MAX8664BEEP+T [MAXIM]

Dual Switching Controller, Voltage-mode, 1000kHz Switching Freq-Max, BICMOS, PDSO20, 0.150 INCH, 0.025 INCH PITCH, LEAD FREE, MO-137AD, QSOP-20;
MAX8664BEEP+T
型号: MAX8664BEEP+T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Dual Switching Controller, Voltage-mode, 1000kHz Switching Freq-Max, BICMOS, PDSO20, 0.150 INCH, 0.025 INCH PITCH, LEAD FREE, MO-137AD, QSOP-20

控制器
文件: 总26页 (文件大小:350K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-0796; Rev 0; 4/07  
Low-Cost, Dual-Output, Step-Down  
Controller with Fast Transient Response  
MAX864  
General Description  
Features  
The MAX8664 dual-output PWM controller is a low-cost,  
high-performance solution for systems requiring dual  
power supplies. It provides two individual outputs that  
operate 180° out-of-phase to minimize input current  
ripple, and therefore, capacitance requirements. Built-in  
drivers are capable of driving external MOSFETs to  
deliver up to 25A output current from each channel.  
The MAX8664 operates from a 4.5V to 28V input volt-  
age source and generates output voltages from 0.6V  
up to 90% of the input voltage on each channel. Total  
output regulation error is less than 0.8% over load,  
line, and temperature.  
o ±±0.8% OutOu%ꢀAAOꢁrAc% ꢂvꢁ%ꢃLra%rꢄa%ꢃꢅꢄv  
o  tvꢁruvs%fꢁLm%r%Sꢅꢄglv%405V%uL%2.V%SOttlc  
o Sꢅmtlv%CLmtvꢄsruꢅLꢄ%fLꢁ%ꢀꢄc%Tctv%Lf% OutOu  
CrtrAꢅuLꢁ  
o Iꢄuvꢁꢄrl%605V%RvgOlruLꢁ%fLꢁ%Gruv%Dꢁꢅꢂv  
o Iꢄuvgꢁruva%BLLsu%DꢅLavs  
o ꢀajOsurblv% OutOu%fꢁLm%±06V%uL%±09%x%VIN  
o Dꢅgꢅurl%SLfu-Surꢁu%RvaOAvs%IꢄꢁOsh%COꢁꢁvꢄu  
o 1±±kHz%uL%1MHz%ꢀajOsurblv%SwꢅuAhꢅꢄg  
o 1.±°  Ou-Lf-Phrsv% tvꢁruꢅLꢄ%RvaOAvs%IꢄtOu  
The MAX8664 operates with a constant switching fre-  
quency adjustable from 100kHz to 1MHz. Built-in boost  
diodes reduce external component count. Digital soft-  
start eliminates input inrush current during startup. The  
second output has an optional external REFIN2, facili-  
tating tracking supply applications. Each output is  
capable of sourcing and sinking current, making the  
device a great solution for DDR applications.  
Rꢅttlv%COꢁꢁvꢄu  
o  ꢂvꢁAOꢁꢁvꢄu%rꢄa% ꢂvꢁꢂLlurgv%PꢁLuvAuꢅLꢄ  
o Exuvꢁꢄrl%RvfvꢁvꢄAv%IꢄtOu%fLꢁ%SvALꢄa%CLꢄuꢁLllvꢁ  
o Pꢁvbꢅrsva%SurꢁuOt% tvꢁruꢅLꢄ  
Ordering Information  
PIN-  
PꢀCKꢀGE  
PKG  
C DE  
E20-1  
FꢀUꢃT  
ꢀCTI N  
The MAX8664 employs Maxim’s proprietary peak volt-  
age-mode control architecture that provides superior  
transient response during either load or line transients.  
This architecture is easily stabilized using two resistors  
and one capacitor for any type of output capacitors. Fast  
transient response requires less output capacitance,  
consequently reducing total system cost. The MAX8664B  
latches off both controllers during a fault condition, while  
the MAX8664A allows one controller to continue to func-  
tion when there is a fault in the other controller.  
PꢀRT  
MꢀX.664ꢀEEP+  
MꢀX.664BEEP+  
20 QSOP  
Independent  
20 QSOP  
E20-1  
Joint  
NLuv: This device operates over the -40°C to +85°C operating  
temperature range.  
+Denotes lead-free package.  
Typical Operating Circuit  
IN2  
VL  
IN  
Applications  
ILIM2  
ILIM1  
IN1  
Desktop and Notebook PCs  
OUT2  
OUT1  
Graphic Cards  
DH1  
DH2  
BST2  
BST1  
ASIC/CPU/DSP Power Supplies  
Set-Top Box Power Supply  
Printer Power Supply  
Network Power Supply  
POL Power Supply  
LX1  
LX2  
DL2  
DL1  
MAX8664  
GND  
FB2  
PGND  
FB1  
PWRGD  
REFIN2  
OSC/EN12  
V
CC  
Pꢅꢄ%CLꢄfꢅgOꢁruꢅLꢄ%rttvrꢁs%ru%vꢄa%Lf%arur%shvvu0  
________________________________________________________________ Mrxꢅm%Iꢄuvgꢁruva%PꢁLaOAus  
1
FLꢁ%tꢁꢅAꢅꢄg%avlꢅꢂvꢁc,%rꢄa%Lꢁavꢁꢅꢄg%ꢅꢄfLꢁmruꢅLꢄ tlvrsv%ALꢄurAu%Mrxꢅm%DꢅꢁvAu ru%1-...-629-4642,  
Lꢁ%ꢂꢅsꢅu%Mrxꢅm’s%wvbsꢅuv%ru%www0mrxꢅm-ꢅA0ALm0  
Low-Cost, Dual-Output, Step-Down  
Controller with Fast Transient Response  
ꢀBS ꢃUTE%MꢀXIMUM%RꢀTINGS  
IN to GND ...........................................................…-0.3V to +30V  
VL to GND...................................................................-0.3 to +8V  
IN, BST_ to VL ........................................................-0.3V to +30V  
ILIM_ to GND...............................................-0.3V to (V + 0.3V)  
ILIM_ to LX_............................................................-0.6V to +30V  
IN  
OSC/EN12, REFIN2 to GND.....................-0.3V to (V  
+ 0.3V)  
VCC  
V
, FB_, PWRGD to GND.......................................-0.3V to +6V  
VL Continuous Current ..............................................125mA  
CC  
RMS  
RMS  
VL to V  
....................................................................-2V to +8V  
V
CC  
Continuous Current..............................................10mA  
CC  
PGND to GND .......................................................-0.3V to +0.6V  
DL_ to PGND...............................................-0.3V to (V + 0.3V)  
Continuous Power Dissipation (T = +70°C) (Note 1)  
A
20-Pin QSOP (derate 11.0mW/°C above +70°C).........884mW  
Operating Temperature Range ...........................-40°C to +85°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
VL  
BST_  
DH_ to PGND............................................-0.3V to (V  
+ 0.3V)  
BST_ to GND.............................................................-0.3V to 38V  
BST_ to LX................................................................-0.3V to +8V  
LX_ to PGND .................-1V (-2.5V for < 50ns transient) to +30V  
MAX864  
DH_ to LX_................................................-0.3V to (V  
+ 0.3V)  
BST_  
NLuv%1: Package mounted on a multilayer PCB.  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
EꢃECTRICꢀꢃ%CHꢀRꢀCTERISTICS  
(V = 12V, R  
IN  
to GND = 56.1kΩ, REFIN2 = V , T = -40°C to +85°C, unless otherwise noted. Typical values are at  
CC A  
OSC/EN12  
T
A
= +25°C.) (Note 2)  
PꢀRꢀMETER  
C NDITI NS  
MIN  
TYP  
MꢀX  
UNITS  
SUPPꢃY%V ꢃTꢀGES  
IN Supply Voltage  
VL Output Voltage  
7.2  
4.5  
28.0  
5.5  
V
IN = VL = V  
CC  
7.2V < V < 28V, 0 < I < 60mA  
6.10  
4.5  
6.6  
5.0  
6.75  
5.5  
V
V
IN  
VL  
V
Output Voltage  
7.2V < V < 28V, 0 < I  
IN  
< 5mA  
CC  
CC  
Rising  
3.4  
3.5  
3.6  
V
V
Undervoltage Lockout  
CC  
(UVLO)  
Hysteresis  
350  
0.095  
0.08  
1.4  
mV  
V
V
V
V
= 12V, I  
IN  
0.2  
0.2  
2.5  
1.8  
OSC/EN12 not  
connected  
IN  
Standby Supply Current  
mA  
mA  
= V = V = 5V, I + I + I  
VCC  
CC  
IN  
VL  
IN  
VL  
= 12V, I  
IN  
No switching,  
IN  
Operating Supply Current  
V
= 0.65V  
FB_  
= V = V = 5V, I + I + I  
VL VCC  
1.1  
CC  
IN  
VL  
IN  
REGUꢃꢀT R%SPECIFICꢀTI NS  
T
T
= 0°C to +85°C  
0.5955 0.600 0.6045  
A
Reference Accuracy  
V
= -40°C to +85°C  
0.5930 0.600 0.6070  
0.5952 0.600 0.6048  
0.5925 0.600 0.6075  
A
T
T
= 0°C to +85°C  
A
V
V
= V  
VCC  
REFIN2  
REFIN2  
= -40°C to +85°C  
FB_ Regulation Accuracy  
V
V
A
= 1.000V  
0.995  
1.000  
1.005  
REFIN2 to Internal Reference  
Switchover Threshold  
V
-
V
-
VCC  
0.7  
VCC  
0.3  
Not to be switched during operation  
2
REFIN2 Maximum Program Voltage  
REFIN2 Disable Threshold  
FB Input Bias Current  
1.3  
50  
3
V
mV  
nA  
nA  
ns  
V
V
= 0.5V  
FB  
REFIN2 Bias Current  
= 0.65V  
3
REFIN2  
FB Propagation Delay  
FB rising to DH falling  
90  
2
_______________________________________________________________________________________  
Low-Cost, Dual-Output, Step-Down  
Controller with Fast Transient Response  
MAX864  
EꢃECTRICꢀꢃ%CHꢀRꢀCTERISTICS%(ALꢄuꢅꢄOva)  
(V = 12V, R  
IN  
to GND = 56.1kΩ, REFIN2 = V , T = -40°C to +85°C, unless otherwise noted. Typical values are at  
CC A  
OSC/EN12  
T
A
= +25°C.) (Note 2)  
PꢀRꢀMETER  
C NDITI NS  
MIN  
TYP  
MꢀX  
UNITS  
PR TECTI N%FEꢀTURES  
V
V
rising  
0.75  
FB1  
Overvoltage Protection (OVP)  
Threshold  
V
REFIN2  
+ 0.15  
rising, V  
1.3V  
REFIN2  
FB2  
V
V
= V  
, V  
rising, MAX8664B  
REFIN2  
VCC FB_  
0.500  
44  
0.525  
0.550  
V
Power-Good (PWRGD) Threshold  
rising, MAX8664A  
FB1  
Hysteresis  
5
%
T
A
T
A
T
A
T
A
= +85oC  
= +25oC  
= +25°C  
= +85°C  
60  
50  
0.1  
0.1  
High-Side Current-Sense Program  
Current (Note 3)  
µA  
60  
1.0  
ILIM Leakage  
µA  
V
High-Side Current-Sense  
Overcurrent Trip Adjustment Range  
0.05  
0.40  
20  
Internal Soft-Start Time  
R
= 56.1kΩ, 400kHz  
2.5  
10  
ms  
Ω
OSC/EN12  
REFIN2 Internal Pulldown Resistance Engaged momentarily at startup  
Thermal-Shutdown Threshold  
Junction temperature  
+160  
°C  
DRIVER%SPECIFICꢀTI NS  
V
V
V
V
V
V
V
V
V
V
= 6.5V  
1.35  
1.55  
0.9  
1.0  
1.3  
1.5  
0.6  
0.7  
25  
2.1  
1.4  
2
VL  
IN  
Sourcing current,  
I
= -50mA  
DH  
= V = V  
VL  
= 5V  
= 5V  
= 5V  
= 5V  
VCC  
VCC  
VCC  
VCC  
DH_ Driver Resistance  
DL_ Driver Resistance  
Ω
= 6.5V  
VL  
IN  
Sinking current,  
= 50mA  
I
DH  
= V = V  
VL  
= 6.5V  
VL  
IN  
Sourcing current,  
= -50mA  
I
DL  
= V = V  
VL  
Ω
= 6.5V  
1.1  
43  
VL  
IN  
Sinking current,  
= 50mA  
I
DL  
= V = V  
VL  
= 6.5V  
= 5V  
13  
70  
VL  
VL  
Dead Time for Low-Side to  
High-Side Transition  
DL_ falling to DH_ rising  
ns  
28  
DH_ Minimum On-Time  
108  
1.25  
0.001  
6
149  
2.3  
ns  
mA  
µA  
Ω
V
- V = 7V, V = 28V, V  
= 0.55V  
BST  
LX  
LX  
FB_  
BST Current  
OSC/EN12 not connected  
Internal Boost Switch Resistance  
PWM%Cꢃ CK% SCIꢃꢃꢀT R  
PWM Clock-Frequency Accuracy  
-15  
+15  
1000  
2.5  
%
kHz  
µA  
PWM Clock-Frequency Adjustment  
Range  
R
= 226kΩ to 22.6kΩ  
100  
OSC/EN12  
OSC/EN12 Disable Current  
1.5  
NLuv%2: Specifications at -40°C are guaranteed by design and not production tested.  
NLuv%3: This current linearly compensates for the MOSFET temperature coefficient.  
_______________________________________________________________________________________  
3
Low-Cost, Dual-Output, Step-Down  
Controller with Fast Transient Response  
Typical Operating Characteristics  
(Circuit of Figure 2, 600kHz, V = 12V, V  
IN  
= 2.5V, V  
= 1.8V, T = +25°C, unless otherwise noted.)  
OUT2 A  
OUT1  
EFFICIENCY vs. LOAD CURRENT  
EFFICIENCY vs. LOAD CURRENT  
(1MHz, FIGURE 4)  
LOAD REGULATION  
(600kHz, FIGURE 2)  
(600kHz, FIGURE 2)  
100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
2.55  
2.54  
2.53  
2.52  
2.51  
2.50  
2.49  
2.48  
2.47  
2.46  
2.45  
90  
80  
70  
60  
V
= 2.5V  
OUT1  
MAX864  
I
= 8A  
OUT2  
I
= 4A  
OUT2  
V
= 1.8V  
OUT1  
V
= 2.5V  
OUT  
50  
40  
30  
20  
10  
0
V
= 1.8V  
OUT  
I
= 0A  
OUT2  
V
V
= 3.3V  
= 5V  
IN  
VL  
NO LOAD ON THE  
OTHER REGULATOR  
NO LOAD ON OUT2  
0.1  
1
10  
0.1  
1
10  
0
2
4
6
8
10  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
OUT1 LOAD CURRENT (A)  
LINE REGULATION  
(600kHz, FIGURE 2)  
R
vs. SWITCHING FRQUENCY  
OUT1 LOAD TRANSIENT (FIGURE 2)  
MAX8664 toc06  
OSC/EN12  
250  
200  
150  
100  
50  
2.55  
2.54  
2.53  
2.52  
2.51  
2.50  
2.49  
2.48  
2.47  
2.46  
2.45  
8A LOAD  
V
I
100mV/div  
2A/div  
OUT2  
OUT2  
5A  
2.5A  
2.5A  
NO LOAD  
0
100  
400  
700  
1000  
20μs/div  
6
8
10  
12  
14  
16  
18  
20  
SWITCHING FREQUENCY (kHz)  
INPUT VOLTAGE (V)  
LOAD TRANSIENT  
-3A TO +3A TO -3A (FIGURE 3)  
POWER-UP WAVEFORMS  
MAX8664 toc07  
MAX8664 toc08  
10V/div  
50mV/div  
V
V
I
OUT1  
OUT2  
OUT2  
V
IN  
2V/div  
2V/div  
V
V
50mV/div  
5A/div  
OUT1  
OUT2  
+3A  
5V/div  
-3A  
-3A  
V
PRWGD  
100μs/div  
1ms/div  
4
_______________________________________________________________________________________  
Low-Cost, Dual-Output, Step-Down  
Controller with Fast Transient Response  
MAX864  
Typical Operating Characteristics (continued)  
(Circuit of Figure 2, 600kHz, V = 12V, V  
= 2.5V, V = 1.8V, T = +25°C, unless otherwise noted.)  
OUT2 A  
IN  
OUT1  
POWER-DOWN WAVEFORMS  
ENABLE WAVEFORMS (FIGURE 2)  
MAX8664 toc09  
MAX8664 toc10  
V
IN  
10V/div  
5V/div  
ENABLE  
V
V
OUT1  
OUT2  
V
V
OUT1  
OUT2  
2V/div  
2V/div  
2V/div  
2V/div  
V
PRWGD  
V
PRWGD  
5V/div  
5V/div  
1ms/div  
1ms/div  
FEEDBACK VOLTAGE  
vs. TEMPERATURE  
ENABLE WAVEFORMS (FIGURE 4)  
SWITCHING WAVEFORMS  
MAX8664 toc12  
MAX8664 toc11  
605  
604  
603  
602  
601  
600  
599  
598  
597  
596  
595  
ENABLE  
5V/div  
V
V
10V/div  
5A/div  
LX1  
I
L1  
V
OUT1  
1V/div  
1V/div  
10V/div  
5A/div  
V
OUT2  
LX2  
V
I
L2  
PRWGD  
5V/div  
NO LOAD  
60 80 100  
400μs/div  
2μs/div  
-40 -20  
0
20  
40  
TEMPERATURE (°C)  
SHORT-CIRCUIT WAVEFORMS  
OVERVOLTAGE PROTECTION  
MAX8664 toc15  
MAX8664 toc14  
V
OUT1  
V
5V/div  
OUT1  
2V/div  
2A/div  
I
I
L1  
IN  
10A/div  
I
L1  
V
DH1  
10V/div  
10V/div  
5A/div  
5V/div  
V
DL1  
V
PRWGD  
10μs/div  
20μs/div  
_______________________________________________________________________________________  
5
Low-Cost, Dual-Output, Step-Down  
Controller with Fast Transient Response  
Pin Description  
PIN  
NꢀME  
FUNCTI N  
High-Side MOSFET Driver Output for Controller 1. Connect DH1 to the gate of the high-side MOSFET. DH1 is  
low in shutdown and UVLO.  
1
DH1  
External Inductor Connection for Controller 1. Connect LX1 to the switching node of the MOSFETs and  
inductor. Make sure LX1 is close to the source of the high-side MOSFET(s) to form a Kelvin connection for  
high-side current sensing. LX1 is high impedance during monotonic startup and shutdown.  
2
LX1  
MAX864  
Boost Capacitor Connection for the High-Side MOSFET Driver for Controller 1. Connect a 0.22µF ceramic  
capacitor from BST1 to LX1.  
3
4
BST1  
DL1  
Low-Side MOSFET Driver Output for Controller 1. Connect DL1 to the gate of the low-side MOSFET(s) for  
controller 1. DL1 is low in shutdown and UVLO.  
Low-Side Gate Drive Supply and Output of the 6.5V Linear Regulator. Connect a 4.7µF ceramic capacitor from  
5
VL  
VL to PGND. When using a 4.5V to 5.5V supply, connect VL to IN. VL is the input to the V  
load VL when IC is disabled.  
supply. Do not  
CC  
Power Ground. Connect to the power ground plane. Connect power and analog grounds at a single point near  
the output capacitor’s ground.  
6
7
8
PGND  
DL2  
Low-Side MOSFET Driver Output for Controller 2. Connect DL2 to the gate of the low-side MOSFET(s) for  
controller 2. DL2 is low in shutdown and UVLO.  
Boost Capacitor Connection for the High-Side MOSFET Driver for Controller 2. Connect a 0.22µF ceramic  
capacitor from BST2 to LX2.  
BST2  
External Inductor Connection for Controller 2. Connect LX2 to the switching node of the MOSFETs and  
inductor. Make sure LX2 is close to the source of the high-side MOSFET(s) to form a Kelvin connection for  
high-side current sensing. LX2 is high impedance during monotonic startup and shutdown.  
9
LX2  
High-Side MOSFET Driver Output for Controller 2. Connect DH2 to the gate of the high-side MOSFET(s) for  
controller 2. DH2 is low in shutdown and UVLO.  
10  
11  
DH2  
Current-Limit Set for Controller 2. Connect a resistor from the drain of the high-side MOSFET(s) to ILIM2. See  
the Setting the Overcurrent Threshold section.  
ILIM2  
Feedback Input for Controller 2. Connect FB2 to the center of a resistor-divider connected between the output  
12  
13  
FB2  
of controller 2 and GND to set the desired output voltage. V  
reference. To use the internal reference, connect REFIN2 to V  
regulates to V  
or the internal 0.6V  
FB2  
REFIN2  
.
CC  
External Reference Input for Controller 2. To use the internal 0.6V reference, connect REFIN2 to V . To use  
CC  
an external reference, connect REFIN2 through a resistor (> 1kΩ) to a reference voltage between 0V and  
1.3V. An RC lowpass filter is recommended when using an external reference and soft-start is not provided by  
the external reference. For tracking applications, connect REFIN2 to the center of a resistor voltage-divider  
between the output of controller 1 and GND (see Figure 3). Connect REFIN2 to GND to disable controller 2.  
REFIN2  
Switching Frequency Set Input. Connect a 22.6kΩ to 226kΩ resistor from OSC/EN12 to GND to set the  
switching frequency between 1000kHz and 100kHz. Connect a switch in series with this resistor for  
enable/shutdown control. When the switch is open, the IC enters low-power shutdown mode. In shutdown,  
OSC/EN12 is internally driven to approximately 800mV.  
14  
OSC/EN12  
Internal 6.5V Linear Regulator Input. Connect IN to a 7.2V to 28V supply, and connect a 0.47µF or larger  
ceramic capacitor from IN to PGND. When using a 4.5V to 5.5V supply, connect IN to VL.  
15  
16  
IN  
Analog Ground. Connect to the analog ground plane. Connect the analog and power ground planes at a  
single point near the output capacitor’s ground.  
GND  
6
_______________________________________________________________________________________  
Low-Cost, Dual-Output, Step-Down  
Controller with Fast Transient Response  
MAX864  
Pin Description (continued)  
PIN  
NꢀME  
FUNCTI N  
Internal Analog Supply. V  
regulates to 1.5V below V  
Connect a 1µF ceramic capacitor from V  
to GND.  
CC  
VL.  
CC  
17  
V
When using a 4.5V to 5.5V supply, connect a 10Ω resistor from V  
to IN. V  
is used to power the IC’s  
CC  
CC  
CC  
internal circuitry.  
Open-Drain Power-Good Output. PWRGD is high impedance when controllers 1 and 2 (using the internal  
reference) are in regulation. PWRGD is low if the outputs are out of regulation, if there is a fault condition, or if  
the IC is shut down. PWRGD does not reflect the status of output 2 in the MAX8664A or when REFIN2 is  
connected to an external reference in the MAX8664B.  
18  
PWRGD  
Feedback Input for Controller 1. Connect FB1 to the center of a resistor-divider connected between the output  
19  
20  
FB1  
of controller 1 and GND to set the desired output voltage. V  
regulates to 0.6V.  
FB1  
Current-Limit Set for Controller 1. Connect a resistor from the drain of the high-side MOSFET(s) to ILIM1. See  
the Setting the Overcurrent Threshold section.  
ILIM1  
_______________________________________________________________________________________  
7
Low-Cost, Dual-Output, Step-Down  
Controller with Fast Transient Response  
V
CC  
CURRENT-LIMIT  
COMPARATOR  
ILIM1  
BST1  
UVLO  
CIRCUITRY  
BIAS  
GENERATOR  
50μA  
BST CAP  
CHARGING SWITCH  
LX1  
THERMAL  
EN SHUTDOWN  
VOLTAGE  
REFERENCE  
MAX864  
REF  
REF  
DH1  
LX1  
EN  
SHUTDOWN  
CONTROL  
LOGIC  
SOFT-START 1  
CONTROL  
LOGIC  
SHUTDOWN 1  
SHUTDOWN 2  
DL1  
CLOCK 1 SHUTDOWN 1  
PGND  
VL  
FB1  
PWM  
COMPARATOR 1  
CURRENT-LIMIT  
COMPARATOR  
ILIM2  
0.6V  
BST2  
50μA  
BST CAP  
CHARGING SWITCH  
LX2  
S2  
PWM  
COMPARATOR 2  
FB2  
DH2  
LX2  
REF2  
S1  
CONTROL  
LOGIC  
ENABLE2  
REFIN2  
DL2  
SHUTDOWN 2  
CLOCK 2  
50mV  
SOFT-START  
CLOCK 1  
IF V  
> 2.0V  
REFIN2  
OPEN S1 AND CLOSE S2.  
OTHERWISE, CLOSE S1  
AND OPEN S2.  
OSC/EN12  
OSCILLATOR  
CLOCK 2  
ENABLE  
FB1  
THERMAL  
SHUTDOWN  
THERMAL  
SHUTDOWN  
4μA  
REF  
PWRGD  
REF1 - 0.1V  
IN  
VL  
6.5V LDO  
FB2  
REF2 - 0.1V  
1.5V  
GND  
V
CC  
Figure 1. Functional Diagram  
_______________________________________________________________________________________  
.
Low-Cost, Dual-Output, Step-Down  
Controller with Fast Transient Response  
MAX864  
Internal Linear Regulators  
Detailed Description  
The internal VL low-dropout linear regulator of the  
The MAX8664 dual-output PWM controller is a low-cost  
MAX8664A and MAX8664B provides the 6.5V supply  
used for the gate drive. Connect a 4.7µF ceramic  
capacitor from VL to PGND. When using a 4.5V to 5.5V  
input supply, connect VL directly to IN.  
solution for dual power-supply systems. It provides two  
individual outputs that operate 180° out-of-phase to  
minimize input capacitance requirements. Built-in dri-  
vers are capable of driving external MOSFETs to deliv-  
er up to 25A of current from each output. The MAX8664  
operates from a 4.5V to a 5.5V or a 7.2V to 28V input  
and generates output voltages from 0.6V up to 90% of  
the input voltage on each channel. Total output error is  
less than 0.8% over load, line, and temperature.  
The 5V supply used to power IC functions (V ) is gen-  
CC  
erated by an internal 1.5V shunt regulator from VL.  
Connect a 2.2µF ceramic capacitor from V  
to GND.  
CC  
When using a 4.5V to 5.5V input supply, connect V  
CC  
to IN through a 10Ω resistor.  
The MAX8664 operates with a constant switching fre-  
quency adjustable from 100kHz to 1MHz. Built-in boost  
diodes reduce external component count. Digital soft-  
start eliminates input inrush current during startup. The  
second output has an optional REFIN2 input that takes  
an external reference voltage, facilitating tracking supply  
applications. Each output is capable of sourcing and  
sinking current. Internal 6.5V and 5V linear regulators  
provide power for gate drive and internal IC functions.  
The MAX8664 has built-in protection against output over-  
voltage, overcurrent, and thermal faults. The MAX8664B  
latches off both controllers during a fault condition, while  
the MAX8664A allows one controller to continue to func-  
tion when there is a fault in the other controller.  
High-Side Gate-Drive Supply (BST_)  
The gate-drive voltage for the high-side MOSFETs is  
generated using a flying capacitor boost circuit. The  
capacitor between BST_ and LX_ is charged to the VL  
voltage through the integrated BST_ diode during the  
low-side MOSFET on-time. When the low-side MOSFET  
is switched off, the BST_ voltage is shifted above the  
LX_ voltage to provide the necessary turn-on voltage  
(V ) for the high-side MOSFET. The controller closes  
GS  
a switch between BST_ and DH_ to turn the high-side  
MOSFET on.  
Voltage Reference  
An internal 0.6V reference sets the feedback regulation  
voltage. Controller 1 always uses the internal reference.  
An external reference input is provided for controller 2.  
To use the external reference, connect a 0 to 1.3V sup-  
ply to REFIN2. This facilitates tracking applications. To  
use the internal 0.6V reference for controller 2, connect  
The MAX8664 employs Maxim’s proprietary peak-volt-  
age mode control architecture that provides superior  
transient response during either load or line transients.  
This architecture is easily stabilized using two resistors  
and one capacitor for any type of output capacitors.  
Fast transient response requires less output capaci-  
tance, consequently reducing total system cost.  
REFIN2 to V  
.
CC  
Undervoltage Lockout (UVLO)  
supply voltage drops below the UVLO  
When the V  
CC  
DC-DC Controller Architecture  
The peak-voltage mode PWM control scheme ensures  
stable operation, simple compensation for any output  
capacitor, and fast transient response. An on-chip inte-  
grator removes any DC error due to the ripple voltage.  
This control scheme is simple: when the output voltage  
falls below the regulation threshold, the error compara-  
tor begins a switching cycle by turning on the high-side  
switch at the rising edge of the following clock cycle.  
This switch remains on until the minimum on-time  
expires and the output voltage is in regulation or the  
current-limit threshold is exceeded. At this point, the  
low-side synchronous rectifier turns on and remains on  
until the rising edge of the first clock cycle after the out-  
put voltage falls below the regulation threshold.  
threshold (3.15V falling typ), the undervoltage lockout  
(UVLO) circuitry inhibits the switching of both con-  
trollers, and forces the DL and DH gate drivers low.  
When V  
rises above the UVLO threshold (3.5V rising  
CC  
typ), the controllers begin the startup sequence and  
resume normal operation.  
Output Overcurrent Protection  
When the MAX8664 detects an overcurrent condition,  
DH is immediately pulled low. If the overcurrent condition  
persists for four consecutive cycles, the controller latch-  
es off and both DH_ and DL_ are pulled low. During soft-  
start, when FB_ is less than 300mV, the controller latches  
off on the first overcurrent condition. The protection cir-  
cuit detects an overcurrent condition by sensing the  
drain-source voltage across the high-side MOSFET(s).  
_______________________________________________________________________________________  
9
Low-Cost, Dual-Output, Step-Down  
Controller with Fast Transient Response  
The threshold that trips overcurrent protection is set by a  
resistor connected from ILIM_ to the drain of the high-  
side MOSFET(s). ILIM_ sinks 50µA (typ) through this  
resistor. When the drain-source voltage exceeds the volt-  
age drop across this resistor during the high-side  
MOSFET(s) on-time, an overcurrent fault is triggered. To  
prevent glitches from falsely tripping the overcurrent pro-  
tection, connect a filter capacitor (0.01µF typically) in  
parallel with the overcurrent-setting resistor.  
Power-Good Output (PWRGD)  
PWRGD is an open-drain output that is pulled low when  
the output voltage rises above the PWRGD upper  
threshold or falls below the PWRGD falling threshold.  
PWRGD is held low in shutdown, when V  
is below the  
CC  
UVLO threshold, during soft-start, and during fault con-  
ditions. PWRGD does not reflect the status of controller  
2 in the MAX8664A, or when REFIN2 is connected to an  
external reference with either version. See Table 1 for  
PWRGD operation of the circuits of Figures 2–5 during  
fault conditions. For logic-level output voltages, con-  
nect an external pullup resistor between PWRGD and  
the logic power supply. A 100kΩ resistor works well in  
most applications.  
MAX864  
Output Overvoltage Protection (OVP)  
During an overvoltage event on one or both of its out-  
puts, the MAX8664 latches off the controller. This  
occurs when the feedback voltage exceeds its normal  
regulation voltage by 150mV for 10µs. In this state, the  
low-side MOSFET(s) are on and the high-side MOS-  
FET(s) are off to discharge the output. To clear the  
latch, cycle EN or the input power.  
Fault-Shutdown Modes  
When an overvoltage or overcurrent fault occurs on one  
controller of the MAX8664A, the second controller con-  
tinues to operate. With the MAX8664B, a fault in one  
controller latches off both controllers automatically, and  
PWRGD is pulled low. See Table 1 for the fault-shut-  
down modes of the circuits shown in Figures 2–5.  
Thermal-Overload Protection  
Thermal-overload protection limits total power dissipa-  
tion in the MAX8664. When the junction temperature  
exceeds +160°C, an internal thermal sensor shuts down  
the device, pulling DH_ and DL_ low for both controllers.  
To restart the controller, cycle EN or input power.  
Trblv 10%FrOlu%ShOuaLwꢄ%MLavs%fLꢁ%CꢅꢁAOꢅus%Lf%FꢅgOꢁvs%2–5  
MꢀX.664ꢀ%(INDEPENDENT)  
CIRCUIT  
MꢀX.664B%(J INT)  
C NTR ꢃꢃER%1%FꢀUꢃT C NTR ꢃꢃER%2%FꢀUꢃT C NTR ꢃꢃER%1%FꢀUꢃT  
C NTR ꢃꢃER%2%FꢀUꢃT  
Figure 2,  
Figure 5  
(Independent)  
Controller 2 remains on.  
PWRGD is pulled low.  
Controller 1 remains on.  
PWRGD remains high.  
Controller 2 is shut down.  
PWRGD is pulled low.  
Controller 1 is shut down.  
PWRGD is pulled low.  
Figure 3  
(Tracking)  
Controller 2 shuts down.  
PWRGD is pulled low.  
Controller 1 remains on.  
PWRGD remains high.  
Controller 2 is shut down.  
PWRGD is pulled low.  
Controller 1 is shut down.  
PWRGD is pulled low.  
Figure 4  
(Sequenced)  
Controller 2 shuts down.  
PWRGD is pulled low.  
Controller 1 remains on.  
PWRGD remains high.  
Controller 2 is shut down.  
PWRGD is pulled low.  
Controller 1 is shut down.  
PWRGD is pulled low.  
 ______________________________________________________________________________________  
Low-Cost, Dual-Output, Step-Down  
Controller with Fast Transient Response  
MAX864  
C19  
0.01μF  
C20  
10μF  
C1  
10μF  
C4  
1000μF  
R1  
2.7kΩ  
INPUT  
10.8V TO 13.2V  
ILIM1  
DH1  
FB1  
IN  
N1  
N2  
C5  
1500pF  
R3  
51.1kΩ  
C17  
1μF  
R4  
R5  
3.92kΩ  
1.15kΩ  
OUT1  
LX1  
V
CC  
2.5V/8A  
C18  
1μF  
C13  
0.22μF  
REFIN2  
VL  
L1  
1μH  
C6  
47μF  
C7  
47μF  
C8  
47μF  
C23  
0.1μF  
BST1  
DL1  
R37  
3Ω  
C14  
4.7μF  
C25  
680pF  
MAX8664  
PGND  
GND  
C16  
0.01μF  
VCC  
C21  
10μF  
C3  
10μF  
R9  
10kΩ  
ILIM2  
POWER-GOOD  
TO SYSTEM  
R2  
3.01kΩ  
N3  
PWRGD  
DH2  
LX2  
R10  
39.2kΩ  
L2  
1μH  
OUT2  
1.8V/8A  
OSC/EN12  
C15  
0.22μF  
ENABLE  
ON  
OFF  
N9  
2N7002  
C12  
1500μF  
C9  
47μF  
C10  
47μF  
C11  
47μF  
C22  
0.1μF  
R6  
51.1kΩ  
BST2  
DL2  
FB2  
R7  
3.92kΩ  
R38  
3Ω  
N4  
C27  
0.47μF  
C26  
680pF  
R8  
1.82kΩ  
Figure 2. Low-Cost, 600kHz Typical Application Circuit  
______________________________________________________________________________________ 11  
Low-Cost, Dual-Output, Step-Down  
Controller with Fast Transient Response  
Trblv 20%CLmtLꢄvꢄu%ꢃꢅsu%fLꢁ%FꢅgOꢁv 2  
DESIGNꢀTI N QTY  
DESCRIPTI N  
DESIGNꢀTI N QTY  
DESCRIPTI N  
680pF, 50V C0G ceramic capacitors  
(0603)  
C1, C3,  
4
10µF 20%, 16V X5R ceramic  
capacitors (1206)  
C25, C26  
C27  
2
1
2
4
1
C20, C21  
0.47µF 10%, 16V ceramic  
capacitor (0603)  
1000µF 20%, 16V electrolytic  
capacitor (8mm diameter,  
20mm height)  
C4  
1
1µH inductors  
TOKO FDV0630-1R0M  
L1, L2  
N1–N4  
N9  
MAX864  
1500pF, 50V C0G ceramic  
capacitors (0603)  
C5, C12  
C6–C11  
C13, C15  
C14  
2
6
2
1
2
1
1
2
n-channel MOSFETs (8-pin SO)  
International Rectifier IRF7821  
47µF 20%, 6.3V X5R ceramic  
capacitors (1206)  
n-channel MOSFET (SOT23)  
Central 2N7002  
0.22µF 10%, 25V X7R ceramic  
capacitors (0603)  
R1  
R2  
1
1
2
2
1
1
1
1
2
1
2.74kΩ 1% resistor (0603)  
301kΩ 1% resistor (0603)  
51.1kΩ 1% resistors (0603)  
3.92kΩ 1% resistors (0603)  
1.15kΩ 1% resistor (0603)  
1.82kΩ 1% resistor (0603)  
10kΩ 5% resistor (0603)  
39.2kΩ 1% resistor (0603)  
3Ω 5% resistors (0805)  
4.7µF 10%, 6.3V X5R ceramic  
capacitor (0805)  
R3, R6  
R4, R7  
R5  
0.01µF 10%, 50V X7R ceramic  
capacitors (0603)  
C16, C19  
C17  
1µF 20%, 16V X5R ceramic  
capacitor (0603)  
R8  
R9  
1µF 20%, 6.3V X5R ceramic  
capacitor (0603)  
R10  
C18  
R37, R38  
U1  
0.1µF 20%, 16V X7R ceramic  
capacitors (0603)  
MAX8664 (20-pin QSOP)  
C22, C23  
12 ______________________________________________________________________________________  
Low-Cost, Dual-Output, Step-Down  
Controller with Fast Transient Response  
MAX864  
C1  
0.01μF  
C2  
C3  
C4  
10μF  
10μF  
1000μF  
R1  
3.16kΩ  
ILIM1  
DH1  
FB1  
IN  
INPUT  
10V TO 14V  
N1  
N2  
R3  
10kΩ  
R4  
3.57kΩ  
C8  
0.015μF  
C5  
1μF  
R2  
24.3kΩ  
V
CC  
C6  
1μF  
LX1  
OUT1  
1.8V/20A  
L1  
0.56μH  
R6  
1kΩ  
OUT1  
C7  
0.22μF  
REFIN2  
VL  
C11  
10μF  
C9  
470μF  
C10  
470μF  
R5  
3Ω  
BST1  
C12  
1000pF  
C13  
4.7μF  
R7  
1kΩ  
N3  
N4  
C14  
2200pF  
MAX8664 DL1  
GND  
VCC  
PGND  
C15  
0.01μF  
R9  
10kΩ  
C16  
10μF  
C17  
10μF  
R8  
2.74kΩ  
POWER-GOOD  
TO SYSTEM  
PWRGD  
ILIM2  
DH2  
R10  
44.2kΩ  
N5  
OSC/EN12  
L2  
0.47μH  
OUT2  
0.9V/6A  
LX2  
ENABLE  
ON  
N7  
2N7002  
C18  
0.22μF  
C19  
4700pF  
C20  
680μF  
C21  
680μF  
C22  
10μF  
R11  
14.7kΩ  
R12  
2Ω  
OFF  
BST2  
DL2  
N6  
C23  
2200pF  
FB2  
R13  
10kΩ  
Figure 3. 500kHz Tracking Circuit for DDR2 Applications  
______________________________________________________________________________________ 13  
Low-Cost, Dual-Output, Step-Down  
Controller with Fast Transient Response  
Trblv 30%CLmtLꢄvꢄu%ꢃꢅsu%fLꢁ%FꢅgOꢁv 3  
DESIGNꢀTI N  
QTY  
DESCRIPTI N  
DESIGNꢀTI N  
QTY  
DESCRIPTI N  
0.47µH, 1.2mΩ inductor  
TOKO FDV0603-R47M  
0.01µF, 10V X7R ceramic  
capacitors  
L2  
1
C1, C15  
2
4
n-channel MOSFETs  
IRLR7821 (D-Pak)  
C2, C3, C16, C17  
10µF, 16V X5R ceramic capacitors  
N1, N2  
N3, N4  
N5  
2
2
1
1
1
1000µF/16V aluminum electrolytic  
capacitor  
Rubycon 16MBZ1000M  
n-channel MOSFETs  
IRLR3907Z (D-Pak)  
C4  
1
MAX864  
n-channel MOSFET  
IRF7807Z (8-pin SO)  
C5  
C6  
1
1
1µF, 16V X5R ceramic capacitor  
1µF, 10V X5R ceramic capacitor  
n-channel MOSFET  
IRF7821 (8-pin SO)  
N6  
0.22µF, 10V X7R ceramic  
capacitors  
C7, C18  
C8  
2
1
n-channel MOSFET  
2N7002 (SOT23)  
N7  
0.015µF, 10V X7R ceramic  
capacitor  
R1  
R2  
1
1
2
1
1
2
1
1
1
1
1
3.16kΩ 1% resistor (0402 or 0603)  
24.3kΩ 1% resistor (0402 or 0603)  
10kΩ 1% resistors (0402 or 0603)  
3.57kΩ 5% resistor (0402 or 0603)  
3.0Ω 5% resistor (0603)  
470µF, 2.5V POS capacitors  
Sanyo 2R5TPD470M6  
C9, C10  
C11, C22  
C12  
2
2
1
R3, R13  
R4  
10µF, 6.3V X5R ceramic capacitors  
1000pF, 10V X7R ceramic  
capacitor  
R5  
R6, R7  
R8  
1kΩ 1% resistors (0402 or 0603)  
2.74kΩ 1% resistor (0402 or 0603)  
10kΩ 5% resistor (0402 or 0603)  
44.2kΩ 1% resistor (0402 or 0603)  
14.7kΩ 1% resistor (0402 or 0603)  
2.0Ω 5% resistor (0402 or 0603)  
C13  
C14, C23  
C19  
1
2
1
4.7µF, 10V X5R ceramic capacitor  
2200pF, 25V X7R capacitors  
4700pF, 10V X7R capacitor  
R9  
R10  
R11  
R12  
680µF, 2.5V POS capacitors  
Sanyo 2R5TPD680M6  
C20, C21  
L1  
2
1
0.56µH, 4.6mΩ inductor  
Panasonic ETQP4LR56WFL  
14 ______________________________________________________________________________________  
Low-Cost, Dual-Output, Step-Down  
Controller with Fast Transient Response  
MAX864  
C1  
0.01μF  
C2  
1μF  
C3  
10μF  
C4  
10μF  
R1  
3.32kΩ  
N1  
IRF7821  
ILIM1  
DH1  
LX1  
FB1  
5V  
IN  
C8  
820pF  
R2  
17.4kΩ  
C5  
1μF  
VL  
R3  
R4  
C6  
4.7μF  
10kΩ  
3.16kΩ  
L1  
OUT1  
1.8V/10A  
R5  
10Ω  
0.6V  
EXT REF  
0.2μH  
C7  
0.22μF  
V
MAX8664  
C9  
47μF  
C10  
47μF  
C11  
0.1μF  
CC  
C12  
1μF  
BST1  
N2  
VCC  
R6  
2Ω  
R7  
10kΩ  
IRF7821  
DL1  
REFIN2  
GND  
C13  
2200pF  
C14  
0.01μF  
R8  
10kΩ  
PGND  
C15  
0.01μF  
N5  
INPUT  
2.97V TO 3.63V  
2N7002  
ILIM2  
Q1  
CMST3904  
VCC  
R9  
47kΩ  
C16  
1μF  
C17  
10μF  
C18  
10μF  
R11  
3.32kΩ  
R10  
10kΩ  
DH2  
LX2  
POWER-GOOD  
TO SYSTEM  
N3  
IRF7821  
PWRGD  
R12  
L2  
0.2μH  
OUT2  
1.2V/10A  
22.6kΩ  
OSC/EN12  
BST2  
DL2  
C19  
0.22μF  
C21  
820pF  
C22  
47μF  
C23  
47μF  
C24  
0.1μF  
R14  
R13  
2Ω  
17.4kΩ  
FB2  
N4  
IRF7821  
R15  
10kΩ  
C20  
2200pF  
R16  
6.34kΩ  
Figure 4. 1MHz Application Circuit with All Ceramic Capacitors and Sequenced Outputs  
______________________________________________________________________________________ 15  
Low-Cost, Dual-Output, Step-Down  
Controller with Fast Transient Response  
Trblv 40%CLmtLꢄvꢄu%ꢃꢅsu%fLꢁ%FꢅgOꢁv 4  
DESIGNꢀTI N  
QTY  
DESCRIPTI N  
DESIGNꢀTI N  
C1, C14, C15  
C2, C16  
QTY  
DESCRIPTI N  
0.2µH, 2.4mΩ inductors  
TOKO FDV0603-R20M  
0.01µF, 10V X7R ceramic  
capacitors  
L1, L2  
2
2
2
4
1µF, 6.3V X5R ceramic capacitors  
n-channel MOSFETs  
IRF7821 (8-pin SO)  
N1–N4  
N5  
4
1
1
10µF, 6.3V X5R ceramic  
capacitors  
C3, C4, C17, C18  
n-channel MOSFET  
2N7002 (SOT23)  
MAX864  
C5, C12  
C6  
2
1
1µF, 10V X5R ceramic capacitors  
4.7µF, 10V X5R ceramic capacitor  
Transistor, bipolar, npn  
Central CMST3904  
Q1  
0.22µF, 10V X7R ceramic  
capacitors  
C7, C19  
C8, C21  
2
2
4
2
2
R1, R11  
R2, R14  
R3, R15  
R4  
2
2
2
1
1
2
3
1
1
1
3.32kΩ 1% resistors (0402 or 0603)  
17.4kΩ 1% resistors (0402 or 0603)  
10kΩ 1% resistors (0402 or 0603)  
3.16kΩ 1% resistor (0402 or 0603)  
10.0Ω 5% resistor (0402 or 0603)  
2.0Ω 5% resistors (0603)  
820pF,10V X7R ceramic  
capacitors  
47µF, 6.3V X5R ceramic  
capacitors  
C9, C10, C22, C23  
C11, C24  
R5  
R6, R13  
R7, R8, R10  
R9  
0.1µF, 10V X7R ceramic  
capacitors  
10kΩ 5% resistors (0402 or 0603)  
47kΩ 5% resistor (0402 or 0603)  
22.6kΩ 1% resistor (0402 or 0603)  
6.34kΩ 1% resistor (0402 or 0603)  
2200pF, 25V X7R ceramic  
capacitors  
C13, C20  
R12  
R16  
16 ______________________________________________________________________________________  
Low-Cost, Dual-Output, Step-Down  
Controller with Fast Transient Response  
MAX864  
C1  
0.01μF  
C2  
10μF  
C3  
10μF  
C4  
OPEN  
R1  
2.87kΩ  
FB1  
IN  
ILIM1  
DH1  
N1  
INPUT  
7.2V TO 20V  
C8  
4700pF  
R2  
40.2kΩ  
R3  
10kΩ  
R4  
5.36kΩ  
C5  
1μF  
LX1  
L1  
1.43μH  
C7  
0.22μF  
OUT1  
1.5V/10A  
BST1  
V
CC  
C6  
1μF  
C9  
470μF  
C10  
10μF  
N2  
R5  
2Ω  
DL1  
MAX8664  
REFIN2  
VL  
C11  
1000pF  
C12  
4.7μF  
PGND  
C13  
0.01μF  
GND  
C14  
10μF  
C15  
10μF  
ILIM2  
N3  
R6  
2.26kΩ  
VCC  
DH2  
LX2  
R7  
10kΩ  
L2  
1.43μH  
POWER-GOOD  
TO SYSTEM  
OUT2  
1.05V/8A  
C16  
0.22μF  
PWRGD  
R9  
25.5kΩ 4700pF  
C17  
C18  
470μF  
C19  
10μF  
BST2  
DL2  
R10  
2Ω  
R8  
75kΩ  
N4  
OSC/EN12  
FB2  
R11  
10kΩ  
C20  
1000pF  
N5  
2N7002  
ENABLE  
R12  
9.53kΩ  
Figure 5. 300kHz Circuit with 7.2V to 20V Input  
______________________________________________________________________________________ 17  
Low-Cost, Dual-Output, Step-Down  
Controller with Fast Transient Response  
Trblv 50%CLmtLꢄvꢄu%ꢃꢅsu%fLꢁ%FꢅgOꢁv 5  
DESIGNꢀTI N  
QTY  
DESCRIPTI N  
DESIGNꢀTI N  
QTY  
DESCRIPTI N  
0.01µF, 10V X7R ceramic  
capacitors  
1.43µH, 4.52mΩ inductors  
Panasonic ETQP3H1E4BFA  
C1, C13  
2
L1, L2  
2
C2, C3, C14, C15  
4
1
1
10µF, 25V X5R ceramic capacitors  
1µF, 25V X5R ceramic capacitor  
1µF, 10V X5R ceramic capacitor  
n-channel MOSFETs  
IRF7821 (8-pin SOs)  
N1–N4  
N5  
4
1
C5  
C6  
n-channel MOSFET  
2N7002 (SOT23)  
MAX864  
0.22µF, 10V X7R ceramic  
capacitors  
C7, C16  
C8, C17  
2
2
R1  
R2  
1
1
2
1
2
1
1
1
1
1
2.87kΩ 1% resistor (0402 or 0603)  
40.2kΩ 1% resistor (0402 or 0603)  
10kΩ 1% resistors (0402 or 0603)  
5.36kΩ 1% resistor (0402 or 0603)  
2.0Ω 5% resistors (1206)  
4700pF, 10V X7R ceramic  
capacitors  
R3, R11  
R4  
470µF/2.5V POSCAP capacitors  
Sanyo 2R5TPD470M6  
C9, C18  
C10, C19  
C11, C20  
C12  
2
2
2
1
R5, R10  
R6  
10µF, 6.3V X5R ceramic capacitors  
2.26kΩ 1% resistor (0402 or 0603)  
10kΩ 5% resistor (0402 or 0603)  
75kΩ 1% resistor (0402 or 0603)  
25.5kΩ 1% resistor (0402 or 0603)  
9.53kΩ 1% resistor (0402 or 0603)  
1000pF, 25V X7R ceramic  
capacitors  
R7  
R8  
4.7µF, 10V X5R ceramic capacitor  
R9  
R12  
For tracking applications, connect REFIN2 to the center  
of a resistive voltage-divider between the output of con-  
troller 1 and GND. See Figure 6b. In this application,  
the output of regulator 2 tracks the output voltage of  
controller 1. The voltage-divider resistors set the  
Power-Up and Sequencing  
The MAX8664 features an OSC/EN12 input that is used  
both for setting the switching frequency and as an  
enable input for both controllers. A resistor from  
OSC/EN12 to GND sets the switching frequency, and  
when OSC/EN12 is high impedance, both controllers  
enter low-power shutdown mode. This is easily  
achieved with a transistor between the resistor and  
GND. Figure 6a shows the startup configuration with  
V
/V  
ratio. A typical tracking application is for  
OUT2 OUT1  
the VTT supply of DDR memory.  
Figure 6c shows one method of sequencing the out-  
puts. Output 1 rises first. When PWRGD goes high, the  
transistors allow the external reference to drive REFIN2  
and output 2 rises. The circuit in Figure 6d functions  
similarly, except the enable signal is supplied externally  
instead of being driven by the PWRGD signal.  
independent outputs. With REFIN2 connected to V  
both controllers use the internal reference.  
,
CC  
CHIP  
ENABLE  
V
CC  
V
OUT1  
REFIN2  
V
OUT2  
MAX8664  
ON  
OSC/EN12  
OFF  
PWRGD  
CHIP  
ENABLE  
Figure 6a. Two Independent Output Startup and Shutdown Waveforms  
1. ______________________________________________________________________________________  
Low-Cost, Dual-Output, Step-Down  
Controller with Fast Transient Response  
MAX864  
V
OUT1  
CHIP  
ENABLE  
REFIN2  
V
V
OUT1  
MAX8664  
OUT2  
ON  
OSC/EN12  
OFF  
PWRGD  
CHIP  
ENABLE  
Figure 6b. Ratiometric Tracking Startup and Shutdown Waveforms  
V
CC  
EXTERNAL  
REF  
CHIP  
ENABLE  
PWRGD  
REFIN2  
V
V
OUT1  
MAX8664  
OUT2  
ON  
OSC/EN12  
OFF  
PWRGD  
CHIP  
ENABLE  
Figure 6c. Sequencing Startup and Shutdown Waveforms  
______________________________________________________________________________________ 19  
Low-Cost, Dual-Output, Step-Down  
Controller with Fast Transient Response  
EXTERNAL  
REF  
V
CC  
CHIP  
ENABLE  
OUT2  
ENABLE  
REFIN2  
MAX864  
ON  
OFF  
V
OUT1  
OUT2  
ENABLE  
MAX8664  
V
OUT2  
ON  
OSC/EN12  
OFF  
PWRGD  
CHIP  
ENABLE  
Figure 6d. Sequencing Startup and Shutdown Waveforms with System Enable 2 Signal  
inductor value is not critical and can be adjusted to make  
trade-offs among size, cost, and efficiency. Lower induc-  
tor values minimize size and cost, but they also increase  
the output ripple and reduce the efficiency due to higher  
peak currents. On the other hand, higher inductor values  
increase efficiency, but eventually resistive losses due to  
extra turns of wire exceed the benefit gained from lower  
AC current levels. This is especially true if the inductance  
is increased without also increasing the physical size of  
the inductor. Find a low-loss inductor having the lowest  
possible DC resistance that fits the allotted dimensions.  
The chosen inductor’s saturation current rating must  
exceed the peak inductor current determined as:  
Design Procedure  
Setting the Switching Frequency  
Connect a resistor from OSC/EN12 to GND to set the  
switching frequency between 100kHz and 1000kHz.  
Calculate the resistor value (R10 in Figures 2–5) as follows:  
10  
2.24 ×10 (Hz)  
R10 =  
(Ω)  
f
S
Inductor Selection  
There are several parameters that must be examined  
when determining which inductor is to be used. Input  
voltage, output voltage, load current, switching fre-  
quency, and LIR. LIR is the ratio of inductor-current rip-  
LIR  
I
=I  
+
×I  
LOAD(MAX)  
PEAK LOAD(MAX)  
2
ple to maximum DC load current (I  
). A higher  
LOAD(MAX)  
LIR value allows for a smaller inductor, but results in  
higher losses and higher output ripple. A good compro-  
mise between size and efficiency is an LIR of 0.3. Once  
all the parameters are chosen, the inductor value is  
determined as follows:  
Output Capacitor  
The key selection parameters for the output capacitor  
are the actual capacitance value, the equivalent series  
resistance (ESR), the equivalent series inductance  
(ESL), and the voltage-rating requirements. These  
parameters affect the overall stability, output voltage  
ripple, and transient response. The output ripple has  
three components: variations in the charge stored in  
the output capacitor, the voltage drop across the  
capacitor’s ESR, and ESL caused by the current into  
and out of the capacitor. The maximum output voltage  
ripple is estimated as follows:  
V
×(V V  
)
OUT  
IN  
×LIR  
LOAD(MAX)  
OUT  
L =  
V
× f ×I  
IN  
S
where f is the switching frequency. Choose a standard  
S
value inductor close to the calculated value. The exact  
 ______________________________________________________________________________________  
Low-Cost, Dual-Output, Step-Down  
Controller with Fast Transient Response  
MAX864  
V
= V  
+ V  
+ V  
RIPPLE  
RIPPLE(ESR)  
RIPPLE(C) RIPPLE(ESL)  
output voltage instantly changes by ESR x ΔI  
.
LOAD  
Before the controller can respond, the output voltage  
deviates further depending on the inductor and output  
capacitor values. After a short period of time (see the  
Typical Operating Characteristics), the controller  
responds by regulating the output voltage back to its  
nominal state. The controller response time depends on  
its closed-loop bandwidth. With a higher bandwidth,  
the response time is faster, thus preventing the output  
voltage from further deviation from its regulating value.  
The output voltage ripple as a consequence of the  
ESR, ESL, and output capacitance is:  
V
=I  
×ESR  
RIPPLE(ESR) PP  
V
IN  
V
=
×ESL  
RIPPLE(ESL)  
L +ESL  
I
PP  
V
=
RIPPLE(C)  
8×C  
× f  
S
OUT  
Setting the Output Voltages and Voltage  
Positioning  
where I  
is the peak-to-peak inductor current:  
Figure 7 shows the feedback network used on the  
MAX8664. With this configuration, a portion of the feed-  
back signal is sensed on the switched side of the  
inductor (LX), and the output voltage droops slightly as  
the load current is increased due to the DC resistance  
of the inductor (DCR). This allows the load regulation to  
be set to match the voltage droop during a load tran-  
sient (voltage positioning), reducing the peak-to-peak  
output voltage deviation during a load transient, and  
reducing the output capacitance requirements.  
P-P  
V
IN  
V  
V
OUT  
OUT  
I
=
×
PP  
f ×L  
S
V
IN  
These equations are suitable for initial capacitor selec-  
tion, but final values should be chosen based on a pro-  
totype or evaluation circuit. As a general rule, a smaller  
ripple current results in less output-voltage ripple. Since  
the inductor ripple current is a factor of the inductor  
value and input voltage, the output-voltage ripple  
decreases with larger inductance, and increases with  
higher input voltages. Ceramic, tantalum, or aluminum  
polymer electrolytic capacitors are recommended. The  
aluminum electrolytic capacitor is the least expensive;  
however, it has higher ESR and ESL. To compensate for  
this, use a ceramic capacitor in parallel to reduce the  
switching ripple and noise. For reliable and safe opera-  
tion, ensure that the capacitor’s voltage and ripple-cur-  
rent ratings exceed the calculated values.  
To set the magnitude of the voltage positioning, select  
a value for R2 in the 8kΩ to 24kΩ range, then calculate  
the value of R1 as follows:  
I
×DCR  
OUT(MAX)  
R1=R2×  
1  
ΔV  
OUT(MAX)  
where I  
is the maximum output current and  
OUT(MAX)  
Δ V  
is the maximum allowable droop in the  
OUT(MAX)  
output voltage at full load.  
The response to a load transient depends on the  
selected output capacitors. After a load transient, the  
L
DCR  
LX_  
OUT  
R
LOAD  
ESR  
R1  
Cr  
R2  
R3  
C
OUT  
FB_  
Figure 7. Feedback Network  
______________________________________________________________________________________ 21  
Low-Cost, Dual-Output, Step-Down  
Controller with Fast Transient Response  
To set the no-load output voltage (V  
value of R3 as follows:  
), calculate the  
Finally, calculate the value of Cr as follows:  
OUT  
V
OUT  
V
IN  
V  
OUT  
(
V
IN  
)
V
R1 × R2  
R1 + R2  
FB  
Cr =  
R3 =  
R1× f ×| V  
V  
|
(
)
S
FB_RIPPLE  
OUT_RIPPLE  
V
V  
OUT  
FB  
where V  
is the feedback regulation voltage (0.6V  
MOSFET Selection  
FB  
when using the internal reference or V  
for exter-  
Each output of the MAX8664 is capable of driving two to  
four external, logic-level, n-channel MOSFETs as the cir-  
cuit switch elements. The key selection parameters are:  
REFIN2  
nal reference). If the desired output voltage is equal to  
the reference voltage (typical for tracking applications),  
R3 is not installed.  
MAX864  
On-resistance (R  
)—the lower, the better.  
DS(ON)  
To achieve the lowest possible load regulation in appli-  
cations where voltage positioning is not desired, R1 is  
not installed and R3 is calculated as follows:  
Maximum Drain-to-Source Voltage (V  
)—should  
DSS  
be at least 20% higher than the input supply rail at  
the high-side MOSFET’s drain.  
Gate charges (Q , Q , Q )— the lower, the better.  
g gd gs  
V
FB  
V  
FB  
R3 =  
×R2  
For a 5V input application, choose MOSFETs with rated  
at V 4.5V. With higher input voltages, the  
V
OUT  
R
DS(ON)  
GS  
internal VL regulator provides 6.5V for gate drive in  
order to minimize the on-resistance for a wide range of  
MOSFETs.  
Compensation  
To ensure stable operation, connect a compensation  
capacitor (Cr) across the upper feedback resistor as  
shown in Figure 7. To find the value of this capacitor,  
follow the compensation design procedure below.  
For a good compromise between efficiency and cost,  
choose the high-side MOSFETs that have conduction  
losses equal to switching losses at nominal input voltage  
Choose a closed-loop bandwidth (f ) that is less than  
C
and output current. Low R  
is preferred for low-  
DS(ON)  
1/3 the switching frequency (f ). Calculate the output  
S
side MOSFETs. Make sure that the low-side MOSFET(s)  
does not spuriously turn on due to dV/dt caused by the  
high-side MOSFET(s) turning on, as this would result in  
shoot-through current and degrade the efficiency.  
double pole (f ) as follows:  
O
1
f
O
=
R
R
+ESR  
+DCR  
LOAD  
MOSFETs with a lower Q  
/ Q ratio have higher  
gs  
gd  
2π L ×C  
×
OUT  
LOAD  
immunity to dV/dt. For high-current applications, it is  
often preferable to parallel two MOSFETs rather than to  
use a single large MOSFET.  
The FB peak-to-peak voltage ripple is:  
For proper thermal management, the power dissipation  
must be calculated at the desired maximum operating  
junction temperature, maximum output current, and  
worst-case input voltage. For the-low side MOSFET(s),  
the worst-case power dissipation occurs at the highest  
R2  
R1  
1+  
V
OUT  
V
=
×
FB_RIPPLE  
R2 R2  
DCR ⎞  
f
C
f
O
1+  
+
1+  
×
R3 R1  
R
LOAD  
duty cycle (V  
). The low-side MOSFET(s) operate  
IN(MAX)  
The output ripple voltage due to the ESR of the output  
as zero voltage switches; therefore, major losses are  
capacitor, C  
is:  
OUT,  
the channel conduction loss (P  
) and the body  
LSCC  
diode conduction loss (P  
):  
LSDC  
V
OUT  
V
V  
OUT  
(
)
IN  
V
V
OUT  
2
IN  
V
=
×
P
= 1−  
×I  
×R  
OUT_RIPPLE  
LSCC(MAX)  
DS(ON)  
LOAD(MAX)  
L × f  
V
S
IN(MAX) ⎠  
1
ESR+  
Use R  
at T  
:
J(MAX)  
DS(ON)  
8×C × f  
O
S
P
= 2 x I  
V x t x f  
LSDC(MAX)  
LOAD(MAX) F DT S  
Target the feedback ripple in the 25mV to 60mV range.  
For high duty-cycle applications (> 70%), a feedback  
ripple of 25mV is recommended.  
where V is the body diode forward-voltage drop, t is the  
F
DT  
dead time between high-side and low-side switching tran-  
sitions (25ns typical), and f is the switching frequency.  
S
22 ______________________________________________________________________________________  
Low-Cost, Dual-Output, Step-Down  
Controller with Fast Transient Response  
MAX864  
The high-side MOSFET(s) operate as duty-cycle control  
switches and have the following major losses: the chan-  
nel conduction loss (P ), the overlapping switching  
interfere with circuit performance and generate EMI. To  
dampen this ringing, a series RC snubber circuit is  
added across each low-side switch. Below is the pro-  
cedure for selecting the value of the series RC circuit.  
HSCC  
loss (P  
), and the drive loss (P  
). The maxi-  
HSSW  
HSDR  
mum power dissipation could occur either at V  
IN(MAX)  
Connect a scope probe to measure V  
to GND and  
LX_  
or V  
:
IN(MIN)  
observe the ringing frequency, f .  
R
Find the capacitor value (connected from LX_ to GND)  
that reduces the ringing frequency by half.  
V
OUT  
2
P
=
×I  
×R  
DS(ON)  
LOAD(MAX)  
HSCC(MAX)  
V
IN(MIN)  
The circuit parasitic capacitance (C  
) at LX_ is then  
PAR  
equal to 1/3 the value of the added capacitance above.  
Use R  
at T  
:
J(MAX)  
DS(ON)  
The circuit parasitic inductance (L  
) is calculated by:  
PAR  
Q
GD  
1
P
= V  
×I  
×
× f  
S
HSSW(MAX)  
IN(MAX) LOAD(MAX)  
L
=
PAR  
I
GATE  
2
2πf  
(
×C  
PAR  
)
R
where I  
capability determined by:  
is the average DH driver output-current  
GATE  
The resistor for critical dampening (R  
) is equal to  
SNUB  
2π x f x L  
. Adjust the resistor value up or down to  
R
PAR  
tailor the desired damping and the peak-voltage excur-  
sion.  
0.5× V  
VL  
+R  
GATE  
I
GATE  
R
DS(ON)(DR)  
The capacitor (C  
) should be at least 2 to 4 times  
to be effective. The power loss of  
SNUB  
the value of the C  
PAR  
where R  
is the DH_ driver’s on-resistance  
DS(ON)(DR)  
(see the Electrical Characteristics) and R  
the snubber circuit is dissipated in the resistor  
(P ) and can be calculated as:  
is the  
GATE  
RSNUB  
internal gate resistance of the MOSFET (~ 2Ω):  
2
P
= C  
× V  
× f  
SW  
(
)
RSNUB  
SNUB  
IN  
R
GATE  
P
HSDR  
= Q × V × f ×  
G GS S  
R
GATE  
+R  
DS(ON)(DR)  
where V is the input voltage and f  
frequency. Choose an R  
is the switching  
IN  
SW  
power rating that meets  
SNUB  
the specific application’s derating rule for the power  
dissipation calculated.  
where V V  
.
GS  
VL  
The high-side MOSFET(s) do not have body diode con-  
duction loss, unless the converter is sinking current.  
When sinking current, calculate this loss as  
Setting the Overcurrent Threshold  
Connect a resistor from ILIM_ to the drain of the high-  
side MOSFET(s) to set the overcurrent protection  
threshold. ILIM_ sinks 50µA (typ) through this resistor.  
When the drain-source voltage exceeds the voltage  
drop across this resistor during the high-side MOS-  
FET(s) on-time, overcurrent protection is triggered. To  
set the output current level where overcurrent protec-  
P
= I  
x V x (2 x t + t ) x f ,  
LOAD(MAX) F DT WD S  
HSDC(MAX)  
where t  
is about 130ns.  
WD  
Allow an additional 20% for losses due to MOSFET out-  
put capacitances and low-side MOSFET body diode  
reverse-recovery charge dissipated in the high-side  
MOSFET(s). Refer to the MOSFET data sheet for ther-  
mal resistance specifications to calculate the PCB area  
needed to maintain the desired maximum operating  
junction temperature with the above calculated power  
dissipations.  
tion is triggered (I  
), calculate the value of the ILIM_  
LIMIT  
resistor as follows:  
R
×I  
DS(ON)HS LIMIT  
R
=
ILIM_  
50μA  
MOSFET Snubber Circuit  
Fast switching transitions cause ringing because of res-  
onating circuit parasitic inductance and capacitance at  
the switching nodes. This high-frequency ringing  
occurs at LX’s rising and falling transitions and can  
where R  
is the maximum on-resistance of the  
DS(ON)HS  
high-side MOSFET(s) at +25°C. At higher tempera-  
tures, the ILIM current increases to compensate for the  
temperature coefficient of the high-side MOSFET(s).  
______________________________________________________________________________________ 23  
Low-Cost, Dual-Output, Step-Down  
Controller with Fast Transient Response  
way that the high-side MOSFET’s drain is close and  
Input Capacitor  
The input filter capacitors reduce peak currents drawn  
from the power source and reduce noise and voltage  
ripple on the input caused by the circuit’s switching.  
The input capacitors must meet the ripple current  
near the low-side MOSFET’s source. This allows the  
input ceramic decoupling capacitor to be placed  
directly across and as close as possible to the  
high-MOSFET’s drain and the low-side MOSFET’s  
source. This helps contain the high switching cur-  
rent within this small loop.  
requirement (I  
) imposed by the switching currents.  
RMS  
The ripple current requirement can be estimated by the  
following equation:  
3) Pour an analog ground plane in the second layer  
underneath the IC to minimize noise coupling.  
1
V
IN  
2
2
MAX864  
I
=
I
× V  
OUT1  
× V V  
+ I  
× V  
× V V  
(
)
(
)
(
)
(
)
RMS  
OUT1  
IN  
OUT1  
OUT2  
OUT2 IN OUT2  
4) Connect input, output, and VL capacitors to the  
power ground plane; connect all other capacitors to  
the signal ground plane.  
Choose a capacitor that exhibits less than 10°C tem-  
perature rise at the maximum operating RMS current for  
optimum long-term reliability.  
5) Place the MOSFETs as close as possible to the IC  
to minimize trace inductance of the gate drive loop.  
If parallel MOSFETs are used, keep the trace  
lengths to both gates equal and short.  
Applications Information  
PCB Layout Guidelines  
Careful PCB layout is an important factor in achieving  
low switching losses and clean, stable operation. The  
switching power stage requires particular attention.  
Follow these guidelines for good PCB layout:  
6) Connect the drain leads of the power MOSFET to a  
large copper area to help cool the device. Refer to  
the power MOSFET data sheet for recommended  
copper area.  
7) Place the feedback network components as close  
as possible to the IC pins.  
1) A multilayer PCB is recommended.  
2) Place IC decoupling capacitors as close as possi-  
ble to the IC pins. Keep separate power ground  
and signal ground planes. Place the low-side  
MOSFETs near the PGND pin. Arrange the high-  
side MOSFETs and low-side MOSFETs in such a  
8) The current-limit setting RC should be Kelvin con-  
nected to the high-side MOSFETs’ drain.  
Refer to the MAX8664 evaluation kit for an example layout.  
24 ______________________________________________________________________________________  
Low-Cost, Dual-Output, Step-Down  
Controller with Fast Transient Response  
MAX864  
Pin Configuration  
Chip Information  
PROCESS: BiCMOS  
TOP VIEW  
DH1  
LX1  
1
2
3
4
5
6
7
8
9
20 ILIM1  
19 FB1  
BST1  
DL1  
18 PWRGD  
MAX8664  
17 V  
CC  
VL  
16 GND  
PGND  
DL2  
15 IN  
14 OSC/EN12  
13 REFIN2  
12 FB2  
BST2  
LX2  
DH2 10  
11 ILIM2  
QS P  
______________________________________________________________________________________ 25  
Low-Cost, Dual-Output, Step-Down  
Controller with Fast Transient Response  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www0mrxꢅm-ꢅA0ALm/trAkrgvs.)  
MAX864  
PACKAGE OUTLINE, QSOP .150", .025" LEAD PITCH  
1
21-0055  
F
1
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
26 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2007 Maxim Integrated Products  
is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY