
of 5% or greater for several hundred microseconds during  
transients. Load-transient variations are seen only with an  
oscilloscope (see the Typical Operating Characteristics).  
Since DC load regulation is read with a voltmeter, it does  
not show how the power supply reacts to load transients.  
Diode Selection  
The MAX8614A/MAX8614B high switching frequency  
demands a high-speed rectifier. Schottky diodes, such  
as the CMHSH5-2L or MBR0530L, are recommended.  
Make sure that the diode's peak-current rating exceeds  
the selected current limit, and that its breakdown voltage  
exceeds the output voltage. Schottky diodes are preferred  
due to their low forward voltage. However, ultra-high-  
speed silicon rectifiers are also acceptable. Table 2 lists  
component suppliers.  
Applications Information  
Capacitor Selection  
Output Filter Capacitor  
Adjustable Output Voltage  
The positive output voltage is set by connecting FBP to  
a resistive voltage-divider between the output and GND  
(Figure 1). Select feedback resistor R2 in the 30kΩ to  
100kΩ range. R1 is then given by:  
The primary criterion for selecting the output filter  
capacitor is low effective series resistance (ESR). The  
product of the peak inductor current and the output  
filter capacitor's ESR determines the amplitude of the  
high-frequency ripple seen on the output voltage. These  
requirements can be balanced by appropriate selection of  
the current limit.  
V
V
BST  
R1= R2  
= 1.01V.  
1  
FBP  
where V  
FBP  
For stability, the positive output filter capacitor (C1) should  
The negative output voltage is set by connecting FBN to  
a resistive voltage-divider between the output and REF  
(Figure 1). Select feedback resistor R4 in the 30kΩ to  
100kΩ range. R3 is then given by:  
satisfy the following:  
2
C1 > (6L I  
) / ( R  
D + V  
)
BSTMAX  
CS  
BST  
where R = 0.015 (MAX8614B), and 0.035 (MAX8614A),  
CS  
and D+ is 1 minus the step-up switch duty cycle and is:  
D+ = V /V  
CC BST  
Maxim Integrated  
12  
www.maximintegrated.com  
MAX8614A/MAX8614B  
Dual-Output (+ and -) DC-DC  
Converters for CCD  
Table 1. Inductor Selection Guide  
OUTPUT VOLTAGES  
INDUCTOR  
L (µH)  
2.0  
4.3  
4.3  
4.7  
10  
DCR (m)  
72  
I
(A)  
SIZE (mm)  
3 x 3 x 1.8  
SAT  
AND LOAD CURRENT  
TOKO  
DB3018C, 1069AS-2R0  
1.4  
TOKO  
DB3018C, 1069AS-4R3  
126  
0.97  
1.2  
3 x 3 x 1.8  
15V, 50mA  
TOKO  
47  
4 x 4 x 1.7  
-7.5V, 100mA  
S1024AS-4R3M  
Sumida  
CDRH2D14-4R7  
170  
1
3.2 x 3.2 x 1.55  
4 x 4 x 1.7  
TOKO  
S1024AS-100M  
100  
0.8  
Sumida  
CDRH2D11-100  
10  
400  
0.35  
0.46  
0.45  
3.2 x 3.2 x 1.2  
3.2 x 3.2 x 1.55  
3.2 x 2.5 x 2  
15V, 20mA  
-7.5V, 40mA  
Sumida  
CDRH2D14-100  
10  
295  
Murata  
LQH32CN100K33  
10  
300  
D- = V /V  
Table 2. Component Suppliers  
CC INV  
Table 2 lists representative low-ESR capacitor suppliers.  
SUPPLIER  
INDUCTORS  
Murata  
PHONE  
WEBSITE  
Input Bypass Capacitor  
Although the output current of many MAX8614A/  
MAX8614B applications may be relatively small, the input  
must be designed to withstand current transients equal  
to the inductor current limit. The input bypass capacitor  
reduces the peak currents drawn from the voltage source,  
and reduces noise caused by the MAX8614A/MAX8614B  
switching action. The input source impedance determines  
the size of the capacitor required at the input. As with  
the output filter capacitor, a low-ESR capacitor is recom-  
mended. A 22µF, low-ESR capacitor is adequate for most  
applications, although smaller bypass capacitors may  
also be acceptable with low-impedance sources, or if the  
source supply is already well filtered. Bypass AVCC sepa-  
770-436-1300 www.murata.com  
847-545-600 www.sumida.com  
847-297-0070 www.tokoam.com  
Sumida  
TOKO  
DIODES  
Central  
Semiconductor  
(CMHSH5-2L)  
631-435-1110 www.centralsemi.com  
602-303-5454 www.motorola.com  
Motorola  
(MBR0540L)  
CAPACITORS  
Taiyo Yuden  
TDK  
408-573-4150 www.t-yuden.com  
888-835-6646 www.TDK.com  
rately from V  
with a 1.0µF ceramic capacitor placed as  
CC  
close as possible to the AVCC and GND pins.  
For stability, the inverter output filter capacitor (C2) should  
satisfy the following:  
PCB Layout and Routing  
Proper PCB layout is essential due to high-current  
levels and fast-switching waveforms that radiate noise.  
Breadboards or protoboards should never be used when  
prototyping switching regulators.  
C2 > (6L V  
I
)/  
REF INVMAX  
(R  
D- (V  
- V ) V  
)
CS  
REF  
INV INV  
whereR =0.0175(MAX8614B),and0.040(MAX8614A),  
CS  
and D- is 1 minus the inverter switch duty cycle and is:  
Maxim Integrated  
13  
www.maximintegrated.com  
MAX8614A/MAX8614B  
Dual-Output (+ and -) DC-DC  
Converters for CCD  
V
BATT  
(2.7V ~ 5V)  
C4  
22µF  
V
INV  
13  
V
ONBST  
ONINV  
D2  
CMHSH5-21  
CC  
14  
1
9
R3  
187k  
1%  
V
INV  
LXN  
-7.5V AT 100mA  
C2  
4.7µF  
2
FBN  
L2  
4.7µH  
R4  
30.9kΩ  
1%  
MAX8614A  
MAX8614B  
REF  
3
AVCC  
REF  
12  
10  
C5  
4
PVP  
LXP  
1.0µF  
C3  
1µF  
C6  
0.22µF  
V
BATT  
L1  
2.2µH  
D1  
R5  
100kΩ  
CMHSH5-21  
V
BST  
6
7
+15V AT 50mA  
FLT  
C1  
2.2µF  
FAULT  
V
BST  
R1  
1.4MΩ  
1%  
8
FBP  
SEQ  
R2  
100kΩ  
1%  
GND  
5
PGND  
11  
Figure 1. Typical Application Circuit  
It is important to connect the GND pin, the input  
bypass-capacitor ground lead, and the output filter-  
capacitor ground lead to a single point (star ground  
configuration) to minimize ground noise and improve  
regulation. Also, minimize lead lengths to reduce stray  
capacitance, trace resistance, and radiated noise, with  
preference given to the feedback circuit, the ground  
circuit, and LX_. Place feedback resistors R1–R4 as close  
as possible to their respective feedback pins. Place the  
input bypass capacitor as close as possible to AVCC and  
GND.  
Maxim Integrated  
14  
www.maximintegrated.com  
MAX8614A/MAX8614B  
Dual-Output (+ and -) DC-DC  
Converters for CCD  
Chip Information  
PROCESS: BiCMOS  
Package Information  
For the latest package outline information and land patterns  
(footprints), go to www.maximintegrated.com/packages. Note  
that a “+”, “#”, or “-” in the package code indicates RoHS status  
only. Package drawings may show a different suffix character, but  
the drawing pertains to the package regardless of RoHS status.  
PACKAGE  
TYPE  
PACKAGE  
CODE  
OUTLINE  
NO.  
LAND  
PATTERN NO.  
14 TDFN  
T1433+2  
21-0137  
90-0063  
Maxim Integrated  
15  
www.maximintegrated.com  
MAX8614A/MAX8614B  
Dual-Output (+ and -) DC-DC  
Converters for CCD  
Revision History  
REVISION REVISION  
PAGES  
CHANGED  
DESCRIPTION  
NUMBER  
DATE  
2
3
6/14  
Added MAX8614ETD/V+ to Ordering Information  
1
3
12/19  
Added EC table for MAX8614BATD/V+  
For pricing, delivery, and ordering information, please visit Maxim Integrated’s online storefront at https://www.maximintegrated.com/en/storefront/storefront.html.  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses  
are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits)  
shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
©
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  
2019 Maxim Integrated Products, Inc.  
16  

相关型号:

MAX8614BETD

Dual-Output (+ and -) DC-DC
MAXIM

MAX8614BETD+T

Switching Regulator/Controller, BICMOS, PDSO14,
MAXIM

MAX8614BETD/V+

Switching Controller, Current-mode, 0.9A, 1000kHz Switching Freq-Max, BICMOS, TDFN-14
MAXIM

MAX861C/D

50mA, Frequency-Selectable, Switched-Capacitor Voltage Converters
MAXIM

MAX861CSA

DC-to-DC Voltage Converter
MAXIM

MAX861CSA+

Switched Capacitor Converter, 0.06A, 250kHz Switching Freq-Max, CMOS, PDSO8, 0.150 INCH, LEAD FREE, PLASTIC, SOIC-8
MAXIM

MAX861CSA+T

Switched Capacitor Converter, 250kHz Switching Freq-Max, CMOS, PDSO8, 0.150 INCH, PLASTIC, SOIC-8
MAXIM

MAX861CSA-T

Switched Capacitor Converter, 250kHz Switching Freq-Max, CMOS, PDSO8, 0.150 INCH, PLASTIC, SOIC-8
MAXIM

MAX861CUA

DC-to-DC Voltage Converter
MAXIM

MAX861CUA+

Switched Capacitor Converter, 250kHz Switching Freq-Max, CMOS, PDSO8, 1.11 MM HEIGHT, LEAD FREE, UMAX-8
MAXIM

MAX861ESA

50mA, Frequency-Selectable, Switched-Capacitor Voltage Converters
MAXIM

MAX861ESA+

Switched Capacitor Converter, 0.06A, 250kHz Switching Freq-Max, CMOS, PDSO8, 0.150 INCH, LEAD FREE, PLASTIC, SOIC-8
MAXIM