MAX8667ETEHR+ [MAXIM]

Dual Switching Controller, Voltage-mode, 2A, 1500kHz Switching Freq-Max, BICMOS, 3 X 3 MM, 0.80 MM HEIGHT, LEAD FREE, MO-220WEED-2, QFN-16;
MAX8667ETEHR+
型号: MAX8667ETEHR+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Dual Switching Controller, Voltage-mode, 2A, 1500kHz Switching Freq-Max, BICMOS, 3 X 3 MM, 0.80 MM HEIGHT, LEAD FREE, MO-220WEED-2, QFN-16

转换器
文件: 总18页 (文件大小:387K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-0784; Rev 1; 7/07  
1.5MHz Dual Step-Down DC-DC Converters  
with Dual LDOs and Individual Enables  
7/MAX68  
General Description  
Features  
o Tiny, Thin QFN 3mm x 3mm Package  
o Individual Enables  
o Step-Down Converters  
The MAX8667/MAX8668 dual step-down converters  
with dual low-dropout (LDO) linear regulators are  
intended to power low-voltage microprocessors or  
DSPs in portable devices. They feature high efficiency  
with small external component size. The step-down  
converters are adjustable from 0.6V to 3.3V (MAX8668)  
or factory preset (MAX8667) with guaranteed output  
current of 600mA for OUT1 and 1200mA for OUT2. The  
1.5MHz hysteretic-PWM control scheme allows for tiny  
external components and reduces no-load operating  
current to 100µA with all outputs enabled. Dual low-qui-  
escent-current, low-noise LDOs operate down to 1.7V  
supply voltage. The MAX8667/MAX8668 have individ-  
ual enables for each output, maximizing flexibility.  
600mA Guaranteed Output Current on OUT1  
1200mA Guaranteed Output Current on OUT2  
Tiny Size 2.2µH Chip Inductor (0805)  
Output Voltage from 0.6V to 3.3V (MAX8668)  
Ultra-Fast Line and Load Transients  
Low 25µA Supply Current Each  
o LDOs  
300mA Guaranteed  
Low 1.7V Minimum Supply Voltage  
Low Output Noise  
Ordering Information  
The MAX8667/MAX8668 are available in the space-  
saving, 3mm x 3mm, 16-pin thin QFN package.  
PART  
PKG CODE  
T1633-4  
T1633-4  
T1633-4  
T1633-4  
TOP MARK  
AEQ  
MAX8667ETEAA+  
MAX8667ETEAB+  
MAX8667ETEAC+  
MAX8667ETECQ+  
Applications  
AFI  
Cell Phones/Smartphones  
AFM  
PDA and Palmtop Computers  
Portable MP3 and DVD Players  
Digital Cameras, Camcorders  
PCMCIA Cards  
AFN  
Note: All MAX8667/MAX8668 parts are in a 16-pin, thin QFN,  
3mm x 3mm package and operate in the -40°C to +85°C  
extended temperature range.  
+Denotes a lead-free package.  
Handheld Instruments  
Ordering Information continued at the end of data sheet.  
Selector Guide appears at the end of data sheet.  
Pin Configuration  
Typical Operating Circuit  
2.6V TO 5.5V  
TOP VIEW  
10µF  
4.7µF  
IN12 IN34  
12  
11  
10  
9
EN3  
EN1  
EN4  
EN2  
REF  
OUT2 (FB2)  
REF  
300mA  
300mA  
4.7µF  
13  
14  
PGND1  
8
7
6
5
OUT3  
OUT1 (FB1)  
0.01µF  
OUT4  
GND  
MAX8667  
MAX8668  
4.7µF  
GND  
EN1 15  
16  
EN4  
EN2  
MAX8667  
2.2µH  
2.2µH  
1.2A  
600mA  
1
2
3
4
LX2  
LX1  
OUT2  
OUT1  
2.2µF  
2.2µF  
PGND1 PGND2  
THIN QFN  
(3mm x 3mm)  
( ) ARE FOR THE MAX8668  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
1.5MHz Dual Step-Down DC-DC Converters  
with Dual LDOs and Individual Enables  
ABSOLUTE MAXIMUM RATINGS  
IN12, IN34, FB1, FB2, EN1, EN2, EN3, EN4, OUT1,  
OUT2, REF to GND............................................-0.3V to +6.0V  
OUT3,  
OUT4 to GND.....-0.3V to the lesser of + 6V or (V  
PGND1, PGND2 to GND .......................................-0.3V to +0.3V  
LX1, LX2 Current ..........................................................1.5A RMS  
Continuous Power Dissipation (T = +70°C)  
A
16-Pin, 3mm x 3mm Thin QFN  
(derate 20.8mW/°C above +70°C).............................1667mW  
Operating Temperature Range ...........................-40°C to +85°C  
Junction Temperature..................................................... +150°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
+ 0.3V)  
IN34  
LX1, LX2 to GND (Note 1).......................-0.3V to (V  
+ 0.3V)  
IN12  
Note 1: LX_ has internal clamp diodes to GND and IN12. Applications that forward bias these diodes should take care not to exceed  
the IC’s package-dissipation limits.  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
= V  
= 3.6V, T = -40°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.) (Note 1)  
IN12 A A  
IN34  
PARAMETER  
CONDITIONS  
MIN  
1.7  
2.6  
2.8  
TYP  
MAX  
5.5  
5.5  
5.5  
1
UNITS  
7/MAX68  
IN34 Supply Range  
IN12 Supply Range  
IN12 Suppy Range  
V
V  
V
V
IN12  
IN34  
MAX8668, V  
V  
V  
IN12  
IN12  
IN34  
MAX8667, V  
V
IN34  
T
T
= +25°C  
= +85°C  
µA  
µA  
A
Shutdown Supply Current,  
V
= V  
= 4.2V V  
= 0V  
EN_  
IN12  
IN34  
I
+ I  
IN34  
IN12  
0.05  
100  
A
No Load Supply Current,  
+ I  
MAX8667ETEJS+, all regulators enabled  
150  
µA  
I
IN12  
IN34  
UNDERVOLTAGE LOCKOUT  
V
V
V
V
rising  
2.4  
1.5  
2.5  
0.1  
1.6  
0.1  
2.6  
1.7  
V
V
V
V
IN12  
IN12  
IN34  
IN34  
IN12 UVLO  
hysteresis  
rising  
IN34 UVLO  
hysteresis  
THERMAL SHUTDOWN  
Threshold  
T
rising  
+160  
15  
°C  
°C  
A
Hysteresis  
REFERENCE  
Reference Bypass Output  
Voltage  
0.591  
0.600  
0.15  
0.609  
V
REF Supply Rejection  
2.6V (V  
= V  
) 5.5V  
IN34  
mV/V  
IN12  
LOGIC AND CONTROL INPUTS  
1.7V V  
2.6V V  
5.5V  
5.5V  
IN34  
IN12  
EN_ Input Low Level  
EN_ Input High Level  
0.4  
+1  
V
V
1.7V V  
2.6V V  
5.5V  
5.5V  
IN34  
IN12  
1.44  
-1  
T
T
= +25°C  
= +85°C  
A
EN_ Input Leakage Current  
V
= V  
= 5.5V  
IN34  
µA  
IN12  
0.001  
0.6  
A
STEP-DOWN CONVERTERS  
Minimum Adjustable Output  
Voltage  
MAX8668  
V
2
_______________________________________________________________________________________  
1.5MHz Dual Step-Down DC-DC Converters  
with Dual LDOs and Individual Enables  
7/MAX68  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= V  
= 3.6V, T = -40°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.) (Note 1)  
IN12 A A  
IN34  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Maximum Adjustable Output  
Voltage  
MAX8668  
3.3  
V
T
A
T
A
T
A
T
A
= +25°C  
0.588  
0.582  
1.274  
1.261  
0.600  
0.600  
1.300  
1.300  
0.01  
0.05  
0.1  
0.612  
0.618  
1.326  
1.339  
MAX8668, no load,  
FB1, FB2 Regulation Voltage  
V
V
V
falling  
= -40°C to +85°C  
= +25°C  
FB_  
MAX8667ETEJS+, no load, V  
falling  
OUT_  
OUT1, OUT2 Regulation Voltage  
= -40°C to +85°C  
FB1, FB2 Line Regulation  
MAX8668, V  
MAX8667, V  
= 2.6V to 5.5V  
%/V  
%/V  
IN12  
OUT1, OUT2 Line Regulation  
= 2.8V to 5.5V  
IN12  
MAX8668, shutdown mode  
MAX8668, V = 0.5V  
FB1, FB2 Bias Current  
OUT1 Current Limit  
OUT2 Current Limit  
OUT1 On-Resistance  
µA  
mA  
mA  
0.01  
900  
FB1  
pMOSFET switch (I  
)
700  
500  
1100  
1000  
2000  
1800  
0.6  
LIMP1  
nMOSFET rectifier (valley current)  
pMOSFET switch (I  
750  
)
1333  
1200  
1667  
1500  
0.3  
LIMP2  
nMOSFET rectifier (valley current)  
pMOSFET switch, I = -400mA  
LX1  
nMOSFET rectifier, I  
= 400mA  
0.3  
0.6  
LX1  
pMOSFET switch, I  
= -400mA  
0.12  
0.12  
0.27  
0.27  
LX2  
OUT2 On-Resistance  
nMOSFET rectifier, I  
= 400mA  
LX2  
Rectifier-Off Current Threshold  
60  
120  
+1  
mA  
µA  
(I  
)
LXOFF  
T
T
= +25°C  
= +85°C  
-1  
A
LX Leakage Current  
LX_ = 5.5V  
0.1  
100  
50  
A
Minimum On-Time  
Minimum Off-Time  
LDO REGULATORS  
Supply Current  
ns  
ns  
Each LDO  
20  
µA  
%
1mA load, T = +25°C  
A
-1.5  
-3.0  
+1.5  
+3.0  
Output-Voltage Accuracy  
1mA to 300mA load  
Line Regulation  
V
V
V
= 3.6V to 5.5V, 1mA load  
= 1.8V, 300mA load  
0.003  
130  
420  
0.1  
75  
%/V  
mV  
mA  
ms  
IN34  
IN34  
Dropout Voltage  
250  
465  
Current Limit  
, V  
90% of nominal value  
375  
OUT3 OUT4  
Soft-Start Ramp Time  
Output Noise  
To 90% of final value  
100Hz to 100kHz, 30mA load, V  
f < 1kHz, 30mA load  
and V  
= 2.8V  
µV  
RMS  
OUT3  
OUT4  
Power-Supply Rejection Ratio  
Shutdown Output Resistance  
TIMING (See Figure 2)  
57  
dB  
1
kΩ  
OUT1, OUT2  
OUT3, OUT4  
OUT1, OUT2  
OUT3, OUT4  
25  
45  
15  
35  
Power-On Time (t  
)
µs  
µs  
PWRON  
Enable Time (t  
)
EN  
Note 1: All devices are 100% production tested at T = +25°C. Limits over the operating temperature range are guaranteed by design.  
A
_______________________________________________________________________________________  
3
1.5MHz Dual Step-Down DC-DC Converters  
with Dual LDOs and Individual Enables  
Typical Operating Characteristics  
(V  
IN12  
= V  
= 3.6V, circuit of Figure 4, V  
= 1.2V, V  
= 1.8V, V  
= 2.8V, V = 2.8V, T = +25°C, unless otherwise noted.)  
OUT4 A  
IN34  
OUT1  
OUT2  
OUT3  
OUT1 EFFICIENCY vs. LOAD CURRENT  
OUT2 EFFICIENCY vs. LOAD CURRENT  
OUT1 LOAD REGULATION  
(V  
= 1.2V)  
(V  
= 1.8V)  
OUT1  
OUT2  
1.25  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1.20  
1.15  
1.10  
1.05  
1.00  
0.95  
0.90  
0.85  
0.80  
ONLY OUT2 ENABLED  
ONLY OUT1 ENABLED  
0
100  
200  
300  
400  
500  
600  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
10000  
7/MAX68  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
OUT1 OUTPUT VOLTAGE  
vs. INPUT VOLTAGE (600mA LOAD)  
OUT2 OUTPUT VOLTAGE  
vs. INPUT VOLTAGE (1200mA LOAD)  
OUT2 LOAD REGULATION  
1.90  
1.80  
1.70  
1.60  
1.50  
1.40  
1.30  
1.20  
1.40  
1.35  
1.30  
1.25  
1.20  
1.15  
1.10  
1.05  
1.00  
2.00  
1.95  
1.90  
1.85  
1.80  
1.75  
1.70  
1.65  
1.60  
0
200  
400  
600  
800 1000 1200  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
LOAD CURRENT (mA)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
SWITCHING FREQUENCY  
vs. LOAD CURRENT  
NO-LOAD SUPPLY CURRENT vs. SUPPLY  
VOLTAGE ALL REGULATOR ENABLED  
NO-LOAD SUPPLY CURRENT  
vs. SUPPLY VOLTAGE OUT1 AND OUT2 ONLY  
3500  
3000  
2500  
2000  
1500  
1000  
500  
120  
100  
80  
60  
40  
20  
0
120  
100  
80  
60  
40  
20  
0
SUPPLY VOLTAGE  
FALLING  
SUPPLY VOLTAGE  
RISING  
OUT2  
SUPPLY VOLTAGE  
RISING  
SUPPLY VOLTAGE  
FALLING  
OUT1  
0
0
300  
600  
900 1200 1500 1800  
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
SUPPLY VOLTAGE (V)  
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
SUPPLY VOLTAGE (V)  
LOAD CURRENT (mA)  
4
_______________________________________________________________________________________  
1.5MHz Dual Step-Down DC-DC Converters  
with Dual LDOs and Individual Enables  
7/MAX68  
Typical Operating Characteristics (continued)  
(V  
IN12  
= V  
= 3.6V, circuit of Figure 4, V  
= 1.2V, V  
= 1.8V, V  
= 2.8V, V  
= 2.8V, T = +25°C, unless otherwise noted.)  
A
IN34  
OUT1  
OUT2  
OUT3  
OUT4  
NO-LOAD SUPPLY CURRENT vs. SUPPLY  
VOLTAGE OUT3 AND OUT4 ONLY  
OUT3 OUTPUT VOLTAGE  
vs. INPUT VOLTAGE (300mA LOAD)  
OUT3 DROPOUT VOLTAGE  
vs. LOAD CURRENT  
3.00  
2.95  
2.90  
2.85  
2.80  
2.75  
2.70  
2.65  
2.60  
2.55  
2.50  
120  
100  
80  
60  
40  
20  
0
80  
V
= 5.5V  
IN12  
70  
60  
50  
40  
30  
20  
10  
0
V
VOLTAGE  
IN34  
FALLING  
V
VOLTAGE  
IN34  
RISING  
0
100  
200  
300  
0
1
2
3
4
5
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
LOAD CURRENT (mA)  
SUPPLY VOLTAGE (V)  
INPUT VOLTAGE (V)  
ENABLE WAVEFORMS  
SUPPLY CURRENT vs. SUPPLY VOLTAGE  
MAX8667/88 toc14  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
IN12 = IN34  
5V/div  
2V/div  
EN1/EN2/  
EN3/EN4  
2.4LOAD ON OUT1  
3.6LOAD ON OUT2  
NO LOAD ON OUT3  
NO LOAD ON OUT4  
V
OUT1  
2V/div  
2V/div  
V
V
V
OUT2  
2V/div  
OUT3  
OUT4  
2A/div  
I
L1  
2A/div  
2A/div  
I
L2  
I
+ I  
IN12 IN34  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
40µs/div  
SUPPLY VOLTAGE (V)  
OUT1 LOAD TRANSIENT  
SHUTDOWN WAVEFORMS  
MAX8667/88 toc16  
MAX8667/88 toc15  
EN1/EN2/  
EN3/EN4  
5V/div  
100mV/div  
(AC-COUPLED)  
V
OUT1  
V
OUT1  
300mA  
V
OUT2  
1V/div  
1V/div  
V
OUT3  
OUT4  
10mA  
10mA  
I
OUT1  
200mA/div  
200mA/div  
V
1V/div  
1V/div  
I
L1  
10µs/div  
40µs/div  
_______________________________________________________________________________________  
5
1.5MHz Dual Step-Down DC-DC Converters  
with Dual LDOs and Individual Enables  
Typical Operating Characteristics (continued)  
(V  
IN12  
= V  
= 3.6V, circuit of Figure 4, V  
= 1.2V, V  
= 1.8V, V  
= 2.8V, V  
= 2.8V, T = +25°C, unless otherwise noted.)  
IN34  
OUT1  
OUT2  
OUT3  
OUT4 A  
OUT3 LOAD TRANSIENT  
OUT2 LOAD TRANSIENT  
MAX8667/88 toc18  
MAX8667/88 toc17  
50mV/div  
(AC-COUPLED)  
200mV/div  
(AC-COUPLED)  
V
OUT2  
V
OUT3  
OUT3  
600mA  
500mA/div  
10mA  
10mA  
I
OUT2  
300mA  
I
200mA/div  
500mA/div  
I
L2  
0mA  
0mA  
10µs/div  
10µs/div  
7/MAX68  
OUT1 LIGHT-LOAD SWITCHING  
WAVEFORMS  
OUT4 LOAD TRANSIENT  
MAX8667/88 toc20  
MAX8667/88 toc19  
50mV/div  
(AC-COUPLED)  
V
20mV/div  
2V/div  
V
OUT1  
OUT4  
V
LX1  
300mA  
I
OUT4  
200mA/div  
0mA  
I
0mA  
L1  
100mA/div  
500µA LOAD  
10µs/div  
10µs/div  
OUT2 LIGHT-LOAD SWITCHING  
WAVEFORMS  
OUT1 HEAVY-LOAD SWITCHING  
WAVEFORMS  
MAX8667/88 toc21  
MAX8667/88 toc22  
V
V
OUT1  
20mV/div  
2V/div  
20mV/div  
2V/div  
OUT2  
V
V
LX2  
LX1  
500mA/div  
I
I
L1  
L2  
500mA/div  
500µA LOAD  
500µA LOAD  
40µs/div  
400ns/div  
6
_______________________________________________________________________________________  
1.5MHz Dual Step-Down DC-DC Converters  
with Dual LDOs and Individual Enables  
7/MAX68  
Typical Operating Characteristics (continued)  
(V  
IN12  
= V  
= 3.6V, circuit of Figure 4, V  
= 1.2V, V  
= 1.8V, V  
= 2.8V, V  
= 2.8V, T = +25°C, unless otherwise noted.)  
IN34  
OUT1  
OUT2  
OUT3  
OUT4 A  
OUT2 HEAVY-LOAD SWITCHING  
WAVEFORMS  
POWER-SUPPLY REJECTION RATIO  
vs. FREQUENCY  
MAX8667/88 toc23  
70  
60  
50  
40  
30  
20  
10  
V
I
= 2.80V  
= 100Ω  
= 4.7µF  
OUT3  
LOAD  
C
OUT3  
V
20mV/div  
2V/div  
OUT2  
V
LX2  
500mA/div  
I
L2  
500mA LOAD  
0
400ns/div  
0.01  
0.1  
1
10  
100  
1000  
FREQUENCY (kHz)  
OUT3 NOISE  
OUT4 NOISE  
MAX8667/88 toc25  
MAX8667/88 toc26  
100µV/div  
100µV/div  
V
I
= 2.80V  
= 100Ω  
V
I
= 3.30V  
= 100Ω  
OUT3  
LOAD  
OUT4  
LOAD  
1ms/div  
1ms/div  
_______________________________________________________________________________________  
7
1.5MHz Dual Step-Down DC-DC Converters  
with Dual LDOs and Individual Enables  
Pin Description  
NAME  
PIN  
1
FUNCTION  
MAX8667 MAX8668  
Enable Input for Regulator 3. Drive EN3 high or connect to IN34 to turn on regulator 3. Drive low  
to turn off regulator 3 and reduce input quiescent current.  
EN3  
EN3  
Output of Regulator 3. Bypass OUT3 with a 4.7µF ceramic capacitor to GND. OUT3 is  
discharged to GND through an internal 1kin shutdown.  
2
OUT3  
OUT3  
Input Voltage for LDO Regulators 3 and 4. Supply voltage range is from 1.7V to 5.5V. This  
3
IN34  
IN34  
supply voltage must not exceed V . Connect a 4.7µF or larger ceramic capacitor from IN34  
IN12  
to ground.  
Output of Regulator 4. Bypass OUT4 with a 4.7µF ceramic capacitor to GND. OUT4 is  
discharged to GND through an internal 1kin shutdown.  
4
5
OUT4  
EN4  
OUT4  
EN4  
Enable Input for Regulator 4. Drive EN4 high or connect to IN34 to turn on regulator 4. Drive low  
to turn off regulator 4 and reduce input quiescent current.  
6
7
8
GND  
REF  
GND  
REF  
Ground  
7/MAX68  
Reference Output. Bypass REF with a 0.01µF ceramic capacitor to GND.  
Feedback Input for Regulator 2. Connect OUT2 directly to the output of step-down regulator 2.  
OUT2  
Feedback Input for Regulator 2. Connect FB2 to the center of a resistor feedback divider  
between the output of regulator 2 and ground to set the output voltage. See the Setting the  
Output Voltages and Voltage Positioning section.  
FB2  
9
PGND2  
LX2  
PGND2 Power Ground for Step-Down Regulator 2  
10  
LX2  
IN12  
LX1  
Inductor Connection for Regulator 2  
Input Voltage for Step-Down Regulators 1 and 2. Supply voltage range is from 2.6V to 5.5V. This  
supply voltage must not be less than V  
IN12 to ground.  
11  
IN12  
. Connect a 10µF or larger ceramic capacitor from  
IN34  
12  
13  
14  
LX1  
Inductor Connection for Regulator 1  
PGND1  
OUT1  
PGND1 Power Ground for Step-Down Regulator 1  
Feedback Input for Regulator 1. Connect OUT1 directly to the output of step-down regulator 1.  
Feedback Input for Regulator 1. Connect FB1 to the center of a resistor feedback divider  
between the output of regulator 1 and ground to set the output voltage. See the Setting the  
Output Voltages and Voltage Positioning section.  
FB1  
Enable Input for Regulator 1. Drive EN1 high or connect to IN12 to turn on step-down regulator 1.  
Drive low to turn off the regulator and reduce input quiescent current.  
15  
EN1  
EN1  
Enable Input for Regulator 2. Drive EN2 high or connect to IN12 to turn on step-down regulator 2.  
Drive low to turn off the regulator and reduce input quiescent current.  
16  
EN2  
EP  
EN2  
EP  
Exposed Paddle. Connect to GND, PGND1, PGND2, and circuit ground.  
8
_______________________________________________________________________________________  
1.5MHz Dual Step-Down DC-DC Converters  
with Dual LDOs and Individual Enables  
7/MAX68  
IN34  
1.7V TO 5.5V  
IN12  
2.8V TO 5.5V  
(2.6V TO 5.5V)  
STEP-DOWN  
IN  
OUT1  
GND  
LX1  
EN  
UVLO  
OUT1  
(FB1)  
FB  
EN  
PGND1  
STEP-DOWN  
OUT2  
REF  
REF AND BIAS  
IN  
REF  
LX2  
EN  
GND  
OUT2  
(FB2)  
FB  
GND  
PGND2  
EN1  
EN2  
LDO  
IN  
OUT  
OUT3  
PWRON LOGIC  
AND ENABLES  
OUT3  
GND  
EN  
EN3  
EN4  
LDO  
OUT4  
GND  
OUT  
IN  
OUT4  
EN  
() ARE FOR THE MAX8668  
Figure 1. Functional Diagram  
_______________________________________________________________________________________  
9
1.5MHz Dual Step-Down DC-DC Converters  
with Dual LDOs and Individual Enables  
A UVLO circuit prevents step-down regulators OUT1  
Detailed Description  
The MAX8667/MAX8668 dual step-down converters  
and OUT2 from switching when the supply voltage is  
too low to guarantee proper operation. When V  
falls  
IN12  
with dual low-dropout (LDO) linear regulators are  
intended to power low-voltage microprocessors or  
DSPs in portable devices. They feature high efficiency  
with small external component size. The step-down out-  
puts are adjustable from 0.6V to 3.3V (MAX8668) or  
factory preset (MAX8667) with guaranteed output cur-  
rent of 600mA for OUT1 and 1200mA for OUT2. The  
1.5MHz hysteretic-PWM control scheme allows for tiny  
external components and reduces no-load operating  
current to 100µA (typ) with all regulators enabled. Dual,  
low-quiescent-current, low-noise LDOs operate down to  
1.7V supply voltage. The MAX8667/MAX8668 have  
individual enable inputs for each output to facilitate any  
supply sequencing.  
below 2.4V (typ), OUT1 and OUT2 are shut down.  
OUT1 and OUT2 turn on and begin soft-start when  
IN12  
V
rises above 2.5V (typ).  
Soft-Start  
When initially powered up, or enabled with EN_, the  
step-down regulators soft-start by gradually ramping  
up the output voltage. This reduces inrush current dur-  
ing startup. See the startup waveforms in the Typical  
Operating Characteristics section.  
Current Limit  
The MAX8667/MAX8668 limit the peak inductor current  
of the p-channel MOSFET (I  
). A valley current limit  
LIMP_  
is used to protect the step-down regulators during  
severe overload and output short-circuit conditions.  
When the peak current limit is reached, the internal  
p-channel MOSFET turns off and remains off until the  
output drops below regulation, the inductor current falls  
below the valley current-limit threshold, and the mini-  
mum off-time has expired.  
Step-Down DC-DC Regulators  
(OUT1, OUT2)  
7/MAX68  
Step-Down Regulator Architecture  
The MAX8667/MAX8668 step-down regulators are opti-  
mized for high-efficiency voltage conversion over a  
wide load range, while maintaining excellent transient  
response, minimizing external component size, and  
minimizing output voltage ripple. The DC-DC convert-  
ers (OUT1, OUT2) also feature an optimized on-resis-  
tance internal MOSFET switch and synchronous  
rectifier to maximize efficiency. The MAX8667/  
MAX8668 utilize a proprietary hysteretic-PWM control  
scheme that switches with nearly fixed frequency at up  
to 1.5MHz allowing for ultra-small external components.  
The step-down converter output current is guaranteed  
up to 600mA for OUT1 and 1200mA for OUT2.  
Voltage Positioning  
The OUT1 and OUT2 output voltages and voltage posi-  
tioning of the MAX8668 are set by a resistor network  
connected to FB_. With this configuration, a portion of  
the feedback signal is sensed on the switched side of  
the inductor, and the output voltage droops slightly as  
the load current is increased due to the DC resistance  
of the inductor. This output voltage droop is known as  
voltage positioning. Voltage positioning allows the load  
regulation to be set to match the voltage droop during  
a load transient, reducing the peak-to-peak output volt-  
age deviation during a load transient, and reducing the  
output capacitance requirements.  
When the step-down converter output voltage falls below  
the regulation threshold, the error comparator begins a  
switching cycle by turning the high-side p-channel  
MOSFET switch on. This switch remains on until the mini-  
Dropout  
As the input voltage approaches the output voltage, the  
duty cycle of the p-channel MOSFET reaches 100%. In  
this state, the p-channel MOSFET is turned on con-  
stantly (not switching), and the dropout voltage is the  
voltage drop due to the output current across the on-  
mum on-time (t ) expires and the output voltage is in  
ON  
regulation or the current-limit threshold (I  
) is  
LIMP_  
exceeded. Once off, the high-side switch remains off  
until the minimum off-time (t ) expires and the output  
OFF  
voltage again falls below the regulation threshold.  
During this off period, the low-side synchronous rectifi-  
er turns on and remains on until either the high-side  
switch turns on or the inductor current reduces to the  
resistance of the internal p-channel MOSFET (R  
)
PCH  
and the inductor’s DC resistance (R ):  
L
rectifier-off current threshold (I  
= 60mA typ). The  
LXOFF  
V
= I  
R
+R  
internal synchronous rectifier eliminates the need for an  
external Schottky diode.  
(
)
DO  
LOAD PCH L  
LDO Linear Regulators (OUT3, OUT4)  
The MAX8667/MAX8668 contain two low-dropout linear  
regulators (LDOs), OUT3 and OUT4. The LDO output  
voltages are factory preset, and each LDO supplies  
Input Supply and Undervoltage Lockout  
The input voltage range of step-down regulators OUT1  
and OUT2 is 2.6V to 5.5V. This supply voltage must be  
greater than or equal to the LDO supply voltage (V  
).  
IN34  
10 ______________________________________________________________________________________  
1.5MHz Dual Step-Down DC-DC Converters  
with Dual LDOs and Individual Enables  
7/MAX68  
loads up to 300mA. The LDOs include an internal refer-  
ence, error amplifier, p-channel pass transistor, and  
internal voltage-dividers. Each error amplifier compares  
the reference voltage to the output voltage (divided by  
the internal voltage-divider) and amplifies the differ-  
ence. If the divided feedback voltage is lower than the  
reference voltage, the pass-transistor gate is pulled  
lower, allowing more current to pass to the outputs and  
increasing the output voltage. If the divided feedback  
voltage is too high, the pass-transistor gate is pulled  
up, allowing less current to pass to the output.  
soft-start ramp time is typically 100µs from the start of  
the soft-start ramp to the output reaching its nominal  
regulation voltage.  
Current Limit  
The OUT3 and OUT4 output current is limited to 375mA  
(min). If the output current exceeds the current limit, the  
corresponding LDO output voltage drops.  
Dropout  
The maximum dropout voltage for the linear regulators  
is 250mV at 300mA load. To avoid dropout, make sure  
the IN34 supply voltage is at least 250mV higher than  
the highest LDO output voltage.  
Input Supply and Undervoltage Lockout  
The input voltage range of LDO regulators OUT3 and  
OUT4 is 1.7V to 5.5V. This supply voltage must be less  
Thermal-Overload Protection  
Thermal-overload protection limits the total power dissi-  
pation in the MAX8667/MAX8668. Thermal-protection  
circuits monitor the die temperature. If the die tempera-  
ture exceeds +160°C, the IC is shut down, allowing the  
IC to cool. Once the IC has cooled by 15°C, the IC is  
enabled again. This results in a pulsed output during  
continuous thermal-overload conditions. The thermal-  
overload protection protects the MAX8667/MAX8668 in  
the event of fault conditions. For continuous operation,  
do not exceed the absolute maximum junction temper-  
ature of +150°C. See the Thermal Considerations sec-  
tion for more information.  
than or equal to the voltage applied to IN12 (V  
IN12  
IN34  
V
).  
An undervoltage lockout circuit turns off the LDO regula-  
tors when the input supply voltage is too low to guarantee  
proper operation. When V  
falls below 1.5V (typ),  
IN34  
OUT3 and OUT4 are shut down. OUT3 and OUT4 turn  
on and begin soft-start when V  
rises above 1.6V (typ).  
IN34  
Soft-Start  
When initially powered up, or enabled with EN_, the  
LDOs soft-start by gradually ramping up the output  
voltage. This reduces inrush current during startup. The  
t
IS THE PERIOD REQUIRED TO ENABLE FROM SHUTDOWN  
PWRON  
IN12  
t
PWRON  
ENx  
OUTx  
t
EN  
IS THE ENABLE TIME FOR SUBSEQUENT ENABLE  
SIGNALS FOLLOWING THE FIRST ENABLE  
ENy  
t
EN  
OUTy  
ENx, ENy ARE ANY COMBINATION OF EN1–EN4.  
Figure 2. Timing Diagram  
______________________________________________________________________________________ 11  
1.5MHz Dual Step-Down DC-DC Converters  
with Dual LDOs and Individual Enables  
C3  
4.7µF  
INPUT  
2.8V TO 5.5V  
1.7V TO 5.5V  
IN12 IN34  
C2  
10µF  
EN3  
EN1  
EN2  
REF  
EN4  
300mA  
300mA  
OUT3  
C1  
0.01µF  
OUT4  
C8  
4.7µF  
C9  
4.7µF  
GND  
MAX8667  
L2  
L1  
2.2µH  
2.2µH  
OUT1  
600mA  
OUT2  
1.2A  
LX1  
LX2  
OUT1  
OUT2  
C6  
2.2µF  
C7  
2.2µF  
7/MAX68  
PGND2 PGND1  
Figure 3. MAX8667 Typical Application Circuit  
INPUT  
2.6V TO 5.5V  
C2  
IN12 IN34  
10µF  
EN3  
EN1  
EN2  
EN4  
OUT3, 300mA  
OUT4, 300mA  
OUT3  
OUT4  
REF  
C1  
0.01µF  
C8  
4.7µF  
C9  
4.7µF  
GND  
MAX8668  
L2  
L1  
2.2µH  
2.2µH  
OUT1  
0.6V TO 3.3V, 600mA  
OUT2  
0.6V TO 3.3V, 1.2A  
LX1  
FB1  
LX2  
R3  
R4  
R1  
R2  
R5*  
R6*  
C4  
C6  
2.2µF  
C7  
1.8V  
> 1.8V  
2.2µF for V  
OUT2  
FB2  
4.7µF for V  
OUT2  
C5  
C10*  
PGND1 PGND2  
*C10, R5, AND R6 ARE OPTIONAL  
Figure 4. MAX8668 Typical Application Circuit  
12 ______________________________________________________________________________________  
1.5MHz Dual Step-Down DC-DC Converters  
with Dual LDOs and Individual Enables  
7/MAX68  
Applications Information  
Setting the Output Voltages  
L1  
DCR  
LX_  
OUT  
and Voltage Positioning  
The LDO output voltages of the MAX8667/MAX8668,  
and the step-down outputs of the MAX8667 are factory  
preset. See the Selector Guide to find the part number  
corresponding to the desired output voltages.  
ESR  
C6  
R1  
R2  
R
LOAD  
R6  
(OPTIONAL)  
C4  
The OUT1 and OUT2 output voltages of the MAX8668  
are set by a resistor network connected to FB_ as  
shown in Figure 5. With this configuration, a portion of  
the feedback signal is sensed on the switched side of  
the inductor (LX), and the output voltage droops slightly  
as the load current is increased due to the DC resis-  
tance of the inductor (DCR). This allows the load regu-  
lation to be set to match the voltage droop during a  
load transient (voltage positioning), reducing the peak-  
to-peak output-voltage deviation during a load tran-  
sient, and reducing the output capacitance  
requirements.  
FB_  
Figure 5. MAX8668 Feedback Network  
Calculate the factor m based on the desired load-regu-  
lation improvement:  
I
×DCR  
OUT(MAX)  
m=  
For the simplest method of setting the output voltage,  
R6 is not installed. Choose the value of R2 (a good  
starting value is 100k), and then calculate the value of  
R1 as follows:  
V  
OUT(DESIRED)  
where I  
is the maximum output current, DCR is  
OUT(MAX)  
the inductor series resistance, and V  
is the  
OUT(DESIRED)  
maximum allowable droop in the output voltage at full  
load. The calculated value for m must be between 1.1 and  
2; m = 2 results in a 2x improvement in load regulation.  
V  
OUT  
R1=R2×  
1  
V
FB  
Now calculate the values of R1 and R6 as follows:  
where V is the feedback regulation voltage (0.6V).  
FB  
R1=R ×m  
EQ  
With the voltage set in this manner, the voltage posi-  
tioning depends only on the DCR, and the maximum  
output voltage droop is:  
m
m1  
R6 =R  
×
EQ  
The value of R1 should always be lower than the value  
of R6.  
V  
=DCR×I  
OUT(MAX)  
OUT(MAX)  
Power-Supply Sequencing  
The MAX8667/MAX8668 have individual enable inputs  
for each regulator to allow complete control over the  
power sequencing. When all EN_ inputs are low, the IC  
is in low-power shutdown mode, reducing the supply  
current to less than 1µA. After one of the EN_ inputs  
asserts high, the corresponding regulator begins soft-  
Setting the Output Voltages with  
Reduced Voltage Positioning  
To obtain less voltage positioning than described in the  
previous section, use the following procedure for set-  
ting the output voltages. The OUT1 and OUT2 output  
voltages and voltage positioning of the MAX8668 are  
set by a resistor network connected to FB_ as shown in  
Figure 5.  
start after a delay of t (see Figure 2). The first output  
EN  
enabled from shutdown mode or initially powering up  
To set the output voltage (V  
), first select a value for  
OUT  
the IC has a longer delay (t  
low-power shutdown mode.  
) as the IC exits the  
PWRON  
R2 (a good starting value is 100k). Then calculate the  
value of R (the equivalent parallel resistance of R1  
EQ  
Inductor Selection  
and R6) as follows:  
The MAX8667/MAX8668 step-down converters operate  
with inductors between 2.2µH and 4.7µH. Low induc-  
tance values are physically smaller, but require faster  
switching, resulting in some efficiency loss. The induc-  
tor’s DC current rating must be high enough to account  
V  
OUT  
R
EQ  
=
1 ×R2  
V
FB  
where V is the feedback-regulation voltage (0.6V).  
FB  
______________________________________________________________________________________ 13  
1.5MHz Dual Step-Down DC-DC Converters  
with Dual LDOs and Individual Enables  
Table 1. Recommended Inductors  
MANUFACTURER  
INDUCTOR  
L (µH)  
2.2  
2.2  
2.2  
2.2  
2.2  
2.2  
2.2  
2.2  
2.2  
4.7  
2.2  
R (m)  
CURRENT RATING (A)  
L x W x H (mm)  
2.0 x 1.6 x 1.0  
2.5 x 2.0 x 1.0  
3.2 x 2.5 x 1.55  
3.2 x 1.6 x 0.95  
3.2 x 3.2 x 1.0  
2.5 x 1.8 x 1.35  
2.8 x 2.8 x 1.2  
2.5 x 2.0 x 1.0  
4.0 x 4.0 x 1.1  
4.0 x 4.0 x 1.1  
2.5 x 1.8 x 2.0  
L
FDK  
FDK  
MIPF2016  
110  
80  
1.1  
1.3  
MIPF2520D  
LQH32CN2R2M5  
LQM31P  
97  
0.79  
0.9  
Murata  
220  
120  
200  
140  
80  
Sumida  
TDK  
CDRH2D09  
GLF251812T  
D2812C  
0.44  
0.6  
TOKO  
TOKO  
0.77  
0.7  
MDT2520-CR  
TPC Series  
TPC Series  
CB2518T  
55  
1.8  
Wurth  
124  
90  
1.35  
0.51  
Taiyo Yuden  
7/MAX68  
for peak ripple current and load transients. The step-  
down converter’s unique architecture has minimal cur-  
rent overshoot during startup and load transients and in  
most cases, an inductor capable of 1.3x the maximum  
load current is acceptable.  
small and to ensure regulation loop stability. These  
capacitors must have low impedance at the switching  
frequency. Surface-mount ceramic capacitors are a  
good choice due to their small size and low ESR. Make  
sure the capacitor maintains its capacitance over tem-  
perature and DC bias. Ceramic capacitors with X5R or  
X7R temperature characteristics generally perform well.  
The output capacitance can be very low. For most appli-  
cations, a 2.2µF ceramic capacitor is sufficient. For C7 of  
For output voltages above 2V, when light-load efficiency  
is important, the minimum recommended inductor is  
2.2µH. For optimum voltage-positioning load transients,  
choose an inductor with DC series resistance in the  
50mto 150mrange. For higher efficiency at heavy  
loads (above 200mA) and minimal load regulation,  
keep the inductor resistance as small as possible. For  
light-load applications (up to 200mA), higher resistance  
is acceptable with very little impact on performance.  
the MAX8668, a 2.2µF (V  
1.8V) or a 4.7µF (V  
OUT2  
OUT2  
> 1.8V) ceramic capacitor is recommended. For opti-  
mum load-transient performance and very low output rip-  
ple, the output capacitor value in µF should be equal to  
or greater than the inductor value in µH.  
Feed-Forward Capacitor  
The feed-forward capacitors on the MAX8668 (C4 and  
C5 in Figure 4) set the feedback loop response, control  
the switching frequency, and are critical in obtaining  
the best efficiency possible. Small X7R and C0G  
ceramic capacitors are recommended.  
Capacitor Selection  
Input Capacitors  
The input capacitor for the step-down converters (C2 in  
Figures 3 and 4) reduces the current peaks drawn from  
the battery or input power source and reduces switch-  
ing noise in the IC. The impedance of C2 at the switch-  
ing frequency should be very low. Surface-mount  
ceramic capacitors are a good choice due to their  
small size and low ESR. Make sure the capacitor main-  
tains its capacitance over temperature and DC bias.  
Ceramic capacitors with X5R or X7R temperature char-  
acteristics generally perform well. A 10µF ceramic  
capacitor is recommended.  
For OUT1, calculate the value of C4 as follows:  
C4 = 1.2 x 10-5(s/V) x (V  
/ R1)  
OUT  
For OUT2, calculate the value of C5 and C10 as fol-  
lows:  
C = 1.2 x 10-5(s/V) x (V  
/ R3)  
OUT  
ff  
C = C5 + (C10 / 2)  
ff  
(C10 / C5) + 1 = (V  
/ V ), where V is 0.6V.  
FB FB  
OUT  
A 4.7µF ceramic capacitor is recommended for the  
LDO input capacitor (C3 in Figure 3).  
Rearranging the formulas:  
C10 = 2 x C x (V  
- V )/(V  
+ V  
)
ff  
OUT  
FB  
OUT  
FB  
Step-Down Output Capacitors  
The step-down output capacitors (C6 and C7 in Figures  
3 and 4) are required to keep the output-voltage ripple  
C5 = C – (C10 / 2)  
ff  
14 ______________________________________________________________________________________  
1.5MHz Dual Step-Down DC-DC Converters  
with Dual LDOs and Individual Enables  
7/MAX68  
C10 is needed if V  
> 1.5V or V  
can be less than  
IN12  
OUT  
P
P
=I  
× V  
V  
(
)
D3 OUT3  
IN34 OUT3  
V
OUT  
/ 0.65.  
=I  
× V  
V  
(
)
D4 OUT4  
IN34 OUT4  
LDO Output Capacitor and Stability  
The maximum junction temperature of the MAX8667/  
MAX8668 is +150°C. The junction-to-case thermal  
Connect a 4.7µF ceramic capacitor between OUT3 and  
GND, and a second 4.7µF ceramic capacitor from  
OUT4 to GND. For a constant loading above 10mA, the  
output capacitors can be reduced to 2.2µF. The equiv-  
alent series resistance (ESR) of the LDO output capaci-  
tors affects stability and output noise. Use output  
capacitors with an ESR of 0.1or less to ensure stable  
operation and optimum transient response. Surface-  
mount ceramic capacitors have very low ESR and are  
commonly available. Connect these capacitors as  
close as possible to the IC’s pins to minimize PCB trace  
inductance.  
resistance (θ ) of the MAX8667/MAX8668 is 6.9°C/W.  
JC  
When mounted on a single-layer PCB, the junction to  
ambient thermal resistance (θ ) is about 64°C/W.  
JA  
JA  
Mounted on a multilayer PCB, θ  
is about 48°C/W.  
Calculate the junction temperature of the  
MAX8667/MAX8668 as follows:  
T = T +P × θ  
JA  
J
A
D
where T is the maximum ambient temperature. Make  
A
sure the calculated value of T does not exceed the  
J
+150°C maximum.  
Thermal Considerations  
The maximum package power dissipation of the  
MAX8667/MAX8668 is 1667mW. Make sure the power  
dissipated by the MAX8667/MAX8668 does not exceed  
this rating. The total IC power dissipation is the sum of  
the power dissipation of the four regulators:  
PCB Layout  
High switching frequencies and relatively large peak  
currents make PCB layout a very important aspect of  
design. Good design minimizes excessive EMI on the  
feedback paths and voltage gradients in the ground  
plane, both of which can result in instability or regula-  
tion errors. Connect the input capacitors as close as  
possible to the IN_ and PGND_ pins. Connect the  
inductor and output capacitors as close as possible to  
the IC and keep the traces short, direct, and wide.  
P
D
=P +P +P +P  
D1 D2 D3 D4  
Estimate the OUT1 and OUT2 power dissipations as  
follows:  
1− η  
η
P
=I  
× V  
×
The feedback network traces are sensitive to inductor  
magnetic field interference. Route these traces away  
from the inductors and noisy traces such as LX. Keep  
the feedback components close to the FB_ pin.  
D1 OUT1  
OUT1  
1− η  
η
P
=I  
× V  
×
D2 OUT2  
OUT2  
Connect GND and PGND_ to the ground plane.  
Connect the exposed paddle to the ground plane with  
one or more vias to help conduct heat away from the  
IC.  
where R is the inductor’s DC resistance, and η is the  
L
efficiency (see the Typical Operating Characteristics  
section).  
Refer to the MAX8668 evaluation kit for a PCB layout  
example.  
Calculate the OUT3 and OUT4 power dissipations as  
follows:  
______________________________________________________________________________________ 15  
1.5MHz Dual Step-Down DC-DC Converters  
with Dual LDOs and Individual Enables  
Ordering Information (continued)  
Selector Guide  
PART  
PKG CODE  
T1633-4  
T1633-4  
T1633-4  
T1633-4  
T1633-4  
T1633-4  
T1633-4  
T1633-4  
T1633-4  
T1633-4  
TOP MARK  
AFJ  
OUT1  
(V)  
OUT2  
(V)  
OUT3  
(V)  
OUT4  
(V)  
PART  
MAX8667ETEHR+  
MAX8667ETEJS+  
MAX8668ETEA+  
MAX8668ETEP+  
MAX8668ETEQ+  
MAX8668ETET+  
MAX8668ETEU+  
MAX8668ETEV+  
MAX8668ETEW+  
MAX8668ETEX+  
MAX8667ETEAA+  
MAX8667ETEAB+  
MAX8667ETEAC+  
MAX8667ETECQ+  
MAX8667ETEHR+  
MAX8667ETEJS+  
MAX8668ETEA+  
MAX8668ETEP+  
MAX8668ETEQ+  
MAX8668ETET+  
MAX8668ETEU+  
MAX8668ETEV+  
MAX8668ETEW+  
MAX8668ETEX+  
1.20  
1.20  
1.20  
1.60  
1.80  
1.30  
ADJ  
ADJ  
ADJ  
ADJ  
ADJ  
ADJ  
ADJ  
ADJ  
1.80  
1.80  
1.80  
1.80  
1.20  
1.30  
ADJ  
ADJ  
ADJ  
ADJ  
ADJ  
ADJ  
ADJ  
ADJ  
2.80  
2.85  
1.20  
2.80  
2.60  
3.30  
2.80  
3.30  
2.80  
3.30  
3.30  
3.30  
3.30  
2.80  
2.80  
2.85  
1.20  
1.20  
2.80  
2.70  
2.80  
1.80  
1.20  
3.30  
2.80  
2.50  
3.00  
1.80  
AFQ  
AER  
AFK  
AFR  
AFS  
AFL  
AFT  
AFU  
AFV  
All MAX8667/MAX8668 parts are in a 16-pin, thin QFN, 3mm x  
3mm package and operate in the -40°C to = +85°C extended  
temperature range.  
7/MAX68  
+Denotes a lead-free package.  
Chip Information  
PROCESS: BiCMOS  
16 ______________________________________________________________________________________  
1.5MHz Dual Step-Down DC-DC Converters  
with Dual LDOs and Individual Enables  
7/MAX68  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
(NE - 1)  
X e  
MARKING  
E
E/2  
D2/2  
(ND - 1)  
e
X e  
D/2  
D
AAAA  
C
D2  
L
k
b
0.10 M  
C A B  
C
L
E2/2  
L
E2  
C
L
C
L
0.10  
C
0.08  
A
C
A2  
A1  
L
L
e
e
PACKAGE OUTLINE  
8, 12, 16L THIN QFN, 3x3x0.8mm  
1
21-0136  
I
2
______________________________________________________________________________________ 17  
1.5MHz Dual Step-Down DC-DC Converters  
with Dual LDOs and Individual Enables  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
PKG  
8L 3x3  
12L 3x3  
16L 3x3  
EXPOSED PAD VARIATIONS  
REF. MIN. NOM. MAX. MIN. NOM. MAX. MIN. NOM. MAX.  
D2  
E2  
PKG.  
PIN ID  
JEDEC  
CODES  
A
b
0.70 0.75 0.80 0.70 0.75 0.80  
0.25 0.30 0.35 0.20 0.25 0.30  
0.70 0.75 0.80  
0.20 0.25 0.30  
MIN.  
0.25  
0.95  
0.95  
0.95  
0.95  
0.65  
0.65  
0.95  
0.95  
NOM. MAX.  
MIN.  
0.25  
0.95  
0.95  
0.95  
NOM. MAX.  
TQ833-1  
T1233-1  
T1233-3  
0.70  
1.10  
1.10  
1.10  
1.25  
1.25  
1.25  
0.70  
1.10  
1.10  
1.10  
1.10  
0.80  
0.80  
1.10  
1.10  
1.25  
1.25  
1.25  
1.25  
1.25  
0.95  
0.95  
0.35 x 45°  
0.35 x 45°  
0.35 x 45°  
0.35 x 45°  
0.35 x 45°  
0.225 x 45°  
0.225 x 45°  
0.35 x 45°  
0.35 x 45°  
WEEC  
D
2.90 3.00 3.10 2.90 3.00 3.10 2.90 3.00 3.10  
2.90 3.00 3.10 2.90 3.00 3.10 2.90 3.00 3.10  
WEED-1  
WEED-1  
WEED-1  
WEED-2  
WEED-2  
WEED-2  
WEED-2  
WEED-2  
E
e
0.65 BSC.  
0.50 BSC.  
0.50 BSC.  
T1233-4  
T1633-2  
1.25  
1.25  
0.95  
0.95  
1.25  
1.25  
L
0.35 0.55 0.75 0.45 0.55 0.65 0.30 0.40 0.50  
1.10  
0.80  
0.80  
1.10  
0.95  
0.65  
0.65  
0.95  
N
ND  
NE  
A1  
A2  
k
8
12  
16  
T1633F-3  
T1633FH-3  
T1633-4  
2
3
4
2
3
4
1.25  
1.25  
0
0.02 0.05  
0
0.02 0.05  
0
0.02 0.05  
T1633-5  
1.10  
0.95  
0.20 REF  
0.20 REF  
0.20 REF  
-
-
-
-
-
-
0.25  
0.25  
0.25  
7/MAX68  
NOTES:  
1. DIMENSIONING & TOLERANCING CONFORM TO ASME Y14.5M-1994.  
2. ALL DIMENSIONS ARE IN MILLIMETERS. ANGLES ARE IN DEGREES.  
3. N IS THE TOTAL NUMBER OF TERMINALS.  
4. THE TERMINAL #1 IDENTIFIER AND TERMINAL NUMBERING CONVENTION SHALL CONFORM TO  
JESD 95-1 SPP-012. DETAILS OF TERMINAL #1 IDENTIFIER ARE OPTIONAL, BUT MUST BE LOCATED  
WITHIN THE ZONE INDICATED. THE TERMINAL #1 IDENTIFIER MAY BE EITHER A MOLD OR  
MARKED FEATURE.  
5. DIMENSION b APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.20 mm AND 0.25 mm  
FROM TERMINAL TIP.  
6. ND AND NE REFER TO THE NUMBER OF TERMINALS ON EACH D AND E SIDE RESPECTIVELY.  
7. DEPOPULATION IS POSSIBLE IN A SYMMETRICAL FASHION.  
8. COPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS.  
9. DRAWING CONFORMS TO JEDEC MO220 REVISION C.  
10. MARKING IS FOR PACKAGE ORIENTATION REFERENCE ONLY.  
11. NUMBER OF LEADS SHOWN ARE FOR REFERENCE ONLY.  
12. WARPAGE NOT TO EXCEED 0.10mm.  
PACKAGE OUTLINE  
8, 12, 16L THIN QFN, 3x3x0.8mm  
2
21-0136  
I
2
Revision History  
Pages changed at Rev 1: 1, 12, 14, 18  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
18 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2007 Maxim Integrated Products  
is a registered trademark of Maxim Integrated Products. Inc.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY