MAX8650 [MAXIM]

4.5V to 28V Input Current-Mode Step-Down Controller with Adjustable Frequency; 4.5V至28V输入,电流模式降压型控制器,可调节开关频率
MAX8650
型号: MAX8650
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

4.5V to 28V Input Current-Mode Step-Down Controller with Adjustable Frequency
4.5V至28V输入,电流模式降压型控制器,可调节开关频率

开关 控制器
文件: 总25页 (文件大小:364K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-3973; Rev 0; 1/06  
4.5V to 28V Input Current-Mode Step-  
Down Controller with Adjustable Frequency  
General Description  
Features  
The MAX8650 synchronous PWM buck controller oper-  
ates from a 4.5V to 28V input and generates an  
adjustable 0.7V to 5.5V output voltage at loads up to 25A.  
Operates from 4.5V to 28V Supply  
1% FB Voltage Accuracy Over Temperature  
Adjustable Output Voltage Down to 0.7V or REFIN  
The MAX8650 uses a peak current-mode control archi-  
tecture with an adjustable (200kHz to 1.2MHz) constant  
switching frequency and is externally synchronizable. The  
IC’s current limit uses the inductor’s DC resistance to  
improve efficiency or an external sense resistor for high  
accuracy. The current-limit threshold is adjusted with an  
external resistor. Foldback-type current limit can be  
implemented to reduce the power dissipation in overload  
or short-circuit conditions. Short-circuit protection is  
provided based on sensing the current in the low-side  
MOSFET. A reference input is provided for use with a  
high-accuracy external reference or for double-data-rate  
(DDR)-tracking applications.  
Adjustable Switching Frequency or External  
Synchronization from 200kHz to 1.2MHz  
180° Phase-Shifted Clock Output  
Adjustable Overcurrent Limit  
Adjustable Foldback Current Limit  
Adjustable Slope Compensation  
Selectable Current-Limit Mode: Latch-Off or  
Automatic Recovery  
Monotonic Output-Voltage Rise at Startup  
Output Sources and Sinks Current  
Enable Input  
Monotonic prebiased startup is available for a safe-start  
in applications where the output capacitor may have an  
initial charge. This feature prevents the output from  
pulling low during startup, which is a common charac-  
teristic of conventional buck regulators.  
Power-OK (POK) Output  
A 180° out-of–phase synchronization output is available  
Adjustable Soft-Start  
for synchronizing with another converter.  
Independently Adjustable Overvoltage Protection  
Applications  
Ordering Information  
Base Stations  
DDR  
PKG  
CODE  
Network and Telecom Power Modules  
PART  
TEMP RANGE PIN-PACKAGE  
Storage  
Servers  
IBA Applications  
24 QSOP  
MAX8650EEG+ -40°C to +85°C  
E24-1  
+Denotes lead-free package.  
Pin Configuration appears at end of data sheet.  
Typical Operating Circuit  
R2  
R1  
V
IN  
7V TO 28V  
SYNC  
1
2
FSYNC  
MODE  
BST  
C1  
D2  
EN  
4
5
ON  
OFF  
11  
24  
3
EN  
POK  
V
OUT  
0.7V TO 5.5V  
POK  
DH  
L1  
SYNCO  
C2  
6
7
Q1  
SYNCO  
SCOMP  
LX  
DL  
MAX8650EEG  
23  
C5  
R8  
R3  
C3  
C6  
22  
21  
Q2  
8
ILIM2  
REFIN  
PGND  
VL  
C7  
9
20  
16  
SS  
10  
C8  
IN  
R4  
C10  
C9  
R9  
ILIM1  
12  
14  
AVL  
C4  
R6  
R5  
19  
18  
COMP  
FB  
CS+  
15 C11  
13  
R7  
CS-  
17  
OVP  
GND  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
4.5V to 28V Input Current-Mode Step-Down  
Controller with Adjustable Frequency  
ABSOLUTE MAXIMUM RATINGS  
IN, EN to GND ........................................................-0.3V to +30V  
BST to LX...............................................................-0.3V to +7.5V  
AVL, FB, POK, COMP, SS, MODE, REFIN to GND .....-0.3V to +6V  
CS+, CS- to GND .....................................................-0.3V to +6V  
PGND to GND .......................................................-0.3V to +0.3V  
DH to LX....................................................-0.3V to (V  
+ 0.3V)  
BST  
LX to GND .................... -1V (-2.5V for < 50ns transient) to +30V  
Continuous Power Dissipation (T = +70°C)  
A
DL to PGND.................................................-0.3V to (V + 0.3V)  
24-Pin QSOP (derate 9.5mW/°C above +70°C)..........762mW  
Junction Temperature......................................................+150°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
VL  
ILIM2, ILIM1, SYNCO, FSYNC, OVP,  
SCOMP to GND .....................................-0.3V to (V  
+ 0.3V)  
AVL  
VL to PGND ...........................................................-0.3V to +7.5V  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V = 12V, V  
IN  
- V = 6.5V, T = -40°C to +85°C. Typical values are at T = +25°C, unless otherwise noted.) (Note 1)  
LX A A  
BST  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
28.0  
3
UNITS  
V
Operating Input Voltage Range  
Quiescent Supply Current  
VL = IN for V < 7V  
4.5  
IN  
V
= 0.75V, no switching  
2
mA  
FB  
EN = GND, V 28V  
10  
IN  
Shutdown Supply Current  
µA  
V
I
IN  
+ I + I  
VL AVL  
EN = GND, V  
= V = V = 5V  
32  
AVL  
VL  
IN  
AVL Undervoltage-Lockout Trip  
Level  
V
rising, 3% typ hysteresis  
3.90  
0.7  
4.15  
4.40  
AVL  
Minimum output voltage is limited by minimum duty cycle  
and external components  
Output Voltage Adjust Range  
5.5  
7.0  
V
VL Regulation Voltage  
VL Output Current  
AVL Regulation Voltage  
AVL Output Current  
SOFT-START  
7V < V < 28V, 1mA < I  
< 40mA  
6.0  
40  
6.5  
V
IN  
LOAD  
mA  
V
5.5V < V < 7V, 1mA < I  
< 10mA  
4.900  
10  
4.975  
5.050  
VL  
LOAD  
mA  
SS Shutdown Resistance  
SS Soft-Start Current  
REFIN INPUT  
From SS to GND, V = 0V  
20  
23  
100  
28  
EN  
V
V
= 0.625V  
18  
µA  
SS  
V
-
AVL  
1.0V  
REFIN Dual Mode™ Threshold  
V
V
AVL  
REFIN Input Bias Current  
REFIN Input Voltage Range  
= 0.7V to 1.5V  
-250  
0
+250  
1.5  
nA  
V
REFIN  
Dual Mode is a trademark of Maxim Integrated Products, Inc.  
2
_______________________________________________________________________________________  
4.5V to 28V Input Current-Mode Step-Down  
Controller with Adjustable Frequency  
ELECTRICAL CHARACTERISTICS (continued)  
(V = 12V, V  
IN  
- V = 6.5V, T = -40°C to +85°C. Typical values are at T = +25°C, unless otherwise noted.) (Note 1)  
LX A A  
BST  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
ERROR AMPLIFIER  
REFIN = AVL  
0.693  
0.7  
0.707  
V
V
REFIN  
-
REFIN  
+
FB Regulation Voltage  
V
V
= 0.7V to 1.5V  
V
REFIN  
REFIN  
0.00375  
0.00375  
Transconductance  
70  
110  
20  
5
160  
100  
50  
µS  
COMP Shutdown Resistance  
FB Input Leakage Current  
From COMP to GND, V = 0V  
EN  
V
= 0.7V  
nA  
V
FB  
FB Input Common-Mode Range  
CURRENT-SENSE AMPLIFIER  
Voltage Gain  
-0.1  
+1.5  
V
= 0 to 5.5V, V  
- V = 30mV  
CS-  
12  
V/V  
OUT  
CS+  
CURRENT LIMIT  
R
= 24kΩ  
27.2  
68.0  
-42.5  
-170  
-90  
32.0  
80.0  
36.8  
92.0  
-57.5  
-230  
-150  
+25  
ILIM1  
Peak Current-Limit  
mV  
mV  
Threshold (V  
- V  
)
CS+  
CS-  
ILIM1 = AVL  
R
ILIM2  
R
ILIM2  
= 50kΩ  
-50.0  
-200  
-120  
Valley Current-Limit Threshold  
(V - V  
)
LX  
PGND  
= 200kΩ  
Negative Current-Limit Threshold % of (typ) positive direction current limit (V - V  
)
%
LX  
PGND  
CS+, CS- Input Current  
V
= V  
= 0V or 5.5V  
CS-  
-25  
µA  
CS+  
CS+, CS- Input Common-Mode  
Range  
0
5.5  
V
SLOPE COMPENSATION  
V
V
= 2.5V  
231.25 250.00 268.75  
113.77 123.00 132.23  
231.25 250.00 268.75  
113.77 123.00 132.23  
110.70 123.00 132.23  
SCOMP  
SCOMP  
= 1.25V  
Slope Compensation at Maximum  
Duty Cycle  
SCOMP = AVL  
SCOMP = GND, T = 0°C to +85°C  
mV  
A
T
A
= -40°C to +85°C  
SCOMP High Threshold  
SCOMP Low Threshold  
SCOMP Adjustment Range  
SCOMP Input Leakage Current  
OSCILLATOR  
V
- 0.5  
V
V
AVL  
0.5  
1.25  
2.5  
V
V
= 1.25V to 2.5V  
5
200  
nA  
SCOMP  
R
R
= 21.0kΩ  
= 143kΩ  
800  
160  
1000  
200  
235  
75  
1200  
240  
FSYNC  
Switching Frequency  
kHz  
FSYNC  
Minimum Off-Time  
Minimum On-Time  
Measured at DH  
Measured at DH  
ns  
ns  
100  
_______________________________________________________________________________________  
3
4.5V to 28V Input Current-Mode Step-Down  
Controller with Adjustable Frequency  
ELECTRICAL CHARACTERISTICS (continued)  
(V = 12V, V  
IN  
- V = 6.5V, T = -40°C to +85°C. Typical values are at T = +25°C, unless otherwise noted.) (Note 1)  
LX A A  
BST  
PARAMETER  
FSYNC Synchronization Range  
FSYNC Input-High Pulse Width  
FSYNC Input-Low Pulse Width  
FSYNC Rise/Fall Time  
CONDITIONS  
MIN  
160  
100  
100  
TYP  
MAX  
UNITS  
kHz  
ns  
1200  
ns  
100  
0.4  
ns  
SYNCO Phase Shift  
180  
Degrees  
V
SYNCO Output Low Level  
I
I
= 5mA  
= 5mA  
SYNCO  
V
-
AVL  
1V  
SYNCO Output High Level  
V
V
SYNCO  
FSYNC Pin Threshold  
for SYNC Mode  
1.7  
2.5  
0.4  
FSYNC Input Low  
FSYNC Input High  
FET DRIVERS  
V
V
2.5  
V
V
V
V
V
V
V
V
- V = 6.5V  
1.13  
1.4  
1.0  
1.3  
1.6  
1.7  
0.8  
0.85  
20  
1.8  
2.2  
2
BST  
BST  
BST  
BST  
LX  
DH On-Resistance, High State  
DH On-Resistance, Low State  
DL On-Resistance, High State  
DL On-Resistance, Low State  
- V = 5V  
LX  
- V = 6.5V  
LX  
- V = 5V  
2.2  
2.5  
2.8  
1.5  
1.5  
30  
5
LX  
= 6.5V  
= 5V  
VL  
VL  
VL  
VL  
= 6.5V  
= 5V  
Break-Before-Make Dead Time  
LX, BST Leakage Current  
THERMAL PROTECTION  
Thermal Shutdown  
Low side off to high side on, high side off to low side on  
= 35V, V = 28V, V = 28V  
ns  
V
µA  
BST  
LX  
IN  
Rising temperature  
+160  
15  
°C  
°C  
Thermal-Shutdown Hysteresis  
4
_______________________________________________________________________________________  
4.5V to 28V Input Current-Mode Step-Down  
Controller with Adjustable Frequency  
ELECTRICAL CHARACTERISTICS (continued)  
(V = 12V, V  
IN  
- V = 6.5V, T = -40°C to +85°C. Typical values are at T = +25°C, unless otherwise noted.) (Note 1)  
LX A A  
BST  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
POK  
REFIN = AVL, V rising, typical hysteresis is 3%  
629.0  
88.7  
650.0  
91.7  
25  
671.0  
94.7  
200  
1
mV  
FB  
Power-OK Threshold  
% of  
V
V
V
= 0.7V to 1.5V, V rising, typical hysteresis is 3%  
FB  
REFIN  
POK Output Voltage, Low  
POK Leakage Current, High  
OVP  
= 0.6V, I  
= 2mA  
mV  
µA  
FB  
POK  
= 5.5V  
POK  
REFIN = AVL  
770  
110  
800  
115  
840  
120  
500  
mV  
OVP Threshold Voltage  
% of  
REFIN  
V
V
= 0.7V to 1.5V  
REFIN  
V
OVP Leakage Current, High  
MODE CONTROL  
= 0.8V  
nA  
OVP  
MODE Logic-Level Low  
MODE Logic-Level High  
MODE Input Current  
4.5V V  
4.5V V  
5.5V  
5.5V  
0.4  
+1  
V
V
AVL  
AVL  
1.8  
-1  
V
= 0 to V  
µA  
MODE  
AVL  
SHUTDOWN CONTROL  
EN Logic-Level Low  
4.5V V  
4.5V V  
5.5V  
5.5V  
0.45  
V
V
AVL  
AVL  
EN Logic-Level High  
2
V
V
= 0V  
-1  
+1  
EN  
EN  
EN Input Current  
µA  
= 28V  
1.5  
6.0  
Note 1: Specifications are 100% production tested at T = +85°C. Limits over the operating temperature range are guaranteed  
A
by design.  
_______________________________________________________________________________________  
5
4.5V to 28V Input Current-Mode Step-Down  
Controller with Adjustable Frequency  
Typical Operating Characteristics  
(Circuit of Figure 3, 500kHz switching, V = 17V, V  
IN  
= 3.3V, T = +25°C, unless otherwise noted.)  
A
OUT  
EFFICIENCY vs. LOAD CURRENT  
(CIRCUIT OF FIGURE 4)  
3.310  
EFFICIENCY vs. LOAD CURRENT  
LOAD REGULATION  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
12V INPUT, 1.25V OUTPUT  
3.305  
3.300  
3.295  
3.290  
3.285  
3.280  
3.275  
3.270  
12V INPUT, 3.3V OUTPUT  
12V INPUT, 2.5V OUTPUT  
12V INPUT, 1.8V OUTPUT  
24V INPUT, 3.3V OUTPUT  
12V INPUT, 0.9V OUTPUT  
1
10  
100  
0
5
10  
15  
1
10  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
OSCILLATOR FREQUENCY  
vs. INPUT VOLTAGE  
LINE REGULATION  
R
ILIM1  
vs. PEAK CURRENT LIMIT  
530  
520  
510  
500  
490  
480  
470  
3.310  
3.305  
3.300  
3.295  
3.290  
3.285  
3.280  
3.275  
3.270  
60  
55  
50  
45  
40  
35  
30  
25  
20  
NO LOAD  
T
= +25°C  
T
= -40°C  
A
A
15A LOAD  
T
= +85°C  
A
6
10  
14  
18  
22  
26  
30  
6
10  
14  
18  
22  
26  
30  
0.03  
0.04  
0.05  
0.06  
0.07  
0.08  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
PEAK CURRENT LIMIT V - V (V)  
CS+  
CS-  
STEP-LOAD RESPONSE  
7.5A TO 15A TO 7.5A  
STEP-LOAD RESPONSE  
-8A TO 8A TO -8A (CIRCUIT OF FIGURE 4)  
MAX8650 toc07  
MAX8650 toc08  
50mV/div  
(AC-COUPLED)  
V
OUT  
OUT  
V
I
OUT  
OUT  
100mV/div  
(AC-COUPLED)  
I
5A/div  
0V  
0V  
5A/div  
40µs/div  
100µs/div  
6
_______________________________________________________________________________________  
4.5V to 28V Input Current-Mode Step-Down  
Controller with Adjustable Frequency  
Typical Operating Characteristics (continued)  
(Circuit of Figure 3, 500kHz switching, V = 17V, V  
IN  
= 3.3V, T = +25°C, unless otherwise noted.)  
A
OUT  
POWER-DOWN WAVEFORMS  
POWER-UP WAVEFORMS  
ENABLE/SHUTDOWN WAVEFORMS  
MAX8650 toc11  
MAX8650 toc10  
MAX8650 toc09  
V
POK  
5V/div  
5V/div  
5V/div  
5V/div  
V
POK  
V
POK  
V
IN  
5V/div  
1V/div  
5V/div  
0V  
V
EN  
V
OUT  
V
IN  
2V/div  
V
OUT  
I
L
5A/div  
0V  
V
OUT  
1V/div  
0V  
5A/div  
0V  
I
L
10A/div  
0V  
I
L
200µs/div  
2ms/div  
2ms/div  
SYNCHRONIZATION WAVEFORMS  
SHORT CIRCUIT AND RECOVERY  
OVERVOLTAGE PROTECTION  
MAX8650 toc12  
MAX8650 toc13  
MAX8650 toc14  
7.5A LOAD  
V
OUT  
V
FSYNC  
5V/div  
5V/div  
2V/div  
1V/div  
V
OUT  
V
0V  
SYNCO  
10A/div  
0V  
10V/div  
0V  
V
DH  
I
L
10V/div  
I
0V  
10A/div  
0V  
5V/div  
0V  
IN  
V
V
DL  
DH  
1µs/div  
200µs/div  
40µs/div  
CLOSED-LOOP BODE PLOT WITH NO LOAD  
CLOSED-LOOP BODE PLOT WITH 15A LOAD  
MAX8650 toc16  
MAX8650 toc15  
GAIN  
GAIN  
0dB  
0dB  
10dB/div  
10dB/div  
PHASE  
PHASE  
0°  
30°/div  
0°  
30°/div  
1k  
10k  
100k  
1M  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
_______________________________________________________________________________________  
7
4.5V to 28V Input Current-Mode Step-Down  
Controller with Adjustable Frequency  
Pin Description  
PIN  
NAME  
FUNCTION  
Frequency Set and Synchronization. Connect a resistor from FSYNC to GND to set the switching  
frequency, or drive with an external clock signal between 160kHz and 1.2MHz. See the Switching  
Frequency and Synchronization section.  
1
FSYNC  
Current-Limit Operating-Mode Selection. Connect MODE to AVL for latch-off current limit or connect  
MODE to GND for automatic-recovery current limit.  
2
MODE  
Synchronization Output. Provides a clock output that is 180° out-of-phase with the internal oscillator  
for synchronizing another MAX8650.  
3
4
5
6
7
SYNCO  
BST  
DH  
Boost Capacitor Connection. Connect a 0.1µF ceramic capacitor from BST to LX.  
High-Side n-Channel MOSFET Gate-Driver Output. Connect DH to the gate of the high-side MOSFET.  
DH is internally pulled low in shutdown.  
LX  
External Inductor Connection  
Low-Side n-Channel MOSFET Gate-Driver Output. Connect DL to the gate of the low-side MOSFET  
(synchronous rectifier). DL is internally pulled low in shutdown.  
DL  
Power Ground. Connect PGND to the power ground plane and to the source of the low-side external  
MOSFET. The return path for both gate drivers is through PGND.  
8
PGND  
Internal 6.5V Linear-Regulator Output. Connect a 1µF to 10µF ceramic capacitor from VL to ground. For  
9
VL  
IN  
V
IN  
< 7V, connect VL directly to IN. VL powers both gate drivers. VL is the input to the AVL linear regulator.  
10  
11  
Input Supply Voltage. IN is the input to the VL linear regulator. Connect VL to IN for V < 7V.  
IN  
Enable. Apply logic-high to enable the output, or logic-low to put the controller in low-power shutdown  
mode. Connect EN to IN for always-on operation.  
EN  
Internal 5V Linear-Regulator Output. Connect a 1µF ceramic capacitor from AVL to ground. AVL  
powers the MAX8650’s internal circuits.  
12  
13  
AVL  
Ground. Connect GND to the analog ground plane. Connect the analog ground and power ground  
planes at a single point near the IC. Low-current signals return to GND.  
GND  
14  
15  
CS+  
CS-  
Positive Differential Current-Sense Input  
Negative Differential Current-Sense Input  
Programmable Current-Limit Input for Inductor Current. Connect a resistor from ILIM1 to GND to set  
the peak current-limit threshold. ILIM1 sources 10µA through the resistor, and the voltage at ILIM1 is  
attenuated 7.5:1 to set the final current limit. For example, a 60kresistor results in 600mV at ILIM1.  
16  
ILIM1  
This results in a current-limit threshold (V  
- V ) of 80mV. The ILIM1 resistor range is 24kto  
CS+  
CS-  
60k. Connect ILIM1 to AVL to set the default current-limit threshold of 80mV.  
8
_______________________________________________________________________________________  
4.5V to 28V Input Current-Mode Step-Down  
Controller with Adjustable Frequency  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
Output Voltage Sensing for Overvoltage Protection. Connect OVP to the center of a resistor-divider  
from OUT to GND to set the FB independent output overvoltage trip point. Connect OVP to FB if this  
independence is not desired. The OVP threshold is 115% of the nominal FB regulation voltage.  
17  
OVP  
Feedback Input. Connect FB to the center of a resistor voltage-divider between the output and GND  
18  
19  
20  
21  
FB  
COMP  
SS  
to set the output voltage. The FB threshold regulates at 0.7V or V  
.
REFIN  
Loop Compensation. Connect COMP to an external RC network to compensate the loop. COMP is  
internally pulled to GND through 20during shutdown.  
Soft-Start. Connect a 0.1µF to 1µF ceramic capacitor from SS to GND. This capacitor sets the soft-  
start period during startup. SS is internally pulled to GND through 20during shutdown.  
External Reference Input. Connect REFIN to AVL to use the internal 0.7V reference for the feedback  
threshold.  
REFIN  
Programmable Current-Limit Input for the Low-Side MOSFET (LX-PGND). Connect a resistor from ILIM2  
to GND to set the valley current-limit threshold. ILIM2 sources 5µA through the resistor, and the voltage  
at ILIM2 is attenuated 5:1 to set the final current limit. For example, a 50kresistor results in 250mV at  
22  
ILIM2  
ILIM2. This results in a current-limit threshold (V - V  
) of 50mV. V  
PGND  
must not exceed 1V.  
LX  
ILIM2  
Programmable Slope-Compensation Input. The slope-compensation voltage rate is the voltage at  
SCOMP times 0.1 divided by the oscillator period (T). Connect SCOMP to AVL or GND to set to the  
default of 250mV/T or 125mV/T, respectively.  
23  
24  
SCOMP  
POK  
Open-Drain Output that Is High Impedance when the Output Voltage Rises Above 92% of the  
Nominal Regulation Value. POK pulls low during shutdown and when the output drops below 88% of  
the nominal regulation value.  
_______________________________________________________________________________________  
9
4.5V to 28V Input Current-Mode Step-Down  
Controller with Adjustable Frequency  
IN  
MAX8650  
BST  
6.5V LDO  
REGULATOR  
EN  
VL  
UVLO  
LEVEL  
SHIFT  
DH  
LX  
THERMAL  
SHDN  
VL  
5V AVL  
LDO  
AVL  
PWM  
DL  
CONTROL  
LOGIC  
VOLTAGE  
REFERENCE  
PGND  
REF  
SELECT  
LOGIC  
SYNCO  
FSYNC  
REF  
SOFT-START  
CIRCUITRY  
REFIN  
SS  
OVP  
OSCILLATOR  
1.15V REF  
COMP  
CLAMP  
ERROR  
AMP  
GM  
SLOPE  
COMP  
SCOMP  
FB  
PWM  
COMPARATOR  
COMP  
OVP  
CSA  
CS+  
12  
CURRENT-  
LIMIT  
CONTROL LOGIC  
MODE  
ILIM2  
5µA  
LEVEL  
SHIFT  
VL  
CURRENT-  
LIMIT COMP  
X1  
DIVIDE BY 5  
CS-  
10µA  
VL  
POK  
ILIM1  
GND  
DIVIDE BY 7.5  
FB  
0.92V  
REF  
Figure 1. Functional Diagram  
10 ______________________________________________________________________________________  
4.5V to 28V Input Current-Mode Step-Down  
Controller with Adjustable Frequency  
Undervoltage Lockout  
When AVL drops below 4.03V, the MAX8650 assumes  
Detailed Description  
DC-DC Converter Control Architecture  
The MAX8650 step-down controller uses a PWM, cur-  
rent-mode control scheme. An internal transconduc-  
tance amplifier establishes an integrated error voltage.  
The heart of the PWM controller is an open-loop com-  
parator that compares the integrated voltage-feedback  
signal against the amplified current-sense signal plus  
the adjustable slope-compensation ramp, which are  
summed into the main PWM comparator to preserve  
inner-loop stability. At each rising edge of the internal  
clock, the high-side MOSFET turns on until the PWM  
comparator trips or the maximum duty cycle is  
reached. During this on-time, current ramps up through  
the inductor, storing energy in a magnetic field and  
sourcing current to the output. The current-mode feed-  
back system regulates the peak inductor current as a  
function of the output-voltage error signal. The circuit  
acts as a switch-mode transconductance amplifier and  
pushes the output LC filter pole normally found in a  
voltage-mode PWM to a higher frequency.  
that the supply voltage is too low for proper operation,  
so the undervoltage-lockout (UVLO) circuitry inhibits  
switching and forces the DL and DH gate drivers low.  
When AVL rises above 4.15V, the controller enters the  
startup sequence and then resumes normal operation.  
Startup and Soft-Start  
The internal soft-start circuitry gradually ramps up the  
reference voltage to control the rate of rise of the step-  
down controller’s output and reduce input surge cur-  
rents during startup. The soft-start period is determined  
by the value of the capacitor from SS to GND. The soft-  
start time is approximately (30.4ms/µF) x C . The  
SS  
MAX8650 also features monotonic output-voltage rise;  
therefore, both external power MOSFETs are kept off if  
the voltage at FB is higher than the voltage at SS. This  
allows the MAX8650 to start up into a prebiased output  
without pulling the output voltage down.  
Before the MAX8650 can begin the soft-start and power-  
up sequence, the following conditions must be met:  
During the second half of the cycle, the high-side  
MOSFET turns off and the low-side MOSFET turns on.  
The inductor releases the stored energy as the current  
ramps down, providing current to the output. The output  
capacitor stores charge when the inductor current  
exceeds the required load current and discharges when  
the inductor current is lower, smoothing the voltage  
across the load. Under soft-overload conditions, when  
the peak inductor current exceeds the selected current  
limit (see the Current-Limit Circuit section), the high-side  
MOSFET is turned off immediately and the low-side  
MOSFET is turned on and remains on to let the inductor  
current ramp down until the next clock cycle. Under  
heavy-overload or short-circuit conditions, the valley  
foldback current limit is enabled to reduce power dissi-  
pation of external components.  
• V  
AVL  
exceeds the 4.15V UVLO threshold.  
• EN is at logic-high.  
• The thermal limit is not exceeded.  
Enable (EN)  
The MAX8650 features a low-power shutdown mode. A  
logic-low at EN shuts down the controller. During shut-  
down, the output is high impedance, and both DH and  
DL are low. Shutdown reduces the quiescent current  
(I ) to less than 10µA. A logic-high at EN enables the  
Q
controller.  
Synchronous-Rectifier Driver (DL)  
Synchronous rectification reduces conduction losses in  
the rectifier by replacing the normal Schottky catch  
diode with a low-resistance MOSFET switch. The  
MAX8650 also uses the synchronous rectifier to ensure  
proper startup of the boost gate-driver circuit and to  
provide the current-limit signal. The low-side gate driver  
(DL) swings from 0 to the 6.5V provided from VL. The  
DL waveform is always the complement of the DH high-  
side gate-drive waveform (with controlled dead time to  
prevent cross-conduction or shoot-through). An adap-  
tive dead-time circuit monitors the DL voltage and pre-  
vents the high-side MOSFET from turning on until DL is  
fully off. For the dead-time circuit to work properly,  
there must be a low-resistance, low-inductance path  
from the DL driver to the MOSFET gate. Otherwise,  
the sense circuitry in the MAX8650 can interpret the  
MOSFET gate as off when gate charge actually  
remains. Use very short, wide traces, approximately 10  
The MAX8650 operates in a forced-PWM mode. As a  
result, the controller maintains a constant switching fre-  
quency, regardless of load, to allow for easier filtering  
of the switching noise.  
Internal Linear Regulators  
The MAX8650 contains two internal LDO regulators. The  
AVL regulator provides 5V for the IC’s internal circuitry,  
and the VL regulator provides 6.5V for the MOSFET gate  
drivers. Connect a 4.7µF ceramic capacitor from VL to  
PGND, and connect a 1µF ceramic capacitor from AVL  
to GND. For applications where the input voltage is  
between 4.5V and 7V, connect VL directly to IN and con-  
nect a 10resistor from VL to AVL.  
______________________________________________________________________________________ 11  
4.5V to 28V Input Current-Mode Step-Down  
Controller with Adjustable Frequency  
nents, mainly inductor and power MOSFETs, and  
upstream power source, when output is severely over-  
loaded or short circuited and POK is low. Thus, the cir-  
cuit can withstand short-circuit conditions continuously  
VL  
BST  
without causing overheating of any component. The  
peak constant-current limit sets the current-limit point  
more accurately since it does not have to suffer the wide  
variation of the low-side power MOSFET’s on-resistance  
due to tolerance and temperature.  
DH  
N
N
MAX8650  
LX  
The valley current is sensed across the on-resistance of  
DL  
the low-side MOSFET (V  
- V ). The valley current  
LX  
PGND  
limit trips when the sensed voltage exceeds the valley  
current-limit threshold. The valley current limit recovers  
when the sensed voltage drops below the valley current-  
limit threshold (except when using the latch-off option).  
Figure 2. DH Boost Circuit  
Set the minimum valley current-limit threshold, when the  
output voltage is at the nominal regulated value, higher  
than the maximum peak current-limit setting. With this  
method, the current-limit point accuracy is controlled by  
the peak current limit and is not interfered with by the  
wide variation of MOSFET on-resistance. See the Setting  
the Current Limit section for how to set these limits.  
to 20 squares (50 mils to 100 mils wide if the MOSFET  
is 1in from the device) for the gate drive. The dead time  
at the other edge (DH turning off) also has an adaptive  
dead-time circuit operating in a similar manner. For  
both edges, there is an additional 20ns fixed dead time  
after the adaptive dead time expires.  
High-Side Gate-Drive Supply (BST)  
A flying capacitor boost circuit (Figure 2) generates the  
gate-drive voltage for the high-side n-channel MOSFET.  
The capacitor between BST and LX is charged from VL  
to 6.5V minus the diode forward-voltage drop while the  
low-side MOSFET is on. When the low-side MOSFET is  
switched off, the stored voltage of the capacitor is  
stacked above LX to provide the necessary turn-on  
The MAX8650 can be configured for either an  
adjustable valley current-limit threshold with adjustable  
foldback ratio, or a fixed valley current limit that latches  
the converter off. When latch-off is used (MODE is con-  
nected to AVL), set the current-limit threshold by only  
one resistor from ILIM2 to GND and make sure this  
threshold is higher than the maximum output current  
required by at least a 20% margin. Cycle EN or input  
power to reset the current-limit latch.  
voltage (V ) for the high-side MOSFET. The controller  
GS  
then closes an internal switch between BST and DH to  
turn the high-side MOSFET on.  
The peak current limit is used to sense the inductor cur-  
rent, and is more accurate than the valley current limit  
since it does not depend upon the on-resistance of the  
low-side MOSFET. The peak current can be measured  
across the resistance of the inductor for the highest effi-  
ciency, or alternatively, a current-sense resistor can be  
used for more accurate current sensing. A resistor con-  
nected from ILIM1 to GND sets the peak current-limit  
threshold.  
Current-Sense Amplifier  
The current-sense circuit amplifies the differential cur-  
rent-sense voltage (V  
- V  
). This amplified cur-  
CS-  
CS+  
rent-sense signal and the internal slope-compensation  
signal are summed (V ) together and fed into the  
SUM  
PWM comparator’s inverting input. The PWM compara-  
tor shuts off the high-side MOSFET when V  
SUM  
exceeds the integrated feedback voltage (V  
).  
For more information on the current limit, see the  
Setting the Current Limit section.  
COMP  
The differential current sense is also used to provide  
peak inductor current limiting. This current limit is more  
accurate than the valley current limit, which is mea-  
sured across the low-side MOSFET’s on-resistance.  
Switching Frequency and Synchronization  
The MAX8650 has an adjustable internal oscillator that  
can be set to any frequency from 200kHz to 1.2MHz.  
To set the switching frequency, connect a resistor from  
FSYNC to GND. Calculate the resistor value from the  
following equation:  
Current-Limit Circuit  
The MAX8650 uses both foldback and peak current  
limiting (Figure 5). The valley foldback current limit is  
used to reduce power dissipation of external compo-  
12 ______________________________________________________________________________________  
4.5V to 28V Input Current-Mode Step-Down  
Controller with Adjustable Frequency  
of its nominal regulation voltage, POK is high imped-  
1
1kΩ  
ance. When the output drops below 89% of its nominal  
regulation voltage, POK is internally pulled low. POK is  
also internally pulled low when the MAX8650 is shut  
down. To use POK as a logic-level signal, connect a  
pullup resistor from POK to the logic supply rail.  
R
=
162ns  
FSYNC  
2f  
16.34ns  
S
The MAX8650 can also be synchronized to an external  
clock by connecting the clock signal to FSYNC. In  
addition, SYNCO is provided to synchronize a second  
MAX8650 controller 180° out-of-phase with the first by  
connecting SYNCO of the first controller to FSYNC of  
the second. When the first controller is synchronized to  
an external clock, the external clock is inverted to gen-  
erate SYNCO. Therefore, to get 180° out-of-phase oper-  
ation, the clock input to the first controller should have  
a 50% duty cycle.  
Thermal-Overload Protection  
Thermal-overload protection limits total power dissipa-  
tion in the MAX8650. When the junction temperature  
exceeds +160°C, an internal thermal sensor shuts  
down the device, allowing the IC to cool. The thermal  
sensor turns the IC on again after the junction tempera-  
ture cools by 15°C, resulting in a pulsed output during  
continuous thermal-overload conditions.  
Power-Good Signal (POK)  
POK is an open-drain output on the MAX8650 that mon-  
itors the output voltage. When the output is above 92%  
V
IN  
10V TO 24V  
R1  
D1  
C1  
R2  
C2  
C3  
SYNC  
EN  
1
11  
24  
3
2
FSYNC  
EN  
MODE  
BST  
D2  
4
5
ON  
OFF  
POK  
V
OUT  
POK  
DH  
L1  
3.3V/15A  
C6  
6
7
Q1  
Q2  
SYNCO  
C9A  
SYNCO  
LX  
DL  
MAX8650EEG  
23  
R14  
SCOMP  
C9B  
C10  
R5  
22  
21  
8
ILIM2  
REFIN  
PGND  
VL  
C11  
R6  
9
C5  
C13  
C15  
20  
16  
10  
SS  
IN  
R13  
C14  
R15  
12  
14  
15  
ILIM1  
AVL  
C7  
R8  
19  
18  
COMP  
FB  
CS+  
CS-  
C8  
C12  
R9  
R10  
R11  
R12  
13  
GND  
17  
OVP  
Figure 3. Applications Circuit with 500kHz Switching, 10V to 24V Input, and 3.3V/15A Output  
______________________________________________________________________________________ 13  
4.5V to 28V Input Current-Mode Step-Down  
Controller with Adjustable Frequency  
Table 1. Component List for Figure 3  
COMPONENT  
C1, C2, C3  
C5, C6  
DESCRIPTION  
10µF, 25V X5R ceramic capacitors  
0.1µF, 10V X7R ceramic capacitors  
220pF, 50V X7R ceramic capacitor  
Not installed  
VENDOR/PART  
TDK C3225X5R1E106M (1210)  
Kemet C0603C104M9RAC (0603)  
TDK C1608X7R1H271K  
QUANTITY  
3
2
1
0
C7  
C8  
150µF 20%, 4V, 7mESR polymer  
aluminum electrolytic capacitors  
C9A, C9B  
Panasonic EEFSDOG151R  
2
C10, C14  
C11  
0.47µF 10%, 10V X5R ceramic capacitors  
4.7µF, 10V X5R ceramic capacitor  
100pF, 25V C0G ceramic capacitor  
1µF, 16V X5R ceramic capacitors  
100V, 200mA switching diode  
Taiyo Yuden LMK107BJ474KA (0603)  
TDK C2012X5R1A475M (0805)  
Kemet C603C101K3GAC (0603)  
TDK C1608X7R1C105M (0603)  
Central CMPD914 (SOT23)  
2
1
1
2
1
1
C12  
C13, C15  
D1  
D2  
30V, 100mA Schottky diode  
Central CMPSH-3 (SOT23)  
1.2µH, 18.2A, 2.6mmax, 2.16mtyp  
inductor  
L1  
TOKO FDA1254-1R2M  
1
Q1  
Q2  
30V n-channel MOSFET  
30V n-channel MOSFET  
51.1k1% resistor (0603)  
100k5% resistor (0603)  
0resistor  
Fairchild FDS7296N3  
1
1
1
1
1
0
1
1
1
2
2
1
1
1
Fairchild FDS7088SN3  
R1  
R2  
R3  
R4  
Not installed  
R5  
17.4k1% resistor (0603)  
130k1% resistor (0603)  
220k5% resistor (0603)  
7.5k1% resistors (0603)  
28.0k1% resistors (0603)  
39.21% resistor (0603)  
2.4k5% resistor (0603)  
39.2k5% resistor (0603)  
R6  
R8  
R9, R11  
R10, R12  
R13  
R14  
R15  
14 ______________________________________________________________________________________  
4.5V to 28V Input Current-Mode Step-Down  
Controller with Adjustable Frequency  
V
IN  
10.8V TO 13.2V  
R2  
D1  
R1  
C1  
C2  
SYNC  
EN  
1
11  
24  
3
2
FSYNC  
EN  
MODE  
BST  
D2  
OPTIONAL  
4
5
ON  
OFF  
POK  
V
OUT  
POK  
DH  
L1  
0.9V 8A  
C5  
6
7
Q1  
Q2  
SYNCO  
C8A C8B C8C C8D C8E  
SYNCO  
LX  
DL  
MAX8650  
23  
22  
R11  
SCOMP  
ILIM2  
R5  
C9  
8
PGND  
VL  
R6  
C10  
9
21  
C3  
REFIN  
C12  
C14  
10  
V
REFIN  
IN  
0.9V  
DC  
C4  
20  
16  
19  
C13  
R12  
SS  
12  
14  
15  
AVL  
R7  
ILIM1  
COMP  
CS+  
CS-  
C6  
R8  
C11  
C7  
R9  
18  
17  
FB  
13  
GND  
R10  
OVP  
Figure 4. Applications Circuit with 400kHz Switching, 12V Input, and 0.9V ±±A Output  
______________________________________________________________________________________ 15  
4.5V to 28V Input Current-Mode Step-Down  
Controller with Adjustable Frequency  
Table 2. Component List for Figure 4  
COMPONENT  
DESCRIPTION  
VENDOR / PART  
Taiyo Yuden EMK325BJ106MN  
Kemet C0603C103M9RAC  
Kemet C0603C104M9RAC  
TDK C1608X7R1H182K  
QUANTITY  
C1, C2  
C3  
10µF, 16V X5R ceramic capacitors (1210)  
0.01µF, 10V X7R ceramic capacitor (0603)  
0.1µF, 10V X7R ceramic capacitors  
1800pF, 50V X7R ceramic capacitor  
X7% 22pF, 50V ceramic capacitor  
2
1
2
1
1
C4, C5  
C6  
C7  
TDK C1608C0G1H220K  
680µF/20%, 2.5V, 6mESR capacitors, POS  
Al Lytic  
C8A–C8E  
C9, C13  
Sanyo 2R5TPD680M6  
5
2
10V 10%, 0.47µF X5R ceramic capacitors  
(0603)  
Taiyo Yuden LMK107BJ474KA  
C10  
C11  
C12, C14  
D1  
4.7µF, 10V X5R ceramic capacitor (0805)  
100pF, 25V ceramic capacitor (C0G)  
1µF, 16V X5R ceramic capacitors (0603)  
Diode, switching, 100V, 200mA  
30V, 100mA diode Schottky  
0.56µH, 15A, 1.7minductor  
30V n-MOSFET, 8-pin SO  
30V n-MOSFET, 8-pin SO  
100k5% resistor (0603)  
66.5k1% resistor (0603)  
0resistor  
TDK C2012X5R1A475M  
1
1
2
1
1
1
1
1
1
1
1
0
1
1
1
1
2
1
1
Kemet C0402C101K3GAC  
TDK C1608X7R1C105M  
Central/CMPD914  
D2  
Central/CMPSH-3  
L1  
Panasonic ETQPLR56WFC  
Q1  
Vishay Si4346DY  
Q2  
Vishay Si4362DY  
R1  
R2  
R3  
R4  
Resistor, open  
R5  
16.2k1% resistor (0603)  
35.7 k1% resistor (0603)  
15.8k1% resistor (0603)  
160k5% resistor (0603)  
10k5% resistors (0603)  
1.5k5% resistor (0603)  
1.1k5% resistor (0603)  
R6  
R7  
R8  
R9, R10  
R11  
R12  
Table 3. Suggested Components Manufacturers  
MANUFACTURER  
Central Semiconductor  
Fairchild Semiconductor  
Panasonic  
COMPONENTS  
PHONE  
WEBSITE  
Diodes  
631-435-1110  
972-910-8000  
714-373-7939  
847-545-6700  
408-573-4150  
847-803-6100  
402-564-3131  
www.centralsemi.com  
www.fairchildsemi.com  
www.panasonic.com  
www.sumida.com  
MOSFETs  
Capacitors  
Inductors  
Sumida  
Taiyo Yuden  
Capacitors  
Capacitors  
MOSFETs  
www.t-yuden.com  
TDK  
www.component.tdk.com  
www.vishay.com  
Vishay  
16 ______________________________________________________________________________________  
4.5V to 28V Input Current-Mode Step-Down  
Controller with Adjustable Frequency  
I
I
I
PEAK  
AVL  
LOAD  
MAX8650  
R4  
R3  
VALLEY  
SCOMP  
TIME  
Figure 5. Inductor-Current Waveform  
Figure 6. Resistor-Divider for Setting the Slope Compensation  
For a slope compensation of 250mV/T, connect  
SCOMP to AVL.  
Design Procedure  
Setting the Output Voltage  
To set the output voltage for the MAX8650, connect FB  
to the center of an external resistor-divider from the out-  
put to GND (R9 and R10 of Figure 3). Select R9  
between 8kand 24k, and then calculate R10 with  
the following equation:  
For applications with a duty cycle greater than 50%, set  
the SCOMP voltage with a resistor voltage-divider from  
AVL to GND (R3 and R4 in Figure 6). First, use the fol-  
lowing equation to find the SCOMP voltage:  
V
× 60 × R  
L
OUT  
V
=
SCOMP  
V
OUT  
f × L  
S
R10 = R9 ×  
1  
V
FB  
where R is the DC resistance of the inductor, and f is  
L
S
the switching frequency.  
where V = 0.7V. R9 and R10 should be placed as  
FB  
Next, select a value for R3, typically 10k, and solve  
for R4 as follows:  
close to the IC as possible.  
Setting the Output Overvoltage  
Protection Threshold  
To set the overvoltage threshold voltage for the  
MAX8650, connect OVP to the center of an external  
resistor-divider from the output to GND (R11 and R12 of  
Figure 3). Select R11 between 8kand 24k, then cal-  
culate R12 with the following equation:  
5V V  
× R3  
(
SCOMP  
)
R4 =  
V
SCOMP  
This sets the slope-compensation voltage rate to  
/ (10 x T).  
V
SCOMP  
Inductor Selection  
There are several parameters that must be examined  
when determining which inductor is to be used. Input  
voltage, output voltage, load current, switching fre-  
quency, and LIR. LIR is the ratio of inductor-current rip-  
ple to maximum DC load current. A higher LIR value  
allows for a smaller inductor, but results in higher loss-  
es and higher output ripple. A good compromise  
between size and efficiency is an LIR of 0.3. Once all  
the parameters are chosen, the inductor value is deter-  
mined as follows:  
V
OUT  
R12 = R11×  
1  
V
OVP  
where V  
= 0.8V when using the internal reference.  
When using an external reference, V  
OVP  
is 115% of  
OVP  
V
.
REFIN  
Setting the Slope Compensation  
For most applications where the duty cycle is less than  
50%, connect SCOMP to GND to set the slope com-  
pensation to the default of 125mV/T, where T is the  
V
× (V V  
)
OUT  
IN  
OUT  
L =  
oscillator period (T = 1 / f ).  
S
V
× f ×I  
× LIR  
IN  
S
LOAD(MAX)  
______________________________________________________________________________________ 17  
4.5V to 28V Input Current-Mode Step-Down  
Controller with Adjustable Frequency  
where f is the switching frequency. Choose a standard-  
S
value inductor close to the calculated value. The exact  
inductor value is not critical and can be adjusted to  
make trade-offs between size, cost, and efficiency.  
Lower inductor values minimize size and cost, but they  
also increase the output ripple and reduce the efficiency  
due to higher peak currents. On the other hand, higher  
inductor values increase efficiency, but eventually resis-  
tive losses due to extra turns of wire exceed the benefit  
gained from lower AC current levels. This is especially  
true if the inductance is increased without also increas-  
ing the physical size of the inductor. Find a low-loss  
inductor with the lowest possible DC resistance that fits  
the allotted dimensions. Ferrite cores are often the best  
choice, although powdered iron is inexpensive and can  
work well at 300kHz. The chosen inductor’s saturation  
current rating must exceed the peak inductor current  
determined as:  
OUT  
LX  
R
FOBK  
MAX8650  
ILIM2  
R
ILIM2  
Figure 7. ILIM2 Resistor Connections  
2) If the resulting value of R  
is negative, either  
ILIM2  
increase P or choose a low-side MOSFET with a  
FB  
lower R  
. The latter is preferred as it increases  
DS(ON)  
the efficiency and results in a lower short-cir-  
cuit current.  
LIR  
I
=I  
+
×I  
LOAD(MAX)  
PEAK LOAD(MAX)  
2
To set the constant-current limit for the latchup  
mode, only R  
is used. The equation for R  
ILIM2  
ILIM2  
Setting the Current Limit  
below sets the current-limit threshold at 1.2 times the  
maximum rated output current:  
Valley Current Limit  
The MAX8650 has an adjustable valley current limit,  
configurable for foldback with automatic recovery, or a  
constant-current limit with latchup. To set the current  
limit for foldback mode, connect a resistor from ILIM2  
1.2 ×I  
× R  
DS(ON)  
VALLEY  
R
=
ILIM2  
1µA  
to the output (R  
to GND (R  
), and another resistor from ILIM2  
). See Figure 7. The values of R  
are calculated as follows:  
FOBK  
Similarly, I  
is the value of the inductor valley  
VALLEY  
ILIM2  
FOBK  
current at maximum load and R  
is the maxi-  
DS(ON)  
and R  
ILIM2  
mum on-resistance of the low-side MOSFET at the  
highest operating junction temperature.  
1) First, select the percentage of foldback (P ). This  
FB  
percentage corresponds to the current limit when  
Peak Current Limit  
V
V
P
P
equals zero, divided by the current limit when  
equals its nominal voltage. A typical value of  
OUT  
OUT  
The peak current-limit threshold (V ) is set by a resis-  
TH  
tor connected from ILIM1 to GND. V corresponds to  
TH  
is in the 15% to 40% range. A lower value of  
yields lower short-circuit current. The following  
equations are used to calculate R  
FB  
FB  
the peak voltage across the sensing element (inductor  
or current-sense resistor), R  
as follows:  
. R  
is calculated  
LIM1  
LIM1  
and R  
:
FOBK  
ILIM2  
8 × V  
P
× V  
OUT  
TH  
FB  
R
=
R
=
ILIM1  
FOBK  
10µA  
This allows a maximum DC output current (I ) of:  
5µA × 1P  
(
FB  
)
LIM  
5 × R  
×I  
× 1P  
× R  
FOBK  
DS(ON) VALLEY  
(
FB  
)
V
I
PKPK  
TH  
R
=
ILIM2  
I
=
LIM  
V
5 × R  
×I  
× 1P  
R
2
OUT  
DS(ON) VALLEY  
(
FB  
)
DC  
where R  
is either the DC resistance of the inductor or  
the value of the optional current-sense resistor.  
DC  
where I  
is the value of the inductor valley current  
VALLEY  
at maximum load (I  
is the maximum on-resistance of the low-side  
MOSFET at the highest operating junction temperature.  
- 1/2 x I  
), and  
P-P  
LOAD(MAX)  
To ensure maximum output current, use the minimum  
value of V from each setting, and the maximum R  
values at the highest expected operating temperature.  
R
DS(ON)  
TH  
DC  
18 ______________________________________________________________________________________  
4.5V to 28V Input Current-Mode Step-Down  
Controller with Adjustable Frequency  
R3  
L1  
L1  
V
MAX8650  
OUT  
MAX8650  
V
OUT  
LX  
LX  
R4  
R4  
C9  
C9  
R5  
C13  
R5  
C13  
CS+  
CS-  
CS+  
CS-  
Figure ±. Current Sense Using the Inductor’s DC Resistance  
Figure 9. Using a Current-Sense Resistor for Improved Current-  
Sense Accuracy  
The DC resistance of the inductor’s copper wire has a  
+0.22%/°C temperature coefficient.  
2) Maximum drain-to-source voltage (V  
): should  
DSS  
be at least 20% higher than the input supply rail at  
the high-side MOSFET’s drain.  
To use the DC resistance of the output inductor for cur-  
rent sensing, an RC circuit is added (see Figure 8). The  
3) Gate charges (Q , Q , Q ): the lower, the better.  
G
GD GS  
RC time constant is set at twice the inductor (L/R ) time  
DC  
For a 5V input application, choose the MOSFETs with  
rated R at V  
constant. Pick the value of C9 (typically 0.47µF), then cal-  
4.5V. With higher input volt-  
GS  
DS(ON)  
culate the resistor value from R4 = 2L / (R x C9).  
DC  
ages, the internal VL regulator provides 6.5V for gate  
drive to minimize the on-resistance for a wide range of  
MOSFETs.  
Add a resistor (R5 in Figure 8) to the CS- connection to  
minimize input offset error. Calculate the value of R5 as  
follows:  
For a good compromise between efficiency and cost,  
choose the high-side MOSFET (N1, N2) that has con-  
duction losses equal to switching losses at nominal  
input voltage and output current. The selected low-side  
1) When V  
2.4V:  
OUT  
R
×10µA  
ILIM1  
20µA +  
× R4  
MOSFET (N3, N4) must have an R  
that satisfies  
DS(ON)  
32kΩ  
20mA  
R5 =  
2) When V  
the current-limit-setting condition above. Make sure that  
the low-side MOSFET does not spuriously turn on due  
to dV/dt caused by the high-side MOSFET turning on,  
as this would result in shoot-through current and  
degrade the efficiency. MOSFETs with a lower  
< 2.4V:  
OUT  
15µAx R4  
×10µA  
R5 =  
Q
/Q ratio have higher immunity to dV/dt. For high-  
GD GS  
R
ILIM1  
current applications, it is often preferable to parallel two  
MOSFETs rather than to use a single large MOSFET.  
15µA +  
32kΩ  
For proper thermal-management design, the power dis-  
sipation must be calculated at the desired maximum  
operating junction temperature, maximum output cur-  
rent, and worst-case input voltage (for the low-side  
Capacitor C13 is connected in parallel with R5 and is  
equal in value to C9.  
The equivalent current-sense resistance when using an  
inductor for current sensing is equal to the DC resis-  
MOSFET, worst case is at V  
; for the high-side  
IN(MAX)  
tance of the inductor (R ).  
MOSFET, it could be either at V  
or V  
).  
IN(MIN)  
DC  
IN(MAX)  
The high-side and low-side MOSFETs have different  
loss components due to the circuit operation. The low-  
side MOSFET operates as a zero voltage switch; there-  
fore, major losses are the channel-conduction loss  
MOSFET Selection  
The MAX8650 drives two or four external, logic-level, n-  
channel MOSFETs as the circuit switch elements. The  
key selection parameters are:  
(P  
) and the body-diode conduction loss (P  
).  
LSCC  
LSDC  
1) On-resistance (R  
): the lower, the better.  
DS(ON)  
______________________________________________________________________________________ 19  
4.5V to 28V Input Current-Mode Step-Down  
Controller with Adjustable Frequency  
ing junction temperature with the above calculated  
V
2
OUT  
power dissipations.  
P
= 1−  
×I  
× R  
DS(ON)  
LSCC  
LOAD  
V
IN  
To reduce EMI caused by switching noise, add a 0.1µF  
ceramic capacitor from the high-side switch drain to  
the low-side switch source or add resistors in series  
with DH and DL to slow down the switching transitions.  
However, adding series resistors increases the power  
dissipation of the MOSFET, so ensure this does not  
overheat the MOSFET.  
Use R  
at T  
:
J(MAX)  
DS(ON)  
P
= 2×I  
× V × t × f  
LSDC  
LOAD F DT S  
where V is the body-diode forward-voltage drop, t is  
F
DT  
the dead time between high-side and low-side switching  
transitions (30ns typ), and f is the switching frequency.  
S
Input Capacitor  
The input filter capacitor reduces peak currents drawn  
from the power source and reduces noise and voltage  
ripple on the input caused by the circuit’s switching.  
The input capacitor must meet the ripple-current  
The high-side MOSFET operates as a duty-cycle con-  
trol switch and has the following major losses: the  
channel-conduction loss (P  
), the VL overlapping  
HSCC  
switching loss (P  
), and the drive loss (P  
).  
HSDR  
HSSW  
requirement (I  
) imposed by the switching currents  
RMS  
The high-side MOSFET does not have body-diode con-  
duction loss, unless the converter is sinking current,  
when the loss due to body-diode conduction is calcu-  
defined by the following equation:  
I
V
× V V  
lated as P  
= 2 x I  
x V x t x f :  
LOAD OUT  
(
IN  
OUT  
)
HSDC  
LOAD  
F
DT  
S
I
=
RMS  
V
IN  
V
2
OUT  
P
=
×I  
× R  
DS(ON)  
LOAD  
HSCC  
I
has a maximum value when the input voltage  
RMS  
V
IN  
equals twice the output voltage (V = 2 x V  
), so  
OUT  
IN  
I
= I  
/ 2. Ceramic capacitors are recom-  
RMS(MAX)  
LOAD  
Use R  
at T  
:
J(MAX)  
DS(ON)  
P
mended due to their low ESR and ESL at high frequen-  
cy with relatively low cost. Choose a capacitor that  
exhibits less than 10°C temperature rise at the maxi-  
mum operating RMS current for optimum long-term reli-  
ability. Ceramic capacitors with X5R or better  
temperature characteristics are recommended.  
Q
+ Q  
GD  
GS  
= V ×I  
×
× f  
S
HSSW  
IN LOAD  
I
GATE  
where I  
is the average DH driver output-current  
capability determined by:  
GATE  
Output Capacitor  
The key selection parameters for the output capacitor  
are the actual capacitance value, the equivalent series  
resistance (ESR), the equivalent series inductance  
(ESL), and the voltage-rating requirements. These  
parameters affect the overall stability, output voltage  
ripple, and transient response. The output ripple has  
three components: variations in the charge stored in  
the output capacitor, the voltage drop across the  
capacitor’s ESR and ESL caused by the current into  
and out of the capacitor. The maximum output voltage  
ripple is estimated as follows:  
0.5 × V  
VL  
I
GATE  
R
+ R  
GATE  
DS(ON)(DR)  
where R  
is the high-side MOSFET driver’s  
DS(ON)(DR)  
on-resistance (1.5typ) and R  
is the internal gate  
GATE  
resistance of the MOSFET (~2):  
R
GATE  
P
= Q × V × f ×  
HSDR  
G
GS  
S
R
+ R  
DS(ON)(DR)  
GATE  
where V V  
GS  
VL.  
V
= V  
+ V  
+ V  
RIPPLE  
RIPPLE(ESR)  
RIPPLE(C) RIPPLE(ESL)  
In addition to the losses above, allow approximately  
20% more for additional losses due to MOSFET output  
capacitances and low-side MOSFET body-diode  
reverse-recovery charge dissipated in the high-side  
MOSFET, but is not well defined in the MOSFET data  
sheet. Refer to the MOSFET data sheet for thermal-  
resistance specifications to calculate the PC board  
area needed to maintain the desired maximum operat-  
The output voltage ripple as a consequence of the  
ESR, ESL, and output capacitance is:  
V
=I  
× ESR  
RIPPLE(ESR) PP  
V
IN  
V
=
× ESL  
RIPPLE(ESL)  
L + ESL  
20 ______________________________________________________________________________________  
4.5V to 28V Input Current-Mode Step-Down  
Controller with Adjustable Frequency  
tor or the alternate series current-sense resistor to mea-  
I
PP  
sure the inductor current. Current-mode control elimi-  
nates the double pole in the feedback loop caused by  
the inductor and output capacitor resulting in a smaller  
phase shift and requiring a less elaborate error-amplifier  
compensation than voltage-mode control. A simple sin-  
gle-series R and C is all that is needed to have a sta-  
V
=
RIPPLE(C)  
8 × C  
× f  
S
OUT  
where I  
is the peak-to-peak inductor current:  
P-P  
V
V  
V
OUT  
IN  
OUT  
C
C
I
=
×
PP  
ble, high-bandwidth loop in applications where ceramic  
capacitors are used for output filtering. For other types  
of capacitors, due to the higher capacitance and ESR,  
the frequency of the zero created by the capacitance  
and ESR is lower than the desired closed-loop  
crossover frequency. To stabilize a nonceramic output  
capacitor loop, add another compensation capacitor  
from COMP to GND to cancel this ESR zero.  
f × L  
V
IN  
S
These equations are suitable for initial capacitor selec-  
tion, but final values should be chosen based on a proto-  
type or evaluation circuit. As a general rule, a smaller  
current ripple results in less output-voltage ripple. Since  
the inductor ripple current is a factor of the inductor  
value and input voltage, the output-voltage ripple  
decreases with larger inductance, and increases with  
higher input voltages. Ceramic, tantalum, or aluminum  
polymer electrolytic capacitors are recommended. The  
aluminum electrolytic capacitor is the least expensive;  
however, it has higher ESR. To compensate for this, use  
a ceramic capacitor in parallel to reduce the switching  
ripple and noise. For reliable and safe operation, ensure  
that the capacitor’s voltage and ripple-current ratings  
exceed the calculated values.  
The basic regulator loop is modeled as a power modu-  
lator, an output feedback-divider, and an error amplifi-  
er. The power modulator has DC gain set by g  
x
mc  
, the out-  
R
, with a pole and zero pair set by R  
LOAD  
LOAD  
put capacitor (C  
), and its ESR. Below are equations  
OUT  
that define the power modulator:  
R
R
× f × L  
S
LOAD  
LOAD  
G
= g  
×
mc  
MOD(dc)  
+ f × L  
S
The response to a load transient depends on the  
selected output capacitors. After a load transient, the  
output voltage instantly changes by ESR x I  
where R  
= V  
/ I  
, f is the switching  
OUT(MAX) S  
LOAD  
OUT  
.
LOAD  
frequency, L is the output inductance, and g  
= 1 /  
mc  
Before the controller can respond, the output voltage  
deviates further, depending on the inductor and output-  
capacitor values. After a short period (see the Typical  
Operating Characteristics), the controller responds by  
regulating the output voltage back to its nominal state.  
The controller response time depends on its closed-  
loop bandwidth. With a higher bandwidth, the response  
time is faster, thus preventing the output voltage from  
further deviation from its regulating value.  
(A  
x R ), where A  
is the gain of the current-  
VCS  
DC  
VCS  
sense amplifier (12 typ), and R  
of the inductor.  
is the DC resistance  
DC  
Find the pole and zero frequencies created by the  
power modulator as follows:  
1
f
=
pMOD  
R
R
× f × L  
LOAD  
LOAD  
S
2π × C  
×
+ ESR  
OUT  
+ f × L  
Compensation Design  
The MAX8650 uses an internal transconductance error  
amplifier whose output compensates the control loop.  
The external inductor, output capacitor, compensation  
resistor, and compensation capacitors determine the  
loop stability. The inductor and output capacitor are  
chosen based on performance, size, and cost.  
Additionally, the compensation resistor and capacitors  
are selected to optimize control-loop stability. The com-  
ponent values, shown in the circuits of Figures 3 and 4,  
yield stable operation over the given range of input-to-  
output voltages.  
S
1
f
=
zMOD  
2π × C  
× ESR  
OUT  
When C  
comprises “n” identical capacitors in paral-  
OUT  
lel, the resulting C  
= n x C  
, and ESR =  
OUT  
OUT(EACH)  
ESR  
/ n. Note that the capacitor zero for a paral-  
(EACH)  
lel combination of like capacitors is the same as for an  
individual capacitor. See Figures 10 and 11 for illustra-  
tions of the pole and zero locations.  
The feedback voltage-divider has a gain of G = V  
OUT  
/
FB  
FB  
The controller uses a current-mode control scheme that  
regulates the output voltage by forcing the required cur-  
rent through the external inductor, so the MAX8650 uses  
the voltage drop across the DC resistance of the induc-  
V
, where V is equal to 0.75V.  
FB  
______________________________________________________________________________________ 21  
4.5V to 28V Input Current-Mode Step-Down  
Controller with Adjustable Frequency  
CLOSE LOOP  
CLOSE LOOP  
GAIN  
(dB)  
GAIN  
(dB)  
POWER  
MODULATOR  
POWER  
MODULATOR  
ERROR  
AMP  
ERROR  
AMP  
f
C
0dB  
0dB  
FREQUENCY  
f
pMOD  
FREQUENCY  
f
pMOD  
FB  
DIVIDER  
FB  
DIVIDER  
f
f
C
zMOD  
f
zMOD  
Figure 10. Simplified Gain Plot for the f  
> f Case  
Figure 11. Simplified Gain Plot for the f < f Case  
zMOD C  
zMOD  
C
The transconductance error amplifier has a DC gain,  
For the case where f  
is greater than f :  
zMOD C  
G
= g  
x R , where g  
is the error-amplifi-  
mEA  
EA(DC)  
mEA  
O
G
= g  
× R  
C
er transconductance, which is equal to 110µS, R is  
O
EA(fc)  
mEA  
the output resistance of the error amplifier, which is  
30M. A dominant pole is set by the compensation  
f
pMOD  
capacitor (C ), the amplifier output resistance (R ),  
C
O
G
= G  
×
MOD(fc)  
MOD(dc)  
and the compensation resistor (R ), and a zero is set  
f
C
C
by the compensation resistor (R ) and the compensa-  
C
Then R can be calculated as:  
C
tion capacitor (C ). There is an optional pole set by C  
C
F
and R to cancel the output-capacitor ESR zero if it  
C
V
occurs near the crossover frequency (f ). Thus:  
C
OUT  
R
=
C
g
× V × G  
FB MOD(fc)  
mEA  
1
f
=
where g  
= 110µS.  
pdEA  
mEA  
2π × C × (R + R )  
C
O
C
The error-amplifier compensation zero formed by R  
C
and C should be set at the modulator pole fp  
.
C
MOD  
1
Calculate the value of C as follows:  
C
f
=
=
zEA  
2π × C × R  
C
C
R
× f × L × C  
S OUT  
LOAD  
C
=
C
R
+ f × L × R  
(
LOAD  
S
)
C
1
f
pEA  
2π × C × R  
If f  
is less than 5 x f , add a second capacitor,  
zMOD  
C
F
C
C , from COMP to GND. The value of C is:  
F
F
The crossover frequency, f , should be much higher  
C
than the power-modulator pole fp  
. Also, f should  
C
MOD  
1
be less than or equal to 1/5 the switching frequency.  
Select a value for f in the range:  
C =  
F
2π × R × f  
C
C
zMOD  
f
S
As the load current decreases, the modulator pole also  
decreases; however, the modulator gain increases  
accordingly and the crossover frequency remains the  
same.  
f
<< f ≤  
C
pMOD  
5
At the crossover frequency, the total loop gain must  
equal 1, and is expressed as:  
V
FB  
G
× G  
×
=1  
EA(fc)  
MOD(fc)  
V
OUT  
22 ______________________________________________________________________________________  
4.5V to 28V Input Current-Mode Step-Down  
Controller with Adjustable Frequency  
For the case where f  
is less than f :  
C
zMOD  
1
f
=
pMOD  
The power modulator gain at f is:  
C
R
R
× f × L  
LOAD  
S
2π × C  
×
+ ESR  
OUT  
+ f × L  
f
LOAD  
1
S
pMOD  
G
= G  
×
×
MOD(fc)  
MOD(dc)  
f
=
zMOD  
3
6  
6  
0.22 × (500 ×10 )× 1.2 ×10  
The error-amplifier gain at f is:  
C
6  
2π × (300 ×10 )× ⎜  
+ 0.0035⎟  
3
0.22 + (500 ×10 )× 1.2 ×10  
f
zMOD  
G
= g  
× R  
mEA C  
EA(fc)  
= 3.23kHz  
f
C
f
S
R is calculated as:  
C
f
<< f ≤  
C
pMOD  
5
V
f
C
OUT  
3.23kHz << f 100kHz, select f = 100kHz:  
C
C
R
=
×
C
V
g
× G × f  
MOD(fc) zMOD  
FB  
mEA  
1
1
f
=
=
=152kHz  
= 0.201  
zMOD  
where g  
= 110µS.  
mEA  
6  
2π × C  
× ESR  
OUT  
2π × (300 ×10 )× 0.0035  
C is calculated from:  
C
Since f  
> f :  
C
zMOD  
R
× f × L × C  
S OUT  
LOAD  
C
=
C
f
3230  
pMOD  
R
+ f × L × R  
(
LOAD  
S
)
C
G
= G  
×
= 6.22 ×  
MOD(fc)  
MOD(dc)  
3
f
C
100 ×10  
C is calculated from:  
F
V
OUT  
R
=
C
g
× V × G  
MOD(fc)  
mEA  
FB  
1
C =  
F
3.3  
2π × R × f  
=
=199kΩ  
C
zMOD  
6  
110 ×10  
× 0.7 × 0.201  
Below is a numerical example to calculate R and C  
C
values of the typical operating circuit of Figure 3:  
C
Select the nearest standard value: R = 200k:  
C
A
= 12  
VCS  
R
× f × L × C  
S OUT  
LOAD  
C
=
L = 1.2µH  
= 2.16mΩ  
C
R
+ f × L × R  
(
LOAD  
S
)
C
R
DC  
3
6  
6  
0.22(500 ×10 )× (1.2 ×10 )× (300 ×10  
)
f = 500kHz  
S
=
= 241p  
= 5.2pF  
3
6  
3
g
V
= 1 / (A  
x R ) = 1 / (12 x 0.00216) = 38.6S  
VCS DC  
mc  
0.22 + (500 ×10 )× (1.2 ×10 ) × (200 ×10 )  
= 3.3V  
OUT  
Select the nearest standard value: C = 270pF:  
C
I
= 15A  
OUT(MAX)  
R
= V  
/ I  
= 3.3 / 15 = 0.22Ω  
LOAD  
OUT OUT(MAX)  
1
1
3
C
=
=
F
C
= 300µF  
OUT  
3
2π × R × f  
C
zMOD  
2π × (200 ×10 )× (152 ×10 )  
ESR = 3.5mΩ  
= g  
Since the calculated value for C is very small (close to  
F
the parasitic capacitance present at COMP), it is not  
necessary:  
R
R
× f × L  
S
LOAD  
LOAD  
G
×
mc  
MOD(dc)  
+ f × L  
S
3
6  
6  
0.22 × (500 ×10 )× 1.2 ×10  
R8 = R = 200kΩ  
C
= 38.6 ×  
= 6.22  
C7 = C = 270pF  
C
3
0.22 + (500 ×10 )× 1.2 ×10  
C8 = C = Not installed  
F
______________________________________________________________________________________ 23  
4.5V to 28V Input Current-Mode Step-Down  
Controller with Adjustable Frequency  
the power MOSFET data sheet for recommended  
Applications Information  
PC Board Layout Guidelines  
Careful PC board layout is critical to achieve low switch-  
copper area.  
7) Place the feedback and compensation components  
as close to the IC pins as possible. Connect the  
ing losses and clean, stable operation. The switching  
feedback resistor-divider from FB to the output as  
power stage requires particular attention. Follow these  
close as possible to the farthest output capacitor.  
guidelines for good PC board layout:  
8) Refer to the MAX8650 evaluation kit for an example  
1) Place IC decoupling capacitors as close to IC pins  
layout.  
as possible. Keep the power ground plane and sig-  
nal ground plane separate. Place the input ceramic  
Chip Information  
decoupling capacitor directly across and as close as  
PROCESS: BiCMOS  
possible to the high-side MOSFET’s drain and the  
low-side MOSFET’s source. This is to help contain  
the high switching current within this small loop.  
2) For output current greater than 10A, a multilayer PC  
Pin Configuration  
board is recommended. Pour a signal ground plane  
in the second layer underneath the IC to minimize  
noise coupling.  
TOP VIEW  
3) Connect input, output, and VL capacitors to the  
power ground plane; connect all other capacitors to  
the signal ground plane.  
FSYNC  
1
2
24 POK  
23 SCOMP  
22 ILIM2  
21 REFIN  
20 SS  
MODE  
SYNCO  
BST  
DH  
3
4) Place the inductor current-sense resistor and capac-  
itor as close to the inductor as possible. Make a  
Kelvin connection to minimize the effect of PC board  
trace resistance. Place the input-bias balance resis-  
tor (R5 in Figures 8 and 9) near CS-. Run two closely  
parallel traces from across the capacitor (C9 in  
Figures 8 and 9) to CS+ and CS-.  
4
MAX8650  
5
LX  
6
19 COMP  
18 FB  
DL  
7
PGND  
VL  
8
17 OVP  
16 ILIM1  
15 CS-  
5) Place the MOSFET as close as possible to the IC to  
minimize trace inductance of the gate-drive loop. If  
parallel MOSFETs are used, keep the trace lengths  
to both gates equal.  
9
IN  
10  
11  
12  
EN  
14 CS+  
13 GND  
6) Connect the drain leads of the power MOSFET to a  
large copper area to help cool the device. Refer to  
AVL  
QSOP  
24 ______________________________________________________________________________________  
4.5V to 28V Input Current-Mode Step-Down  
Controller with Adjustable Frequency  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
PACKAGE OUTLINE, QSOP .150", .025" LEAD PITCH  
1
21-0055  
E
1
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 25  
© 2006 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY