MAX8663ETL [MAXIM]

Power-Management ICs for Single-Cell, Li+ Battery-Operated Devices; 用于单节的电源管理IC , Li +电池供电设备
MAX8663ETL
型号: MAX8663ETL
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Power-Management ICs for Single-Cell, Li+ Battery-Operated Devices
用于单节的电源管理IC , Li +电池供电设备

电池
文件: 总36页 (文件大小:874K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-0732; Rev 0; 2/07  
Power-Management ICs for  
Single-Cell, Li+ Battery-Operated Devices  
2/MAX863  
General Description  
Features  
The MAX8662/MAX8663 power-management ICs  
(PMICs) are efficient, compact devices suitable for  
smart cellular phones, PDAs, Internet appliances, and  
other portable devices. They integrate two synchronous  
buck regulators, a boost regulator driving two to seven  
white LEDs, four low-dropout linear regulators (LDOs),  
and a linear charger for a single-cell Li-ion (Li+) battery.  
Two 95%-Efficient 1MHz Buck Regulators  
Main Regulator: 0.98V to V at 1200mA  
IN  
Core Regulator: 0.98V to V at 900mA  
IN  
1MHz Boost WLED Driver  
Drives Up to 7 White LEDs at 30mA (max)  
PWM and Analog Dimming Control  
Four Low-Dropout Linear Regulators  
1.7V to 5.5V Input Range  
Maxim’s Smart Power Selector™ (SPS) safely distrib-  
utes power between an external power source (AC  
adapter, auto adapter, or USB source), battery, and the  
system load. When system load peaks exceed the  
external source capability, the battery supplies supple-  
mental current. When system load requirements are  
small, residual power from the external power source  
charges the battery. A thermal-limiting circuit limits bat-  
tery-charge rate and external power-source current to  
prevent overheating. The PMIC also allows the system  
to operate with no battery or a discharged battery.  
15µA Quiescent Current  
Single-Cell Li+ Charger  
Adapter or USB Input  
Thermal-Overload Protection  
Smart Power Selector (SPS)  
AC Adapter/USB or Battery Source  
Charger-Current and System-Load Sharing  
Ordering Information  
TEMP  
RANGE  
PKG  
CODE  
PART  
PIN-PACKAGE  
The MAX8662 is available in a 6mm x 6mm, 48-pin thin  
QFN package, while the MAX8663, without the LED driver,  
is available in a 5mm x 5mm, 40-pin thin QFN package.  
-40°C to 48 Thin QFN-EP*  
+85°C 6mm x 6mm x 0.8mm  
-40°C to 40 Thin QFN-EP*  
+85°C 5mm x 5mm x 0.8mm  
MAX8662ETM+  
MAX8663ETL+  
T4866-1  
T4055-1  
Applications  
Smart Phones and PDAs  
+Denotes a lead-free package.  
*EP = Exposed paddle.  
MP3 and Portable Media Players  
Palmtop and Wireless Handhelds  
Pin Configurations  
Typical Operating Circuit  
TOP VIEW  
DC/USB  
INPUT  
TO SYSTEM  
POWER  
DC  
SYS  
35 34 33 32 31 30 29 28 27  
36  
26  
25  
BAT  
Li+  
BATTERY  
PWR OK  
POK  
FB1  
EN6  
EN7  
LX3  
24  
23  
22  
37  
38  
39  
CHARGE  
STATUS  
CHG  
MAX8662  
PWM  
EN5  
OUT1  
0.98V TO V / 1.2A  
IN  
MAX8663 LX1  
CHARGE  
ENABLE  
CEN  
EN1  
EN2  
OUT2  
0.98V TO V / 0.9A  
IN  
21 EN4  
20 OUT5  
19 IN45  
PG3 40  
LX2  
LX3  
OUT6 41  
TO SYS  
IN67  
42  
43  
MAX8662  
OUT3  
30mA  
WLED  
18  
OUT4  
OUT7  
EN3  
EN4  
EN5  
(MAX8662 ONLY)  
CS  
17 GND  
16 REF  
VL 44  
SL1 45  
CT  
14 ISET  
13  
SL2  
PSET  
POK  
15  
46  
47  
48  
EN6  
EN7  
SL1  
500mA  
150mA  
300mA  
150mA  
OUT4  
OUT5  
OUT6  
OUT7  
THM  
OUT4–OUT7  
VOLTAGE  
2
3
4
5
6
7
8
9
10  
1
11  
12  
SELECT  
SL2  
THIN QFN  
(6mm x 6mm)  
Smart Power Selector is a trademark of Maxim Integrated  
Products, Inc.  
Pin Configurations continued at end of data sheet.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
Power-Management ICs for  
Single-Cell, Li+ Battery-Operated Devices  
ABSOLUTE MAXIMUM RATINGS  
LX3 to GND ............................................................-0.3V to +33V  
DC_ to GND..............................................................-0.3V to +9V  
BAT_ CEN, CHG, EN_, PEN_, POK, PV_, PWM,  
SYS1 + SYS2 Continuous Current (2 pins) ..............................3A  
LX_ Continuous Current........................................................1.5A  
Continuous Power Dissipation (T = +70°C)  
A
SYS_, LX1, CS, LX2 to GND.................................-0.3V to +6V  
VL to GND ................................................................-0.3V to +4V  
BRT, CC3, FB_, IN45, IN67, OVP, REF,  
40-Pin 5mm x 5mm Thin QFN  
(derate 35.7mW/°C above +70°C)  
(multilayer board).......................................................2857mW  
48-Pin 6mm x 6mm Thin QFN  
SL_ to GND ...........................................-0.3V to (V  
+ 0.3V)  
YS  
S
CT, ISET, PSET, THM to GND .....................-0.3V to (V + 0.3V)  
(derate 37mW/°C above +70°C) (multilayer board)...2963mW  
Operating Temperature Range ..........................-40°C to +85°C  
Junction Temperature Range............................-40°C to +125°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
VL  
OUT4, OUT5 to GND................................-0.3V to (V  
OUT6, OUT7 to GND................................-0.3V to (V  
+ 0.3V)  
+ 0.3V)  
IN45  
IN67  
PG_ to GND...........................................................-0.3V to +0.3V  
BAT1 + BAT2 Continuous Current...........................................3A  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS (Input Limiter and Battery Charger)  
(V  
= 5V, V  
= 4V, V  
= 0V, V  
= 5V, R  
= 3kΩ, R  
= 3.15kΩ, C = 0.068µF, T = -40°C to +85°C, unless otherwise  
ISET CT A  
BAT  
CEN  
PEN_  
PSET  
DC  
noted.) (Note 1)  
PARAMETER  
INPUT LIMITER  
DC Operating Range  
2/MAX863  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
V
(Note 2)  
4.1  
3.9  
6.6  
8.0  
4.1  
7.2  
V
V
V
DC  
DC Undervoltage Threshold  
DC Overvoltage Threshold  
V
V
V
rising, 500mV hysteresis  
rising, 100mV hysteresis  
4.0  
6.9  
1.5  
0.9  
DC_L  
DC_H  
DC  
DC  
V
I
= I  
BAT  
= I  
BAT  
= 0mA, V  
= 0mA, V  
= 0V  
= 5V  
SYS  
SYS  
CEN  
CEN  
DC Supply Current  
mA  
µA  
Ω
I
V
= 5V, V  
= 5V, V  
= V  
= 0V (USB  
PEN2  
DC  
CEN  
PEN1  
DC Shutdown Current  
110  
0.1  
50  
180  
0.2  
85  
suspend mode)  
DC-to-SYS Dropout  
On-Resistance  
R
V
= 5V, I = 400mA, V  
= 5V  
CEN  
DC_SYS  
DC  
SYS  
DC-to-BAT Dropout  
Threshold  
When V  
regulation and charging stops, V  
SYS DC  
falling, 150mV hysteresis  
V
20  
mV  
DR_DC_BAT  
VL Voltage  
V
I
= 0 to 10mA  
3.1  
5.2  
3.3  
5.3  
3.5  
5.4  
V
V
VL  
VL  
SYS Regulation Voltage  
V
V
= 5.8V, I  
= 1mA, V  
= 5V  
SYS_REG  
DC  
SYS  
CEN  
V
R
= 5V, V  
= 5V,  
= 5V,  
= 5V,  
= 5V  
PEN1  
PEN2  
1800  
900  
450  
450  
2000  
1000  
500  
475  
90  
2200  
1100  
550  
1.5kΩ  
PSET =  
V
R
= 5V, V  
= 3kΩ  
PEN1  
PEN2  
PEN2  
PEN2  
PSET  
V
R
= 5V, V  
= 6kΩ  
PEN1  
DC Input Current Limit  
I
V
= 5V, V  
= 4.0V  
SYS  
mA  
DC_LIM  
DC  
PSET  
V
= 0V, V  
PEN1  
500  
(500mA USB mode)  
V
= V = 0V  
PEN1  
PEN2  
80  
100  
6.0  
(100mA USB mode)  
PSET Resistance Range  
R
Guaranteed by SYS current limit  
Current-limit ramp time  
1.5  
kΩ  
PSET  
Input Limiter Soft-Start Time  
T
1.5  
ms  
SS_DC_SYS  
2
_______________________________________________________________________________________  
Power-Management ICs for  
Single-Cell, Li+ Battery-Operated Devices  
2/MAX863  
ELECTRICAL CHARACTERISTICS (Input Limiter and Battery Charger) (continued)  
(V  
= 5V, V  
= 4V, V  
= 0V, V  
= 5V, R  
= 3kΩ, R  
= 3.15kΩ, C = 0.068µF, T = -40°C to +85°C, unless otherwise  
ISET CT A  
BAT  
CEN  
PEN_  
PSET  
DC  
noted.) (Note 1)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
40  
MAX UNITS  
BATTERY CHARGER  
BAT-to-SYS On-Resistance  
R
V
= 0V, V  
= 4.2V, I = 1A  
SYS  
80  
mΩ  
BAT_REG  
BAT_REG  
DC  
BAT  
V
I
= 5V, V  
= V  
= 0V (USB 100mA mode),  
PEN2  
DC  
PEN1  
BAT-to-SYS Reverse  
Regulation Voltage  
= 200mA (BAT to SYS voltage drop during SYS  
50  
100  
150  
mV  
SYS  
overload)  
T
T
= +25°C  
4.179 4.200 4.221  
4.158 4.200 4.242  
A
BAT Regulation Voltage  
BAT Recharge Threshold  
V
I
= 0mA  
V
BAT  
= -40°C to +85°C  
A
BAT voltage drop to restart charging  
-140  
-100  
1250  
750  
-60  
mV  
R
ISET  
R
ISET  
R
ISET  
= 1.89kΩ  
= 3.15kΩ  
= 7.87kΩ  
I
= 0mA,  
SYS  
BAT Fast-Charge Current  
R
V
= 1.5kΩ,  
675  
825  
mA  
PSET  
= V  
= 5V  
PEN2  
PEN1  
300  
V
= 2.5V, R  
= 3.15kΩ (prequalification  
BAT  
ISET  
BAT Prequalification Current  
ISET Resistance Range  
75  
mA  
current is 10% of fast-charge current)  
Guaranteed by BAT charging current  
(1.5A to 300mA)  
R
1.57  
2.9  
7.87  
kΩ  
ISET  
R
= 3.15kΩ (ISET output voltage to actual  
ISET  
V
-to-I  
Ratio  
2
V/A  
ms  
V
ISET  
BAT  
charge-current ratio)  
Charger Soft-Start Time  
t
Charge-current ramp time  
1.5  
3.0  
SS_CHG  
BAT Prequalification  
Threshold  
V
rising, 180mV hysteresis  
3.1  
BAT  
V
V
= 0V  
0.01  
0.01  
5
5
DC  
DC  
V
= 4.2V,  
BAT  
BAT Leakage Current  
µA  
outputs disabled  
= V  
= 5V  
CEN  
I
where CHG goes  
BAT  
high, and top-off timer;  
falling (7.5% of  
fast-charge current)  
CHG and Top-Off Threshold  
R
ISET  
= 3.15kΩ  
56.25  
300  
mA  
I
BAT  
Timer-Suspend Threshold  
Timer Accuracy  
I
falling (Note 3)  
= 0.068µF  
250  
-20  
350  
+20  
mV  
%
BAT  
C
CT  
From CEN high to end of prequalification charge,  
= 2.5V, C = 0.068µF  
Prequalification Time  
Charge Time  
t
30  
300  
30  
Min  
Min  
Min  
PREQUAL  
V
BAT  
CT  
From CEN high to end of fast charge,  
= 0.068µF  
t
FST-CHG  
C
CT  
From CHG high to end of fast charge,  
= 0.068µF  
Top-Off Time  
t
TOP-OFF  
C
CT  
Charger Thermal-Limit  
Temperature  
(Note 4)  
= 3kΩ  
100  
50  
°C  
Charger Thermal-Limit Gain  
R
mA/°C  
PSET  
_______________________________________________________________________________________  
3
Power-Management ICs for  
Single-Cell, Li+ Battery-Operated Devices  
ELECTRICAL CHARACTERISTICS (Input Limiter and Battery Charger) (continued)  
(V  
= 5V, V  
= 4V, V  
= 0V, V  
= 5V, R  
= 3kΩ, R  
= 3.15kΩ, C = 0.068µF, T = -40°C to +85°C, unless otherwise  
ISET CT A  
BAT  
CEN  
PEN_  
PSET  
DC  
noted.) (Note 1)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
THERMISTOR INPUT (THM)  
THM Internal Pullup  
Resistance  
10  
kΩ  
THM Resistance Threshold,  
Hot  
Resistance falling (1% hysteresis)  
Resistance rising (1% hysteresis)  
Resistance falling  
3.73  
26.98  
270  
3.97  
28.7  
300  
4.21  
30.42  
330  
kΩ  
kΩ  
Ω
THM Resistance Threshold,  
Cold  
THM Resistance Threshold,  
Disabled  
LOGIC I/O (POK, CHG, PEN_, EN_, PWM, CEN)  
Input Logic-High Level  
1.3  
-1  
V
V
2/MAX863  
Input Logic-Low Level  
0.4  
+1  
V
V
= 0V to 5.5V, T = +25°C  
+0.001  
0.01  
10  
LOGIC  
LOGIC  
A
Logic Input-Leakage Current  
µA  
mV  
µA  
= 5.5V, T = +85°C  
A
Logic Output-Voltage Low  
I
= 1mA  
100  
1
SINK  
T
= +25°C  
= +85°C  
0.001  
0.01  
A
Logic Output-High Leakage  
Current  
V
= 5.5V  
T
LOGIC  
A
ELECTRICAL CHARACTERISTICS (Output Regulator)  
(V  
= V  
= V  
= V  
= 4.0V, V  
= 1.25V, circuit of Figure 1, T = -40°C to +85°C, unless otherwise noted.) (Note 1)  
BRT A  
SYS_  
PV_  
IN45  
IN67  
PARAMETER  
SYSTEM  
SYS Operating Range  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
V
2.6  
2.4  
5.5  
2.6  
70  
35  
35  
2
V
V
SYS  
SYS Undervoltage Threshold  
V
V
rising, 100mV hysteresis  
2.5  
35  
16  
16  
1
UVLO_SYS  
SYS  
Extra supply current when at least one output is on  
OUT1 on, V  
OUT2 on, V  
OUT3 on  
= 0V  
= 0V  
µA  
PWM  
PWM  
mA  
SYS Bias Current Additional  
Regulator Supply Current  
Not including  
SYS bias current  
OUT4 on (current into IN45)  
OUT5 on (current into IN45)  
OUT6 on (current into IN67)  
OUT7 on (current in IN67)  
20  
16  
17  
16  
1.0  
30  
25  
27  
25  
1.1  
µA  
Internal Oscillator Frequency  
PWM frequency of OUT1, OUT2, and OUT3  
0.9  
MHz  
BUCK REGULATOR 1  
I
+ I  
, no load,  
SYS  
PV1  
V
V
= 0V  
= 5V  
16  
35  
µA  
PWM  
PWM  
Supply Current  
not including SYS  
bias current  
2.9  
mA  
Output Voltage Range  
V
Guaranteed by FB accuracy  
0.98  
3.30  
V
OUT1  
Maximum Output Current  
I
1200  
mA  
OUT1  
4
_______________________________________________________________________________________  
Power-Management ICs for  
Single-Cell, Li+ Battery-Operated Devices  
2/MAX863  
ELECTRICAL CHARACTERISTICS (Output Regulator) (continued)  
(V  
= V  
= V  
= V  
= 4.0V, V  
= 1.25V, circuit of Figure 1, T = -40°C to +85°C, unless otherwise noted.) (Note 1)  
BRT A  
SYS_  
PV_  
IN45  
IN67  
PARAMETER  
FB Regulation Accuracy  
SYMBOL  
CONDITIONS  
= 0.98V, I = 0 to 1200mA,  
= 0.98V to 3.3V  
MIN  
TYP  
MAX UNITS  
From V  
FB1  
OUT1  
-3  
+3  
%
µA  
Ω
V
OUT1  
FB1 Input Leakage Current  
pMOS On-Resistance  
0.01  
0.12  
0.15  
0.2  
0.10  
0.24  
V
V
V
V
= 3.3V  
= 2.6V  
= 3.3V  
= 2.6V  
PV1  
PV1  
PV1  
PV1  
I
I
= 100mA  
LX1  
LX1  
0.4  
2.2  
nMOS On-Resistance  
= 100mA  
Ω
0.3  
pMOS Current Limit  
1.4  
1.8  
A
Skip Mode Transition Current  
nMOS Zero-Cross Current  
90  
mA  
mA  
25  
V
= V  
= 5.5V  
PV1  
0.01  
1.00  
LX1  
LX1  
V
= 0V, V  
= +25°C  
= 5.5V,  
SYS  
EN1  
LX Leakage  
µA  
T
A
V
= 0V, V  
= 5.5V  
-5.00 -0.01  
PV1  
BUCK REGULATOR 2  
Supply Current  
V
V
= 0V  
= 5V  
16  
2.1  
35  
µA  
mA  
V
PWM  
PWM  
I
+ I  
, no load, not  
SYS  
PV2  
including SYS bias current  
Output Voltage Range  
Guaranteed by FB accuracy  
0.98  
3.30  
Maximum Output Current  
900  
mA  
From V  
= 0.98V, I  
= 0 to 600mA,  
FB2  
OUT2  
FB Regulation Accuracy  
FB2 Input Leakage Current  
pMOS On-Resistance  
-3  
+3  
%
µA  
Ω
V
= 0.98V to 3.3V  
OUT2  
0.01  
0.2  
0.3  
0.2  
0.3  
0.10  
0.4  
V
V
V
V
= 3.3V  
= 2.6V  
= 3.3V  
= 2.6V  
PV2  
PV2  
PV2  
PV2  
I
I
= 100mA  
LX2  
LX2  
0.4  
nMOS On- Resistance  
= 100mA  
Ω
pMOS Current Limit  
1.07  
1.30  
90  
1.55  
A
Skip Mode Transition Current  
nMOS Zero-Cross Current  
mA  
mA  
25  
V
V
= V  
= 5.5V  
0.01  
1.00  
LX2  
LX2  
PV2  
V
= 0V, V  
= +25°C  
= 5.5V,  
SYS  
EN2  
LX Leakage  
µA  
T
A
= 0V, V  
= 5.5V  
-5.00 -0.01  
PV2  
BOOST REGULATOR FOR LED DRIVER  
At SYS, no load, not  
including SYS bias current  
Supply Current  
Switching  
1
mA  
Output Range  
V
V
30  
V
%
%
V
OUT3  
SYS  
Minimum Duty Cycle  
Maximum Duty Cycle  
CS Regulation Voltage  
OVP Regulation Voltage  
OVP Sink Current  
D
10  
92  
MIN  
D
90  
MAX  
V
0.29  
0.32  
0.35  
CS  
Duty = 90%, I  
= 0mA  
1.225 1.250 1.275  
V
LX3  
19.2  
20.0  
1.25  
20.8  
µA  
ms  
OVP Soft-Start Period  
Time for I  
to ramp from 0 to 20µA  
OVP  
_______________________________________________________________________________________  
5
Power-Management ICs for  
Single-Cell, Li+ Battery-Operated Devices  
ELECTRICAL CHARACTERISTICS (Output Regulator) (continued)  
(V  
= V  
= V  
= V  
= 4.0V, V  
= 1.25V, circuit of Figure 1, T = -40°C to +85°C, unless otherwise noted.) (Note 1)  
BRT A  
SYS_  
PV_  
IN45  
IN67  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
0.01  
0.1  
MAX UNITS  
T
A
T
A
= +25°C  
= +85°C  
1
V
V
= 0V,  
EN3  
OVP  
OVP Leakage Current  
nMOS On-Resistance  
µA  
= V  
= 5.5V  
SYS  
I
= 100mA  
0.6  
1.2  
Ω
LX3  
T
T
= +25°C  
= +85°C  
0.01  
0.1  
5.00  
A
nMOS Off-Leakage Current  
V
= 30V  
µA  
mA  
LX3  
A
nMOS Current Limit  
LED DRIVER  
500  
620  
900  
BRT Input Range  
REF Voltage  
V
V
I
I
= 0 to 30mA  
0
1.45  
-1  
1.5  
1.55  
+1  
V
V
BRT  
CS  
= 0mA  
1.50  
-0.01  
0.1  
REF  
REF  
T
T
= +25°C  
= +85°C  
A
BRT Input Current  
CS Sink Current  
V
V
V
= 0 to 1.5V  
µA  
mA  
%/V  
BRT  
A
V
V
= 1.5V  
28  
30  
32  
BRT  
BRT  
= 0.2V  
8
CS  
= 50mV  
0.4  
0.8  
1.2  
CS Current-Source  
Line Regulation  
= 2.7V to 5.5V  
0.1  
SYS  
PWM DIMMING  
EN3 DC Turn-On Delay  
EN3 Shutdown Delay  
From V  
From V  
= high to LED on  
= low to LED off  
1.5  
1.5  
2.0  
2.0  
2.5  
2.5  
ms  
ms  
EN3  
EN3  
Time between rising edges  
on EN3 for PWM dimming to  
become active  
Maximum  
Minimum  
1.5  
2.0  
8
ms  
µs  
PWM Dimming Capture  
Period  
10  
PWM Dimming Pulse-Width  
Resolution  
Resolution of high or low-pulse width on EN3 for  
dimming change  
0.5  
µs  
LINEAR REGULATORS  
IN45, IN67 Operating Range  
V
1.7  
1.5  
5.5  
1.7  
V
V
IN45  
IN45, IN67 Undervoltage  
Threshold  
V
V
rising, 100mV hysteresis  
IN45  
1.6  
UVLO-IN45  
Output Noise  
f = 100Hz to 100kHz  
f = 100kHz  
200  
30  
µV  
RMS  
PSRR  
dB  
µA  
Shutdown Supply Current  
Soft-Start Ramp Time  
V
V
= V  
= 0V, T = +25°C  
0.001  
10  
1
EN4  
EN5  
A
to 90% of final value  
V/ms  
OUT4  
Output Discharge  
Resistance in Shutdown  
V
= 0V  
0.5  
1.0  
2.0  
kΩ  
EN4  
LINEAR REGULATOR 4 (LDO4)  
Supply Current  
At IN45, V  
= 0V  
I
= 0A  
OUT4  
20  
30  
µA  
%
EN5  
I
= 0 to 500mA,  
OUT4  
Voltage Accuracy  
-1.5  
+1.5  
V
= V  
+ 0.3V to 5.5V with 1.7V (min)  
OUT4  
IN45  
Minimum Output Capacitor  
Dropout Resistance  
Current Limit  
C
Guaranteed stability, ESR < 0.05Ω  
3.76  
µF  
Ω
OUT4  
IN45 to OUT4  
0.2  
0.4  
V
= 0V  
500  
700  
mA  
OUT4  
6
_______________________________________________________________________________________  
Power-Management ICs for  
Single-Cell, Li+ Battery-Operated Devices  
2/MAX863  
ELECTRICAL CHARACTERISTICS (OUTPUT REGULATOR) (continued)  
(V  
= V  
= V  
= V  
= 4.0V, V  
= 1.25V, circuit of Figure 1, T = -40°C to +85°C, unless otherwise noted.) (Note 1)  
BRT A  
SYS_  
PV_  
IN45  
IN67  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
LINEAR REGULATOR 5 (LDO5)  
Supply Current  
At IN45, V  
= 0V  
I
= 0A  
OUT5  
16  
25  
µA  
%
EN4  
I
= 0 to 150mA,  
OUT5  
Voltage Accuracy  
-1.5  
0.8  
+1.5  
V
= V  
+ 0.3V to 5.5V with 1.7V (min)  
OUT5  
IN45  
Minimum Output Capacitor  
Dropout Resistance  
Current Limit  
C
Guaranteed stability, ESR < 0.05Ω  
µF  
Ω
OUT5  
IN45 to OUT5  
0.6  
1.2  
V
= 0V  
150  
210  
mA  
OUT5  
LINEAR REGULATOR 6 (LDO6)  
Supply Current  
At IN67, V  
= V  
, V  
= 0V  
I = 0A  
OUT6  
17  
27  
µA  
%
EN6  
SYS EN7  
Voltage Accuracy  
I
= 0 to 300mA, V  
= V + 0.3V to 5.5V  
OUT6  
-1.5  
+1.5  
OUT6  
IN67  
Minimum Output Capacitor  
Dropout Resistance  
Current Limit  
C
Guaranteed stability, ESR < 0.05Ω  
1.76  
µF  
Ω
OUT6  
IN67 to OUT6  
0.35  
420  
0.60  
V
= 0V  
300  
mA  
OUT6  
LINEAR REGULATOR 7 (LDO7)  
Supply Current  
At IN67, V  
= 0V, V  
= V  
I = 0A  
OUT7  
16  
25  
µA  
%
EN6  
EN7  
SYS  
I
= 0 to 150mA,  
OUT7  
Voltage Accuracy  
-1.5  
0.8  
+1.5  
V
= V  
+ 0.3V to 5.5V with 1.7V (min)  
OUT7  
IN67  
Minimum Output Capacitor  
Dropout Resistance  
Current Limit  
C
Guaranteed stability, ESR < 0.05Ω  
µF  
Ω
OUT7  
IN67 to OUT6  
0.6  
1.2  
V
= 0V  
150  
210  
mA  
OUT7  
THERMAL SHUTDOWN  
Thermal-Shutdown  
Temperature  
T rising  
J
165  
15  
°C  
°C  
Thermal-Shutdown  
Hysteresis  
Note 1: Limits are 100% production tested at T = +25°C. Limits over the operating temperature range are guaranteed through  
A
correlation using statistical quality control (SQC) methods.  
Note 2: Input withstand voltage. Not designed to operate above V  
= 6.5V due to thermal-dissipation issues.  
DC  
Note 3: ISET voltage when CT timer stops. Occurs only when in constant-current mode. Translates to 20% of fast-charge current.  
Note 4: Temperature at which the input current limit begins to reduce.  
_______________________________________________________________________________________  
7
Power-Management ICs for  
Single-Cell, Li+ Battery-Operated Devices  
Typical Operating Characteristics  
(Circuit of Figure 1, V  
= 5V, R  
= 1.5kΩ, R  
= 3kΩ, V  
= 3.3V, V  
= 1.3V, SL1 = SL2 = open, V  
= 0V, V  
=
DC  
PSET  
OUT2  
ISET  
OUT1  
= 0.1µF, C  
OUT2  
CEN  
PEN1  
V
PEN2  
= 5V, C  
= 2 x 10µF, C  
= 2 x 10µF, C  
= 4.7µF, C  
= 1µF, C  
= 2.2µF, C  
= 1µF, CT =  
OUT1  
OUT3  
OUT4  
OUT5  
OUT6  
OUT7  
0.068µF, C  
otherwise noted.)  
= C = 0.1µF, R  
= 10kΩ, L1 = 3.3µH, L2 = 4.7µH, L3 = 22µH, GND = PG1 = PG2 = PG3 = 0, T = +25°C, unless  
THM A  
REF  
VL  
INPUT QUIESCENT CURRENT  
vs. INPUT VOLTAGE (CHARGER ENABLED)  
INPUT QUIESCENT CURRENT  
vs. INPUT VOLTAGE (CHARGER DISABLED)  
INPUT QUIESCENT CURRENT  
vs. INPUT VOLTAGE (SUSPEND)  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
0.20  
0.18  
0.16  
0.14  
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0
V
= 4.2V  
= 0  
V
= 4.2V  
BAT  
= 0mA  
V
= 3.6V  
BAT  
BAT  
I
I
SYS  
SYS  
V
V
RISING  
FALLING  
BAT  
BAT  
CHARGER IN  
DONE MODE  
PEN1 = PEN2 = 0  
CEN = 1  
V
V
RISING  
FALLING  
BAT  
BAT  
2/MAX863  
0
1
2
3
4
5
6
7
8
0
1
2
3
4
5
6
7
8
0
1
2
3
4
5
6
7
8
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
BATTERY-LEAKAGE CURRENT  
vs. BATTERY VOLTAGE  
BATTERY-LEAKAGE CURRENT  
vs. TEMPERATURE (INPUT DISCONNECTED)  
BATTERY-REGULATION VOLTAGE  
vs. TEMPERATURE  
4.200  
0.5  
0.8  
V
= 4.0V  
EN_ = 0  
BAT  
EN_ = 0, CEN = 1  
EN_ = 0  
V
V
OPEN  
= 5V  
DC  
DC  
4.195  
4.190  
0.7  
0.6  
0.5  
0.4  
0.4  
0.3  
0.2  
0.1  
0
4.185  
4.180  
4.175  
4.170  
0.3  
0.2  
-40  
-15  
10  
35  
60  
85  
0
1
2
3
4
5
-40  
-15  
10  
35  
60  
85  
AMBIENT TEMPERATURE (°C)  
BATTERY VOLTAGE (V)  
AMBIENT TEMPERATURE (°C)  
CHARGE CURRENT  
vs. BATTERY VOLTAGE (100mA USB)  
CHARGE CURRENT  
vs. BATTERY VOLTAGE (500mA USB)  
CHARGE CURRENT  
vs. BATTERY VOLTAGE (AC ADAPTER)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
550  
500  
450  
400  
350  
800  
700  
600  
500  
400  
300  
200  
100  
0
V
R
= 5V  
V
R
= 5V  
DC  
DC  
= 3kΩ  
= 3kΩ  
ISET  
ISET  
PEN1 = 0  
PEN2 = 1  
PEN1 = PEN2 = 1  
V
V
RISING  
BAT  
BAT  
V
V
RISING  
BAT  
BAT  
FALLING  
FALLING  
300  
250  
200  
150  
100  
50  
V
V
RISING  
BAT  
BAT  
FALLING  
V
R
= 5V  
= 3kΩ  
PEN1 = PEN2 = 0  
DC  
ISET  
0
0
1
2
3
4
5
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
BATTERY VOLTAGE (V)  
0
1
2
3
4
5
BATTERY VOLTAGE (V)  
BATTERY VOLTAGE (V)  
8
_______________________________________________________________________________________  
Power-Management ICs for  
Single-Cell, Li+ Battery-Operated Devices  
2/MAX863  
Typical Operating Characteristics (continued)  
(Circuit of Figure 1, V  
= 5V, R  
= 1.5kΩ, R  
= 3kΩ, V  
= 3.3V, V  
= 1.3V, SL1 = SL2 = open, V  
= 0V, V  
=
DC  
PSET  
OUT2  
ISET  
OUT1  
OUT2  
CEN  
PEN1  
V
PEN2  
= 5V, C  
= 2 x 10µF, C  
= 2 x 10µF, C  
= 0.1µF, C  
= 4.7µF, C  
= 1µF, C  
= 2.2µF, C  
= 1µF, CT =  
OUT1  
OUT3  
OUT4  
OUT5  
OUT6  
OUT7  
0.068µF, C  
otherwise noted.)  
= C = 0.1µF, R  
= 10kΩ, L1 = 3.3µH, L2 = 4.7µH, L3 = 22µH, GND = PG1 = PG2 = PG3 = 0, T = +25°C, unless  
THM A  
REF  
VL  
CHARGE CURRENT vs. AMBIENT TEMPERATURE  
CHARGE CURRENT vs. AMBIENT TEMPERATURE  
(HIGH IC POWER DISSIPATION)  
SYS OUTPUT VOLTAGE  
vs. INPUT VOLTAGE  
(LOW IC POWER DISSIPATION)  
900  
900  
5.6  
PEN1 = PEN2 = 1  
800  
V
= 4.0V  
= 0mA  
BAT  
PEN1 = PEN2 = 1  
5.4  
5.2  
5.0  
4.8  
800  
I
SYS  
PEN1 = 0  
PEN2 = 1  
700  
600  
700  
600  
CHARGER  
DISABLED  
PEN1 = 0, PEN2 = 1  
500  
PEN1 = 0, PEN2 = 1  
500  
4.6  
4.4  
4.2  
4.0  
3.8  
3.6  
400  
400  
CHARGER  
ENABLED  
V
R
= 5.0V, V = 4.0V  
V
R
= 6.5V, V = 3.1V  
DC BAT  
DC  
BAT  
300  
200  
100  
0
300  
200  
100  
0
= 3kΩ, CEN = 0, EN_ = 0  
= 3kΩ, CEN = 0, EN_ = 0  
ISET  
ISET  
PEN1 = PEN2 = 0  
PEN1 = PEN2 = 0  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
0
1
2
3
4
5
6
7
8
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
SYS OUTPUT VOLTAGE  
vs. SYS OUTPUT CURRENT (DC DISCONNECTED)  
SYS OUTPUT VOLTAGE  
vs. SYS OUTPUT CURRENT (500mA USB)  
SYS OUTPUT VOLTAGE  
vs. SYS OUTPUT CURRENT (AC ADAPTER)  
5.6  
5.6  
5.4  
5.2  
5.0  
4.8  
4.6  
4.4  
4.2  
4.0  
3.8  
3.6  
5.6  
5.4  
5.2  
5.0  
4.8  
4.6  
4.4  
4.2  
4.0  
3.8  
3.6  
THE SLOPE OF THIS LINE SHOWS THAT THE  
BAT-TO-SYS RESISTANCE IS 49mΩ.  
V
V
= 5.0V  
= 4.0V  
V
V
= 5.0V  
= 4.0V  
DC  
BAT  
DC  
BAT  
5.4  
PEN1 = 0, PEN2 = 1  
CEN = 1  
PEN1 = PEN2 = 1  
CEN = 1  
5.2  
V
V
= 0V  
DC  
5.0  
4.8  
4.6  
4.4  
4.2  
4.0  
3.8  
3.6  
= 4.0V  
BAT  
0
0.5  
1.0  
1.5  
(A)  
2.0  
2.5  
3.0  
0
0.5  
1.0  
1.5  
(A)  
2.0  
2.5  
3.0  
0
0.5  
1.0  
1.5  
(A)  
2.0  
2.5  
3.0  
I
I
I
SYS  
SYS  
SYS  
USB CONNECT (I  
= 0mA)  
USB CONNECT (I  
= 50mA)  
MAX8662/63 toc17  
SYS  
SYS  
MAX8662/63 toc16  
5V/div  
5V/div  
5V  
5V  
0V  
V
0V  
V
DC  
DC  
+95mA  
4.4V  
+95mA  
4.4V  
200mA/div  
2V/div  
200mA/div  
2V/div  
I
I
IN  
IN  
5V  
0mA  
0mA  
4.0V  
4.0V  
V
SYS  
V
5V  
SYS  
V
V
POK  
5V/div  
5V/div  
V
V
POK  
0V  
0V  
5V/div  
5V/div  
0V  
CHG  
CHG  
0mA  
+95mA  
I
50mA  
BAT  
200mA/div  
I
NEGATIVE BATTERY  
CURRENT FLOWS INTO  
THE BATTERY  
BAT  
200mA/div  
NEGATIVE BATTERY  
CURRENT FLOWS  
-45mA  
(CHARGING).  
INTO THE BATTERY (CHARGING).  
200μs/div  
PEN1 = PEN2 = 0, CEN = 0,  
= 4.0V, I = 0mA, EN_ = 1  
200μs/div  
PEN1 = PEN2 = 0, CEN = 0,  
V = 4.0V, I = 50mA, EN_ = 1  
BAT  
V
BAT  
SYS  
SYS  
_______________________________________________________________________________________  
9
Power-Management ICs for  
Single-Cell, Li+ Battery-Operated Devices  
Typical Operating Characteristics (continued)  
(Circuit of Figure 1, V  
= 5V, R  
= 1.5kΩ, R  
= 3kΩ, V  
= 3.3V, V  
= 1.3V, SL1 = SL2 = open, V  
= 0V, V  
=
DC  
PSET  
OUT2  
ISET  
OUT1  
OUT2  
CEN  
PEN1  
V
PEN2  
= 5V, C  
= 2 x 10µF, C  
= 2 x 10µF, C  
= 0.1µF, C  
= 4.7µF, C  
= 1µF, C  
= 2.2µF, C  
= 1µF, CT =  
OUT1  
OUT3  
OUT4  
OUT5  
OUT6  
OUT7  
0.068µF, C  
otherwise noted.)  
= C = 0.1µF, R  
= 10kΩ, L1 = 3.3µH, L2 = 4.7µH, L3 = 22µH, GND = PG1 = PG2 = PG3 = 0, T = +25°C, unless  
REF  
VL  
THM  
A
AC ADAPTER CONNECT (I  
= 500mA)  
USB DISCONNECTED (500mA USB)  
MAX8662/63 toc19  
SYS  
MAX8662/63 toc18  
5V/div  
V
DC  
5V/div  
5V  
5V  
0V  
V
DC  
475mA  
+1280mA  
4.4V  
I
IN  
1A/div  
2V/div  
5V/div  
5V/div  
0mA  
I
IN  
500mA/div  
1V/div  
V
SYS  
POK  
5V  
4.4V  
V
V
SYS  
4.0V  
V
CHG  
5V/div  
V
0V  
CHG  
0V  
0mA  
500mA  
1A/div  
-780mA  
I
500mA/div  
BAT  
-475mA  
I
BAT  
NEGATIVE BATTERY CURRENT FLOWS  
INTO THE BATTERY (CHARGING).  
2/MAX863  
400μs/div  
200μs/div  
PEN1 = 0, PEN2 = 1, CEN = 0,  
= 4.0V, I = 0mA  
PEN1 = PEN2 = 1, CEN = 0,  
V
= 4.0V, I = 500mA, EN_ = 1  
V
BAT  
BAT  
SYS  
SYS  
OUT1 REGULATOR EFFICIENCY  
vs. LOAD CURRENT  
CHARGER ENABLE (I  
= 0mA)  
SYS  
MAX8662/63 toc20  
100  
V
V
CEN  
0V  
5V/div  
1A/div  
2.8V  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
475mA  
4.4V  
I
IN  
0mA  
V
= 3.6V  
BAT  
V
= 3.6V  
= 4.2V  
BAT  
5V  
SYS  
2V/div  
5V/div  
V
BAT  
V
= 4.2V  
BAT  
V
CHG  
0V  
0mA  
I
BAT  
PWM = 0  
PWM = 1  
= 3.3V  
-475mA  
500mA/div  
V
OUT1  
0.1  
1
10  
100  
1000 10,000  
200μs/div  
LOAD CURRENT (mA)  
PEN1 = 0, PEN2 = 1, V = 4.0V, I = 0mA, EN_ = 1  
BAT  
SYS  
OUT1 REGULATOR LOAD REGULATION  
OUT1 REGULATOR LINE REGULATION  
OUT1 VOLTAGE vs. TEMPERATURE  
3.40  
3.36  
3.32  
3.28  
3.24  
3.20  
3.4  
3.3  
3.2  
3.1  
3.0  
2.9  
2.8  
2.7  
2.6  
2.5  
3.310  
3.306  
3.302  
3.298  
3.294  
3.290  
V
R
= 4.0V  
BAT  
= 330Ω  
LOAD  
V
= 4.2V  
BAT  
V
= 3.6V  
BAT  
R
= 330Ω  
LOAD  
0.1  
1
10  
100  
1000 10,000  
2.7 3.1 3.5 3.9 4.3 4.7 5.1 5.5  
(V)  
-40  
-15  
10  
35  
60  
85  
LOAD CURRENT (mA)  
V
AMBIENT TEMPERATURE (°C)  
SYS  
10 ______________________________________________________________________________________  
Power-Management ICs for  
Single-Cell, Li+ Battery-Operated Devices  
2/MAX863  
Typical Operating Characteristics (continued)  
(Circuit of Figure 1, V  
= 5V, R  
= 1.5kΩ, R  
= 3kΩ, V  
= 3.3V, V  
= 1.3V, SL1 = SL2 = open, V  
= 0V, V  
=
DC  
PSET  
OUT2  
ISET  
OUT1  
OUT2  
CEN  
PEN1  
V
PEN2  
= 5V, C  
= 2 x 10µF, C  
= 2 x 10µF, C  
= 0.1µF, C  
= 4.7µF, C  
= 1µF, C  
= 2.2µF, C  
= 1µF, CT =  
OUT1  
OUT3  
OUT4  
OUT5  
OUT6  
OUT7  
0.068µF, C  
otherwise noted.)  
= C = 0.1µF, R  
= 10kΩ, L1 = 3.3µH, L2 = 4.7µH, L3 = 22µH, GND = PG1 = PG2 = PG3 = 0, T = +25°C, unless  
THM A  
REF  
VL  
OUT1 REGULATOR LIGHT-LOAD  
SWITCHING WAVEFORMS  
OUT1 REGULATOR HEAVY-LOAD  
SWITCHING WAVEFORMS  
MAX8662/63 toc25  
MAX8662/63 toc26  
V
= 4.0V  
= 10mA  
BAT  
OUT1  
I
V
10mV/div  
2V/div  
OUT1  
V
OUT1  
AC-COUPLED  
50mV/div  
2V/div  
AC-COUPLED  
V
LX  
V
LX  
I
L
200mA/div  
I
L
500mA/div  
V
= 4.2V  
= 1200mA  
BAT  
OUT1  
PWM = 0  
I
20μs/div  
1μs/div  
OUT1 REGULATOR LOAD-  
TRANSIENT RESPONSE  
OUT1 REGULATOR LINE-  
TRANSIENT RESPONSE  
MAX8662/63 toc27  
MAX8662/63 toc28  
5V  
V
LX  
5V/div  
1V/div  
V
SYS  
I
= 10mA  
OUT1  
4V  
PWM = 0  
V
OUT1  
I
OUT1  
1A/div  
1A/div  
50mV/div  
5V/div  
I
L
V
LX  
I
V
= 4.0V  
BAT  
OUT1  
I
= 10mA TO 1200mA TO 10mA  
PWM = 0  
V
OUT1  
100mV/div  
L
200mA/div  
40μs/div  
100μs/div  
OUT2 REGULATOR EFFICIENCY  
vs. LOAD CURRENT  
OUT2 REGULATOR LOAD REGULATION  
OUT1 ENABLE AND DISABLE RESPONSE  
MAX8662/63 toc29  
1.32  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
= 4.2V  
BAT  
1.31  
V
EN1  
2V/div  
2V/div  
1.30  
1.29  
1.28  
1.27  
1.26  
V
= 4.2V  
BAT  
V
= 4.2V  
= 3.6V  
BAT  
V
= 3.6V  
BAT  
V
BAT  
V
= 3.6V  
BAT  
V
OUT1  
PWM = 0  
PWM = 1  
I
= 10mA  
OUT1  
V
= 3.3V  
OUT1  
0.1  
1
10  
100  
1000 10,000  
0.1  
1
10  
100  
1000  
1ms/div  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
______________________________________________________________________________________ 11  
Power-Management ICs for  
Single-Cell, Li+ Battery-Operated Devices  
Typical Operating Characteristics (continued)  
(Circuit of Figure 1, V  
= 5V, R  
= 1.5kΩ, R  
= 3kΩ, V  
= 3.3V, V  
= 1.3V, SL1 = SL2 = open, V  
= 0V, V  
=
DC  
PSET  
OUT2  
ISET  
OUT1  
OUT2  
CEN  
PEN1  
V
PEN2  
= 5V, C  
= 2 x 10µF, C  
= 2 x 10µF, C  
= 0.1µF, C  
= 4.7µF, C  
= 1µF, C  
= 2.2µF, C  
= 1µF, CT =  
OUT1  
OUT3  
OUT4  
OUT5  
OUT6  
OUT7  
0.068µF, C  
otherwise noted.)  
= C = 0.1µF, R  
= 10kΩ, L1 = 3.3µH, L2 = 4.7µH, L3 = 22µH, GND = PG1 = PG2 = PG3 = 0, T = +25°C, unless  
THM A  
REF  
VL  
OUT2 REGULATOR LINE REGULATION  
OUT2 VOLTAGE vs. TEMPERATURE  
1.310  
1.308  
1.306  
1.304  
1.302  
1.300  
1.3050  
1.3045  
1.3040  
1.3035  
1.3030  
R
= 130Ω  
V
R
= 4.0V  
BAT  
LOAD  
= 130Ω  
LOAD  
2/MAX863  
2.7 3.1 3.5  
3.9 4.3  
(V)  
4.7  
5.1 5.5  
-40  
-15  
10  
35  
60  
85  
V
AMBIENT TEMPERATURE (°C)  
SYS  
OUT2 REGULATOR HEAVY-LOAD  
SWITCHING WAVEFORMS  
OUT2 REGULATOR LIGHT-LOAD  
SWITCHING WAVEFORMS  
MAX8662/63 toc35  
MAX8662/63 toc34  
PWM = 0  
V
= 4.0V  
= 10mA  
BAT  
V
OUT2  
10mV/div  
2V/div  
I
OUT2  
V
OUT2  
20mV/div  
2V/div  
AC-COUPLED  
AC-COUPLED  
V
L
V
LX  
I
L
500mA/div  
I
L
100mA/div  
V
= 4.0V  
BAT  
I
= 900mA  
OUT2  
1μs/div  
10μs/div  
OUT2 REGULATOR LINE-  
TRANSIENT RESPONSE  
OUT2 REGULATOR LOAD-  
TRANSIENT RESPONSE  
MAX8662/63 toc37  
MAX8662/63 toc36  
5V  
V
LX  
5V/div  
1A/div  
V
1V/div  
SYS  
I
= 10mA  
PWM = 0  
4V  
OUT1  
I
OUT2  
V
OUT1  
20mV/div  
I
L
V
5V/div  
500mA/div  
50mV/div  
LX  
200mA/div  
V
OUT2  
AC-COUPLED  
I
L
V
= 4.0V  
BAT  
I
= 10mA TO 900mA TO 10mA PWM = 0  
OUT2  
100μs/div  
40μs/div  
12 ______________________________________________________________________________________  
Power-Management ICs for  
Single-Cell, Li+ Battery-Operated Devices  
2/MAX863  
Typical Operating Characteristics (continued)  
(Circuit of Figure 1, V  
= 5V, R  
= 1.5kΩ, R  
= 3kΩ, V  
= 3.3V, V  
= 1.3V, SL1 = SL2 = open, V  
= 0V, V  
=
DC  
PSET  
OUT2  
ISET  
OUT1  
OUT2  
CEN  
PEN1  
V
PEN2  
= 5V, C  
= 2 x 10µF, C  
= 2 x 10µF, C  
= 0.1µF, C  
= 4.7µF, C  
= 1µF, C  
= 2.2µF, C  
= 1µF, CT =  
OUT1  
OUT3  
OUT4  
OUT5  
OUT6  
OUT7  
0.068µF, C  
otherwise noted.)  
= C = 0.1µF, R  
= 10kΩ, L1 = 3.3µH, L2 = 4.7µH, L3 = 22µH, GND = PG1 = PG2 = PG3 = 0, T = +25°C, unless  
REF  
VL  
THM  
A
LED CURRENT  
vs. PWM DIMMING DUTY CYCLE  
OUT2 ENABLE AND DISABLE RESPONSE  
LED CURRENT vs. BRT VOLTAGE  
MAX8662/63 toc38  
30  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
= 3.6V  
V
V
= 3.6V  
BAT  
BAT  
= 0.25V  
BRT  
25  
20  
15  
10  
5
f = 1kHz  
V
EN2  
2V/div  
1V/div  
0V  
0V  
V
OUT2  
I
= 10mA  
OUT2  
0
1μs/div  
0
0.3  
0.6  
0.9  
1.2  
1.5  
0
10 20 30 40 50 60 70 80 90 100  
DUTY CYCLE (%)  
BRT VOLTAGE (V)  
OUT3 REGULATOR EFFICIENCY  
vs. LOAD CURRENT  
OUT3 ENABLE AND DISABLE RESPONSE  
OUT3 SWITCHING WAVEFORMS  
MAX8662/63 toc42  
MAX8662/63 toc41  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
= 5.5V  
SYS  
I
V
= 4.2V  
SYS  
L
100mA/div  
V
EN3  
2V/div  
0V  
0V  
V
= 3.6V  
SYS  
V
LX  
10V/div  
10V/div  
V
OUT3  
V
OUT3  
AC-COUPLED  
200mV/div  
I
= 1mA  
OUT3  
40ms/div  
0.1  
1
10  
100  
1μs/div  
LOAD CURRENT (mA)  
OUT4 VOLTAGE vs. TEMPERATURE  
OUT4 REGULATOR LOAD REGULATION  
OUT4 REGULATOR LINE REGULATION  
3.315  
3.313  
3.315  
3.4  
3.0  
2.6  
2.2  
1.8  
1.4  
V
R
= 4.0V  
BAT  
R
= 330Ω  
LOAD  
= 330Ω  
LOAD  
3.310  
3.305  
3.300  
3.295  
3.290  
3.285  
3.280  
V
= 3.6V  
IN  
3.311  
3.309  
3.307  
3.305  
V
= 5.5V  
IN  
-40  
-15  
10  
35  
60  
85  
0
100  
200  
300  
400  
500  
1
2
3
4
5
6
AMBIENT TEMPERATURE (°C)  
LOAD CURRENT (mA)  
V
(V)  
IN_OUT4  
_____________________________________________________________________________________ 13  
Power-Management ICs for  
Single-Cell, Li+ Battery-Operated Devices  
Typical Operating Characteristics (continued)  
(Circuit of Figure 1, V  
= 5V, R  
= 1.5kΩ, R  
= 3kΩ, V  
= 3.3V, V  
= 1.3V, SL1 = SL2 = open, V  
= 0V, V  
=
DC  
PSET  
OUT2  
ISET  
OUT1  
OUT2  
CEN  
PEN1  
V
PEN2  
= 5V, C  
= 2 x 10µF, C  
= 2 x 10µF, C  
= 0.1µF, C  
= 4.7µF, C  
= 1µF, C  
= 2.2µF, C  
= 1µF, CT =  
OUT1  
OUT3  
OUT4  
OUT5  
OUT6  
OUT7  
0.068µF, C  
otherwise noted.)  
= C = 0.1µF, R  
= 10kΩ, L1 = 3.3µH, L2 = 4.7µH, L3 = 22µH, GND = PG1 = PG2 = PG3 = 0, T = +25°C, unless  
THM A  
REF  
VL  
OUT4 REGULATOR LINE-  
TRANSIENT RESPONSE  
OUT4 REGULATOR LOAD-  
TRANSIENT RESPONSE  
MAX8662/63 toc48  
MAX8662/63 toc47  
5V  
3.6V  
V
IN45  
2V/div  
I
500mA/div  
50mV/div  
OUT4  
OUT4  
20mV/div  
V
OUT4  
V
AC-COUPLED  
AC-COUPLED  
V
= 4.0V  
BAT  
I
= 10mA TO 500mA TO 10mA  
OUT4  
I
= 10mA  
OUT4  
2/MAX863  
100μs/div  
40μs/div  
OUT4 REGULATOR DROPOUT VOLTAGE  
vs. LOAD CURRENT  
OUT5 REGULATOR LOAD REGULATION  
OUT4 ENABLE AND DISABLE RESPONSE  
MAX8662/63 toc49  
3.310  
3.308  
3.306  
3.304  
3.302  
3.300  
100  
90  
THE SLOPE OF THIS LINE SHOWS THAT  
THE DROPOUT RESISTANCE OF AN  
AVERAGE PART AND BOARD  
80  
70  
60  
COMBINATION IS 181mΩ.  
V
2V/div  
2V/div  
EN4  
0V  
V
= 3.6V  
IN  
50  
40  
30  
20  
V
OUT4  
V
= 5.5V  
IN  
0V  
10  
0
0
30  
60  
90  
120  
150  
200μs/div  
0
100  
200  
300  
400  
500  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
OUT5 REGULATOR LINE REGULATION  
OUT5 VOLTAGE vs. TEMPERATURE  
3.4  
3.0  
2.6  
2.2  
1.8  
1.4  
3.310  
R
= 330Ω  
V
R
= 4.0V  
BAT  
LOAD  
= 330Ω  
LOAD  
3.309  
3.308  
3.307  
3.306  
3.305  
3.304  
1
2
3
4
5
6
-40  
-15  
10  
35  
60  
85  
V
(V)  
AMBIENT TEMPERATURE (°C)  
IN_OUT5  
14 ______________________________________________________________________________________  
Power-Management ICs for  
Single-Cell, Li+ Battery-Operated Devices  
2/MAX863  
Typical Operating Characteristics (continued)  
(Circuit of Figure 1, V  
= 5V, R  
= 1.5kΩ, R  
= 3kΩ, V  
= 3.3V, V  
= 1.3V, SL1 = SL2 = open, V  
= 0V, V  
=
DC  
PSET  
OUT2  
ISET  
OUT1  
OUT2  
CEN  
PEN1  
V
PEN2  
= 5V, C  
= 2 x 10µF, C  
= 2 x 10µF, C  
= 0.1µF, C  
= 4.7µF, C  
= 1µF, C  
= 2.2µF, C  
= 1µF, CT =  
OUT1  
OUT3  
OUT4  
OUT5  
OUT6  
OUT7  
0.068µF, C  
otherwise noted.)  
= C = 0.1µF, R  
= 10kΩ, L1 = 3.3µH, L2 = 4.7µH, L3 = 22µH, GND = PG1 = PG2 = PG3 = 0, T = +25°C, unless  
THM A  
REF  
VL  
OUT5 REGULATOR LOAD-  
TRANSIENT RESPONSE  
OUT5 REGULATOR LINE-  
TRANSIENT RESPONSE  
MAX8662/63 toc55  
MAX8662/63 toc54  
5V  
V
IN45  
3.6V  
2V/div  
I
OUT5  
OUT5  
100mA/div  
50mV/div  
V
OUT5  
20mV/div  
AC-COUPLED  
V
AC-COUPLED  
I
= 10mA  
OUT5  
V
= 4.0V  
BAT  
I
= 10mA TO 150mA TO 10mA  
OUT5  
100μs/div  
40μs/div  
OUT5 REGULATOR DROPOUT VOLTAGE  
vs. LOAD CURRENT  
OUT5 ENABLE AND DISABLE RESPONSE  
MAX8662/63 toc56  
70  
THE SLOPE OF THIS LINE SHOWS THAT  
THE DROPOUT RESISTANCE OF AN  
AVERAGE PART AND BOARD  
60  
50  
40  
30  
20  
10  
COMBINATION IS 384mΩ.  
V
EN5  
2V/div  
2V/div  
0V  
V
OUT5  
0V  
0
0
30  
60  
90  
(mA)  
120  
150  
200μs/div  
I
OUT  
OUT6 REGULATOR LOAD REGULATION  
OUT6 REGULATOR LINE REGULATION  
OUT6 VOLTAGE vs. TEMPERATURE  
3.310  
3.306  
3.4  
3.2  
3.0  
2.8  
2.6  
2.4  
2.2  
3.309  
R
= 330Ω  
V
R
= 4.0V  
BAT  
LOAD  
= 330Ω  
LOAD  
3.307  
3.305  
3.303  
3.301  
3.302  
3.298  
3.294  
3.290  
V
= 5.5V  
IN  
V
= 3.6V  
150  
IN  
2.0  
1.8  
1.6  
1.4  
0
50  
100  
200  
250  
300  
1
2
3
4
5
6
-40  
-15  
10  
35  
60  
85  
LOAD CURRENT (mA)  
V
(V)  
AMBIENT TEMPERATURE (°C)  
IN_OUT6  
______________________________________________________________________________________ 15  
Power-Management ICs for  
Single-Cell, Li+ Battery-Operated Devices  
Typical Operating Characteristics (continued)  
(Circuit of Figure 1, V  
= 5V, R  
= 1.5kΩ, R  
= 3kΩ, V  
= 3.3V, V  
= 1.3V, SL1 = SL2 = open, V  
= 0V, V  
=
DC  
PSET  
OUT2  
ISET  
OUT1  
OUT2  
CEN  
PEN1  
V
PEN2  
= 5V, C  
= 2 x 10µF, C  
= 2 x 10µF, C  
= 0.1µF, C  
= 4.7µF, C  
= 1µF, C  
= 2.2µF, C  
= 1µF, CT =  
OUT1  
OUT3  
OUT4  
OUT5  
OUT6  
OUT7  
0.068µF, C  
otherwise noted.)  
= C = 0.1µF, R  
= 10kΩ, L1 = 3.3µH, L2 = 4.7µH, L3 = 22µH, GND = PG1 = PG2 = PG3 = 0, T = +25°C, unless  
THM A  
REF  
VL  
OUT6 REGULATOR LOAD-  
TRANSIENT RESPONSE  
OUT6 REGULATOR LINE-  
TRANSIENT RESPONSE  
MAX8662/63 toc61  
MAX8662/63 toc62  
5V  
3.6V  
V
2V/div  
IN67  
I
OUT6  
OUT6  
200mA/div  
50mV/div  
20mV/div  
V
V
OUT6  
AC-COUPLED  
AC-COUPLED  
I
= 10mA  
OUT6  
V
= 4.0V  
BAT  
I
= 10mA TO 300mA TO 10mA  
OUT6  
2/MAX863  
40μs/div  
100μs/div  
OUT6 REGULATOR DROPOUT VOLTAGE  
vs. LOAD CURRENT  
OUT6 ENABLE AND DISABLE RESPONSE  
MAX8662/63 toc63  
80  
70  
THE SLOPE OF THIS LINE SHOWS THAT  
THE DROPOUT RESISTANCE OF AN  
AVERAGE PART AND BOARD  
COMBINATION IS 238mΩ.  
60  
50  
40  
V
EN6  
2V/div  
2V/div  
0V  
30  
20  
V
0V  
OUT6  
10  
0
200μs/div  
0
50  
100  
150  
(mA)  
200  
250  
300  
I
OUT  
OUT7 REGULATOR LOAD REGULATION  
OUT7 REGULATOR LINE REGULATION  
OUT7 VOLTAGE vs. TEMPERATURE  
3.304  
3.4  
3.2  
3.0  
2.8  
2.6  
2.4  
2.2  
3.303  
3.302  
3.301  
3.300  
3.299  
3.298  
R
= 330Ω  
V
R
= 4.0V  
BAT  
LOAD  
= 330Ω  
LOAD  
3.302  
3.300  
3.298  
3.296  
V
= 5.5V  
IN  
V
= 3.6V  
2.0  
1.8  
IN  
1.6  
1.4  
3.294  
0
30  
60  
90  
120  
150  
1
2
3
4
5
6
-40  
-15  
10  
35  
60  
85  
LOAD CURRENT (mA)  
V
(V)  
AMBIENT TEMPERATURE (°C)  
IN_OUT7  
16 ______________________________________________________________________________________  
Power-Management ICs for  
Single-Cell, Li+ Battery-Operated Devices  
2/MAX863  
Typical Operating Characteristics (continued)  
(Circuit of Figure 1, V  
= 5V, R  
= 1.5kΩ, R  
= 3kΩ, V  
= 3.3V, V  
= 1.3V, SL1 = SL2 = open, V  
= 0V, V  
=
DC  
PSET  
OUT2  
ISET  
OUT1  
OUT2  
CEN  
PEN1  
V
PEN2  
= 5V, C  
= 2 x 10µF, C  
= 2 x 10µF, C  
= 0.1µF, C  
= 4.7µF, C  
= 1µF, C  
= 2.2µF, C  
= 1µF, CT =  
OUT1  
OUT3  
OUT4  
OUT5  
OUT6  
OUT7  
0.068µF, C  
otherwise noted.)  
= C = 0.1µF, R  
= 10kΩ, L1 = 3.3µH, L2 = 4.7µH, L3 = 22µH, GND = PG1 = PG2 = PG3 = 0, T = +25°C, unless  
THM A  
REF  
VL  
OUT7 REGULATOR LOAD-  
TRANSIENT RESPONSE  
OUT7 REGULATOR LINE-  
TRANSIENT RESPONSE  
MAX8662/63 toc68  
MAX8662/63 toc69  
5V  
3.6V  
V
2V/div  
IN67  
I
OUT7  
OUT7  
100mA/div  
50mV/div  
20mV/div  
V
V
OUT7  
AC-COUPLED  
AC-COUPLED  
I
= 10mA  
OUT7  
V
= 4.0V  
BAT  
I
= 10mA TO 150mA TO 10mA  
OUT7  
40μs/div  
100μs/div  
OUT7 REGULATOR DROPOUT VOLTAGE  
vs. LOAD CURRENT  
VL REGULATOR LOAD REGULATION  
OUT7 ENABLE AND DISABLE RESPONSE  
MAX8662/63 toc70  
70  
3.31  
3.30  
3.29  
3.28  
3.27  
3.26  
3.25  
3.24  
THE SLOPE OF THIS LINE SHOWS THAT  
THE DROPOUT RESISTANCE OF AN  
AVERAGE PART AND BOARD  
60  
50  
40  
30  
20  
10  
COMBINATION IS 391mΩ.  
V
EN7  
2V/div  
2V/div  
0V  
V
= 5.5V  
IN  
V
OUT7  
0V  
V
= 4.35V  
IN  
0
0
25  
50  
75  
(mA)  
100  
125  
150  
0
1
2
3
4
5
6
7
8
9
10  
200μs/div  
I
LOAD CURRENT (mA)  
OUT  
OPEN-DRAIN OUTPUT VOLTAGE LOW  
vs. SINK CURRENT  
VL REGULATOR LINE REGULATION  
3.50  
3.45  
3.40  
3.35  
0.5  
0.4  
0.3  
0.2  
0.1  
0
R
= 3.3kΩ  
THE SLOPE OF THIS LINE SHOWS THAT  
THE PULLDOWN RESISTANCE IS 11Ω.  
LOAD  
V
V
= 5.0V  
IN  
= 4.0V  
BAT  
3.30  
3.25  
3.20  
3.15  
3.10  
3.05  
3.00  
PULLDOWN DEVICE HAS A  
20mA STEADY-STATE RATING  
3
4
5
6
7
8
0
5
10 15 20 25 30 35 40  
(mA)  
V
(V)  
I
IN  
SINK  
______________________________________________________________________________________ 17  
Power-Management ICs for  
Single-Cell, Li+ Battery-Operated Devices  
Pin Description  
PIN  
NAME  
FUNCTION  
MAX8662  
MAX8663  
Input Limiter-Control Input 1. Used with CE N and PEN2 to set the DC current limit to 95mA,  
475mA, a resistor programmable level up to 2A, or to turn off the input limiter (see Table 1).  
1
1
PEN1  
Input Limiter-Control Input 2. Used with CE N and PEN1 to set the DC current limit to 95mA,  
475mA, a resistor programmable level up to 2A, or to turn off the input limiter (see Table 1).  
2
3
2
PEN2  
EN3  
Enable Input and PWM Dimming Input for Regulator 3 White LED Boost. Drive high to  
enable. Drive low for more than 2ms to turn off. For PWM-controlled dimming, drive EN3  
with a PWM switching input with a frequency of 1kHz to 100kHz.  
DC1,  
DC2  
DC Input Source. Connect to an AC adapter or USB source. DC1 and DC2 are internally  
connected.  
4, 5  
3, 4  
System Supply Voltage. The SYS output supplies power to all regulators. With no external  
power, SYS1 and SYS2 connect to BAT through an internal 40mΩ switch. When a valid  
voltage is present at DC_, SYS_ connects to DC_ but is limited to 5.3V. SYS1 and SYS2 are  
internally connected.  
SYS1,  
SYS2  
6, 7  
5, 6  
2/MAX863  
Battery Connections. Connect to a single-cell Li+ battery. The battery is charged from SYS_  
when a valid source is present at DC. BAT_ drives SYS_ when DC is not valid. BAT1 and  
BAT2 are internally connected.  
BAT1,  
BAT2  
8, 9  
10  
7, 8  
LED Analog Brightness Control Input. Connect BRT to a voltage from 50mV to 1.5V to set  
I
from 1mA to 30mA. Connect BRT to the center of a resistor-divider connected between  
BRT  
CS  
REF and GND to set a fixed brightness when analog dimming is not required.  
Charger Status Output. CHG is an open-drain nMOS that pulls low when the charger is in  
fast charge or prequalification modes. CHG goes high impedance when the charger is in  
top-off mode or disabled.  
11  
12  
13  
14  
9
CHG  
CEN  
THM  
ISET  
Charger Enable Input. Drive CEN low to enable the charger when a valid source is  
connected at DC. Drive CEN high to disable charging. Drive CEN high and PEN2 low to  
enter USB suspend mode.  
10  
11  
12  
Thermistor Input. Connect a 10kΩ negative temperature coefficient (NTC) thermistor from  
THM to GND. Charging is suspended when the temperature is beyond the hot or cold  
limits. Connect THM to GND to disable the thermistor functionality.  
Charge Rate-Set Input. Connect a resistor from ISET to GND to set the fast-charge current  
from 300mA to 1.25A. The prequalification charge current and top-off threshold are set to  
10% and 7.5% of fast-charge current, respectively.  
Charge Timer-Programming Pin. Connect a capacitor from CT to GND to set the length of  
time required to trigger a fault condition in fast-charge or prequalification mode and to  
determine the time the charger remains in top-off mode. Connect CT to GND to disable  
timers.  
15  
13  
CT  
Reference Voltage. Provides 1.5V output when EN3 is high. An internal discharge  
resistance pulls REF to 0V when EN3 is low.  
16  
17  
REF  
14  
GND  
Ground. Low-noise ground connection.  
Linear Regulator 4 Output. Delivers up to 500mA at an output voltage determined by SL1  
and SL2. Connect a 4.7µF ceramic capacitor from OUT4 to GND. Increase the value to  
18  
15  
OUT4  
10µF if V  
< 1.5V.  
OUT4  
18 ______________________________________________________________________________________  
Power-Management ICs for  
Single-Cell, Li+ Battery-Operated Devices  
2/MAX863  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
MAX8662  
MAX8663  
Input Supply for Linear Regulators 4 and 5. Connect IN45 to a supply voltage between 1.7V  
19  
16  
IN45  
and V  
. Connect at least a 1µF ceramic capacitor from IN45 to GND.  
SYS  
Linear Regulator 5 Output. Delivers up to 150mA at an output voltage determined by SL1  
and SL2. Connect a 1µF ceramic capacitor from OUT5 to GND. Increase the value to 2.2µF  
20  
17  
OUT5  
if V  
< 1.5V.  
OUT5  
21  
22  
18  
19  
EN4  
EN5  
Enable Input for Linear Regulator 4. Drive high to enable.  
Enable Input for Linear Regulator 5. Drive high to enable.  
PWM/Skip-Mode Selector. Drive PWM high to force step-down regulators 1 and 2 to  
operate in 1MHz forced-PWM mode. Drive PWM low, or connect to GND to allow regulators  
1 and 2 to enter skip mode at light loads.  
23  
20  
PWM  
Feedback Input for Buck Regulator 1. Connect FB1 to the center of a resistor-divider  
connected between OUT1 and GND to set the output voltage between 0.98V and 3.3V.  
24  
25  
26  
21  
22  
23  
FB1  
EN1  
PG1  
Enable Input for Buck Regulator 1. Drive high to enable.  
Power Ground for Buck Regulator 1. GND, PG1, PG2, and PG3 must be connected  
together externally.  
Buck Regulator 1 Inductor Connection Node. Connect an inductor from LX1 to the output of  
regulator 1.  
27  
28  
24  
25  
LX1  
PV1  
Power Input for Buck Regulator 1. Connect PV1 to SYS and decouple with a 10µF or greater low-  
ESR capacitor to GND. PV1, PV2, and SYS must be connected together externally.  
LED Boost Overvoltage Input. Connect a resistor from OVP to the boost output to set the  
maximum output voltage and to initiate soft-start when EN3 goes high. An internal 20µA  
pulldown current from OVP to GND determines the maximum boost voltage. The internal  
current is disconnected when EN3 is low. OVP is diode clamped to SYS_.  
29  
30  
OVP  
CS  
LED Current Source. Sinks from 1mA to 30mA depending on the voltage at BRT and the  
PWM signal at EN3. Driving EN3 low for more than 2ms turns off the current source. V is  
CS  
regulated to 0.32V.  
Compensation Input for LED Boost Regulator 3. See the Boost Converter with White LED Driver  
(OUT3, MAX8662 Only) section.  
31  
32  
CC3  
FB2  
Feedback Input for Buck Regulator 2. Connect FB2 to the center of a resistor-divider  
connected between OUT2 and GND to set the output voltage between 0.98V and 3.3V.  
26  
Power Input for Buck Regulator 2. Connect PV2 to SYS and decouple with a 10µF or  
greater low-ESR capacitor to GND. PV1, PV2, and SYS must be connected together  
externally.  
33  
27  
PV2  
Buck Regulator 2 Inductor Connection Node. Connect an inductor from LX2 to the output of  
regulator 2.  
34  
35  
28  
29  
LX2  
Power Ground for Buck Regulator 2. GND, PG1, PG2, and PG3 must be connected together  
externally.  
PG2  
36  
37  
38  
39  
30  
31  
32  
EN2  
EN6  
EN7  
LX3  
Enable Input for Buck Regulator 2. Drive high to enable.  
Enable Input for Linear Regulator 6. Drive high to enable.  
Enable Input for Linear Regulator 7. Drive high to enable.  
Boost Regulator 3 Inductor Connection Node. Connect an inductor from LX3 to SYS_.  
______________________________________________________________________________________ 19  
Power-Management ICs for  
Single-Cell, Li+ Battery-Operated Devices  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
MAX8662  
MAX8663  
Power Ground for Boost Regulator 3. GND, PG1, PG2, and PG3 must be connected  
together externally.  
40  
PG3  
Linear Regulator 6 Output. Delivers up to 300mA at an output voltage determined by SL1  
and SL2. Connect a 2.2µF ceramic capacitor from OUT6 to GND. Increase the value to  
41  
42  
43  
33  
34  
35  
OUT6  
IN67  
4.7µF if V  
< 1.5V.  
OUT6  
Input Supply for Linear Regulators 6 and 7. Connect IN67 to a supply voltage of 1.7V to  
. Connect at least a 1µF ceramic capacitor from IN67 to GND.  
V
SYS  
Linear Regulator 7 Output. Delivers up to 150mA at an output voltage determined by SL1  
and SL2. Connect a 1µF ceramic capacitor from OUT7 to GND. Increase the value to 2.2µF  
OUT7  
if V  
< 1.5V.  
OUT7  
Input Limiter and Charger Logic Supply. Provides 3.3V when a valid input voltage is  
present at DC. Connect a 0.1µF capacitor from VL to GND. VL is capable of providing up to  
10mA to an external load when DC is valid.  
44  
36  
VL  
2/MAX863  
Output-Voltage Select Inputs 1 and 2 for Linear Regulators. Leave disconnected, or  
connect to GND or SYS to set to one of three states. SL1 and SL2 set the output voltage of  
OUT4, OUT5, OUT6, and OUT7 to one of nine combinations. See Table 3.  
45  
46  
37  
38  
SL1  
SL2  
Input Current-Limit Set Input. Connect a resistor (R  
the DC input current limit from 500mA to 2A.  
) from PSET to ground to program  
PSET  
47  
48  
39  
40  
PSET  
Power-Ok Output. POK is an open-drain nMOS output that pulls low when a valid input is  
detected at DC. This output is not affected by the states of PEN1, PEN2, or CEN.  
POK  
Exposed Paddle. Connect the exposed paddle to ground. Connecting the exposed paddle  
to ground does not remove the requirement for proper ground connections to GND, PG1,  
PG2, and PG3. The exposed paddle is attached with epoxy to the substrate of the die,  
making it an excellent path to remove heat from the IC.  
EP  
20 ______________________________________________________________________________________  
Power-Management ICs for  
Single-Cell, Li+ Battery-Operated Devices  
2/MAX863  
INPUT FROM AC  
ADAPTER/USB  
4.1V TO 8V  
SYS1  
SYS2  
DC1  
DC2  
SYS  
C10  
C1  
VLOGIC  
+
-
INPUT-  
VOLTAGE  
MONITOR  
R1  
POK  
GND  
+
-
INPUT-TO-SYS  
CURRENT-  
LIMITING  
100mV  
BAT1  
BAT2  
THM  
SWITCH  
MAIN  
BATTERY  
C11  
BATTERY-TO-SYS  
SWITCH (ALLOWS  
BAT AND DC TO SUPPLY  
CURRENT TO SYS)  
VL  
3.3V  
C2  
R6  
BATTERY  
INPUT LIMITER  
AND  
CHARGER  
BATTERY THERMISTOR  
VLOGIC  
OK  
R7  
THERMAL  
PROTECTION  
PV1  
LX1  
TIMEOUT  
CHARGING  
SYS  
CHG  
PEN2  
PEN1  
CEN  
DONE  
500mA  
ADAPTER  
OFF  
C4  
R2  
OUT1  
L1  
100mA  
USB  
0.98V TO 3.3V AT 1.2A  
MAIN  
STEP-DOWN  
REGULATOR  
C5  
ON  
MAIN  
C12  
CT  
PG1  
FB1  
R8  
R9  
PSET  
ISET  
R3  
MAX8662  
MAX8663  
ON  
EN1  
OFF  
LX3  
PG3  
PWM  
PWM  
PV2  
SYS  
L3  
D1  
SKIP  
C13  
OUT3 AT 30mA  
D2  
SYS  
C6  
R4  
C14  
OUT2  
D3  
D4  
D5  
D6  
D7  
D8  
L2  
0.98V TO 3.3V AT 0.9A  
LX2  
STEP-UP  
LED  
DRIVER  
R10  
CORE  
STEP-DOWN  
REGULATOR  
ONLY AVAILABLE  
FOR THE MAX8662  
OVP  
CC3  
C7  
CORE  
PG2  
FB2  
C15  
R5  
CS  
D9 TO SYS  
ANALOG DIMMING  
(0 TO 1.5V)  
PWM BRIGHTNESS  
CONTROL AND ENABLE  
BRT  
EN3  
ON  
EN2  
OFF  
REF  
1.5V  
C3  
OUT4  
EN4  
OUT4  
500mA  
C16  
C17  
ON  
IN45  
OFF  
SYS  
C8  
OUT5  
EN5  
OUT5  
150mA  
ON  
OFF  
SL1  
SL2  
LDO OUTPUT-  
VOLTAGE  
SETTING  
TRI-STATE MODE  
INPUTS; SEE TABLE 2  
{
OUT6  
EN6  
OUT6  
300mA  
C18  
C19  
ON  
IN67  
OFF  
SYS  
C9  
OUT7  
EN7  
OUT7  
150mA  
ON  
OFF  
E P  
Figure 1. Block Diagram and Application Circuit  
______________________________________________________________________________________ 21  
Power-Management ICs for  
Single-Cell, Li+ Battery-Operated Devices  
Detailed Description  
The MAX8662/MAX8663 highly integrated PMICs are  
AC ADAPTER  
OR  
Q1 INPUT-TO-SYS  
SWITCH  
designed for use in smart cellular phones, PDAs,  
Internet appliances, and other portable devices. They  
integrate two synchronous buck regulators, a boost  
regulator driving two to seven white LEDs (MAX8662  
only), four low dropout (LDO) linear regulators, and a  
linear charger for a single-cell Li+ battery. Figure 1 is  
the block diagram and application circuit.  
USB INPUT  
SYS  
DC  
SYSTEM  
LOAD  
Q3  
Q2  
(CHARGE  
PATH)  
BATTERY-TO-SYS  
SWITCH  
(DISCHARGE PATH)  
SPS circuitry offers flexible power distribution between  
an AC adapter or USB source, battery, and system  
load, and makes the best use of available power from  
the AC adapter/USB input. The battery is charged with  
any available power not used by the system load. If a  
system load peak exceeds the current limit, supple-  
mental current is taken from the battery. Thermal limit-  
ing prevents overheating by reducing power drawn  
from the input source.  
BAT  
BATTERY  
GND  
MAX8662  
MAX8663  
2/MAX863  
Two step-down DC-DC converters achieve excellent  
light-load efficiency and have on-chip soft-start circuit-  
ry; 1MHz switching frequency allows for small external  
components. Four LDO linear regulators feature low  
quiescent current and operate from inputs as low as  
1.7V. This allows the LDOs to operate from the step-  
down output voltage to improve efficiency. The white  
LED driver features easy adjustment of LED brightness  
and open-LED overvoltage protection. A 1-cell Li+  
charger has programmable charge current up to 1.25A  
and a charge timer.  
R
THM  
THM  
Figure 2. Smart Power Selector Block Diagram  
Input Limiter  
All regulated outputs (OUT1–OUT7) derive their power  
from the SYS output. With an AC adapter or USB source  
connected at DC, the input limiter distributes power  
from the external power source to the system load and  
battery charger. In addition to the input limiter’s primary  
function of passing the DC power source to the system  
and charger loads at SYS, it performs several additional  
functions to optimize use of available power:  
Smart Power Selector (SPS)  
SPS seamlessly distributes power between the external  
input, the battery, and the system load (Figure 2). The  
basic functions of SPS are:  
Input Voltage Limiting: If the voltage at DC rises,  
SYS limits to 5.3V, preventing an overvoltage of the  
system load. A DC voltage greater than 6.9V is con-  
sidered invalid and the input limiter disconnects the  
DC input entirely. The withstand voltage at DC is  
guaranteed to be at least 9V. A DC input is also  
invalid if it is less than BAT, or less than the DC  
undervoltage threshold of 3.5V (falling). With an  
invalid DC input voltage, SYS connects to BAT  
through a 30mΩ switch.  
Input Overcurrent Protection: The current at DC is  
limited to prevent input overload. This current limit  
is automatically adjusted to match the capabilities  
of source, whether it is a 100mA or 500mA USB  
source, or an AC adapter. When the load exceeds  
the input current limit, SYS drops to 100mV below  
BAT and supplemental load current is provided by  
the battery.  
With both the external power supply and battery  
connected:  
a) When the system load requirements exceed the  
capacity of the external power input, the battery  
supplies supplemental current to the load.  
b) When the system load requirements are less than  
the capacity of the external power input, the bat-  
tery is charged with residual power from the input.  
When the battery is connected and there is no  
external power input, the system is powered from  
the battery.  
When an external power input is connected and  
there is no battery, the system is powered from the  
external power input.  
A thermal-limiting circuit reduces battery-charge rate and  
external power-source current to prevent overheating.  
22 ______________________________________________________________________________________  
Power-Management ICs for  
Single-Cell, Li+ Battery-Operated Devices  
2/MAX863  
Thermal Limiting: The input limiter includes a ther-  
mal-limiting circuit that reduces the current drawn  
from DC when the IC junction temperature increases  
beyond +100°C in an attempt to prevent further  
heating. The current limit is be reduced by 5%/°C for  
temperatures above +100°C, dropping to 0mA at  
+120°C. Due to the adaptive nature of the charging  
circuitry, the charger current reduces to 0mA before  
the system load is affected by thermal limiting.  
Figure 3 shows the SYS voltage and its relationship to  
DC and BAT under three conditions:  
a) Charger is off and SYS is driven from DC.  
b) Charger is on and adaptive charger control is limiting  
charge current.  
c) The load at SYS is greater than the available input current.  
The adaptive battery-charger circuit reduces charging  
current when the SYS voltage drops 550mV below DC.  
For example, if DC is at 5V, the charge current reduces  
to prevent SYS from dropping below 4.45V. When DC is  
greater than 5.55V, the adaptive charging circuitry  
reduces charging current when SYS drops 300mV  
below the 5.3V SYS regulation point (5.0V). Finally, the  
circuit prevents itself from pulling SYS down to within  
100mV of BAT.  
Adaptive Battery Charging: While the system is  
powered from DC, the charger can also draw  
power from SYS to charge the battery. If the charg-  
er load plus system load exceeds the current capa-  
bility of the input source, an adaptive charger  
control loop reduces charge current to prevent the  
SYS voltage from collapsing. Maintaining a higher  
SYS voltage improves efficiency and reduces  
power dissipation in the input limiter by running the  
switching regulators at lower current.  
INPUT: 500mA USB  
CHARGER: RISET = 4Ω (750mA)  
DC  
5.3V  
5.0V  
SYS  
(CHARGER OFF)  
SYS  
I(SYS) x 150mAΩ  
(CHARGER ON)  
550mV  
I(SYS) x 30mΩ  
4.0V  
3.9V  
100mV  
BAT  
100mV  
SYS  
(SYS OVERLOAD)  
475mA  
BAT CHARGE  
CURRENT  
(CHARGE ON)  
0mA  
Figure 3. SYS Voltage and Charge Current vs. DC and BAT Voltage  
______________________________________________________________________________________ 23  
Power-Management ICs for  
Single-Cell, Li+ Battery-Operated Devices  
DC Input Current-Limit Selection  
(PEN1/PEN2)  
The input current limit can be set to a variety of values  
as shown in Table 1. When the PEN1 input is low, a  
USB source is expected at DC and the current limit is  
set to either 95mA or 475mA by PEN2.  
Power-OK Output (POK)  
POK is an active-low open-drain output indicating DC  
status. When the voltage at DC is between the under-  
voltage and the overvoltage thresholds, and is greater  
than the BAT voltage, POK pulls low to indicate that  
input power is OK. Otherwise, POK is high impedance.  
POK is not affected by the states of PEN1, PEN2, or  
CEN. POK remains active in thermal overload.  
When PEN1 is high, an AC adapter is expected at DC  
and the current limit is set based on a programming resis-  
tor at PSET. The DC input current limit is calculated from:  
Battery Charger  
The battery charger state diagram is illustrated in  
Figure 4.  
I
= 2000 x (1.5 / R  
)
DC_LIM  
PSET  
An exception is when the battery charger is disabled  
(CEN high) with PEN2 low, where the MAX8662/  
MAX8663 enter USB suspend mode.  
With a valid AC adapter/USB voltage present, the bat-  
tery charger initiates a charge cycle when the charger  
Table 1. DC Input Current and Charger Current-Limit Select  
CEN  
PEN1  
PEN2  
DC INPUT CURRENT LIMIT  
95mA  
EXPECTED INPUT TYPE  
100mA USB  
CHARGER CURRENT LIMIT**  
0
0
0
1
1
1
0
0
0
1
1556(1.5V / R  
1556(1.5V / R  
1556(1.5V / R  
Off  
)
ISET  
2/MAX863  
475mA  
500mA USB  
)
ISET  
1
X*  
0
2000(1.5V / R  
Off  
)
AC adapter  
)
ISET  
PSET  
PSET  
X*  
0
USB suspend  
500mA USB  
1
475mA  
Off  
1
1
2000(1.5V / R  
)
AC adapter  
Off  
*X = Don’t care.  
**The maximum charge will not exceed the DC Input current.  
CEN = 1 OR REMOVE AND  
RECONNECT AC  
CHARGER OFF  
CHG = HIGH-Z  
ADAPTER/USB  
ANY STATE  
I
= 0mA  
BAT  
TOGGLE CEN OR  
REMOVE AND  
RECONNECT AC  
ADAPTER/USB  
CEN = 0  
SET TIMER = 0  
PREQUALIFICATION  
CHG = 0V  
TIMER > t  
PREQUAL  
I
= I  
/ 10  
BAT CHG-MAX  
TIMER > t  
FST-CHG  
(TIMER SUSPENDED IF I < I  
x
V
< 2.88V  
V
< 3V  
BAT  
BAT CHG-MAX  
BAT  
20% WHILE V < 4.2V)  
SET TIMER = 0  
FAST CHARGE  
CHG = 0V  
SET TIMER = 0  
BAT  
FAULT  
POK = 0V  
CHG = BLINK AT 1Hz  
= 0mA  
I
= I  
BAT CHG-MAX  
I
BAT  
I
> I  
x 12%  
SET TIMER = 0  
BAT CHG-MAX  
ANY CHARGING STATE  
THERMISTOR  
TOO HOT OR TOO COLD  
TIMER = RESUMED  
THERMISTOR  
TEMPERATURE OK  
TIMER = RESUMED  
TOP - OFF  
CHG = HIGH - Z  
V
= < 4.1V  
BAT  
SET TIMER = 0  
I
< I  
BAT  
x 7.5%  
TEMPERATURE  
SUSPEND  
= 0mA  
BAT CHG-MAX  
AND V = 4.2V  
TIMER = t  
TOP-OFF  
I
BAT  
CHG = PREVIOUS STATE  
DONE  
CHG = HIGH-Z  
= 0mA  
I
BAT  
Figure 4. Charger State Diagram  
24 ______________________________________________________________________________________  
Power-Management ICs for  
Single-Cell, Li+ Battery-Operated Devices  
2/MAX863  
is enabled. It first detects the battery voltage. If the bat-  
MONITORING THE BATTERY CHARGE CURRENT WITH V  
ISET  
tery voltage is less than the BAT prequalification thresh-  
old (3.0V), the charger enters prequalification mode in  
which the battery charges at 10% of the maximum fast-  
charge current. This slow charge ensures that the bat-  
tery is not damaged by fast-charge current while  
deeply discharged. Once the battery voltage rises to  
3.0V, the charger transitions to fast-charge mode and  
applies the maximum charge current. As charging con-  
tinues, the battery voltage rises until it reaches the bat-  
tery regulation voltage (4.2V) where charge current  
starts tapering down. When charge current decreases  
to 7.5% of fast-charge current, the charger enters top-  
off mode. Top-off charging continues for 30min, then all  
charging stops. If the battery voltage subsequently  
drops below the 4.1V recharge threshold, charging  
restarts and the timers reset.  
R
ISET  
V
=
x I  
BAT  
ISET  
1556  
1.5  
0
DISCHARGING  
BATTERY-CHARGING CURRENT (A)  
0
1556 x (1.5V/R  
)
ISET  
Charge Current  
ISET adjusts the MAX8662/MAX8663 charging current  
to match the capacity of the battery. A resistor from  
ISET to ground sets the maximum fast-charge current,  
the charge current in prequal, and the charge-current  
threshold below which the battery is considered com-  
pletely charged. Calculate these thresholds as follows:  
Figure 5. Monitoring the Battery Charge Current with ISET  
Output Voltage  
Charge Timer  
As shown in Figure 3, the MAX8662/MAX8663 feature a  
fault timer for safe charging. If prequalification charging  
or fast charging does not complete within the time limits,  
which are programmed by the timer capacitor at CT, the  
charger stops charging and issues a timeout fault.  
Charging can be resumed by either toggling CEN or  
cycling the DC input voltage.  
I
= 1556 x 1.5V / R  
CHG-MAX  
ISET  
CHG-MAX  
CHG-MAX  
I
= 10% x I  
= 7.5% x I  
PRE-QUAL  
I
TOP-OFF  
Determine the I  
value by considering the char-  
CHG-MAX  
acteristics of the battery, and not the capabilities of the  
expected AC adapter/USB charging input, the system  
load, or thermal limitations of the PCB. The MAX8662/  
MAX8663 automatically adjust the charging algorithm  
to accommodate these factors.  
The MAX8662/MAX8663 support values of C  
0.01µF to 1µF:  
from  
CT  
C
CT  
t
= 30min×  
PREQUAL  
0.068μF  
C
In addition to setting the charge current, ISET also pro-  
vides a means to monitor battery-charge current. The  
output voltage of the ISET pin tracks the charge current  
delivered to the battery, and can be used to monitor the  
charge rate, as shown in Figure 5. A 1.5V output indi-  
cates the battery is being charged at the maximum set  
fast-charge current; 0V indicates no charging. This volt-  
age is also used by the charger control circuitry to set  
and monitor the battery current. Avoid adding more  
than 10pF capacitance directly to the ISET pin. If filter-  
ing of the charge-current monitor is necessary, add a  
resistor of 100kΩ or more between ISET and the filter  
capacitor to preserve charger stability.  
CT  
t
= 300min×  
FSTCHG  
0.068μF  
When the charger exits fast-charge mode, CHG goes  
high impedance and top-off mode is entered. Top-off  
time is also determined by the capacitance at CT:  
C
CT  
t
= 300min×  
TOPOFF  
0.068μF  
In fast-charge mode, the fault timer is suspended when  
the charge current is limited, by input or thermal limit-  
ing, to less than 20% of I  
CHG-MAX.  
______________________________________________________________________________________ 25  
Power-Management ICs for  
Single-Cell, Li+ Battery-Operated Devices  
Connect CT to GND to disable the prequalification and  
fast-charge timers, allowing the battery to charge indef-  
initely in top-off mode, or if other system timers are to  
be used to control charging.  
a beta of 3500. The relation of thermistor resistance to  
temperature is defined by the following equation:  
1
1
β
RT =R25× e  
T+273 298  
Charge-Enable Input (CEN)  
Driving CEN high disables the battery charger. Driving  
CEN low enables the charger when a valid source is  
connected at DC. CEN does not affect the input limit  
current, except that driving CEN high and PEN2 low  
activates USB suspend mode.  
where:  
The resistance in ohms of the thermistor at tem-  
R
T =  
perature T in Celsius  
R
The resistance in ohms of the thermistor at +25°C  
25 =  
ß = The material constant of the thermistor, which typi-  
cally ranges from 3000K to 5000K  
In many systems, there is no need for the system con-  
troller (typically a microprocessor) to disable the charg-  
er because the SPS circuitry independently manages  
charging and adapter/battery power hand-off. In these  
situations, CEN can be connected to ground.  
T = The temperature of the thermistor in °C  
Table 2 shows temperature limits for different thermistor  
material constants.  
Some designs may prefer other trip temperatures. This  
can usually be accommodated by connecting a resistor  
in series and/or in parallel with the thermistor and/or  
using a thermistor with different ß. For example, a  
+45°C hot threshold and 0°C cold threshold can be  
realized by using a thermistor with a ß of 4250 and con-  
necting 120kΩ in parallel. Since the thermistor resis-  
tance near 0°C is much higher than it is near +50°C, a  
large parallel resistance lowers the cold threshold,  
while only slightly lowering the hot threshold.  
Conversely, a small series resistance raises the cold  
threshold, while only slightly raising the hot threshold.  
Charge Status Output (CHG)  
CHG is an open-drain output that indicates charger sta-  
tus. CHG is low when the battery charger is in prequali-  
fication or fast-charge mode. It is high impedance  
when the charger is done, in top-off, or disabled.  
2/MAX863  
The charger faults if the charging timer expires in pre-  
qualification or fast charge. In this state, CHG pulses at  
1Hz to indicate that a fault occurred.  
Battery Charger Thermistor Input (THM)  
Battery or ambient temperature can be monitored with  
a negative temperature coefficient (NTC) thermistor.  
Charging is allowed when the thermistor temperature is  
within the allowable range.  
The charger timer pauses when the thermistor resis-  
tance goes out of range: charging stops and the timer  
counters hold their state. When the temperature comes  
back into range, charging resumes and the counters  
continue from where they left off. Connecting THM to  
GND disables the thermistor function.  
The charger enters a temperature suspend state when  
the thermistor resistance falls below 3.97kΩ (too hot) or  
rises above 28.7kΩ (too cold). This corresponds to a 0  
to +50°C range when using a 10kΩ NTC thermistor with  
Table 2. Fault Temperatures for Different Thermistors  
THERMISTOR ß (K)  
Resistance at +25°C (kΩ)  
3000 (K)  
10  
3250 (K)  
10  
3500 (K)  
10  
3750 (K)  
10  
4250 (K)  
10  
Resistance at +50°C (kΩ)  
4.59  
25.14  
55  
4.30  
27.15  
53  
4.03  
29.32  
50  
3.78  
31.66  
49  
3316  
36.91  
46  
Resistance at 0°C (kΩ)  
Nominal Hot Trip Temperature (°C)  
Nominal Cold Trip Temperature (°C)  
-3  
-1  
0
2
4.5  
26 ______________________________________________________________________________________  
Power-Management ICs for  
Single-Cell, Li+ Battery-Operated Devices  
2/MAX863  
VL  
SWITCH OPEN  
WHEN CHARGER  
DISABLED  
MAX8662  
MAX8663  
55.71kΩ  
10kΩ  
V
= 2.4V RISING (TYP)  
THM_C  
-
COLD  
60mV HYST  
+
BAD TEMP  
97.71kΩ  
-
HOT  
60mV HYST  
V
= 0.9V FALLING (TYP)  
= 0.1V FALLING (TYP)  
THM  
THM_H  
+
DISABLE CHARGER  
54.43kΩ  
-
ENABLE THM  
60mV HYST  
ESD  
DIODE  
V
THM_D  
+
6.43kΩ  
GND  
GND  
Figure 6. Thermistor Input  
Figure 6 shows a simplified version of the THM input.  
Ensure that the physical size of the thermistor is such  
that the circuit of Figure 6 does not cause self-heating.  
Step-Down Converter Operating Modes  
OUT1 and OUT2 can operate in either auto-PWM mode  
(PWM low) or forced-PWM mode (PWM high). In auto-  
PWM mode, OUT1 and OUT2 enter skip mode when  
the load current drops below a predetermined level. In  
skip mode, the regulator skips cycles when they are not  
needed, which greatly decreases quiescent current  
and improves efficiency at light loads. In forced-PWM  
mode, the converters operate with a constant 1MHz  
switching frequency regardless of output load. Output  
voltage is regulated by modulating the switching duty  
cycle. Forced-PWM mode is preferred for low-noise  
systems, where switching harmonics can occur only at  
multiples of the constant-switching frequency and are  
easily filtered; however, regulator operating current is  
greater and light-load efficiency is reduced.  
Step-Down DC-DC Converters  
(OUT1 and OUT2)  
OUT1 and OUT2 are high-efficiency, 1MHz, current-mode  
step-down converters with adjustable output voltage.  
The OUT1 regulator outputs 0.98V to V at up to 1200mA  
IN  
while OUT2 outputs 0.98V to V at up to 900mA.  
IN  
OUT1 and OUT2 have individual enable inputs. When  
enabled, the OUT1 and OUT2 gradually ramp the out-  
put voltage over a 1.6ms soft-start time. This soft-start  
eliminates input inrush current spikes.  
OUT1 and OUT2 can operate at a 100% duty cycle,  
which allows the regulators to maintain regulation at the  
lowest possible battery voltage. The OUT1 dropout volt-  
age is 72mV with a 600mA load and the OUT2 dropout  
voltage is 90mV with a 450mA load (does not include  
inductor resistance). During 100% duty-cycle operation,  
the high-side p-channel MOSFET turns on continuously,  
connecting the input to the output through the inductor.  
Synchronous Rectification  
Internal n-channel synchronous rectifiers eliminate the  
need for external Schottky diodes and improve efficiency.  
The synchronous rectifier turns on during the second  
half of each switching cycle. During this time, the volt-  
age across the inductor is reversed, and the inductor  
current ramps down. In PWM mode, the synchronous  
rectifier turns off at the end of the switching cycle. In  
______________________________________________________________________________________ 27  
Power-Management ICs for  
Single-Cell, Li+ Battery-Operated Devices  
skip mode, the synchronous rectifier turns off when the  
inductor current falls below the n-channel zero-crossing  
threshold or at the end of the switching cycle, whichev-  
er occurs first.  
For example, with R  
= 1.2MΩ, the OUT3 maximum  
OVP  
voltage is set at 25.25V. The OVP circuit also provides  
soft-start to reduce inrush current by ramping the inter-  
nal pulldown current from 0 to 20µA over 1.25ms at  
startup. The 20µA internal current is disconnected  
when EN3 goes low.  
Setting OUT1 and OUT2 Output Voltage  
Select an output voltage for OUT1 between 0.98V and  
OUT3 can also be used as a voltage-output boost by  
V
IN  
by connecting FB1 to the center of a resistive volt-  
setting R  
for the desired output voltage. When doing  
OVP  
age-divider between OUT1 and GND. Choose R3  
(Figure 1) for a reasonable bias current in the resistive  
divider; choose R3 to be between 100kΩ and 200kΩ.  
Then, R2 (Figure 1) is given by:  
this, the output filter capacitor must be at least 1µF, and  
the compensation network should be a 0.01µF capaci-  
tor in series with a 10kΩ resistor from CC3 to ground.  
R2 = R3 ((V  
/V ) - 1)  
Brightness Control (Voltage or PWM)  
OUT1 FB  
LED current is set by the voltage at BRT. The V  
BRT  
where V = 0.98V. For OUT2, R4 and R5 are calculat-  
FB  
range for adjusting output current from 1mA to 30mA is  
50mV to 1.5V. Connecting BRT to a 1.5V reference volt-  
age (such as REF) sets LED current to 30mA.  
ed using:  
R4 = R5 ((V  
/V ) - 1)  
OUT2 FB  
The EN3 input can also be driven by a logic-level PWM  
brightness control signal, such as that supplied by a  
microcontroller. The allowed PWM frequency range is  
from 1kHz to 100kHz. A 100% duty cycle corresponds  
to full current set by the BRT pin. The MAX8662 digitally  
decodes the PWM brightness signal and eliminates  
PWM ripple found in more common PWM brightness  
controls. As a result, no external filtering is needed to  
prevent intensity ripple at the PWM rate.  
OUT1 and OUT2 Inductors  
2/MAX863  
3.3µH and 4.7µH inductors are recommended for the  
OUT1 and OUT2 step-down converters. Ensure that the  
inductor saturation current rating exceeds the peak  
inductor current, and the rated maximum DC inductor  
current exceeds the maximum output current. For lower  
load currents, the inductor current rating may be  
reduced. For most applications, use an inductor with a  
current rating 1.25 times the maximum required output  
current. For maximum efficiency, the inductor’s DC  
resistance should be as low as possible. See Table 4  
for component examples.  
In order to properly distinguish between a DC or PWM  
control signal, the MAX8662 delays turn-on from the ris-  
ing edge of EN3, and turn-off from the falling edge of  
EN3, by 2ms. If there are no more transitions in the EN3  
signal after 2ms, EN3 assumes the control signal is DC  
and sets LED brightness based on the DC level. If two ris-  
ing edges occur within 2ms, the circuit assumes the con-  
trol is PWM and sets brightness based on the duty cycle.  
Boost Converter with White LED Driver  
(OUT3, MAX8662 Only)  
The MAX8662 contains a boost converter, OUT3, which  
drives up to seven white LEDs in series at up to 30mA.  
The boost converter regulates its output voltage to  
maintain the bottom of the LED stack at 320mV. A 1MHz  
switching rate allows for a small inductor and small  
input and output capacitors, while also minimizing input  
and output ripple.  
OUT3 Inductor  
For the white LED driver, OUT3, a 22µH inductor is rec-  
ommended for most applications. For best efficiency,  
the inductor’s DC resistance should also be as low as  
possible. See Table 4 for component examples.  
Reference Voltage  
REF is a 1.5V regulated output that is available to drive  
the BRT input when the boost converter is enabled.  
This voltage can be used to control LED brightness by  
driving BRT through a resistor-divider.  
OUT3 Compensation Capacitor  
A compensation capacitor from CC3 to GND ensures  
boost converter control stability. For white LED applica-  
tions, connect a 0.22µF ceramic capacitor from CC3 to  
ground when using 0.1µF at OUT3. For OLED applica-  
tions, connect a 0.01µF capacitor in series with 10kΩ  
from CC3 to ground, and a 1µF OUT3 capacitor to  
improve boost output load-transient response.  
Boost Overvoltage Protection (OVP)  
OVP limits the maximum voltage of the boost output for  
protection against overvoltage due to open or discon-  
nected LEDs. An external resistor between OUT3 and  
OVP, with an internal 20µA pulldown current from OVP  
to GND, sets the maximum boost output to:  
OUT3 Diode Selection  
The MAX8662 boost converter’s high-switching fre-  
quency demands a high-speed rectification diode (D1)  
V
= (R  
x 20µA) + 1.25V  
OVP  
BOOST_MAX  
28 ______________________________________________________________________________________  
Power-Management ICs for  
Single-Cell, Li+ Battery-Operated Devices  
2/MAX863  
for optimum efficiency. A Schottky diode is recom-  
Soft-Start/Inrush Current  
The MAX8662/MAX8663 implement soft-start on many  
levels to control inrush current and avoid collapsing  
source supply voltages. The input-voltage limit and bat-  
tery charger have a 1.5ms soft-start time. All regulators  
also implement soft-start. White LED driver soft-start is  
accomplished by ramping the OVP current from 0 to  
20µA in 1.25ms. During soft-start, the PWM controller  
forces 0% switching duty cycle to avoid an input cur-  
rent surge at turn-on.  
mended due to its fast recovery time and low forward-  
voltage drop. Ensure the diode’s peak current rating  
exceeds the peak inductor current. In addition, the  
diode’s reverse breakdown voltage must exceed  
VOUT3. See Table 4 for component examples.  
Linear Regulators (OUT4, OUT5, OUT6,  
and OUT7)  
The MAX8662/MAX8663 contain four low-dropout, low-  
quiescent current, low-operating voltage linear regula-  
tors. The maximum output currents for OUT4, OUT5,  
OUT6, and OUT7 are 500mA, 150mA, 300mA, and  
150mA, respectively. Each regulator has its own enable  
input. When enabled, a linear regulator soft-starts by  
ramping the outputs at 10V/ms. This limits inrush cur-  
rent when the regulators are enabled.  
Undervoltage and Overvoltage Lockout  
DC UVLO  
When the DC voltage is below the DC undervoltage  
threshold (V  
, typically 3.5V falling), the  
UVLO_DC  
MAX8662/MAX8663 enter DC undervoltage lockout (DC  
UVLO). DC UVLO forces the power management cir-  
cuits to a known dormant state until the DC voltage is  
high enough to allow the device to make accurate deci-  
sions. In DC UVLO, Q1 is open (Figure 2), the charger is  
disabled, POK is high-Z, and CHG is high-Z. The sys-  
tem load switch, Q2 (Figure 2) is closed in DC UVLO,  
allowing the battery to power the SYS node. All regula-  
tors are allowed to operate from the battery in DC UVLO.  
The LDO output voltages, OUT4, OUT5, OUT6, and  
OUT7 are pin programmable by SL1 and SL2 (Table 3).  
SL1 and SL2 are intended to be hardwired and cannot  
be driven by active logic. Changes to SL1 and SL2  
after power-up are ignored.  
VL Linear Regulator  
VL is the output of a 3.3V linear regulator that powers  
the on-chip input limiter and charger control circuitry.  
VL is powered from DC and can provide up to 10mA  
when a DC source is present. Bypass VL to GND with a  
0.1µF capacitor.  
DC OVLO  
When the DC voltage is above the DC overvoltage  
threshold (V  
, typically 6.9V), the MAX8662/  
OVLO_DC  
MAX8663 enter DC overvoltage lockout (DC OVLO).  
DC OVLO mode protects the MAX8662/MAX8663 and  
downstream circuitry from high-voltage stress up to 9V.  
In DC OVLO, VL is on, Q1 (Figure 2) is open, the charg-  
er is disabled, POK is high-Z, and CHG is high-Z. The  
system load switch Q2 (Figure 2) is closed in DC  
OVLO, allowing the battery to power SYS. All regulators  
are allowed to operate from the battery in DC UVLO.  
Regulator Enable Inputs (EN_)  
The OUT1–OUT7 regulators have individual enable  
inputs. Drive EN_ high to initiate soft-start and enable  
OUT_. Drive EN_ low to disable OUT_. When disabled,  
each regulator (OUT1–OUT7) switches in an active  
pulldown resistor to discharge the output.  
Table 3. SL1 and SL2, Output Voltage Selection  
CONNECT SL_ TO:  
SL1  
LINEAR REGULATOR OUTPUT VOLTAGES  
SL2  
Open circuit  
Open circuit  
Open circuit  
Ground  
Ground  
Ground  
SYS  
OUT4 (V)  
3.3  
OUT5 (V)  
3.3  
OUT6 (V)  
3.3  
OUT7 (V)  
3.3  
Open circuit  
Ground  
SYS  
3.3  
2.85  
2.85  
2.85  
3.3  
1.85  
1.85  
2.85  
1.5  
1.85  
1.85  
1.85  
1.5  
2.85  
3.3  
Open circuit  
Ground  
SYS  
2.5  
2.5  
3.3  
1.5  
1.3  
Open circuit  
Ground  
SYS  
1.2  
1.8  
1.1  
1.3  
SYS  
3.3  
2.85  
2.5  
1.5  
1.5  
SYS  
1.8  
3.3  
2.85  
______________________________________________________________________________________ 29  
Power-Management ICs for  
Single-Cell, Li+ Battery-Operated Devices  
SYS UVLO  
is not related to, and operates independently from, the  
When the SYS voltage falls below the SYS undervoltage  
thermistor input. Also note that thermal-overload shut-  
down is a fail-safe mechanism. Proper thermal design  
should ensure that the junction temperature of the  
MAX8662/MAX8663 never exceeds the absolute maxi-  
mum rating of +150°C.  
threshold (V  
, typically 2.4V falling), the  
UVLO_SYS  
MAX8662/MAX8663 enter SYS undervoltage lockout  
(SYS UVLO). SYS UVLO forces all regulators off. All  
regulators assume the states determined by the corre-  
sponding enable input (EN_) when the SYS voltage  
Applications Information  
rises above V  
.
UVLO_SYS  
Step-Down Converters (OUT1 and OUT2)  
Input-Limiter Thermal Limiting  
The MAX8662/MAX8663 reduce input-limiter current by  
5%/°C when its die temperature exceeds +100°C. The  
system load (SYS) has priority over charger current, so  
input current is first reduced by lowering charge cur-  
rent. If the junction temperature still reaches +120°C in  
spite of charge-current reduction, no current is drawn  
from DC, the battery supplies the entire system load,  
and SYS is regulated at 100mV below BAT. Note that  
this on-chip thermal-limiting circuitry is not related to,  
and operates independently from, the thermistor input.  
Capacitor Selection  
The input capacitor in a DC-DC converter reduces cur-  
rent peaks drawn from the battery or other input power  
source and reduces switching noise in the controller.  
The impedance of the input capacitor at the switching  
frequency should be less than the input source’s output  
impedance so that high-frequency switching currents  
do not pass through the input source. The DC-DC con-  
verter output capacitor keeps output ripple small and  
ensures control-loop stability. The output capacitor must  
also have low impedance at the switching frequency.  
Ceramic capacitors with X5R or X7R dielectrics are  
highly recommended for both input and output capaci-  
tors due to their small size, low ESR, and small tempera-  
ture coefficients.  
2/MAX863  
Regulator Thermal-Overload Shutdown  
The MAX8662/MAX8663 disable all charger, SYS, and  
regulator outputs (except VL) if the junction tempera-  
ture rises above +165°C, allowing the device to cool.  
When the junction temperature cools by approximately  
15°C, resume the state they held prior to thermal over-  
load. Note that this on-chip thermal-protection circuitry  
See Table 4 for example OUT1/OUT2 input and output  
capacitors and manufacturers.  
Table 4. External Components List (See Figure 1)  
COMPONENT  
FUNCTION  
PART  
4.7µF 10%, 16V X5R ceramic capacitor  
Murata GRM188R61C105KA93B or Taiyo Yuden EMK107 BJ105KA  
C1  
Input filter capacitor  
0.1µF 10%, 10V X5R ceramic capacitor (0402)  
Murata GRM 155R61A104KA01 or TDK C1005X5R1A104K  
C2, C3  
C4, C6  
C5, C7  
C8, C9  
VL filter capacitor  
4.7µF 10%, 6.3V X5R ceramic capacitors (0603)  
Mutara GRM188R60J475KE  
Buck input bypass capacitors  
Step-down output filter  
capacitors  
2 x 10µF 10%, 6.3V X5R ceramic capacitors (0805)  
Murata GRM219R60J106KE19  
Linear regulator input filter  
capacitors  
1.0µF 10%, 16V X5R ceramic capacitors (0603)  
Murata GRM188R61C105KA93B or Taiyo Yuden EMK107 BJ105KA  
C10  
C11  
SYS output bypass capacitor  
Battery bypass capacitor  
10µF 10%, 6.3V X5R ceramic capacitor  
4.7µF 10%, 6.3V X5R ceramic capacitor  
0.068µF 10%, 10V X5R ceramic capacitor (0402)  
TDK C1005X5R1A683K  
C12  
C13  
C14  
C15  
Charger timing capacitor  
1.0µF 10%, 16V X5R ceramic capacitor (0603)  
Murata GRM188R61C105KA93B or Taiyo Yuden EMK107BJ105KA  
Boost input bypass capacitor  
Step-up output filter capacitor  
0.1µF 10%, 50V X7R ceramic capacitor (0603)  
Murata GRM188R71H104KA93 or Taiyo Yuden UMK107BJ104KA  
Step-up compensation  
capacitor  
0.22µF 10%, 10V X5R ceramic capacitor (0402)  
Murata GRM155R61A224KE19  
30 ______________________________________________________________________________________  
Power-Management ICs for  
Single-Cell, Li+ Battery-Operated Devices  
2/MAX863  
Table 4. External Components List (See Figure 1) (continued)  
COMPONENT  
FUNCTION  
PART  
4.7µF 10%, 6.3V X5R ceramic capacitor (0603)  
Murata GRM188R60J475KE19  
Linear regulator output filter  
capacitor  
C16  
Linear regulator output filter  
capacitors  
1.0µF 10%, 6.3V X5R ceramic capacitors (0603)  
Murata GRM188R60J105KA01  
C17, C19  
C18  
D1  
2.2µF 10%, 6.3V X5R ceramic capacitor (0603)  
Murata GRM185R60J225KE26  
Linear regulator output filter  
capacitor  
200mA, 30V Schottky diode (SOD-323)  
Central CMDSH2-3  
Boost rectifier  
30mA surface-mount white LEDs  
Nichia NSCW215T  
D2–D8  
D9  
Display backlighting  
CS clamp  
100mA silicon signal diode  
Central CMOD4448  
3.3µH inductor  
TOKO DE2818C 1072AS-3R3M, 1.6A, 50mΩ  
L1  
OUT1 step-down inductor  
OUT2 step-down inductor  
4.7µH inductor  
TOKO DE2818C 1072AS-4R7M, 1.3A, 70mΩ  
L2  
22µH inductor  
L3  
OUT3 step-up inductor  
Murata LQH32CN220K53, 250mA, 0.71Ω DCR (3.2mm x 2.5mm x 1.55mm)  
or TDK VLF3012AT-220MR33, 330mA, 0.76Ω DCR (2.8mm x 2.6mm x 1.2mm)  
R1, R7  
R2–R5  
Logic output pullup resistors  
Step-down feedback resistors  
100kΩ  
R3 and R5 are 200kΩ 0.1%; R2 and R4 depend on output voltage ( 0.1%)  
Phillips NTC thermistor  
P/N 2322-640-63103  
10kΩ 5% at +25°C  
R6  
Negative TC thermistor  
Input current-limit  
programming resistor  
R8  
R9  
1.5kΩ 1%, for 2A limit  
Fast charge-current  
programming resistor  
3kΩ 1%, for 777mA charging  
1.2MΩ 1%, for 25V max output  
Step-up overvoltage feedback  
resistor  
R10  
______________________________________________________________________________________ 31  
Power-Management ICs for  
Single-Cell, Li+ Battery-Operated Devices  
Table 5. MAX8662/MAX8663 Package Thermal Characteristics  
48-PIN THIN QFN (6mm x 6mm)  
40-PIN THIN QFN (5mm x 5mm)  
SINGLE-LAYER PCB MULTILAYER PCB  
SINGLE-LAYER PCB MULTILAYER PCB  
2105.3mW  
2963.0mW  
1777.8mW  
2857.1mW  
CONTINUOUS  
POWER  
DISSIPATION  
Derate 26.3mW/°C above  
+70°C  
Derate 37.0mW/°C above  
+70°C  
Derate 22.2mW/°C above  
+70°C  
Derate 35.7mW/°C above  
+70°C  
θ
θ
38°C/W  
1.4°C/W  
27°C/W  
1.4°C/W  
45°C/W  
1.7°C/W  
28°C/W  
1.7°C/W  
JA  
JC  
Position input capacitors from DC, SYS, BAT, PV1, and  
PV2 to the power-ground plane as close as possible to  
the IC. Connect input capacitors and output capacitors  
from inputs of linear regulators to low-noise analog  
ground as close as possible to the IC. Connect the  
inductors, output capacitors, and feedback resistors as  
close to the IC as possible and keep the traces short,  
direct, and wide.  
Power Dissipation  
The MAX8662/MAX8663 have a thermal-limiting circuitry,  
as well as a shutdown feature to protect the IC from  
damage when the die temperature rises. To allow the  
maximum charging current and load current on each  
regulator, and to prevent thermal overload, it is important  
to ensure that the heat generated by the  
MAX8662/MAX8663 is dissipated into the PCB. The  
package’s exposed paddle must be soldered to the  
PCB, with multiple vias tightly packed under the exposed  
paddle to ensure optimum thermal contact to the ground  
plane.  
2/MAX863  
Refer to the MAX8662/MAX8663 evaluation kit for a  
suitable PCB layout example.  
Table 5 shows the thermal characteristics of the  
MAX8662/MAX8663 packages. For example, the junc-  
Pin Configurations (continued)  
tion-to-case thermal resistance (θ ) of the MAX8663 is  
JC  
TOP VIEW  
2.7°C/W. When properly mounted on a multilayer PCB,  
the junction-to-ambient thermal resistance (θ ) is typi-  
30 29 28 27 26 25 24 23 22 21  
JA  
cally 28°C/W.  
20  
31  
32  
33  
PWM  
EN6  
EN7  
19 EN5  
18 EN4  
PCB Layout and Routing  
High switching frequencies and relatively large peak  
currents make the PCB layout a very important aspect of  
design. Good design minimizes ground bounce, exces-  
sive EMI on the feedback paths, and voltage gradients  
in the ground plane, which can result in instability or  
regulation errors.  
OUT6  
17  
16  
OUT5  
IN45  
IN67 34  
35  
36  
37  
38  
39  
40  
OUT7  
VL  
MAX8663  
15 OUT4  
14  
GND  
13 CT  
12  
SL1  
SL2  
A separate low-noise analog ground plane containing  
the reference, linear regulator, signal ground, and GND  
must connect to the power-ground plane at only one  
point to minimize the effects of power-ground currents.  
PGND_, DC power, and battery grounds must connect  
directly to the power-ground plane. Connect GND to  
the exposed paddle directly under the IC. Use multiple  
tightly spaced vias to the ground plane under the  
exposed paddle to help cool the IC.  
ISET  
11 THM  
PSET  
POK  
1
2
3
4
5
6
7
8
9
10  
THIN QFN  
(5mm x 5mm)  
32 ______________________________________________________________________________________  
Power-Management ICs for  
Single-Cell, Li+ Battery-Operated Devices  
2/MAX863  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
______________________________________________________________________________________ 33  
Power-Management ICs for  
Single-Cell, Li+ Battery-Operated Devices  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
2/MAX863  
34 ______________________________________________________________________________________  
Power-Management ICs for  
Single-Cell, Li+ Battery-Operated Devices  
2/MAX863  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
______________________________________________________________________________________ 35  
Power-Management ICs for  
Single-Cell, Li+ Battery-Operated Devices  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
2/MAX863  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
36 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2007 Maxim Integrated Products  
is a registered trademark of Maxim Integrated Products. Inc.  
REDUTA  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY