MAX8649EWE+T [MAXIM]

1.8A Step-Down Regulator with Differential Remote Sense in 2mm x 2mm WLP; 1.8A降压型调节器,采用2mm x 2mm WLP封装差分远端检测
MAX8649EWE+T
型号: MAX8649EWE+T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

1.8A Step-Down Regulator with Differential Remote Sense in 2mm x 2mm WLP
1.8A降压型调节器,采用2mm x 2mm WLP封装差分远端检测

稳压器 开关式稳压器或控制器 调节器 电源电路 开关式控制器 信息通信管理
文件: 总31页 (文件大小:1864K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-4504; Rev 1; 2/10  
1.8A Step-Down Regulator with Differential  
Remote Sense in 2mm x 2mm WLP  
MAX8649  
General Description  
Features  
The MAX8649 high-efficiency DC-to-DC step-down  
switching regulator delivers up to 1.8A of output current.  
The device operates from a 2.5V to 5.5V input voltage  
range, making it future proof for next-generation battery  
technologies. The output voltage is I2C programmable  
from 0.75V to 1.38V. Fully differential remote sense  
ensures precise DC regulation at the load. Total output  
error is less than 2% over load, line, and temperature.  
1.8A Guaranteed Output Current  
2
I C Programmable V  
(750mV to 1.38V in 10mV  
OUT  
Steps)  
Operates from 2.5V to 5.5V Input Supply  
On-Chip FET and Synchronous Rectifier  
Fixed 3.25MHz PWM Switching Frequency  
Synchronizes to 13MHz, 19.2MHz, or 26MHz  
The MAX8649 operates at a 3.25MHz fixed frequency.  
The high operating frequency minimizes the size of exter-  
nal components. The switching frequency of the converter  
can be synchronized to the master clock of the applica-  
tion. When synchronizing to an external clock, the  
MAX8649 measures the frequency of the external clock to  
ensure that the clock is stable before changing the  
switching frequency to the external clock frequency.  
System Clock when Available  
Small 1.0µH Inductor  
Initial Accuracy 0.5% at 1.25V Output  
2% Output Accuracy Over Load, Line, and  
Temperature  
Power-Save Mode Increases Light Load Efficiency  
Overvoltage and Overcurrent Protection  
Thermal Shutdown Protection  
An on-board DAC allows adjustment of the output volt-  
age in 10mV steps. The output voltage can be pro-  
grammed directly through the I2C interface, or by  
preloading a set of on-board registers and using the  
two VID logic signals to select the appropriate register.  
Other features include internal soft-start control circuitry  
to reduce inrush current, output overvoltage, overcur-  
rent, and overtemperature protection.  
2
400kHz I C Interface  
< 1µA Shutdown Current  
16-Bump, 2mm x 2mm WLP Package  
Ordering Information  
Applications  
PART  
TEMP RANGE  
PIN-PACKAGE  
Cell Phones and Smartphones  
16 Bump WLP  
(0.5mm pitch)  
MAX8649EWE+T  
-40°C to +85°C  
PDAs and MP3 Players  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
Typical Operating Circuit  
Pin Configuration  
TOP VIEW  
(BUMPS ON BOTTOM  
2.5V TO  
5.5V  
0V TO  
4.0V  
VID1  
A3  
IN1  
A1  
AGND  
A2  
IN2  
A4  
+
MAX8649  
IN2  
LX  
V
DD  
10µF  
0.1µF  
0.1µF  
1µH  
10µF  
2.5V TO  
5.5V  
V
OUT  
(0.75V TO  
1.38V)  
SNS+  
B1  
EN  
B2  
LX  
B3  
LX  
B4  
SCL  
SDA  
0.1µF  
11Ω  
PGND  
IN1  
PGND  
PGND  
SNS-  
C1  
VID0  
C2  
2.2µF  
0.1µF  
FSYNC  
C3  
SCL  
D3  
C4  
SYNC  
D4  
EN  
SNS+  
SNS-  
VID0  
VID1  
V
SDA  
D2  
DD  
CPU  
D1  
AGND  
WLP 0.5mm PITCH  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,  
or visit Maxim’s website at www.maxim-ic.com.  
1.8A Step-Down Regulator with Differential  
Remote Sense in 2mm x 2mm WLP  
ABSOLUTE MAXIMUM RATINGS  
IN1, IN2 to AGND..................................................-0.3V to +6.0V  
Operating Temperature Range ...........................-40°C to +85°C  
V
to AGND.........................................................-0.3V to +4.0V  
Junction to Ambient Thermal Resistance (θ ) (Note 1)..76°C/W  
DD  
JA  
LX, SNS+, VID0, VID1, EN to AGND..........-0.3V to (V  
SCL, SDA, SYNC to AGND.........................-0.3V to (V  
PGND, SNS- to AGND...........................................-0.3V to +0.3V  
+ 0.3V)  
+ 0.3V)  
Junction Temperature......................................................+150°C  
Storage Temperature Range.............................-65°C to +150°C  
Bump Temperature (soldering, reflow)............................+260°C  
IN1  
DD  
RMS LX Current ..............................................................1800mA  
Continuous Power Dissipation (T = +70°C)  
A
16-Bump WLP 0.5mm Pitch  
(derate 13mW/°C above +70°C)............................1040mW  
MAX8649  
Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-  
layer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
= V  
= 3.6V, V  
= V  
= 0V, V  
= 1.8V, T = -40°C to +85°C, unless otherwise noted. Typical values are at  
DD A  
IN1  
IN2  
AGND  
PGND  
T
A
= +25°C.) (Note 2)  
PARAMETER  
IN1, IN2 Operating Range  
CONDITIONS  
MIN  
2.5  
TYP  
MAX  
5.5  
UNITS  
V
V
V
Operating Range  
1.8  
3.6  
DD  
V
Undervoltage Lockout  
DD  
V
falling  
0.54  
2.10  
0.865  
50  
1.35  
2.20  
V
DD  
(UVLO) Threshold  
V
UVLO Hysteresis  
mV  
V
DD  
IN_ Undervoltage Lockout  
(UVLO) Threshold  
V
V
falling  
2.15  
IN  
IN_ UVLO Hysteresis  
70  
mV  
µA  
T
A
T
A
T
A
T
A
T
A
T
A
= +25°C  
= +85°C  
= +25°C  
= +85°C  
= +25°C  
= +85°C  
0.01  
0.01  
0.25  
0.25  
0.35  
0.35  
1
1
1
= V  
= 5.5V,  
IN2  
IN1  
V
Shutdown Supply Current  
DD  
EN = V  
= AGND  
DD  
IN1, IN2 Shutdown Supply  
Current  
V
= V  
= 5.5V,  
IN1  
IN2  
µA  
µA  
EN = V  
= AGND  
DD  
V
V
= V  
= 5.5V, SCL = SDA =  
IN1  
IN2  
IN1, IN2 Standby Supply Current  
, EN = AGND, I2C ready  
DD  
V
= V  
= V  
= 3.6V,  
DD  
IN1  
IN2  
T
= +25°C  
= +85°C  
0.02  
0.02  
1
A
A
V
Standby Supply Current  
µA  
SCL = SDA = V , EN = AGND,  
DD  
DD  
I2C ready  
T
LOGIC INTERFACE  
EN, VID0, VID1  
SYNC, SCL, SDA  
EN, VID0, VID1  
SYNC, SCL, SDA  
1.4  
V
V
= V  
= 2.5V to 5.5V,  
IN2  
IN1  
DD  
Logic Input High Voltage (V  
)
IH  
V
V
= 1.8V to 3.6V  
0.7 x V  
DD  
0.4  
V
V
= V = 2.5V to 5.5V,  
= 1.8V to 3.6V  
IN1  
DD  
IN2  
Logic Input Low Voltage (V )  
IL  
0.3 x V  
DD  
T
T
= +25°C  
= +85°C  
-1  
0.01  
0.01  
+1  
A
A
SDA, SCL, SYNC Logic Input  
Current  
V
= 0V or V = 3.6V,  
IL IH  
µA  
EN = AGND  
2
_______________________________________________________________________________________  
1.8A Step-Down Regulator with Differential  
Remote Sense in 2mm x 2mm WLP  
MAX8649  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= V  
= 3.6V, V  
= V  
= 0V, V  
= 1.8V, T = -40°C to +85°C, unless otherwise noted. Typical values are at T =  
DD A A  
IN1  
IN2  
AGND  
PGND  
+25°C.) (Note 2)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Controlled by I2C command:  
VID0_PD = 1  
VID1_PD = 1  
VID0, VID1, EN Logic Input  
Pulldown Resistor  
200  
320  
450  
k  
EN_PD = 1  
2
I C INTERFACE  
SDA Output Low Voltage  
I2C Clock Frequency  
I
= 3mA  
0.03  
0.1  
0.4  
V
SDA  
BUF  
400  
kHz  
Bus-Free Time Between START  
and STOP  
t
t
1.3  
0.6  
µs  
µs  
Hold Time Repeated START  
Condition  
HD_STA  
SCL Low Period  
SCL High Period  
t
t
1.3  
0.6  
0.2  
0.2  
µs  
µs  
LOW  
HIGH  
Setup Time Repeated START  
Condition  
t
0.6  
0.1  
µs  
SU_STA  
SDA Hold Time  
t
t
t
0
-0.01  
0.05  
0.1  
µs  
µs  
µs  
HD_DAT  
SU_DAT  
SU_STO  
SDA Setup Time  
0.1  
0.6  
Setup Time for STOP Condition  
STEP-DOWN DC-DC REGULATOR  
OPERATION_MODE_ = 0, V  
OPERATION_MODE_ = 1, V  
= 1.27V, no switching  
54  
9
70  
µA  
OUT  
OUT  
IN1 + IN2  
Supply Current  
= 1.27V, f = 3.25MHz  
mA  
sw  
Minimum Output Capacitance  
Required for Stability  
V
= 0.75V to 1.38V,  
= 0 to 1.8A  
OUT  
10  
µF  
I
OUT  
OUT Voltage Range  
10mV steps  
Rising, 50mV hysteresis (typ)  
0.750  
1.65  
1.380  
1.9  
V
V
Output Overvoltage Protection  
1.8  
_______________________________________________________________________________________  
3
1.8A Step-Down Regulator with Differential  
Remote Sense in 2mm x 2mm WLP  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= V  
= 3.6V, V  
= V  
= 0V, V  
= 1.8V, T = -40°C to +85°C, unless otherwise noted. Typical values are at T =  
A A  
IN1  
IN2  
AGND  
PGND  
DD  
+25°C.) (Note 2)  
PARAMETER  
CONDITIONS  
= 2.5V to 5.5V, V = 1.27V  
MIN  
TYP  
MAX  
UNITS  
No load, V  
IN_  
OUT  
-0.5  
+0.5  
OPERATION_MODE_ = 1  
I
= no load, V = 2.5V to 5.5V, V  
= 0.75V,  
= 1.38V,  
OUT  
IN_  
OUT  
OUT  
OUT Voltage Accuracy  
Load Regulation  
-1.0  
-0.5  
+1.0  
+0.5  
%
MAX8649  
OPERATION_MODE_ = 1  
I
= no load, V = 2.5V to 5.5V, V  
OUT  
IN_  
OPERATION_MODE_ = 1  
R is the resistance from LX to SNS+ (output)  
L
R /25  
L
V/A  
RAMP[2:0] = 000  
RAMP[2:0] = 001  
RAMP[2:0] = 010  
RAMP[2:0] = 011  
RAMP[2:0] = 100  
RAMP[2:0] = 101  
RAMP[2:0] = 110  
RAMP[2:0] = 111  
32.50  
16.25  
8.125  
4.063  
2.031  
1.016  
0.508  
0.254  
RAMP Timer  
mV/µs  
Peak Current Limit  
(p-Channel MOSFET)  
PWM and hysteretic mode  
Hysteretic mode  
2.3  
1.8  
2.0  
2.8  
2.4  
2.5  
3.2  
3.0  
3.0  
A
A
A
Valley Current Limit  
(n-Channel MOSFET)  
Negative Current Limit  
(n-Channel MOSFET)  
PWM mode  
n-Channel Zero-Crossing  
Threshold  
50  
0.16  
0.16  
0.12  
+1  
mA  
LX pFET On-Resistance  
IN2 to LX, I = -200mA  
LX  
0.08  
0.06  
OPERATION_MODE = 0  
LX nFET On-Resistance  
LX to PGND, I = 200mA  
LX  
T
T
= +25°C  
= +85°C  
-1  
0.03  
0.05  
3.25  
A
LX Leakage  
V
= 5.5V or 0V  
µA  
LX  
A
Internal oscillator, PWM  
2.82  
2.43  
3.56  
4.06  
Internal oscillator, power-save mode before entering  
PWM mode  
3.25  
Operating Frequency  
13MHz option  
19.2MHz option  
26MHz option  
f
f
f
/4  
MHz  
SYNC  
SYNC  
SYNC  
/6  
/8  
4
_______________________________________________________________________________________  
1.8A Step-Down Regulator with Differential  
Remote Sense in 2mm x 2mm WLP  
MAX8649  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= V  
= 3.6V, V  
= V  
= 0V, V  
= 1.8V, T = -40°C to +85°C, unless otherwise noted. Typical values are at T =  
DD A A  
IN1  
IN2  
AGND  
PGND  
+25°C.) (Note 2)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Forced PWM mode only, minimum duty cycle in  
(OPERATION_MODE_ = 1) = 0%  
Minimum Duty Cycle  
Maximum Duty Cycle  
16  
%
60  
30  
%
ns  
Minimum On- and Off-Time  
OUT Discharge Resistance  
40  
50  
During shutdown or UVLO, from SNS+ to PGND  
650  
600  
SNS+, SNS- Input Impedance  
400  
850  
k  
Time Delay from PWM  
to Power-Save Mode  
Time required for error amplifier to stabilize before  
switching mode  
70  
µs  
µs  
Time Delay from Power-Save  
Mode to PWM  
Time required for error amplifier to stabilize before  
switching mode  
140  
SYNCHRONIZATION (SYNC)  
SYNC = 00 default  
SYNC = 1X default  
SYNC = 01 default  
18.9  
14.2  
9.5  
26.0  
19.2  
13.0  
13  
38.0  
28.5  
19.0  
SYNC Capture Range  
MHz  
ns  
SYNC Pulse Width  
PROTECTION CIRCUITS  
Thermal-Shutdown Hysteresis  
Thermal Shutdown  
20  
°C  
°C  
+160  
Note 2: All devices are 100% production tested at T = +25°C. Limits over the operating temperature range are guaranteed by  
A
design.  
_______________________________________________________________________________________  
5
1.8A Step-Down Regulator with Differential  
Remote Sense in 2mm x 2mm WLP  
Typical Operating Characteristics  
(Typical Operating Circuit, V  
= V  
= 3.6V, V  
= V  
= 0V, V  
= 1.1V, V = 1.8V, T = +25°C, unless otherwise noted.)  
DD A  
IN1  
IN2  
AGND  
PGND  
OUT  
EFFICIENCY vs. LOAD CURRENT  
(0.9V OUTPUT, SYNC OFF)  
EFFICIENCY vs. LOAD CURRENT  
(1.1V OUTPUT, SYNC OFF)  
EFFICIENCY vs. LOAD CURRENT  
(1.3V OUTPUT, SYNC OFF)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
POWER SAVE  
POWER SAVE  
POWER SAVE  
90  
80  
70  
60  
MAX8649  
V
= 3.2V  
3.6V  
V
IN  
= 3.2V  
3.6V  
V
IN  
= 3.2V  
3.6V  
IN  
50  
40  
30  
20  
10  
0
4.2V  
4.2V  
4.2V  
FORCED PWM  
FORCED PWM  
FORCED PWM  
0.0001 0.001  
0.01  
0.1  
1
10  
0.0001 0.001  
0.01  
0.1  
1
10  
0.0001 0.001  
0.01  
0.1  
1
10  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
EFFICIENCY vs. LOAD CURRENT  
(0.9V OUTPUT, 26MHz SYNC)  
EFFICIENCY vs. LOAD CURRENT  
(1.1V OUTPUT, 26MHz SYNC)  
EFFICIENCY vs. LOAD CURRENT  
(1.3V OUTPUT, 26MHz SYNC)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
POWER SAVE  
POWER SAVE  
POWER SAVE  
V
= 3.2V  
3.6V  
V
IN  
= 3.2V  
3.6V  
V
IN  
= 3.2V  
3.6V  
IN  
4.2V  
4.2V  
4.2V  
FORCED PWM  
FORCED PWM  
FORCED PWM  
0.0001 0.001  
0.01  
0.1  
1
10  
0.0001 0.001  
0.01  
0.1  
1
10  
0.0001 0.001  
0.01  
0.1  
1
10  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
SWITCHING FREQUENCY  
vs. LOAD CURRENT  
SWITCHING FREQUENCY  
vs. TEMPERATURE  
NO-LOAD SUPPLY CURRENT vs.  
SUPPLY VOLTAGE (POWER SAVE)  
3.6  
3.5  
3.4  
3.3  
3.2  
3.1  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
FORCED PWM  
26MHz SYNC  
NO SYNC  
TRANSITION TO PWM  
POWER SAVE  
NO SYNC  
1.3V OUTPUT, 500mA LOAD  
V
V
= 3.6V  
IN  
= 1.3V  
OUT  
3.0  
-40  
-15  
10  
35  
60  
85  
0
0.3  
0.6  
0.9  
1.2  
1.5  
1.8  
2.5  
3.5  
4.5  
5.5  
TEMPERATURE (°C)  
LOAD CURRENT (A)  
SUPPLY VOLTAGE (V)  
6
_______________________________________________________________________________________  
1.8A Step-Down Regulator with Differential  
Remote Sense in 2mm x 2mm WLP  
MAX8649  
Typical Operating Characteristics (continued)  
(Typical Operating Circuit, V  
= V  
= 3.6V, V  
= V  
= 0V, V  
= 1.1V, V = 1.8V, T = +25°C, unless otherwise noted.)  
DD A  
IN1  
IN2  
AGND  
PGND  
OUT  
NO-LOAD SUPPLY CURRENT vs.  
SUPPLY VOLTAGE (FORCED PWM)  
OUTPUT VOLTAGE vs. LOAD CURRENT  
OUTPUT VOLTAGE vs. LOAD CURRENT  
1.115  
1.32  
1.31  
1.30  
1.29  
1.28  
1.27  
1.26  
20  
18  
16  
14  
12  
10  
8
NO SYNC  
TA = +85°C  
TA = +35°C  
1.110  
FORCED PWM  
1.105  
1.100  
26MHz SYNC  
TA = -40°C  
1.095  
POWER SAVE  
6
POWER SAVE  
4
1.090  
V
= 1.1V  
1.5  
2
V
= 1.3V  
OUT  
OUT  
1.085  
0
0
0.3  
0.6  
0.9  
1.2  
1.8  
0
0.4  
0.8  
1.2  
1.6  
2.0  
2.5  
3.5  
4.5  
5.5  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
SUPPLY VOLTAGE (V)  
OUTPUT VOLTAGE vs. LOAD CURRENT  
LIGHT LOAD SWITCHING WAVEFORMS  
MAX8649 toc14  
0.910  
0.905  
0.900  
0.895  
0.890  
0.885  
0.880  
FORCED PWM  
V
OUT  
20mV/div  
2V/div  
V
LX  
POWER SAVE  
I
L
200mA/div  
V
= 0.9V  
1.5  
OUT  
10mA LOAD, V  
= 1.3V  
OUT  
0
0.3  
0.6  
0.9  
1.2  
1.8  
2µs/div  
LOAD CURRENT (A)  
MEDIUM LOAD SWITCHING  
WAVEFORMS  
HEAVY LOAD SWITCHING WAVEFORMS  
MAX8649 toc16  
MAX8649 toc15  
20mV/div  
2V/div  
V
V
20mV/div  
2V/div  
OUT  
OUT  
V
LX  
V
LX  
I
L
I
L
1A/div  
1.8A LOAD  
500mA LOAD  
= 1.3V  
500mA/div  
V
OUT  
= 1.3V  
V
OUT  
200ns/div  
200ns/div  
_______________________________________________________________________________________  
7
1.8A Step-Down Regulator with Differential  
Remote Sense in 2mm x 2mm WLP  
Typical Operating Characteristics (continued)  
(Typical Operating Circuit, V  
= V  
= 3.6V, V  
= V  
= 0V, V  
= 1.1V, V  
= 1.8V, T = +25°C, unless otherwise noted.)  
IN1  
IN2  
AGND  
PGND  
OUT  
DD A  
LIGHT LOAD STARTUP WAVEFORMS  
HEAVY LOAD STARTUP WAVEFORMS  
MAX8649 toc17  
MAX8649 toc18  
10I LOAD  
1V/div  
1I LOAD  
1V/div  
V
OUT  
V
OUT  
MAX8649  
100mA/div  
200mA/div  
I
IN  
I
IN  
500mA/div  
5V/div  
500mA/div  
5V/div  
I
L
I
L
V
V
EN  
EN  
200µs/div  
200µs/div  
PREBIAS STARTUP WAVEFORMS  
LINE TRANSIENT RESPONSE (4.2V TO  
(FORCED PWM)  
3.2V TO 4.2V) SYNC OFF  
MAX8649 toc19  
MAX8649 toc20  
OUTPUT PREBIASED TO 1.3V  
STARTUP TO 1.1V  
1V/div  
V
OUT  
V
IN  
500mV/div  
V
OUT  
20mV/div  
I
L
1A/div  
5V/div  
200mA/div  
I
L
300mA LOAD  
20µs/div  
V
EN  
200µs/div  
LINE TRANSIENT RESPONSE (4.2V TO  
LOAD TRANSIENT RESPONSE  
3.2V TO 4.2V) 26MHz SYNC  
(1mA TO 1A)  
MAX8649 toc21  
MAX8649 toc22  
1V/div  
50mV/div  
V
IN  
V
OUT  
V
OUT  
20mV/div  
500mA/div  
1A/div  
I
L
I
L
200mA/div  
I
OUT  
300mA LOAD  
20µs/div  
40µs/div  
8
_______________________________________________________________________________________  
1.8A Step-Down Regulator with Differential  
Remote Sense in 2mm x 2mm WLP  
MAX8649  
Typical Operating Characteristics  
(T = +25°C, unless otherwise noted.)  
A
LOAD TRANSIENT RESPONSE  
(1A to 1mA)  
LOAD TRANSIENT RESPONSE  
(5mA TO 1.8A)  
MAX8649 toc23  
MAX8649 toc24  
50mV/div  
1A/div  
V
OUT  
V
OUT  
50mV/div  
I
L
500mA/div  
I
L
I
1A/div  
I
1A/div  
OUT  
OUT  
40µs/div  
40µs/div  
LOAD TRANSIENT RESPONSE  
(1.8A to 5mA)  
SYNCHRONIZATION RESPONSE  
(26MHz SYNC)  
MAX8649 toc26  
MAX8649 toc25  
FORCED PWM, NO LOAD  
2V/div  
V
SYNC  
V
OUT  
100mV/div  
1A/div  
V
OUT  
20mV/div  
2V/div  
I
L
V
LX  
I
OUT  
I
L
200mA/div  
1A/div  
1µs/div  
20µs/div  
OUTPUT VOLTAGE CHANGE RESPONSE  
MAX8649 toc27  
10I LOAD,  
POWER SAVE  
32mV/µs RAMP  
V
VID0  
2V/div  
1.3V  
0.9V  
0.9V  
500mV/div  
V
OUT  
I
L
200mA/div  
40µs/div  
_______________________________________________________________________________________  
9
1.8A Step-Down Regulator with Differential  
Remote Sense in 2mm x 2mm WLP  
Pin Description  
PIN  
NAME  
FUNCTION  
Analog Supply Voltage Input. The input voltage range is 2.5V to 5.5V. Place an 11resistor between  
IN1 and the input supply. Bypass the input supply with a 2.2µF ceramic capacitor as close as  
possible to the 11resistor. Bypass IN1 to the 2.2µF capacitor ground plane terminal with a 0.1µF  
ceramic capacitor as close as possible to the IC. Connect IN1 and IN2 to the same power source.  
A1  
IN1  
A2  
A3  
AGND  
VID1  
Analog Ground. Connect AGND to the PCB ground plane.  
MAX8649  
Voltage ID Control Input. The logic states of VID0 and VID1 select the register that sets the output  
voltage.  
Power-Supply Voltage Input. The input voltage range is from 2.5V to 5.5V. IN2 powers the internal  
p-channel and n-channel MOSFETs. Bypass IN2 to PGND with 10µF and 0.1µF ceramic capacitors  
as close as possible to the IC. Connect IN1 and IN2 to the same power source.  
A4  
IN2  
B1  
B2  
SNS+  
EN  
Output Voltage Remote Sense, Positive Input. Connect SNS+ directly to the output at the load.  
Logic Enable Input. Drive EN high to enable the DC-DC step-down regulator, or low to place in  
shutdown mode. In shutdown mode, this logic input has an internal pulldown resistor to AGND.  
Inductor Connection. LX is connected to the drains of the internal p-channel and n-channel  
MOSFETs. LX is high impedance during shutdown.  
B3, B4  
C1  
LX  
SNS-  
VID0  
PGND  
Output Voltage Remote Sense, Negative Input. Connect to a quiet ground directly at the load.  
Voltage ID Control Input. The logic states of VID0 and VID1 select the register that sets the output  
voltage.  
C2  
C3, C4  
Power Ground. Connect both PGND bumps to the PCB ground plane.  
Logic Input Supply Voltage. Connect V  
to the logic supply driving SDA, SCL, and SYNC. Bypass  
2
DD  
D1  
V
V
to AGND with a 0.1µF ceramic capacitor. When V  
drops below the UVLO threshold, the I C  
DD  
DD  
DD  
registers are reset, but the EN control is still active in this mode.  
2
D2  
D3  
SDA  
SCL  
I C Data Input. Data is read on the rising edge of SCL and data is clocked out on the falling edge of SCL.  
2
I C Clock Input  
External Clock Synchronization Input. Connect SYNC to a 13MHz, 19.2MHz, or 26MHz system clock.  
2
D4  
SYNC  
The DC-DC regulator can be forced to synchronize to this external clock depending on I C setting. See  
Table 8. SYNC does not have an internal pulldown. Connect SYNC to AGND if not used.  
10 ______________________________________________________________________________________  
1.8A Step-Down Regulator with Differential  
Remote Sense in 2mm x 2mm WLP  
MAX8649  
SYNC  
OSC  
CLOCK GEN  
IN2  
LX  
V
DD  
2
I C INTERFACE  
SCL  
SDA  
PWM LOGIC  
IN1  
EN  
PGND  
V
VOLTAGE  
CONTROL, V  
BIAS, ETC.  
DAC  
SNS+  
SNS-  
,
REF  
VID1  
VID2  
AGND  
Figure 1. Block Diagram  
For each of the different output modes, the following  
parameters are programmable:  
Detailed Description  
The MAX8649 high-efficiency, 3.25MHz step-down  
switching regulator delivers up to 1.8A of output cur-  
rent. The device operates from a 2.5V to 5.5V input  
voltage range, and the output voltage is I2C program-  
mable from 0.75V to 1.38V in 10mV increments. Fully  
differential remote sense ensures precise DC regula-  
tion at the load. Total output error is less than 2% over  
load, line, and temperature.  
Output voltage from 0.75V to 1.38V in 10mV steps  
Mode of operation: Forced PWM or power save  
Enable/disable of synchronization of switching  
frequency to external clock source  
The relation between the VID0/VID1 and operation  
mode is given by Table 1.  
The VID_ inputs have internal pulldown resistors. These  
pulldown resistors can be disabled through the CONTROL  
register after the MAX8649 is enabled, achieving low-  
est possible quiescent current. When EN is low, the  
CONTROL register is reset to default, enabling the pull-  
down resistors (see Table 7).  
Dynamic Voltage Scaling  
The output voltage is dynamically adjusted by use of  
the VID0 and VID1 logic inputs, allowing selection  
between four predefined operation modes/voltage  
configurations.  
Table 1. VID0 and VID1 Configuration  
DEFAULT  
SWITHCING  
MODE  
DEFAULT  
OUTPUT  
VOLTAGE (V)  
DEFAULT  
SYNCHRONIZATION  
2
VID1  
VID0  
MODE  
I C REGISTER  
0
0
1
1
0
1
0
1
MODE0  
MODE1  
MODE2  
MODE3  
Table 3  
Table 4  
Table 5  
Table 6  
FORCED PWM  
POWER SAVE  
FORCED PWM  
FORCED PWM  
OFF  
OFF  
OFF  
OFF  
1.27  
1.05  
1.23  
1.05  
______________________________________________________________________________________ 11  
1.8A Step-Down Regulator with Differential  
Remote Sense in 2mm x 2mm WLP  
done by writing to the MODE_ registers (see Table 3 to  
Table 6). The mode of operation can be changed at  
any time.  
Enable  
The MAX8649 DC-DC step-down regulator is  
enabled/disabled using the EN logic input. The EN  
input is able to handle input voltages up to V , ensur-  
IN1  
In power-save mode, the MAX8649 PWM switching fre-  
quency depends on the load current. For medium to  
high load condition, the MAX8649 operates in fixed-  
frequency PWM mode. For light load conditions, the  
MAX8649 operates in hysteretic mode. The proprietary  
hysteretic PWM control scheme ensures high efficien-  
cy, fast switching, and fast transient response. This  
control scheme is simple: when the output voltage is  
below the regulation threshold, the error comparator  
begins a switching cycle by turning on the high-side  
switch. This switch remains on until the minimum on-  
time expires and the output voltage is above the regu-  
lation threshold plus hysteresis or the inductor current  
is above the current-limit threshold. Once off, the high-  
side switch remains off until the minimum off-time  
expires and the output voltage falls again below the  
regulation threshold. During the off period, the low-  
side synchronous rectifier turns on and remains on  
until either the high-side switch turns on again or the  
inductor current approaches zero. The internal syn-  
chronous rectifier eliminates the need for an external  
Schottky diode.  
ing that the EN logic input can be controlled by a wide  
variety of signals/supplies.  
The EN input has an internal pulldown resistor that  
ensures EN is discharged during off conditions. This pull-  
down resistor can be disabled through the CONTROL  
register (see Table 7) once the MAX8649 is enabled,  
achieving lowest possible quiescent current. When EN  
is low, the CONTROL register is reset to default,  
enabling the pulldown resistors on EN, VID0, and VID1.  
See Figures 2 and 3 for detailed information on power-  
up and power-down sequencing and operation mode  
changes.  
MAX8649  
DC-DC Regulator Operating Modes  
The MAX8649 operates in one of four modes deter-  
mined by the state of the VID_ inputs (see Table 1). At  
power-up, the MAX8649 is default set to operate in  
power-save operation for MODE1 and forced-PWM  
mode for MODE0, MODE2, and MODE3. For each of  
the operation modes, MODE0 to MODE3, the MAX8649  
DC-DC step-down regulator can be set to operate in  
either power-save mode or forced-PWM mode. This is  
A
B
C
D
E
IN  
1.27V  
1.23V  
1.05V  
OUT  
EN  
VID1  
VID0  
V
DD  
A: POWER CONNECTED TO IN1 AND IN2.  
B: EN LOGIC INPUT PULLED HIGH, OUTPUT VOLTAGE IS SET TO CONDITION DEFINED BY THE DEFAULT VALUE OF THE I C REGISTER FOR MODE0 (SEE TABLE 1).  
C: OUTPUT VOLTAGE IS SET TO CONDITION DEFINED BY THE I C REGISTER FOR MODE1.  
2
2
2
D: OUTPUT VOLTAGE IS SET TO CONDITION DEFINED BY THE DEFAULT VALUE OF I C REGISTER FOR MODE3.  
2
E: V PULLED HIGH, ENABLING I C INTERFACE.  
DD  
Figure 2. Power-Up Sequence  
12 ______________________________________________________________________________________  
1.8A Step-Down Regulator with Differential  
Remote Sense in 2mm x 2mm WLP  
MAX8649  
A
B
IN  
OUT  
EN  
V
DD  
2
A: V PULLED LOW, I C REGISTERS RESET TO DEFAULT VALUES (SEE TABLE 1) AND THE OUTPUT VOLTAGE CHANGES TO THE DEFAULT VALUE.  
DD  
B: EN LOGIC INPUT PULLED LOW, STEP-DOWN REGULATOR ENTERS SHUTDOWN MODE.  
Figure 3a. Shutdown by Pulling V  
Low Before EN  
DD  
A
B
IN  
OUT  
EN  
V
DD  
2
A: EN LOGIC INPUT PULLED LOW, STEP-DOWN REGULATOR ENTERS I C READY MODE, OUTPUT DISABLED.  
2
B: V PULLED LOW, I C REGISTERS RESET TO DEFAULT VALUES (SEE TABLE 1).  
DD  
Figure 3b. Shutdown by Pulling EN Low Before V  
DD  
A
IN1  
OUT  
EN  
V
DD  
2
A: IN1 DROPS BELOW UVLO, IC ENTERS SHUTDOWN MODE, I C REGISTERS RESET TO DEFAULT VALUES (SEE TABLE 1).  
Figure 3c. Shutdown Due to IN1 Undervoltage Lockout  
______________________________________________________________________________________ 13  
1.8A Step-Down Regulator with Differential  
Remote Sense in 2mm x 2mm WLP  
The transition between PWM and hysteretic operation is  
based on the number of consecutive zero-crossing  
cycles. When more than 16 consecutive zero-crossing  
cycles are detected, the DC-DC step-down converter  
enables the bias for hysteretic operation. Once correct-  
ly biased and the number of consecutive zero-crossing  
cycles exceeds 24, the DC-DC step-down converter  
begins hysteretic operation.  
DC-DC converter starting PWM, the converter supports  
full current on the output during hysteretic operation.  
See Figure 5 for a detailed state diagram.  
Power-save operation offers improved efficiency at light  
loads by changing to hysteretic mode, reducing the  
switching frequency depending on the load condition.  
With moderate to heavy loading, the regulator switches  
at a fixed switching frequency as it does in forced-PWM  
mode. In power-save mode, the transition from hys-  
teretic mode to fixed-frequency switching occurs at the  
load current specified in the following equation:  
During hysteretic operation, there is a silent DC offset  
due to the use of valley regulation. See Figure 4.  
MAX8649  
When operating in power-save mode and the load cur-  
rent is increased so that the number of consecutive  
zero-crossing cycles is less than 16, the PWM mode is  
biased. Once fully biased and the number of zero-  
crossing cycles drops below 8, the DC-DC converter  
then begins PWM operation. Since there is a delay  
between the increase in load current and the  
V
V  
V
OUT  
V × f  
IN OSC  
IN  
OUT  
I
=
×
OUT  
2×L  
In forced-PWM mode, the regulator operates with a  
constant (3.25MHz or synchronized to external clock  
source) switching frequency regardless of output load.  
Forced-PWM mode is ideal for low-noise systems  
because switching harmonics occur at multiples of the  
constant switching frequency and are easily filtered.  
However, light-load power consumption in forced-PWM  
mode is higher than that of power-save mode.  
REGULATION  
THRESHOLD  
OUTPUT  
RIPPLE  
Figure 4. Output Regulation in Hysteretic Operation  
MORE THAN 16 CONSECUTIVE  
ZERO-CROSSING CYCLES  
PWM MODE  
WITH POWER-SAVE  
MODE BIASED  
PWM  
MODE  
POWER SAVE NOT READY  
LESS THAN 8 CONSECUTIVE  
ZERO-CROSSING CYCLES  
LESS THAN 8 CONSECUTIVE  
ZERO-CROSSING CYCLES  
AND PWM MODE READY  
MORE THAN 24 CONSECUTIVE  
ZERO-CROSSING CYCLES  
AND POWER-SAVE MODE READY  
MORE THAN 24 CONSECUTIVE  
ZERO-CROSSING CYCLES  
POWER-SAVE  
MODE WITH  
PWM BIASED  
POWER-SAVE  
MODE  
PWM NOT READY  
LESS THAN 16 CONSECUTIVE  
ZERO-CROSSING CYCLES  
Figure 5. Mode Change for DC-DC Step-Down Converter  
14 ______________________________________________________________________________________  
1.8A Step-Down Regulator with Differential  
Remote Sense in 2mm x 2mm WLP  
MAX8649  
behavior in power-save mode. When the regulator is set  
for power-save mode and the RAMP_DOWN bit is  
cleared, the ramp-down is not actively controlled, and  
the regulator output voltage ramps down at the rate  
determined by the output capacitance and the external  
load. Small loads result in an output-voltage decay that  
is slower than that specified by RAMP; large loads  
result in an output-voltage decay that is no faster than  
that specified by RAMP When the RAMP_DOWN bit is  
set in power-save mode, the zero-cross comparator is  
disabled during the ramp-down condition. Active ramp-  
down functionality is inherent in forced-PWM operation.  
Soft-Start  
The MAX8649 includes internal soft-start circuitry that  
eliminates inrush current at startup, reducing transients  
on the input source (see the Typical Operating Charac-  
teristics). Soft-start is particularly useful for high-imped-  
ance input sources, such as Li+ and alkaline cells.  
When enabling the MAX8649 into a prebiased output,  
the MAX8649 performs a complete soft-start cycle.  
Synchronous Rectification  
An internal n-channel synchronous rectifier eliminates  
the need for an external Schottky diode and improves  
efficiency. The synchronous rectifier turns on during the  
second half of each switching cycle (off-time). During  
this time, the voltage across the inductor is reversed,  
and the inductor current ramps down. In PWM mode,  
the synchronous rectifier turns off at the end of the  
switching cycle. In power-save mode, the synchronous  
rectifier turns off when the inductor current falls below  
50mA (typ) or at the end of the switching cycle,  
whichever occurs first.  
Calculate the maximum and minimum values for the  
ramp rate as follows:  
V
1
OUT _LSB  
t
=
×
RAMP _MIN  
RAMP _ CODE  
t
2
CLK _MAX  
V
1
OUT _LSB  
t
=
×
RAMP _MAX  
RAMP _ CODE  
t
2
CLK _MIN  
where:  
Ramp-Rate Control  
The MAX8649 output voltage has an actively controlled  
variable ramp rate, set with the I2C interface (see  
Figures 6, 7, and 8). The value set in the RAMP register  
controls the output voltage ramp rate. The  
RAMP_DOWN bit controls the active ramp-down  
V
=10mV  
OUT _LSB  
1
t
t
=
CLK _MAX  
f
SW _MIN  
1
=
CLK _MIN  
f
SW _MAX  
OUTPUT  
VOLTAGE  
f
f
= 3.25MHz 10% for PWM operation  
SW  
DELTA V = 10mV  
= 3.25MHz 25% for hysteretic operation  
SW  
VOUT2  
f
SYNC  
n
f
=
SW  
f
= frequency of external clock  
SYNC  
10mV/RAMP RATE  
VOUT1  
n = 4 for 13MHz, 6 for 19.2MHz, and 8 for 26MHz  
RAMP_CODE = value of the RAMP[2:0] register (see  
Table 9)  
TIME  
Figure 6. Ramp-Up Function  
FINAL  
OUTPUT  
VOLTAGE  
OUTPUT  
VOLTAGE  
VOUT2  
DELTA  
V = 10mV  
10mV/RAMP  
RATE  
VOUT1  
MODE CHANGE  
TO HIGHER VOUT  
MODE CHANGE  
TO LOWER VOUT  
TIME  
Figure 7. Ramp-Down Function  
Figure 8. Mode Change Before Final Value is Reached  
______________________________________________________________________________________ 15  
1.8A Step-Down Regulator with Differential  
Remote Sense in 2mm x 2mm WLP  
SDA  
MAX8649  
SCL  
DATA LINE STABLE DATA VALID  
CHANGE OF DATA ALLOWED  
2
Figure 9. I C Bit Transfer  
Each transmit sequence is framed by a START (S) con-  
dition and a STOP (P) condition. Each data packet is 9  
bits long; 8 bits of data followed by the acknowledge  
bit. The MAX8649 supports data transfer rates with SCL  
frequencies up to 400kHz.  
Thermal-Overload Protection  
Thermal-overload protection limits total power dissipa-  
tion in the MAX8649. When internal thermal sensors  
detect a die temperature in excess of +160°C (typ), the  
DC-DC step-down regulator is shut down, allowing the  
IC to cool. The DC-DC step-down regulator is turned on  
again after the junction cools by 20°C (typ), resulting in  
a pulsed output during continuous thermal-overload  
conditions.  
START and STOP Conditions  
When the serial interface is inactive, SDA and SCL idle  
high. A master device initiates communication by  
issuing a START (S) condition. A START condition is a  
high-to-low transition on SDA with SCL high. A STOP  
(P) condition is a low-to-high transition on SDA, while  
SCL is high (Figure 10).  
During thermal overload, the I2C interface remains  
active and all register values are maintained.  
2
I C Interface  
An I2C-compatible, 2-wire serial interface controls the  
step-down converter output voltage, ramp rate, operat-  
ing mode, and synchronization. The serial bus consists  
of a bidirectional serial-data line (SDA) and a serial-  
clock input (SCL). The master initiates data transfer on  
the bus and generates SCL to permit data transfer.  
SDA  
SCL  
I2C is an open-drain bus. SDA and SCL require pullup  
resistors (500or greater). Optional (24) in series  
with SDA and SCL protect the device inputs from high-  
voltage spikes on the bus lines. Series resistors also  
minimize crosstalk and undershoot on bus signals.  
Bit Transfer  
One data bit is transferred during each SCL clock  
cycle. The data on SDA must remain stable during the  
high period of the SCL clock pulse (see Figure 9).  
Changes in SDA while SCL is high are control signals  
(see the START and STOP Conditions section for more  
information).  
START  
CONDITION  
STOP  
CONDITION  
2
Figure 10. I C START and STOP Conditions  
16 ______________________________________________________________________________________  
1.8A Step-Down Regulator with Differential  
Remote Sense in 2mm x 2mm WLP  
MAX8649  
SDA  
SCL  
MASTER  
TRANSMITTER/RECEIVER  
SLAVE  
TRANSMITTER/RECEIVER  
SLAVE RECEIVER  
2
Figure 11. I CMaster/Slave Configuration  
A START condition from the master signals the begin-  
ning of a transmission to the MAX8649. The master ter-  
minates transmission by issuing a not acknowledge  
followed by a STOP condition (see the Acknowledge  
section for more information). The STOP condition frees  
the bus. To issue a series of commands to the slave,  
the master can issue REPEATED START (Sr) com-  
mands instead of a STOP command to maintain control  
of the bus. In general, a REPEATED START command  
is functionally equivalent to a regular START command.  
SDA OUTPUT  
FROM TRANSMITTER  
D0  
D7  
D6  
NOT ACKNOWLEDGE  
SDA OUTPUT  
FROM RECEIVER  
ACKNOWLEDGE  
8
SCL FROM  
MASTER  
1
2
9
When a STOP condition or incorrect address is detect-  
ed, the MAX8649 internally disconnects SCL from the  
serial interface until the next START condition, minimiz-  
ing digital noise and feedthrough.  
CLOCK PULSE FOR  
ACKNOWLEDGEMENT  
START CONDITION  
System Configuration  
A device on the I2C bus that generates a message is  
called a transmitter and a device that receives the mes-  
sage is a receiver. The device that controls the mes-  
sage is the master and the devices that are controlled  
by the master are called slaves. See Figure 11.  
2
Figure 12. I C Acknowledge  
The device that acknowledges must pull down the  
DATA line during the acknowledge clock pulse, so that  
the DATA line is stable low during the high period of the  
acknowledge clock pulse (setup and hold times must  
also be met). A master receiver must signal an end of  
data to the transmitter by not generating an acknowl-  
edge on the last byte that has been clocked out of the  
slave. In this case, the transmitter must leave SDA high  
to enable the master to generate a STOP (P) condition.  
Acknowledge  
The number of data bytes between the START and  
STOP conditions for the transmitter and receiver are  
unlimited. Each 8-bit byte is followed by an acknowl-  
edge bit. The acknowledge bit is a high-level signal put  
on SDA by the transmitter during which time the master  
generates an extra acknowledge-related clock pulse. A  
slave receiver that is addressed must generate an  
acknowledge after each byte it receives. Also, a master  
receiver must generate an acknowledge after each  
byte it receives that has been clocked out of the slave  
transmitter. See Figure 12.  
Register Reset  
The I2C resisters reset back to their default values when  
the voltage at either IN1 or V  
corresponding UVLO threshold (see the Electrical  
Characteristics table).  
drops below the  
DD  
______________________________________________________________________________________ 17  
1.8A Step-Down Regulator with Differential  
Remote Sense in 2mm x 2mm WLP  
A
B
C
D
E
OUT  
S
SLAVE ID  
ASr  
REG PTR  
ASr  
DATA  
A
P
SDA  
VID0  
MAX8649  
VID1  
V
DD  
2
2
A: I C START COMMAND.  
B: I C SLAVE ADDRESS OF MAX8649 SEND OUT.  
2
C: MAX8649 I C REGISTER POINTER SEND OUT.  
D: MAX8649 DATA SEND OUT.  
E: MAX8649 ISSUES ACKNOWLEDGE AND CHANGES THE OUTPUT VOLTAGE ACCORDING TO NEW I C SETTINGS.  
2
Figure 13. Update Output Operation  
Update of Output Operation Mode  
If updating the output voltage or Operation Mode regis-  
ter for the mode that the MAX8649 is currently operat-  
ing in, the output voltage/operation mode is updated at  
the same time the MAX8649 sends the acknowledge for  
the I2C data byte (see Figure 13).  
4) The master sends an 8-bit register pointer.  
5) The slave acknowledges the register pointer.  
6) The master sends a data byte.  
7) The slave acknowledges the data byte.  
8) The slave updates with the new data.  
9) The master sends a STOP (P) condition.  
Slave Address  
A bus master initiates communication with a slave  
device (MAX8649) by issuing a START (S) condition fol-  
lowed by the slave address. The slave address byte  
consists of 7 address bits (1100 000x) and a read/write  
bit (R/W). After receiving the proper address, the  
MAX8649 issues an acknowledge by pulling SDA low  
during the ninth clock cycle.  
In addition to the write-byte protocol, the MAX8649 can  
write to multiple registers as shown in Figure 14b. This  
protocol allows the I2C master device to address the  
slave only once and then send data to a sequential block  
of registers starting at the specified register pointer.  
Use the following procedure to write to a sequential  
block of registers:  
Other slave addresses can be assigned. Contact the  
factory for details.  
1) The master sends a start command.  
2) The master sends the 7-bit slave address followed  
by a write bit.  
Write Operations  
The MAX8649 recognizes the write byte protocol as  
defined in the SMBus specification and shown in Figures  
14a and 14b. The write byte protocol allows the I2C mas-  
ter device to send 1 byte of data to the slave device. The  
write byte protocol requires a register pointer address for  
the subsequent write. The MAX8649 acknowledges any  
register pointer even though only a subset of those regis-  
ters actually exists in the device. The write byte protocol  
is as follows:  
3) The addressed slave asserts an acknowledge by  
pulling SDA low.  
4) The master sends the 8-bit register pointer of the  
first register to write.  
5) The slave acknowledges the register pointer.  
6) The master sends a data byte.  
7) The slave acknowledges the data byte.  
8) The slave updates with the new data.  
1) The master sends a start command.  
9) Steps 6 to 8 are repeated for as many registers in  
the block, with the register pointer automatically  
incremented each time.  
2) The master sends the 7-bit slave address followed  
by a write bit.  
3) The addressed slave asserts an acknowledge by  
pulling SDA low.  
10) The master sends a STOP condition.  
18 ______________________________________________________________________________________  
1.8A Step-Down Regulator with Differential  
Remote Sense in 2mm x 2mm WLP  
MAX8649  
LEGEND  
MASTER TO  
SLAVE  
SLAVE TO  
MASTER  
a) WRITING TO A SINGLE REGISTER WITH THE WRITE BYTE PROTOCOL  
1
7
1
0
1
8
1
8
1
1
NUMBER OF BITS  
S
SLAVE ADDRESS  
A
REGISTER POINTER  
A
DATA  
A
P
R/W  
b) WRITING TO MULTIPLE REGISTERS  
NUMBER OF BITS  
1
7
1
1
8
1
8
1
8
1
...  
S
SLAVE ADDRESS  
0
A
REGISTER POINTER X  
A
DATA X  
A
DATA X+1  
A
R/W  
8
1
8
1
NUMBER OF BITS  
...  
DATA X+n-1  
A
DATA X+n  
A
P
Figures 14a and 14b. Writing to the MAX8649  
Read Operations  
The method for reading a single register (byte) is  
shown in Figure 15a. To read a single register:  
1) The master sends a start command.  
2) The master sends the 7-bit slave address followed  
by a write bit.  
1) The master sends a start command.  
3) The addressed slave asserts an acknowledge by  
pulling SDA low.  
2) The master sends the 7-bit slave address followed  
by a write bit.  
4) The master sends an 8-bit register pointer of the  
first register in the block.  
3) The addressed slave asserts an acknowledge by  
pulling SDA low.  
5) The slave acknowledges the register pointer.  
6) The master sends a repeated START condition.  
4) The master sends an 8-bit register pointer.  
5) The slave acknowledges the register pointer.  
6) The master sends a repeated START (S) condition.  
7) The master sends the 7-bit slave address followed  
by a read bit.  
7) The master sends the 7-bit slave address followed  
by a read bit.  
8) The slave asserts an acknowledge by pulling SDA low.  
9) The slave sends the 8-bit data (contents of the reg-  
ister).  
8) The slave asserts an acknowledge by pulling SDA low.  
9) The slave sends the 8-bit data (contents of the  
register).  
10) The master asserts an acknowledge by pulling SDA  
low when there is more data to read, or a not  
acknowledge by keeping SDA high when all data  
has been read.  
10) The master asserts a not acknowledge by keeping  
SDA high.  
11) Steps 9 and 10 are repeated for as many registers  
in the block, with the register pointer automatically  
incremented each time.  
11) The master sends a STOP (P) condition.  
In addition, the MAX8649 can read a block of multiple  
sequential registers as shown in Figure 15b. Use the fol-  
lowing procedure to read a sequential block of registers:  
12) The master sends a STOP condition.  
______________________________________________________________________________________ 19  
1.8A Step-Down Regulator with Differential  
Remote Sense in 2mm x 2mm WLP  
LEGEND  
MASTER TO  
SLAVE  
SLAVE TO  
MASTER  
a) READING A SINGLE REGISTER  
1
7
1
0
1
8
1
1
7
1
1
8
1
1
NUMBER OF BITS  
MAX8649  
S
SLAVE ADDRESS  
A
REGISTER POINTER  
A
Sr  
SLAVE ADDRESS  
1
A
DATA  
A
P
R/W  
R/W  
b) READING MULTIPLE REGISTERS  
NUMBER OF BITS  
1
7
1
1
8
1
1
7
1
8
1
1
1
...  
S
SLAVE ADDRESS  
0
A
REGISTER POINTER X  
A
Sr  
SLAVE ADDRESS  
A
DATA X  
A
R/W  
...  
R/W  
1
8
1
8
8
1
1
NUMBER OF BITS  
...  
A
DATA X+1  
DATA X+n-1  
A
DATA X+n  
A
P
Figures 15a and 15b. Reading from the MAX8649  
SDA  
t
BUF  
t
SU_STA  
t
SU_DAT  
t
HD_STA  
t
LOW  
t
SU_STO  
t
HD_DAT  
t
SCL  
HIGH  
t
HD_STA  
t
R
t
F
START CONDITION  
REPEATED START CONDITION  
STOP  
CONDITION  
START  
CONDITION  
2
Figure 16. I C Timing Diagram  
20 ______________________________________________________________________________________  
1.8A Step-Down Regulator with Differential  
Remote Sense in 2mm x 2mm WLP  
MAX8649  
2
Table 2. I C Register Map  
POINTER  
REGISTER  
POR  
BIT7  
BIT6  
BIT5  
BIT4  
BIT3  
BIT2  
BIT1  
BIT0  
OPER  
MODE  
SYNC  
MODE  
0x00  
MODE0  
0xB4  
OUT MODE0[5:0]  
OUT MODE1[5:0]  
OUT MODE2[5:0]  
OUT MODE3[5:0]  
OPER  
MODE  
SYNC  
MODE  
0x01  
0x02  
0x03  
MODE1  
MODE2  
MODE3  
0x1E  
0xB0  
0x9E  
OPER  
MODE  
SYNC  
MODE  
OPER  
MODE  
SYNC  
MODE  
0x04  
0x05  
0x06  
0x08  
0x09  
CONTROL  
SYNC  
0xE0  
0x00  
0x01  
0x20  
0x0D  
EN_PD  
VID0_PD VID1_PD  
SYNC[1:0]  
RAMP[2:0]  
RAMP  
FORCE_HYS FORCE_OSC  
RAMP_DOWN  
CHIP_ID1  
CHIP_ID2  
DIE TYPE[7:4]  
DASH[3:0]  
DIE TYPE[3:0]  
MASK REV[3:0]  
2
Table 3. I C Register: MODE0  
This register contains output voltage and operation mode control for MODE0, VID0 = GND, VID1 = GND.  
REGISTER NAME  
MODE0  
0x00h  
Address  
Reset Value  
Type  
0xB4h  
Read/write  
Special Features  
Reset upon V  
or IN1 UVLO  
DD  
DEFAULT  
VALUE  
BIT  
NAME  
DESCRIPTION  
DC-DC Step-Down Converter Operation Mode for MODE0  
0 = DC-DC converter automatically changes between hysteretic mode for  
light load conditions and PWM mode for medium to heavy load conditions.  
1 = DC-DC converter operates in forced-PWM mode.  
B7 (MSB)  
OPERATION_MODE0  
1
Disable/Enable Synchronization to External Clock  
0 = DC-DC converter ignores the external SYNC input regardless of  
operation mode.  
B6  
SYNC_MODE0  
0
1 = DC-DC converter synchronizes to external SYNC input when available.  
Output Voltage Selection for MODE0  
000000 = 0.75V  
000001 = 0.76V  
110011 = 1.26V  
110100 = 1.27V  
B5  
B4  
B3  
OUT_ MODE0 [5:0]  
110100  
B2  
110101 = 1.28V  
111110 = 1.37V  
B1  
B0 (LSB)  
111111 = 1.38V  
______________________________________________________________________________________ 21  
1.8A Step-Down Regulator with Differential  
Remote Sense in 2mm x 2mm WLP  
2
Table 4. I C Register: MODE1  
This register contains output voltage and operation mode control for MODE1, VID1 = GND, VID0 = V  
.
DD  
REGISTER NAME  
MODE1  
0x01h  
Address  
Reset Value  
Type  
0x1Eh  
Read/write  
MAX8649  
Special Features  
Reset upon V  
or IN1 UVLO  
DD  
DEFAULT  
VALUE  
BIT  
NAME  
DESCRIPTION  
DC-DC Step-Down Converter Operation Mode for MODE1  
0 = DC-DC converter automatically changes between hysteretic mode for  
light load conditions and PWM mode for medium to heavy load conditions.  
1 = DC-DC converter operates in forced-PWM mode.  
B7 (MSB)  
OPERATION_MODE1  
0
0
Disable/Enable Synchronization to External Clock  
0 = DC-DC converter ignores the external SYNC input regardless of  
operation mode.  
B6  
SYNC_MODE1  
1 = DC-DC converter synchronizes to external SYNC input when available.  
Output Voltage Selection for MODE1  
000000 = 0.75V  
000001 = 0.76V  
011101 = 1.04V  
011110 = 1.05V  
B5  
B4  
B3  
OUT_MODE1[5:0]  
011110  
B2  
011111 = 1.06V  
111110 = 1.37V  
B1  
B0 (LSB)  
111111 = 1.38V  
22 ______________________________________________________________________________________  
1.8A Step-Down Regulator with Differential  
Remote Sense in 2mm x 2mm WLP  
MAX8649  
2
Table 5. I C Register: MODE2  
This register contains output voltage and operation mode control for MODE2, VID1 = V , VID0 = GND.  
DD  
REGISTER NAME  
MODE2  
0x02h  
Address  
Reset Value  
Type  
0xB0h  
Read/write  
Special Features  
Reset upon V  
or IN1 UVLO  
DD  
DEFAULT  
VALUE  
BIT  
NAME  
DESCRIPTION  
DC-DC Step-Down Converter Operation Mode for MODE2  
0 = DC-DC converter automatically changes between hysteretic mode for  
light load conditions and PWM mode for medium to heavy load conditions.  
1 = DC-DC converter operates in forced-PWM mode.  
B7 (MSB)  
OPERATION_MODE2  
1
0
Disable/Enable Synchronization to External Clock  
0 = DC-DC converter ignores the external SYNC input regardless of  
operation mode.  
B6  
SYNC_MODE2  
1 = DC-DC converter synchronizes to external SYNC input when available.  
Output Voltage Selection for MODE2  
000000 = 0.75V  
000001 = 0.76V  
101110 = 1.21V  
101111 = 1.22V  
B5  
B4  
B3  
OUT_MODE2[5:0]  
110000  
B2  
110000 = 1.23V  
111110 = 1.37V  
B1  
B0 (LSB)  
111111 = 1.38V  
______________________________________________________________________________________ 23  
1.8A Step-Down Regulator with Differential  
Remote Sense in 2mm x 2mm WLP  
2
Table 6. I C Register: MODE3  
This register contains output voltage and operation mode control for MODE3, VID1 = V , VID0 = V  
.
DD  
DD  
REGISTER NAME  
MODE3  
0x03h  
Address  
Reset Value  
Type  
0x9Eh  
Read/write  
MAX8649  
Special Features  
Reset upon V  
or IN1 UVLO  
DD  
DEFAULT  
VALUE  
BIT  
NAME  
DESCRIPTION  
DC-DC Step-Down Converter Operation Mode for MODE3  
0 = DC-DC converter automatically changes between hysteretic mode for  
light load conditions and PWM mode for medium to heavy load conditions.  
1 = DC-DC converter operates in forced-PWM mode.  
B7 (MSB)  
OPERATION_MODE3  
1
0
Disable/Enable Synchronization to External Clock  
0 = DC-DC converter ignores the external SYNC input regardless of  
operation mode.  
B6  
SYNC_MODE3  
1 = DC-DC converter synchronizes to external SYNC input when available.  
Output Voltage Selection for MODE3  
000000 = 0.75V  
000001 = 0.76V  
011101 = 1.04V  
011110 = 1.05V  
B5  
B4  
B3  
OUT_MODE3[5:0]  
011110  
B2  
011111 = 1.06V  
111110 = 1.37V  
B1  
B0 (LSB)  
111111 = 1.38V  
24 ______________________________________________________________________________________  
1.8A Step-Down Regulator with Differential  
Remote Sense in 2mm x 2mm WLP  
MAX8649  
2
Table 7. I C Register: CONTROL  
This register enables or disables pulldown resistors.  
REGISTER NAME  
CONTROL  
0x04h  
Address  
Reset Value  
Type  
0xE0h  
Read/write  
Special Features  
Reset upon V , IN1 UVLO or EN pulled low  
DD  
DEFAULT  
VALUE  
BIT  
B7 (MSB)  
B6  
NAME  
EN_PD  
DESCRIPTION  
0 = Pulldown on EN input is disabled.  
1
1 = Pulldown on EN input is enabled.  
0 = Pulldown on VID0 input is disabled.  
1 = Pulldown on VID0 input is enabled.  
VID0_PD  
VID1_PD  
1
1
0 = Pulldown on VID1 input is disabled.  
1 = Pulldown on VID1 input is enabled.  
B5  
B4  
B3  
Reserved for future use.  
Reserved for future use.  
Reserved for future use.  
Reserved for future use.  
Reserved for future use.  
0
0
0
0
0
B2  
B1  
B0 (LSB)  
______________________________________________________________________________________ 25  
1.8A Step-Down Regulator with Differential  
Remote Sense in 2mm x 2mm WLP  
2
Table 8. I C Register: SYNC  
This register specifies the clock frequency of external clock source.  
REGISTER NAME  
SYNC  
0x05h  
0x00h  
Read  
Address  
Reset Value  
Type  
MAX8649  
Special Features  
Reset upon V  
or IN1 UVLO  
DD  
DEFAULT  
VALUE  
BIT  
NAME  
DESCRIPTION  
Sets Clock Frequency of External Clock Present on SYNC Input  
B7 (MSB)  
00 = 26MHz  
01 = 13MHz  
10 = 19.2MHz  
11 = 19.2MHz  
SYNC[1:0]  
00  
B6  
B5  
B4  
Reserved for future use.  
Reserved for future use.  
Reserved for future use.  
Reserved for future use.  
Reserved for future use.  
Reserved for future use.  
0
0
0
0
0
0
B3  
B2  
B1  
B0 (LSB)  
26 ______________________________________________________________________________________  
1.8A Step-Down Regulator with Differential  
Remote Sense in 2mm x 2mm WLP  
MAX8649  
2
Table 9. I C Register: RAMP  
This register controls of ramp-up/down function.  
REGISTER NAME  
RAMP  
0x06h  
0x01h  
Read  
Address  
Reset Value  
Type  
Special Features  
Reset upon V  
or IN1 UVLO  
DD  
DEFAULT  
VALUE  
BIT  
NAME  
DESCRIPTION  
Control the RAMP Timing  
000 = 32mV/µs  
001 = 16mV/µs  
010 = 8mV/µs  
B7 (MSB)  
B6  
B5  
RAMP[2:0]  
011 = 4mV/µs  
100 = 2mV/µs  
101 = 1mV/µs  
110 = 0.5mV/µs  
111 = 0.25mV/µs  
000  
Only Valid When Converter is Operating in OPERATION_MODE 0  
0 = Automatically change between power-save mode and PWM mode,  
depending on load current.  
1 = Converter always operates in power-save mode regardless of load  
current as long as OPERATION_MODE = 0. If OPERATION_MODE =  
1, this setting is ignored.  
B4  
FORCE_HYS  
FORCE_OSC  
0
0
Force Oscillator While Running in Hysteretic Mode  
0 = Internal oscillator is disabled in power save when operating in  
hysteretic mode.  
B3  
1 = Internal oscillator is enabled in power save even when operating in  
hysteretic mode.  
B2  
B1  
RAMP_DOWN  
Reserved for future use.  
0
0
1
Active Ramp-Down Control for Power-Save Mode  
0 = Active ramp disabled for power-save mode.  
1 = During ramp-down, the error crossing detector is disabled allowing  
negative current to flow thought the nMOS device.  
B0 (LSB)  
Reserve for future use.  
______________________________________________________________________________________ 27  
1.8A Step-Down Regulator with Differential  
Remote Sense in 2mm x 2mm WLP  
2
Table 10. I C Register: CHIP_ID1  
This register contains the die type number (20).  
REGISTER NAME  
CHIP_ID1  
0x08h  
0x20h  
Read  
Address  
Reset Value  
Type  
MAX8649  
Special Features  
DEFAULT  
VALUE  
BIT  
NAME  
DESCRIPTION  
B7 (MSB)  
B6  
DIE_TYPE[7:4]  
BCD character (2)  
BCD character (0)  
0010  
0000  
B5  
B4  
B3  
B2  
DIE_TYPE[3:0]  
B1  
B0 (LSB)  
2
Table 11. I C Register: CHIP_ID2  
This register contains the die type dash number and mask revision level.  
REGISTER NAME  
CHIP_ID2  
0x09h  
0x0Ah  
Read  
Address  
Reset Value  
Type  
Special Features  
DEFAULT  
VALUE  
BIT  
NAME  
DESCRIPTION  
B7 (MSB)  
B6  
DASH  
BCD character 0  
BCD character A  
0000  
1010  
B5  
B4  
B3  
B2  
MASK_REV  
B1  
B0 (LSB)  
28 ______________________________________________________________________________________  
1.8A Step-Down Regulator with Differential  
Remote Sense in 2mm x 2mm WLP  
MAX8649  
Given L  
, the peak-to-peak inductor ripple current  
OUT(MAX)  
IDEAL  
is 0.25 x I  
Applications Information  
. The peak inductor current is 1.125  
Inductor Selection  
x I  
. Make sure that the saturation current of  
OUT(MAX)  
Calculate the inductor value (L  
) using the follow-  
the inductor exceeds the peak inductor current, and  
the rated maximum DC inductor current exceeds the  
IDEAL  
ing formula:  
maximum output current (  
ues smaller than L  
). Inductance val-  
OUT(MAX)  
can be used to reduce induc-  
4 × V × D × 1-D  
(
)
IN  
OUT MAX  
IDEAL  
L
=
IDEAL  
I
× f  
tor size; however, if much smaller values are used,  
peak inductor current rises and a larger output capaci-  
tance may be required to suppress output ripple.  
OSC  
(
)
This sets the peak-to-peak inductor current ripple to 1/4  
the maximum output current. The oscillator frequency,  
Larger inductance values than L  
can be used to  
IDEAL  
f
, is 3.25MHz, and the duty cycle, D, is:  
OSC  
obtain higher output current, but typically require a  
physically larger inductor size. See Table 12 for rec-  
ommended inductors.  
V
OUT  
D =  
V
IN  
Table 12. Recommended Inductors  
INDUCTANCE  
(µH)  
DC RESISTANCE CURRENT RATING  
DIMENSIONS  
L x W x H (mm)  
MANUFACTURER  
SERIES  
(typ)  
(mA)  
1.0  
1.5  
2.2  
0.075  
0.075  
0.115  
1800  
1800  
1400  
KSLI-2520AG  
Multilayer  
2.5 x 2.0 x 1.0  
2.0 x 1.6 x 1.0  
Hitachi Metals  
0.75  
1.0  
1.5  
0.09  
0.09  
0.13  
1500  
1500  
1100  
KLSI-2016AG  
0.5  
1.3  
1.6  
2.0  
0.11  
0.10  
0.09  
0.06  
2000  
2000  
2000  
2000  
MIPSA2520D  
Multilayer  
FDK  
2.5 x 2.0 x 0.5  
3.2 x 1.6 x 0.9  
1.0  
1.5  
2.2  
0.11  
0.13  
0.14  
1100  
1000  
900  
CKP3216  
Multilayer  
Taiyo Yuden  
1.0  
1.5  
0.03  
0.04  
2100  
1800  
NR3015  
3.0 x 3.0 x 1.5  
3.0 x 3.0 x 1.5  
1.0  
2.2  
0.048  
0.070  
2000  
1400  
TDK  
VLS3015T  
0.56  
1.2  
1.5  
2.0  
0.032  
0.044  
0.050  
0.067  
2300  
1800  
1500  
1400  
TOKO  
DE2812C  
LPS3008  
3.2 x 3.0 x 1.2  
3.0 x 3.0 x 0.8  
0.56  
0.80  
1.0  
1.5  
2.2  
0.072  
0.092  
0.125  
0.134  
1800  
1600  
1400  
1150  
Coilcraft  
0.68  
1.0  
1.5  
1.8  
2.2  
0.070  
0.080  
0.085  
0.120  
0.150  
2300  
1800  
1600  
1300  
1200  
LPS3010  
3.0 x 3.0 x 1.0  
______________________________________________________________________________________ 29  
1.8A Step-Down Regulator with Differential  
Remote Sense in 2mm x 2mm WLP  
Input Capacitor Selection  
The input capacitor in a step-down DC-DC regulator  
reduces current peaks drawn from the battery or other  
input power source and reduces switching noise in the  
controller. A 10µF ceramic capacitor in parallel with a  
0.1µF ceramic capacitor is recommended for most appli-  
cations. The impedance of the input capacitor at the  
switching frequency should be less than that of the input  
source so that high-frequency switching currents do not  
pass through the input source. The input capacitor must  
meet the input ripple-current requirement imposed by  
the step-down regulator. Ceramic capacitors are pre-  
ferred due to their resilience to power-up surge currents.  
Choose the input capacitor so that the temperature rises  
due to input ripple current do not exceed approximately  
+10°C. For a step-down DC-DC regulator, the maximum  
input ripple current is 1/2 of the output. This maximum  
input ripple current occurs when the step-down regulator  
Power Dissipation  
The MAX8649 has a thermal-shutdown feature that pro-  
tects the IC from damage when the die temperature  
exceeds +160°C. See the Thermal-Overload Protection  
section for more information. To prevent thermal over-  
load and allow the maximum load current on each reg-  
ulator, it is important to ensure that the heat generated  
by the MAX8649 can be dissipated into the PCB.  
When properly mounted on a multilayer PCB, the junc-  
MAX8649  
tion-to-ambient thermal resistance (θ ) is typically  
JA  
76°C/W.  
PCB Layout  
Due to fast switching waveforms and high current  
paths, careful PCB layout is required to achieve optimal  
performance. Minimize trace lengths between the IC  
and the inductor, the input capacitor, and the output  
capacitor; keep these traces short, direct, and wide.  
operates at 50% duty factor (V = 2 x V  
). Refer to  
The ground connections of C and C  
should be as  
IN  
OUT  
IN  
OUT  
the MAX8649 Evaluation Kit data sheet for specific input  
capacitor recommendations.  
close together as possible and connected to PGND.  
Connect AGND and PGND directly to the ground plane.  
The MAX8649 evaluation kit illustrates an example PCB  
layout and routing scheme.  
Output Capacitor Selection  
The step-down DC-DC regulator output capacitor  
keeps output ripple small and ensures control-loop  
stability. A 10µF ceramic capacitor in parallel with a  
0.1µF ceramic capacitor is recommended for most  
applications. The output capacitor must also have low  
impedance at the switching frequency. Ceramic, poly-  
mer, and tantalum capacitors are suitable, with ceramic  
exhibiting the lowest ESR and lowest high-frequency  
impedance.  
Chip Information  
PROCESS: BiCMOS  
Package Information  
For the latest package outline information and land patterns, go  
Output ripple due to capacitance (neglecting ESR) is  
approximately:  
to www.maxim-ic.com/packages.  
PACKAGE TYPE  
PACKAGE CODE DOCUMENT NO.  
W162B2+1  
21-0200  
I
L PEAK  
(
)
16 WLP 0.5mm Pitch  
V
=
RIPPLE  
2π × f  
× C  
OUT  
OSC  
Additional ripple due to capacitor ESR is:  
ESR = I ×ESR  
V
(
)
RIPPLE  
L PEAK  
(
)
Refer to the MAX8649 Evaluation Kit data sheet for spe-  
cific output capacitor recommendations.  
30 ______________________________________________________________________________________  
1.8A Step-Down Regulator with Differential  
Remote Sense in 2mm x 2mm WLP  
MAX8649  
Revision History  
REVISION  
NUMBER  
REVISION  
DATE  
PAGES  
CHANGED  
DESCRIPTION  
0
1
9/09  
2/10  
Initial release  
Corrected errors in Table 1 and Figure 2  
11, 12  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 31  
© 2010 Maxim Integrated Products  
Maxim is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY