MAX865 [MAXIM]

Compact, Dual-Output Charge Pump; 紧凑型,双输出电荷泵
MAX865
型号: MAX865
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Compact, Dual-Output Charge Pump
紧凑型,双输出电荷泵

文件: 总8页 (文件大小:91K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-0472; Rev 1; 7/97  
Co m p a c t , Du a l-Ou t p u t Ch a rg e P u m p  
MAX865  
_______________Ge n e ra l De s c rip t io n  
____________________________Fe a t u re s  
1.11mm-High µMAX Package  
Compact: Circuit Fits in 0.08in2  
The MAX865 is a CMOS charge-pump DC-DC convert-  
er in an ultra-small µMAX package. It produces positive  
and negative outputs from a single positive input, and  
requires only four capacitors. The charge pump first  
doubles the input voltage, then inverts the doubled volt-  
age. The input voltage ranges from +1.5V to +6.0V.  
Requires Only Four Capacitors  
Dual Outputs (positive and negative)  
+1.5V to +6.0V Input Voltage  
The internal oscillator is guaranteed to be between  
20kHz a nd 38kHz, ke e p ing nois e a b ove the a ud io  
range while consuming minimal supply current. A 75  
output impedance permits useful output currents up to  
20mA.  
20kHz (min) Frequency (above the audio range)  
The MAX865 comes in a 1.11mm-high, 8-pin µMAX  
package that occupies half the board area of a stan-  
dard 8-pin SOIC. For a device with selectable frequen-  
cies and logic-controlled shutdown, refer to the MAX864  
data sheet.  
______________Ord e rin g In fo rm a t io n  
PART  
TEMP. RANGE  
0°C to +70°C  
PIN-PACKAGE  
Dice  
________________________Ap p lic a t io n s  
Low-Voltage GaAsFET Bias in Wireless Handsets  
VCO and GaAsFET Supplies  
MAX865C/D  
MAX865EUA  
-40°C to +85°C  
8 µMAX  
Split Supply from 3 Ni Cells or 1 Li+ Cell  
Low-Cost Split Supply for Low-Voltage  
Data-Acquisition Systems  
__________Typ ic a l Op e ra t in g Circ u it  
Split Supply for Analog Circuitry  
LCD Panels  
V
IN  
(+1.5V to +6.0V)  
__________________P in Co n fig u ra t io n  
IN  
C1+  
MAX865  
+2*V  
V+  
V-  
IN  
TOP VIEW  
C1-  
C2+  
1
2
3
4
8
7
6
5
C1-  
C2+  
C2-  
C1+  
V+  
-2*V  
IN  
MAX865  
C2-  
IN  
GND  
GND  
V-  
µMAX  
GND  
GND  
+V to ±2V CONVERTER  
IN  
IN  
________________________________________________________________ Maxim Integrated Products  
1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800.  
For small orders, phone 408-737-7600 ext. 3468.  
Co m p a c t , Du a l-Ou t p u t Ch a rg e P u m p  
ABSOLUTE MAXIMUM RATINGS  
V+ to GND.................................................................+12V, -0.3V  
IN to GND.................................................................+6.2V, -0.3V  
V- to GND ..................................................................-12V, +0.3V  
V- Output Current .............................................................100mA  
V- Short-Circuit to GND ................................................Indefinite  
Operating Temperature Range  
MAX865EUA .....................................................-40°C to +85°C  
Storage Temperature Range .............................-65°C to +160°C  
Lead Temperature (soldering, 10sec) .............................+300°C  
Continuous Power Dissipation (T = +70°C)  
A
µMAX (derate 4.1mW/°C above +70°C) .......................330mW  
MAX865  
Stresses beyond those listed under Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V = 5V, C1 = C2 = C3 = C4 = 3.3µF, T = T  
to T , unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
IN  
A
MIN  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Minimum Supply Voltage  
Maximum Supply Voltage  
R
R
= 10k  
= 10kΩ  
2.0  
1.5  
0.6  
24  
V
V
LOAD  
6.0  
1.05  
1.15  
32.5  
34  
LOAD  
T
A
= +25°C  
Supply Current  
mA  
kHz  
T
A
= -40°C to +85°C (Note 1)  
= +25°C  
T
A
19.5  
18  
Oscillator Frequency  
T
A
= -40°C to +85°C (Note 1)  
T
= +25°C  
150  
75  
200  
280  
100  
140  
A
I
I
V-  
= 1mA,  
= 0mA  
V+  
T
A
= T  
to T  
MIN  
MAX  
MAX  
Output Resistance  
T
A
= +25°C  
V+ = 10V (forced),  
= 1mA  
I
V-  
T
A
= T  
to T  
MIN  
Power Efficiency  
I = 5mA  
L
85  
99  
98  
%
%
V+, R =  
95  
90  
L
Voltage Conversion Efficiency  
V-, R = ∞  
L
Note 1: These specifications are guaranteed by design and are not production tested.  
__________________________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s  
(Circuit of Figure 1, V = 5V, T = +25°C, unless otherwise noted.)  
IN  
A
EFFICIENCY vs. OUTPUT CURRENT  
EFFICIENCY vs. OUTPUT CURRENT  
EFFICIENCY vs. OUTPUT CURRENT  
(V = 2V)  
IN  
(V = 3.3V)  
IN  
(V = 5V)  
IN  
100  
90  
100  
90  
100  
90  
V+  
V+  
V-  
V+  
V-  
80  
80  
80  
V-  
70  
60  
50  
40  
30  
20  
10  
0
70  
60  
50  
40  
30  
20  
10  
0
70  
60  
50  
40  
30  
20  
10  
0
1.0  
OUTPUT CURRENT (mA)  
0
0.5  
1.5  
2.0  
2.5  
0
1
2
3
4
5
6
7
8
0
2
4
6
8
10 12 14 16 18  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
2
_______________________________________________________________________________________  
Co m p a c t , Du a l-Ou t p u t Ch a rg e P u m p  
MAX865  
____________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(Circuit of Figure 1, V = 5V, T = +25°C, unless otherwise noted.)  
IN  
A
OUTPUT VOLTAGE vs.  
OUTPUT CURRENT  
OUTPUT VOLTAGE RIPPLE  
vs. PUMP CAPACITANCE  
OUTPUT CURRENT  
vs. PUMP CAPACITANCE  
10  
8
400  
350  
7
V+  
| |  
= 4.75V, V+ + V- = 16V  
C1 = C2 = C3 = C4  
V
IN  
6
5
6
|
|
|
|
|
|
A: V+, IN = 4.75V, V+ + V- = 16V  
B: V+, IN = 3.15V, V+ + V- = 10V  
C: V+, IN = 1.90V, V+ + V- = 6V  
D: V-, IN = 4.75V, V+ + V- = 16V  
E: V-, IN = 3.15V, V+ + V- = 10V  
F: V-, IN = 1.90V, V+ + V- = 6V  
300  
250  
200  
150  
100  
50  
V-  
4
2
| |  
= 3.15V, V+ + V- = 10V  
V
IN  
| |  
|
|
BOTH V+ AND  
V- LOADED EQUALLY  
4
3
2
1
0
|
|
0
-2  
-4  
-6  
-8  
-10  
C1 = C2 = C3 = C4 = 3.3µF  
F
| |  
= 1.90V, V+ + V- = 6V  
V
IN  
V
IN  
= 4.75V  
A
E
B
D
V-  
C
C1 = C2 = C3 = C4  
V+  
12  
0
0
2
4
6
8
10  
14  
0
5
10 15 20 25 30 35 40 45 50  
0
5
10 15 20 25 30 35 40 45 50  
OUTPUT CURRENT (mA)  
PUMP CAPACITANCE (µF)  
PUMP CAPACITANCE (µF)  
SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
OUTPUT RESISTANCE  
vs. TEMPERATURE  
1000  
300  
C1 = C2 = C3 = C4 = 3.3µF  
V-, V = 3.3V  
C1 = C2 = C3 = C4 = 3.3µF  
900  
800  
IN  
250  
200  
150  
700  
600  
500  
400  
300  
200  
100  
0
V-, V = 5.0V  
IN  
100  
50  
V+, V = 3.3V  
IN  
V+, V = 5.0V  
IN  
0
-35  
25 45  
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
SUPPLY VOLTAGE (V)  
-55  
-15  
5
65 85 105 125  
TEMPERATURE (°C)  
PUMP FREQUENCY  
vs. TEMPERATURE  
OUTPUT RESISTANCE  
vs. SUPPLY VOLTAGE  
27  
25  
250  
200  
V
IN  
= 5.0V  
V-  
V
= 3.3V  
= 2.0V  
23  
21  
IN  
150  
100  
50  
V+  
V
IN  
19  
17  
C1 = C2 = C3 = C4 = 3.3µF  
C1 = C2 = C3 = C4 = 3.3µF  
15  
0
-40 -20  
0
20  
40  
60  
80 100  
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
_______________________________________________________________________________________  
3
Co m p a c t , Du a l-Ou t p u t Ch a rg e P u m p  
____________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(Circuit of Figure 1, V = 5V, T = +25°C, unless otherwise noted.)  
IN  
A
OUTPUT RIPPLE  
(C1 = C2 = C3 = C4 = 1µF)  
OUTPUT RIPPLE  
(C1 = C2 = C3 = C4 = 3.3µF)  
MAX865  
V- OUTPUT  
20mV/div  
V- OUTPUT  
10mV/div  
V+ OUTPUT  
50mV/div  
V+ OUTPUT  
10mV/div  
10µs/div  
10µs/div  
V
IN  
= 4.75V, 1mA LOAD  
V
IN  
= 4.75V, 1mA LOAD  
_____________________P in De s c rip t io n  
PIN  
NAME  
FUNCTION  
V
IN  
Negative Terminal of the Flying Boost  
Capacitor  
C1-  
1
3.3µF  
3.3µF  
C1+  
C1-  
Positive Terminal of the Flying  
Inverting Capacitor  
OUT+  
2
3
C2+  
C2-  
I +  
V
C2+  
V+  
IN  
MAX865  
Negative Terminal of the Flying  
Inverting Capacitor  
3.3µF  
3.3µF  
R +  
L
C2-  
V-  
4
5
6
7
V-  
GND  
IN  
Output of the Inverting Charge Pump  
Ground  
GND  
I -  
V
Positive Power-Supply Input  
Output of the Boost Charge Pump  
R -  
L
V+  
Positive Terminal of the Flying Boost  
Capacitor  
OUT-  
8
C1+  
Figure 1. Test Circuit  
_______________________________________________________________________________________  
4
Co m p a c t , Du a l-Ou t p u t Ch a rg e P u m p  
MAX865  
a nd S7 op e n, s witc he s S6 a nd S8 c los e , a nd the  
_______________De t a ile d De s c rip t io n  
charge on capacitor C2 transfers to C4, generating the  
negative supply. The eight switches are CMOS power  
MOSFETs. Switches S1, S2, S4, and S5 are P-channel  
devices, while switches S3, S6, S7, and S8 are N-chan-  
nel devices.  
The MAX865 contains all the circuitry needed to imple-  
me nt a volta ge d oub le r/inve rte r. Only four e xte rna l  
capacitors are needed. These may be polarized elec-  
trolytic or ceramic capacitors with values ranging from  
1µF to 100µF.  
Ch a rg e -P u m p Ou t p u t  
The MAX865 is not a voltage regulator: the output  
source resistance of either charge pump is approxi-  
Figure 2a shows the ideal operation of the positive volt-  
age doubler. The on-chip oscillator generates a 50%  
duty-c yc le c loc k sig na l. During the first ha lf c yc le ,  
switches S2 and S4 open, switches S1 and S3 close,  
mately 150at room temperature with V = +5V, and  
IN  
V+ and V- will approach +10V and -10V, respectively,  
when lightly loaded. Both V+ and V- will droop toward  
GND as the current draw from either V+ or V- increas-  
es, since V- is derived from V+. Treating each convert-  
e r s e p a ra te ly, the d roop of the ne g a tive s up p ly  
and capacitor C1 charges to the input voltage (V ).  
During the s e c ond ha lf c yc le , s witc he s S1 a nd S3  
open, switches S2 and S4 close, and capacitor C1 is  
IN  
level shifted upward by V . Assuming ideal switches  
IN  
and no load on C3, charge transfers into C3 from C1  
(V  
DROOP-  
) is the product of the current draw from V-  
such that the voltage on C3 will be 2V , generating the  
IN  
(I ) and the source resistance of the negative convert-  
V-  
positive supply output (V+).  
er (RS-):  
Figure 2b illustrates the ideal operation of the negative  
converter. The switches of the negative converter are  
out of phase with the positive converter. During the  
s e c ond ha lf c yc le , s witc he s S6 a nd S8 op e n a nd  
s witc he s S5 a nd S7 c los e , c ha rg ing C2 from V+  
V
= I x RS -  
V-  
DROOP -  
The droop of the p ositive supply (V  
) is the  
DROOP+  
product of the current draw from the positive supply  
(I ) a nd the sourc e re sista nc e of the positive  
(pumped up to 2V by the positive charge pump) to  
IN  
LOAD+  
GND. In the first half of the clock cycle, switches S5  
a)  
b)  
V+  
V+  
S6  
S8  
S1  
S3  
C1+ S2  
S5  
C2+  
IN  
GND  
V-  
C2  
C3  
C1  
R +  
L
I +  
V
R -  
L
I -  
V
C4  
S4  
S7  
I
N
GND  
GND  
C1-  
C2-  
Figure 2. Idealized Voltage Quadrupler: a) Positive Charge Pump; b) Negative Charge Pump  
_______________________________________________________________________________________  
5
Co m p a c t , Du a l-Ou t p u t Ch a rg e P u m p  
converter (RS+), where I  
and the external load on V+ (I ):  
is the combination of I  
V+  
Effic ie n c y Co n s id e ra t io n s  
Theoretically, a charge-pump voltage multiplier can  
approach 100% power efficiency under the following  
conditions:  
LOAD+  
V-  
V
= I  
x RS+ = I + I  
x RS+  
(
)
DROOP+  
LOAD+  
V+  
V-  
Determine V+ and V- as follows:  
V+ = 2V - V  
The charge-pump switches have virtually no offset  
and extremely low on-resistance.  
IN  
DROOP+  
The drive circuitry consumes minimal power.  
MAX865  
V- = (V+ - V  
) = -(2V - V  
- V  
DROOP -  
)
DROOP  
IN DROOP+  
The impedances of the reservoir and pump capaci-  
tors are negligible.  
The output resistance for the positive and negative  
charge pumps are tested and specified separately. The  
positive charge pump is tested with V- unloaded. The  
negative charge pump is tested with V+ supplied from  
a n e xte rna l s ourc e , is ola ting the ne g a tive c ha rg e  
pump.  
For the MAX865, the energy loss per clock cycle is the  
sum of the energy loss in the positive and negative  
converters, as follows:  
LOSS  
= LOSS  
1
+ LOSS  
2
CYCLE  
POS  
NEG  
Current draw from either V+ or V- is supplied by the  
reservoir capacitor alone during one half cycle of the  
clock. Calculate the resulting ripple voltage on either  
output as follows:  
=
C1 V + − 2 V +  
V
IN  
(
)
(
)
(
)
2
1
2
2
2
+
C2 V +  
V −  
(
)
(
)
1
The average power loss is simply:  
= LOSS  
V
=
I
(1 / f  
) (1 / C  
)
RESERVOIR  
RIPPLE  
LOAD  
PUMP  
2
P
x f  
PUMP  
where I  
is the load on either V+ or V-. For the typi-  
of 30kHz with 3.3µF reservoir capacitors, the  
ripple is 25mV when I  
most applications, the total load on V+ is the V+ load  
current (I ) and the current taken by the negative  
LOAD  
LOSS  
CYCLE  
cal f  
PUMP  
Resulting in an efficiency of:  
η = Total Output Power / Total Output Power P  
is 5mA. Remember that, in  
LOAD  
(
)
LOSS  
V+  
charge pump (I ).  
V-  
V
IN  
3.3µF  
3.3µF  
3.3µF  
3.3µF  
1
2
8
7
1
2
8
7
C1-  
C1-  
C2-  
C1+  
V+  
OUT+  
IN  
C1+  
V+  
MAX865  
MAX865  
C2+  
3.3µF  
3
4
3
4
6
5
6
5
IN  
IN  
C2-  
V-  
C2-  
V-  
GND  
GND  
GND  
3.3µF  
OUT-  
Figure 3. Paralleling MAX865s  
6
_______________________________________________________________________________________  
Co m p a c t , Du a l-Ou t p u t Ch a rg e P u m p  
MAX865  
A substantial voltage difference exists between (V+ -  
P a ra lle lin g De vic e s  
Paralleling multiple MAX865s (Figure 3) reduces the  
output resistance of both the positive and negative con-  
verters. The effective output resistance is the output  
resistance of one device divided by the number of  
devices. Separate C1 and C2 charge-pump capacitors  
are required for each MAX865, but the reservoir capac-  
itors C3 and C4 can be shared.  
VIN) and VIN for the positive pump, and between V+  
and V- if the impedances of the pump capacitors  
(C1 a nd C2) a re la rg e with re s p e c t to the ir outp ut  
loads.  
La rg e r va lue s of re s e rvoir c a p a c itors (C3 a nd C4)  
reduce output ripple. Larger values of both pump and  
reservoir capacitors improve power efficiency.  
He a vy Ou t p u t Cu rre n t Lo a d s  
When under heavy loads, where V+ is sourcing current  
into V- (i.e., load current flows from V+ to V-, rather than  
from supply to ground), do not allow the V- supply to  
pull above ground. In applications where large currents  
flow from V+ to V-, use a Schottky diode (1N5817)  
between GND and V-, with the anode connected to  
GND (Figure 4).  
Ch a rg e -P u m p Ca p a c it o r S e le c t io n  
To maintain the lowest output resistance, use capacitors  
with low effective series resistance (ESR). The charge-  
pump output resistance is a function of C1, C2, C3, and  
C4s ESR. The re fore , minimizing the c ha rg e -p ump  
capacitorsESR minimizes the total output resistance.  
__________Ap p lic a t io n s In fo rm a t io n  
P o s it ive a n d Ne g a t ive Co n ve rt e r  
The MAX865 is most commonly used as a dual charge-  
pump voltage converter that provides positive and neg-  
ative outputs of two times a positive input voltage. The  
Typical Operating Circuit shows that only four external  
components are needed: capacitors C1 and C3 for the  
positive pump, C2 and C4 for the negative pump. In  
most applications, all four capacitors are low-cost,  
3.3µF polarized electrolytics. For applications where PC  
board space is at a premium and very low currents are  
being drawn from the MAX865, 1µF capacitors may be  
used for the pump capacitors C1 and C2, with 1µF  
reservoir capacitors C3 and C4. Capacitors C2 and C4  
must be rated at 12V or greater.  
La yo u t a n d Gro u n d in g  
Good layout is important, primarily for good noise per-  
formance. To ensure good layout:  
Mount all components as close together as possible  
Keep traces short to minimize parasitic inductance  
and capacitance  
Use a ground plane.  
GND  
MAX865  
V-  
Figure 4. A Schottky diode protects the MAX865 when large  
currents flow from V+ to V-.  
_______________________________________________________________________________________  
7
Co m p a c t , Du a l-Ou t p u t Ch a rg e P u m p  
___________________Ch ip To p o g ra p h y  
TRANSISTOR COUNT: 80  
SUBSTRATE CONNECTED TO V+  
C1-  
C1+  
MAX865  
C2+  
V+  
IN  
0. 084"  
(2. 13mm)  
C2-  
V-  
GND  
0. 058"  
(1. 47mm)  
________________________________________________________P a c k a g e In fo rm a t io n  
INCHES  
MILLIMETERS  
DIM  
MIN  
0.036  
MAX  
0.044  
0.008  
0.014  
0.007  
0.120  
0.120  
MIN  
0.91  
0.10  
0.25  
0.13  
2.95  
2.95  
MAX  
1.11  
0.20  
0.36  
0.18  
3.05  
3.05  
A
C
A1 0.004  
α
A
B
C
D
E
e
0.010  
0.005  
0.116  
0.116  
0.101mm  
0.004 in  
e
B
A1  
L
0.0256  
0.65  
H
L
0.188  
0.016  
0°  
0.198  
0.026  
6°  
4.78  
0.41  
0°  
5.03  
0.66  
6°  
α
21-0036D  
E
H
8-PIN µMAX  
MICROMAX SMALL-OUTLINE  
PACKAGE  
D
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
8 _____________________Ma x im In t e g ra t e d P ro d u c t s , 1 2 0 S a n Ga b rie l Drive , S u n n yva le , CA 9 4 0 8 6 4 0 8 -7 3 7 -7 6 0 0  
© 1997 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX8650

4.5V to 28V Input Current-Mode Step-Down Controller with Adjustable Frequency
MAXIM

MAX8650EEG

4.5V to 28V Input Current-Mode Step-Down Controller with Adjustable Frequency
MAXIM

MAX8650EEG+

Switching Controller, Current-mode, 25A, 1200kHz Switching Freq-Max, BICMOS, PDSO24, 0.150 INCH, 0.250 INCH PITCH, LEAD FREE, MO-137AE, QSOP-24
MAXIM

MAX8653

Dual, 5A, 1.5MHz Step-Down Regulator with Integrated High-Side Switches
MAXIM

MAX8653ETI+T

Switching Regulator/Controller
MAXIM

MAX8654

12V, 8A 1.2MHz Step-Down Regulator
MAXIM

MAX8654ETX

12V, 8A 1.2MHz Step-Down Regulator
MAXIM

MAX8654ETX+

12V, 8A 1.2MHz Step-Down Regulator
MAXIM

MAX8654ETX+T

Switching Regulator, Voltage-mode, 10A, 1200kHz Switching Freq-Max, BICMOS, 6 X 6 MM, 0.80 MM, ROHS COMPLIANT, MO-220WJJD-1, QFN-36
MAXIM

MAX8654ETX-T

Switching Regulator, Voltage-mode, 10A, 1200kHz Switching Freq-Max, BICMOS, 6 X 6 MM, 0.80 MM, MO-220WJJD-1, QFN-36
MAXIM

MAX8654EVKIT

Operates from 4.5V to 14V Supply
MAXIM

MAX8654EVKIT+

Operates from 4.5V to 14V Supply
MAXIM