MAX8753ETI [MAXIM]

TFT LCD DC-DC Converter with Integrated Charge Pumps; TFT LCD DC -DC转换器,内置电荷泵
MAX8753ETI
型号: MAX8753ETI
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

TFT LCD DC-DC Converter with Integrated Charge Pumps
TFT LCD DC -DC转换器,内置电荷泵

转换器 稳压器 开关式稳压器或控制器 电源电路 开关式控制器 输出元件 信息通信管理 泵 CD
文件: 总20页 (文件大小:596K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-3919; Rev 0; 1/06  
TFT LCD DC-DC Converter with  
Integrated Charge Pumps  
General Description  
Features  
The MAX8753 quadruple-output DC-DC converter pro-  
vides the regulated voltages required by active-matrix,  
thin-film transistor (TFT), liquid-crystal displays (LCDs).  
3 Integrated DC-DC Converters, 1 LDO  
1MHz Current-Mode PWM Boost Regulator  
Up to +13V Main High-Power Output  
1ꢀ ꢁAAuraAc  
It includes a high-power step-up regulator (V  
), two  
MAIN  
), and a low-  
low-power charge pumps (V  
and V  
POS  
NEG  
).  
voltage 300mA linear regulator (V  
High EffiAienAc (90ꢀ)  
LOGIC  
The step-up DC-DC converter is a high-frequency  
(1MHz) current-mode regulator with a built-in power  
MOSFET that allows the use of ultra-small inductors and  
ceramic capacitors. It provides fast transient response  
to pulsed loads and includes an automatic pulse-skip-  
ping mode that increases efficiency over a wide-load  
current range. The 1.5A current limit allows a +10V out-  
put at more than 300mA from a +3.3V input.  
Dual Charge-Pump Outputs  
No External Diodes for Positive Charge Pump  
Up to +28V Positive Charge-Pump Output  
Negative Charge-Pump Output  
300mꢁ LogiA Linear Regulator  
+2.6V to +5.5V Input Operating Range  
0.8mꢁ QuiesAent Current  
The two charge pumps independently regulate one  
positive and one negative output voltage. The positive  
charge pump is a voltage tripler that accepts an input  
voltage up to +13V and delivers a 20mA output up to  
+28V without external switches or diodes. The negative  
charge pump inverts an input voltage up to +24V and  
delivers a 20mA negative output using external diodes.  
Internal Supplc SequenAing and Soft-Start  
Thermal ProteAtion  
Ultra-Thin, 28-Pin TQFN PaAkage (0.8mm max)  
Ordering Information  
The logic linear regulator converts the IC’s +2.6V-to-  
+5.5V input to a regulated +2.5V or adjustable output.  
The MAX8753 is available in a 28-pin thin QFN pack-  
age with a maximum thickness of 0.8mm for ultra-thin  
LCD panel design.  
PꢁRT  
TEMP RꢁNGE  
PIN-PꢁCKꢁGE  
28 Thin QFN  
(5mm x 5mm)  
MAX8753ETI+  
-40°C to 85°C  
+Denotes lead-free package.  
Applications  
Minimal Operating Circuit  
Notebook Computers, PDAs  
Car Navigation Displays  
LCD Monitors  
V
V
IN  
+2.6V TO +5.5V  
MAIN  
PGND  
IN  
Pin Configuration  
TOP VIEW  
V
MAIN  
GND  
FB  
SUPN  
SHDN  
21 20 19 18 17 16 15  
14  
13  
PGND 22  
N.C. 23  
REF  
C3P  
FBN  
V
NEG  
GND  
MAX8753  
12 N.C.  
24  
25  
26  
27  
28  
DLP  
SHDN  
LCDON  
C1N  
LCDON  
OUTL  
V
LOGIC  
IN  
11  
10  
9
MAX8753  
REF  
V
POS  
OUTL  
FBL  
FBP  
FBL  
DLP  
OUTP  
8
C1P  
FBP  
1
2
3
4
5
6
7
TQFN  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
TFT LCD DC-DC Converter with  
Integrated Charge Pumps  
ꢁBSOLUTE MꢁXIMUM RꢁTINGS  
SUPN to PGND.......................................................-0.3V to +30V  
IN, SHDN, LCDON to GND ......................................-0.3V to +6V  
C3P to PGND.........................................-0.3V to (V  
+ 0.3V)  
DLP, OUTL, FBL, FBP, FBN, INTG, FB,  
SUPN  
Continuous Power Dissipation (T = +70°C)  
REF to GND ............................................-0.3V to (V + 0.3V)  
A
IN  
28-Pin 5mm x 5mm TQFN (derated 21.3mW/°C  
PGND to GND .......................................................-0.3V to +0.3V  
LX to PGND ............................................................-0.3V to +14V  
SUPP to PGND .......................................................-0.3V to +14V  
above +70°C)............................................................1702mW  
Operating Temperature Range .......................... -40°C to +85°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
C1N, C2N to PGND ................................-0.3V to (V  
+ 0.3V)  
SUPP  
OUTP to PGND ........................................(V  
- 0.3V) to +30V  
SUPP  
C1P to C1N, C2P to C2N, OUTP to C2P ................-0.3V to +14V  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICꢁL CHꢁRꢁCTERISTICS  
(Circuit of Figure 1, V = 3.0V, SHDN = LCDON = IN, V  
= V  
= 10V, PGND = GND, C  
= 0.22µF, C  
= 470pF, T =  
INTG ꢁ  
IN  
SUPP  
SUPN  
REF  
0°C to +85°C. Typical values are at T = +25°C, unless otherwise noted.)  
A
PARAMETER  
INPUT SUPPLIES  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Input Supply Range  
V
2.6  
2.1  
5.5  
2.5  
1.5  
10  
V
V
IN  
Input Undervoltage Threshold  
IN Quiescent Supply Current  
IN Shutdown Current  
V
V
V
V
V
rising, 100mV hysteresis (typ)  
2.3  
0.8  
0.1  
UVLO  
IN  
I
= V  
= 1.5V, V = -0.2V  
FBN  
mA  
µA  
V
IN  
FB  
FBP  
= 0, V = 5V  
SHDN  
IN  
SUPP Supply Range  
7
7
13  
SUPP  
SUPP  
SUPP Quiescent Current  
SUPP Shutdown Current  
SUPN Supply Range  
I
V
V
= 1.5V  
0.4  
0.1  
0.8  
10  
mA  
µA  
V
FBP  
= 0, V  
= 14V, OUTP floating  
= 24V  
SHDN  
SUPP  
V
24  
SUPN  
SUPN Quiescent Current  
SUPN Shutdown Current  
MAIN BOOST CONVERTER  
Output Voltage Range  
FB Regulation Voltage  
FB Input Bias Current  
I
V
V
= -0.2V  
0.4  
0.1  
0.8  
10  
mA  
µA  
SUPN  
FBN  
= 0, V  
SHDN  
SUPN  
V
V
13  
V
V
MAIN  
IN  
V
1.232  
1.245  
125  
1.258  
275  
FB  
FB  
I
V
= 1.25V, INTG = GND  
nA  
FB  
FB Undervoltage Shutdown  
Threshold  
FB falling  
75  
125  
200  
mV  
Operating Frequency  
Oscillator Maximum Duty Cycle  
Load Regulation  
f
0.85  
78  
1.00  
85  
1.15  
90  
MHz  
%
OSC  
I
I
= 0 to 100mA, V  
= 10V  
0.2  
%
MAIN  
MAIN  
Line Regulation  
0.1  
%/V  
µS  
INTG Transconductance  
LX Switch On-Resistance  
LX Leakage Current  
320  
0.35  
0.01  
R
= 100mA  
LX  
0.7  
20  
LX(ON)  
I
LX  
V
= 13V, V = 0  
SHDN  
µA  
LX  
2
_______________________________________________________________________________________  
TFT LCD DC-DC Converter with  
Integrated Charge Pumps  
ELECTRICAL CHARACTERISTICS (continued)  
(Circuit of Figure 1, V = 3.0V, SHDN = LCDON = IN, V  
= V  
= 10V, PGND = GND, C  
= 0.22µF, C  
= 470pF, T =  
INTG A  
IN  
SUPP  
SUPN  
REF  
0°C to +85°C. Typical values are at T = +25°C, unless otherwise noted.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
0.38  
0.75  
1.13  
1.45  
MAX  
UNITS  
Phase I = soft-start (1.0ms)  
Phase II = soft-start (1.0ms)  
Phase III = soft-start (1.0ms)  
Phase IV = fully on (> 3.0ms)  
LX Current Limit  
I
A
LX(MAX)  
1.08  
1.80  
3072 /  
Soft-Start Period  
t
SS  
Power-up to the end of phase III  
s
f
OSC  
POSITIVE CHARGE PUMP  
V
V
Input Supply Range  
V
7
13  
14.0  
28  
V
V
V
SUPP  
SUPP  
SUPP  
Overvoltage Threshold  
V
= rising, hysteresis (typ) = 200mV  
13.2  
13.6  
SUPP  
OUTP Operating Range  
Operating Frequency  
FBP Regulation Voltage  
FBP Line Regulation  
FBP Input Bias Current  
Soft-Start Period  
V
SUPP  
1.213  
-50  
0.25 x  
Hz  
V
f
OSC  
V
1.250  
10  
1.287  
+50  
FBP  
V
5mA  
= 8V to 12V, V  
= 1.5V  
= 20V, I  
=
SUPP  
OUTP  
OUTP  
mV  
nA  
s
I
V
FBP  
FBP  
1024 /  
V
SSP  
f
OSC  
C1N, C2N High-Side On-  
Resistance  
I
I
= 50mA  
15  
5
SOURCE  
C1N, C2N Low-Side On-  
Resistance  
= 50mA  
SINK  
C1P Switch On-Resistance  
C2P Switch On-Resistance  
OUTP Switch On-Resistance  
NEGATIVE CHARGE PUMP  
I
I
I
= 50mA  
= 50mA  
= 50mA  
8
8
8
SOURCE  
SOURCE  
SOURCE  
V
Input Supply Range  
V
7
24  
V
SUPN  
SUPN  
0.25 x  
Operating Frequency  
FBN Regulation Voltage  
FBN Line Regulation  
FBN Input Bias Current  
Soft-Start Period  
Hz  
mV  
mV  
nA  
s
f
OSC  
V
213  
-50  
250  
287  
+50  
FBN  
V
5mA  
= 8V to 24V, V  
= -0.05V  
= -10V, I  
=
OUTN  
SUPN  
OUTN  
10  
I
V
FBN  
FBN  
1024 /  
fosc  
V
SSN  
C3P High-Side On-Resistance  
C3P Low-Side On-Resistance  
I
I
= 50mA  
= 50mA  
15  
10  
SINK  
SINK  
_______________________________________________________________________________________  
3
TFT LCD DC-DC Converter with  
Integrated Charge Pumps  
ELECTRICAL CHARACTERISTICS (continued)  
(Circuit of Figure 1, V = 3.0V, SHDN = LCDON = IN, V  
= V  
= 10V, PGND = GND, C  
= 0.22µF, C  
= 470pF, T =  
INTG A  
IN  
SUPP  
SUPN  
REF  
0°C to +85°C. Typical values are at T = +25°C, unless otherwise noted.)  
A
PARAMETER  
REGULATOR  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
LOGIC  
FBL Regulation Voltage  
FBL Input Bias Current  
V
I
= 0 to 300mA  
1.225  
-50  
1.250  
1.275  
+50  
V
nA  
V
FBL  
OUTL  
I
V
V
V
= 1.3V  
FBL  
FBL  
FBL  
FBL  
FBL Undervoltage Lockout  
FBL Dual-ModeThreshold  
V
rising, hysteresis (typ) = 125mV  
= rising  
1.100  
220  
1.125  
250  
1.150  
280  
FBL_UV  
mV  
OUTL Voltage Accuracy  
(Preset Mode)  
V
= GND, I  
= 0 to 300mA  
OUTL  
2.425  
2.500  
2.575  
-2  
V
FBL  
OUTL Load Regulation  
OUTL Line Regulation  
OUTL On-Resistance  
OUTL Short-Circuit Current  
REFERENCE  
I
= 0 to 300mA  
= 2.6V to 5.5V  
%
%
OUTL  
V
V
V
0.1  
0.7  
500  
IN  
= 3.3V, I  
= 100mA  
1.5  
IN  
OUTL  
= GND, V  
= 1V  
mA  
OUTL  
FBL  
Reference Voltage  
V
-2µA < I  
< +50µA  
1.231  
0.9  
1.250  
1.05  
1.269  
1.2  
V
V
REF  
REF  
Reference Undervoltage  
Threshold  
V
rising  
REF  
LOGIC SIGNALS  
LCDON, SHDN Input Low Voltage  
LCDON, SHDN Input High  
Voltage  
Hysteresis = 0.15 x V (typ)  
0.9  
V
V
IN  
2.1  
SHDN Input Current  
I
V
V
= 0 to IN  
0.01  
0.01  
1
1
µA  
µA  
SHDN  
SHDN  
LCDON Input Current  
SEQUENCING  
I
= 0 to IN  
LCDON  
LCDON  
DLP Capacitor Charge Current  
V
V
= 0.5V  
4
5
6
µA  
V
DLP  
DLP  
DLP Turn-On Threshold  
DLP Discharge Switch  
On-Resistance  
= rising  
1.20  
1.25  
1.30  
V
= 0  
40  
SHDN  
FAULT PROTECTION  
Duration to Trigger Fault  
FBL Fault-Trip Level  
t
50  
ms  
V
FAULT  
Falling edge  
0.95  
1.07  
450  
1.01  
1.10  
500  
1.08  
1.14  
550  
FB, FBP Fault-Trip Level  
FBN Fault-Trip Level  
Falling edge  
V
Rising edge  
mV  
°C  
Thermal-Shutdown Threshold  
Typical hysteresis = 15°C  
+160  
Dual-Mode is a trademark of Maxim Integrated Products, Inc.  
4
_______________________________________________________________________________________  
TFT LCD DC-DC Converter with  
Integrated Charge Pumps  
ELECTRICAL CHARACTERISTICS  
(Circuit of Figure 1, V = 3.0V, SHDN = LCDON = IN, V  
= V  
= 10V, PGND = GND, C  
= 0.22µF, C  
= 470pF, T =  
INTG A  
IN  
SUPP  
SUPN  
REF  
-40°C to +85°C. Typical values are at T = +25°C, unless otherwise noted.) (Note 1)  
A
PARAMETER  
INPUT SUPPLIES  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Input Supply Range  
V
2.6  
2.1  
5.5  
2.5  
1.5  
13  
V
V
IN  
Input Undervoltage Threshold  
IN Quiescent Supply Current  
SUPP Supply Range  
V
V
V
V
rising, 100mV hysteresis (typ)  
UVLO  
IN  
I
= V  
= 1.5V, V = -0.2V  
FBN  
mA  
V
IN  
FB  
FBP  
7
7
SUPP  
SUPP  
SUPP Quiescent Current  
SUPN Supply Range  
I
V
V
= 1.5V  
0.8  
24  
mA  
V
FBP  
FBN  
V
SUPN  
SUPN  
SUPN Quiescent Current  
MAIN BOOST CONVERTER  
Output Voltage Range  
FB Regulation Voltage  
I
= -0.2V  
0.8  
mA  
V
V
13  
V
V
MAIN  
IN  
V
1.225  
1.258  
FB  
FB Undervoltage Shutdown  
Threshold  
FB falling  
75  
200  
mV  
Operating Frequency  
LX Switch On-Resistance  
LX Current Limit  
f
0.75  
1.25  
0.7  
MHz  
OSC  
R
I
= 100mA  
LX(ON)  
LX(MAX)  
LX  
I
Phase IV = fully on (> 3.0ms)  
1.08  
1.8  
A
POSITIVE CHARGE PUMP  
V
V
Input Supply Range  
V
7
13  
V
V
V
SUPP  
SUPP  
SUPP  
Overvoltage Threshold  
V
= rising, hysteresis (typ) = 200mV  
13.2  
1.213  
14.0  
1.287  
SUPP  
FBP Regulation Voltage  
V
FBP  
NEGATIVE CHARGE PUMP  
V
Input Supply Range  
V
7
24  
V
SUPN  
SUPN  
FBN Regulation Voltage  
REGULATOR  
V
213  
287  
mV  
FBN  
V
LOGIC  
FBL Regulation Voltage  
OUTL On-Resistance  
REFERENCE  
V
I
= 0 to 300mA  
1.220  
1.275  
1.5  
V
FBL  
REF  
OUTL  
V
= 3.3V, I  
= 100mA  
IN  
OUTL  
Reference Voltage  
V
-2µA < I  
< +50µA  
1.225  
0.9  
1.269  
1.2  
V
V
REF  
Reference Undervoltage  
Threshold  
V
rising  
REF  
LOGIC SIGNALS  
LCDON, SHDN Input Low  
Voltage  
Hysteresis = 0.15 x V (typ)  
0.9  
V
V
IN  
LCDON, SHDN Input High  
Voltage  
2.1  
_______________________________________________________________________________________  
5
TFT LCD DC-DC Converter with  
Integrated Charge Pumps  
ELECTRICAL CHARACTERISTICS (continued)  
(Circuit of Figure 1, V = 3.0V, SHDN = LCDON = IN, V  
= V  
= 10V, PGND = GND, C  
= 0.22µF, C  
= 470pF, T =  
INTG A  
IN  
SUPP  
SUPN  
REF  
-40°C to +85°C. Typical values are at T = +25°C, unless otherwise noted.) (Note 1)  
A
PARAMETER  
SEQUENCING  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DLP Turn-On Threshold  
FBL Fault-Trip Level  
V
= rising  
1.2  
1.3  
V
V
V
DLP  
Falling edge  
Falling edge  
0.95  
1.07  
1.08  
1.14  
FB, FBL, FBP Fault-Trip Level  
Note 1: Specifications to -40°C are guaranteed by design, not production tested.  
Typical Operating Characteristics  
(Circuit of Figure 1, V = 3V, V  
= 9V, T = +25°C, unless otherwise noted.)  
A
IN  
MAIN  
STEP-UP EFFICIENCY  
vs. LOAD CURRENT  
STEP-UP MAXIMUM OUTPUT CURRENT  
vs. INPUT VOLTAGE  
NORMALIZED V  
vs. LOAD CURRENT  
MAIN  
9.06  
9.04  
100  
90  
80  
70  
60  
50  
700  
600  
500  
400  
300  
200  
V
= 5.0V  
IN  
9.02  
9.00  
8.98  
V
= 5.0V  
IN  
V
= 3.0V  
IN  
V
IN  
= 3.0V  
8.96  
8.94  
0
100  
200  
300  
400  
500  
600  
0
50  
100  
LOAD CURRENT (mA)  
150  
200  
2
3
4
5
6
LOAD CURRENT (mA)  
INPUT VOLTAGE (V)  
NORMALIZED OUTL VOLTAGE  
vs. OUTL LOAD CURRENT  
OUTL DROPOUT VOLTAGE  
vs. OUTL LOAD CURRENT  
OUTN VOLTAGE  
vs. OUTN LOAD CURRENT  
2.52  
2.51  
2.50  
2.49  
2.48  
2.47  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
-10.4  
-10.6  
-10.8  
-11.0  
-11.2  
-11.4  
V
= 9V  
SUPN  
V
= 5.0V  
IN  
V
= 10V  
SUPN  
V
= 3.0V  
150  
IN  
0
50  
100  
200  
250  
300  
0
50  
100  
150  
200  
250  
300  
0
5
10  
15  
20  
OUTL LOAD CURRENT (mA)  
OUTL LOAD CURRENT (mA)  
OUTN LOAD CURRENT (mA)  
6
_______________________________________________________________________________________  
TFT LCD DC-DC Converter with  
Integrated Charge Pumps  
Typical Operating Characteristics (continued)  
(Circuit of Figure 1, V = 3V, V  
IN  
= 9V, T = +25°C, unless otherwise noted.)  
MAIN  
A
OUTP VOLTAGE  
vs. OUTP LOAD CURRENT  
SWITCHING FREQUENCY  
vs. INPUT VOLTAGE  
REFERENCE VOLTAGE  
vs. REFERENCE CURRENT  
24.2  
24.1  
24.0  
23.9  
23.8  
1.20  
1.15  
1.10  
1.05  
1.00  
0.95  
0.90  
1.252  
1.251  
V
= 10V  
SUPP  
1.250  
1.249  
1.248  
V
= 9V  
SUPP  
I
= 100mA  
5.0  
MAIN  
0
5
10  
15  
20  
2.5  
3.0  
3.5  
4.0  
4.5  
5.5  
0
10  
20  
30  
40  
50  
OUTP LOAD CURRENT (mA)  
INPUT VOLTAGE (V)  
REFERENCE CURRENT (µA)  
V
TRANSIENT RESPONSE  
V
SWITCHING WAVEFORMS  
MAIN  
V
3-PULSE TRANSIENT RESPONSE  
MAIN  
MAIN  
0
A
B
0
A
B
A
B
0
9V  
9V  
0
C
9V  
C
C
0
0
40µs/div  
A. LOAD FET GATE, 5V/div  
400ns/div  
10µs/div  
C. I , 500mA/div  
LX  
A. V , 5V/div  
LX  
C. V  
MAIN  
, 50mV/div  
MAIN  
A. LOAD FET GATE, 5V/div  
C. I , 500mA/div  
LX  
LX  
B. V  
, 200mV/div  
MAIN  
I
= 20mA TO  
160mA  
MAIN  
B. I , 500mA/div  
I
= 160mA  
B. V , 200mV/div  
MAIN  
I
= 20mA TO 1A,  
MAIN  
2µs PULSE  
OUTP SOFT-START  
V
MAIN  
SOFT-START  
V
SOFT-START (NO LOAD)  
MAIN  
A
B
A
0
0
0
0
0
0
B
A
B
OUTN  
STARTUP  
OUTN  
STARTUP  
0
0
V
MAIN  
STARTUP  
C
C
400µs/div  
1ms/div  
1ms/div  
A. OUTP, 10V/div  
B. I , 500mA/div  
I
= 20mA  
OUTP  
A. SHDN, 5V/div  
B. V , 5V/div  
C. I , 500mA/div  
MAIN  
A. SHDN, 5V/div  
B. V , 5V/div  
C. I , 500mA/div  
LX  
LX  
I
= 160mA  
SUPP  
MAIN  
MAIN  
_______________________________________________________________________________________  
7
TFT LCD DC-DC Converter with  
Integrated Charge Pumps  
Typical Operating Characteristics (continued)  
(Circuit of Figure 1, V = 3V, V  
= 9V, T = +25°C, unless otherwise noted.)  
A
IN  
MAIN  
OUTN SWITCHING WAVEFORMS  
OUTP SWITCHING WAVEFORMS  
OUTN SOFT-START  
A
B
0
0
A
B
A
B
0
0
0
-11V  
C
24V  
C
0
10µs/div  
4µs/div  
1ms/div  
A. V , 5V/div  
OUTN  
I
= 10mA  
OUTN  
A. V , 5V/div  
C2N  
C. V  
OUTP  
, 200mV/div  
A. SHDN, 5V/div  
B. OUTN, 5V/div  
C. I , 200mA/div  
SUPN  
OUTN  
C3P  
CIN  
OUTP  
= 20mA  
B. V , 100mV/div  
B. V , 5V/div  
I
I = 20mA  
OUTL TRANSIENT RESPONSE  
OUTL SOFT-START  
A
B
0
2.5V  
A
B
0
0
C
0
100µs/div  
400µs/div  
A. V  
OUTL  
, 50V/div  
I
= 10mA TO 300mA  
OUTL  
A. SHDN, 5V/div  
B. OUTL, 1V/div  
C. V , 1V/div  
OUTL  
OUTL  
REF  
= 10Ω  
B. I , 100mA/div  
R
FAULT TIMER  
POWER-UP SEQUENCING  
POWER-DOWN SEQUENCING  
9V  
A
A
B
0
0
A
24V  
B
C
D
0
0
9V  
9V  
B
C
D
C
0
-11V  
24V  
-11V  
24V  
E
F
E
F
D
E
0
2.5V  
0
0
10ms/div  
4ms/div  
4ms/div  
A. V  
B. V  
C. V  
, 5V/div  
D. V , 10V/div  
LX  
A. SHDN, 5V/div  
D. V  
E. V  
DLP  
, 10V/div  
A. SHDN, 5V/div  
D. V  
OUTP  
F. V , 1V/div  
REF  
, 10V/div  
OUTN  
MAIN  
OUTP  
OUTN  
, 20V/div  
, 10V/div  
E. V  
R
, 2V/div  
B. V  
OUTL  
C. V  
MAIN  
, 5V/div  
, 10V/div  
B. V  
OUTL  
C. V  
MAIN  
, 5V/div  
E. V  
, 10V/div  
OUTL  
= OPEN TO 18Ω  
OUTP  
, 10V/div  
F. V , 2V/div  
, 10V/div  
OUTN  
MAIN  
8
_______________________________________________________________________________________  
TFT LCD DC-DC Converter with  
Integrated Charge Pumps  
Pin Description  
PIN  
NAME  
FUNCTION  
1
SUPP  
Positive Charge-Pump Supply Voltage. Bypass to PGND with a 0.1µF capacitor.  
2, 12, 20,  
23  
N.C.  
No connection. Not internally connected.  
3
4
5
6
C2N  
C2P  
Negative Terminal of Flying Capacitor C2  
Positive Terminal of Flying Capacitor C2  
OUTP  
INTG  
Positive Charge-Pump Output  
Step-Up Regulator Integrator Output. Connect a 470pF capacitor from INTG to GND.  
Step-Up Converter Feedback Input. Regulates to 1.245V (nominal). Connect a resistor-divider from the  
7
8
FB  
output (V ) to FB to analog ground (GND). Place the resistor-divider within 5mm of FB.  
MAIN  
Positive Charge-Pump Feedback Input. Regulates to 1.25V (nominal). Connect a resistor-divider from the  
output (OUTP) to FBP to analog ground (GND). Place the resistor-divider within 5mm of FBP.  
FBP  
Logic Linear Regulator Dual-Mode Feedback Input. Connect FBL to GND to select the 2.5V preset linear  
regulator output voltage (OUTL). Connect FBL to the center tap of a resistive voltage-divider between  
OUTL and GND to set an adjustable output voltage. In adjustable mode, FBL is regulated at 1.25V nominal.  
Place the resistive divider within 5mm of FBL.  
9
FBL  
Logic Linear Regulator Output. Output of the 2.5V or adjustable linear regulator. Bypass to GND with a  
10µF (min) capacitor.  
10  
OUTL  
Supply Input. +2.6V to +5.5V input range. Supply input for the IC and input for the internal logic linear  
regulator. Bypass to GND with a 0.1µF capacitor within 5mm of the IC pins.  
11  
13  
14  
IN  
GND  
REF  
Analog Ground. Connect to power ground (PGND) underneath the IC.  
Internal Reference Output. Bypass REF to GND with a 0.22µF (min) capacitor. REF can supply up to 50µA  
to an external load.  
Negative Charge-Pump Feedback Input. Connect a resistor-divider from the output (OUTN) to FBN to the  
reference output (REF). Place the resistor-divider within 5mm of FBN.  
15  
FBN  
16, 17  
18  
I.C.  
C3P  
Internally Connected. Make no connection to this pin.  
Positive Terminal of Flying Capacitor C3  
19  
SUPN  
Negative Charge-Pump Supply Voltage. Bypass to PGND with a 0.1µF capacitor.  
Power MOSFET n-Channel Drain and Switching Node. Connect the inductor and catch diode to LX and  
minimize the trace area for lowest EMI.  
21  
22  
24  
25  
26  
LX  
Power Ground. PGND is the source of the main boost/n-channel power MOSFET. Connect PGND to the  
output capacitor ground terminals through a short, wide PC board trace.  
PGND  
DLP  
Positive Charge-Pump Startup Delay Input. Connect a capacitor from DLP to GND to set the delay time. A  
5µA current source charges C  
. DLP is pulled to GND by a 20switch when shut down.  
DLP  
Active-Low Shutdown Control Input. All outputs are disabled when SHDN is low. When SHDN is high, REF  
and OUTL are enabled and the LCD supplies can be enabled if LCDON is high.  
SHDN  
LCDON  
LCD Supply Enable Input. All LCD supply outputs (MAIN, OUTN, and OUTP) are disabled when LCDON is  
low. REF and OUTL are unaffected by LCDON.  
27  
28  
C1N  
C1P  
Negative Terminal of Flying Capacitor C1  
Positive Terminal of Flying Capacitor C1  
_______________________________________________________________________________________  
9
TFT LCD DC-DC Converter with  
Integrated Charge Pumps  
L1  
6.8µH  
V
V
MAIN  
IN  
+2.6V TO +5.5V  
D1  
+9V, 140mA  
C
IN  
C
MAIN1  
10µF  
R1  
174kΩ  
0.1µF  
10µF  
C
INTG  
470pF  
1
6
21  
22  
13  
7
11  
R
C
COMP  
COMP  
1nF  
IN  
PGND  
GND  
FB  
R2  
20kΩ  
28kΩ  
0.1µF  
16  
17  
I.C.  
I.C.  
D2  
D3  
V
MAIN  
C3  
0.1µF  
19  
SUPN  
0.1µF  
C5  
0.1µF  
18  
C3P  
FBN  
V
NEG  
25  
SHDN  
-11V, 10mA  
MAX8753  
C4  
0.1µF  
V
LOGIC  
26  
10  
9
R3  
215kΩ  
C
15  
NEG  
+2.5V, 300mA  
LCDON  
1µF  
OUTL  
FBL  
DLP  
C
LOGIC  
R4  
19.1kΩ  
24  
14  
5
10µF  
REF  
C
C
REF  
DLP  
V
POS  
0.1µF  
0.22µF  
OUTP  
+24V, 10mA  
2
R5  
46.4kΩ  
C
N.C.  
N.C.  
POS  
1µF  
8
12  
FBP  
4
R6  
25.5kΩ  
28  
3
27  
C1  
0.1µF  
C2  
0.1µF  
Figure 1. Typical Operating Circuit  
Table 1. Critical Component List  
Typical Operating Circuit  
The MAX8753 typical application circuit (Figure 1) gen-  
erates a +2.5V logic supply, a +9V source driver sup-  
ply, and +24V and -11V gate-driver supplies for TFT  
displays. The input voltage range for the IC is from  
+2.6V to +5.5V.  
DESIGNATION  
DESCRIPTION  
10µF, 6.3V X5R ceramic capacitors (0603)  
TDK C1608X5R0J106M  
C
, C  
IN LOGIC  
10µF 20%, 16V X5R ceramic capacitor  
(1210)  
Taiyo Yuden EMK325 BJ106KD  
Table 1 lists the recommended components and Table 2  
lists the contact information for component suppliers.  
C
MAIN  
D1  
3A, 30V Schottky diode (M-flat)  
Toshiba CMS02  
200mA, 100V, dual ultra-fast diodes  
(SOT23)  
Fairchild MMBD4148SE  
D2, D3  
L1  
6.8µH, 1.0A inductor  
Sumida CDH38D09HP  
10 ______________________________________________________________________________________  
TFT LCD DC-DC Converter with  
Integrated Charge Pumps  
Table 2. Component Suppliers  
SUPPLIER  
Fairchild  
PHONE  
FAX  
WEBSITE  
www.fairchildsemi.com  
408-822-2000  
847-545-6700  
408-573-4150  
847-803-6100  
949-455-2000  
408-822-2102  
847-545-6720  
408-573-4159  
847-390-4405  
949-859-3963  
Sumida  
Taiyo Yuden  
TDK  
www.sumida.com  
www.t-yuden.com  
www.component.tdk.com  
www.toshiba.com/taec  
Toshiba  
Detailed Description  
The MAX8753 quadruple-output DC-DC converter pro-  
vides the regulated voltages required by active-matrix,  
TFT LCDs. Figure 1 shows the typical operating circuit.  
INTG  
LX  
IN  
It includes a high-power step-up regulator (V  
), two  
MAIN  
), and a low-  
low-power charge pumps (V  
and V  
POS  
NEG  
STEP-UP  
REGULATOR  
voltage, 300mA linear regulator (V  
). The primary  
LOGIC  
DLP  
boost converter uses an internal n-channel MOSFET to  
provide maximum efficiency and to minimize the num-  
ber of external components. The output voltage of the  
PGND  
FB  
SHDN  
ONLCD  
SEQ  
main boost converter (V  
) can be set from V to  
IN  
MAIN  
13V with external resistors. The positive charge pump  
regulates a positive output (V ) without external  
POS  
OUTL  
FBL  
REF  
switches or diodes. The negative charge pump regu-  
lates a negative output (V ) with external diodes. A  
LDO  
REF  
NEG  
GND  
proprietary regulation algorithm minimizes output rip-  
ple, as well as capacitor sizes for both charge pumps.  
Also included in the MAX8753 is a precision 1.25V ref-  
erence that sources up to 50µA, logic shutdown, soft-  
start, power-up sequencing, and fault detection. Figure  
2 is the MAX8753 functional diagram.  
SUPN  
FBP  
OUTP  
C1N  
C1P  
C3P  
FBN  
POSITIVE  
CHARGE-  
PUMP  
NEGATIVE  
CHARGE-  
PUMP  
Main Step-Up Regulator  
The main step-up regulator employs a current-mode,  
fixed-frequency PWM architecture to maximize loop  
bandwidth and provide fast transient response to  
pulsed loads and TFT LCD panel source driver applica-  
tions. The high switching frequency (1MHz) allows the  
use of low-profile inductors and ceramic capacitors to  
minimize the thickness of LCD panel designs. The inte-  
grated high-efficiency MOSFET and the ICs built-in,  
digital, soft-start function reduces the number of exter-  
nal components required while controlling inrush cur-  
C2N  
C2P  
REGULATOR  
REGULATOR  
MAX8753  
SUPP  
Figure 2. Functional Diagram  
rent. The output voltage can be set from V to 13V with  
IN  
an external resistive voltage-divider.  
Figure 3 shows the block diagram of the step-up regu-  
lator. A transconductance error amplifier compares the  
signal at FB to 1.24V and changes the COMP output.  
The voltage at COMP determines the current trip point  
each time the internal MOSFET turns on. As the load  
varies, the transconductance error amplifier sources or  
sinks current to the COMP output accordingly to pro-  
duce the inductor peak current necessary to service  
the load. To maintain stability at high duty cycles, a  
The regulator controls the output voltage and the power  
delivered to the output by modulating the duty cycle (D)  
of the internal power MOSFET in each switching cycle.  
The duty cycle of the MOSFET is approximated by:  
V
V  
IN  
MAIN  
V
D ≈  
MAIN  
______________________________________________________________________________________ 11  
TFT LCD DC-DC Converter with  
Integrated Charge Pumps  
L1  
V
IN  
= 2.6V TO 5.5V  
IN  
D1  
V
MAIN  
(UP TO 13V)  
LX  
DC-DC  
LOGIC  
DRV  
R1  
C
MAIN1  
REF-OK  
REF  
REF  
C
REF  
1.1V  
CS  
CSN  
CSP  
GND  
PGND  
OSC  
OSC  
EA  
SC  
EAN  
EAP  
R
COMP  
FB  
SLOPE  
COMP  
Gm  
C
COMP  
R2  
REF  
BUFFER  
INTG  
MAX8753  
C
INTG  
Figure 3. Step-Up Regulator Block Diagram  
slope compensation signal is summed with the current-  
sense and feedback signals.  
Positive Charge-Pump Regulator  
The positive charge-pump regulator is typically used to  
generate the positive supply rail for the TFT LCD gate-  
driver ICs (Figure 4). The output voltage is set with an  
external resistive voltage-divider from its output to GND  
with the midpoint connected to FBP. The positive  
charge pump is a voltage tripler that accepts an input  
voltage up to +13V and delivers a 20mA output up to  
+28V without external switches or diodes.  
On the rising edge of the internal clock, the controller  
sets a flip-flop, turning on the n-channel MOSFET and  
applying the input voltage across the inductor. The cur-  
rent through the inductor ramps up linearly, storing  
energy in its magnetic field. Once the sum of the cur-  
rent-feedback signal and the slope compensation  
exceed the COMP voltage, the controller resets the flip-  
flop, and turns off the MOSFET. Since the inductor cur-  
rent is continuous, a transverse potential develops  
across the inductor (L1) that turns on the diode (D1).  
The voltage across the inductor then becomes the dif-  
ference between the output voltage and the input volt-  
age. This discharge condition forces the current  
through the inductor to ramp back down, transferring  
the energy stored in the magnetic field to the output  
capacitor and the load. The MOSFET remains off for the  
rest of the clock cycle.  
During the first half-cycle (CLK is low), C1N pin is con-  
nected to the ground, which allows V  
to charge up  
SUPP  
the first flying capacitor C1 through diode D1. The  
amount of charge transferred from V to C1 is  
SUPP  
determined by the on-resistance of N1, which varies  
according to the output of the feedback error amplifier.  
During the second half-cycle (CLK is high), C1N is con-  
nected to V  
through P1, level shifting C1 by V  
SUPP  
SUPP  
volts. The on-resistance of P1 is also controlled by the  
output of the feedback error amplifier. Meanwhile,  
CLKB becomes low, pulling C2N to the ground. This  
connects C1 in parallel with the second flying capacitor  
12 ______________________________________________________________________________________  
TFT LCD DC-DC Converter with  
Integrated Charge Pumps  
V
SUPP  
SUPP  
D1  
D2  
CLK  
CLK  
P1  
P2  
D3  
C1N  
C2N  
R
ON  
R
ON  
CONTROL  
CONTROL  
CTRL  
N2  
N1  
EA  
V
POS  
POS  
OUTP  
C1N  
C1P  
C
C1  
C2  
R1  
C2P  
C2N  
SUPP OV  
THRESHOLD  
R2  
R5  
REF  
CHARGE-  
PUMP  
LOGIC  
OSC  
FBP  
EA  
REF  
R6  
MAX8753  
Figure 4. Positive Charge-Pump Regulator Block Diagram  
C2. If the voltage across C2 plus a diode drop (V  
+
p-channel MOSFET (P3) and a low-side n-channel  
MOSFET (N3) to control the power transfer as shown in  
Figure 5. The negative charge pump can also be con-  
figured as a multiple-stage charge pump. The required  
C2  
V
) is smaller than the first level-shifted flying  
DIODE  
capacitor voltage (V + V  
), charge flows from C1  
SUPP  
C1  
to C2 until diode D2 turns off. Similarly, when CLKB  
becomes high, C2 is also level shifted by V volts.  
number of stages (n ) is determined by V  
and  
SUPN  
SUPP  
neg  
This connects C2 in parallel with the reservoir capacitor  
. If the voltage across C plus a diode drop  
the desired negative output voltage. Figure 1 gives an  
example with a two-stage negative charge pump.  
C
POS  
(V  
POS  
+ V  
) is smaller than the second level-shift-  
POS  
DIODE  
In Figure 5, during the first half-cycle, the p-channel  
MOSFET turns on and flying capacitor C3 charges to  
ed flying capacitor voltage (V + V  
), charge flows  
C2  
SUPP  
from C2 to C  
until diode D3 turns off.  
POS  
V
minus a diode drop. During the second half-  
SUPN  
cycle, the p-channel MOSFET turns off, and the n-chan-  
nel MOSFET turns on, level shifting C3. This connects  
Negative Charge-Pump Regulator  
The negative charge-pump regulator is typically used  
to generate the negative supply rail for the TFT LCD  
gate-driver ICs. The output voltage is set with an exter-  
nal resistive voltage-divider from its output to REF with  
the midpoint connected to FBN. The number of charge-  
pump stages and the setting of the feedback divider  
determine the output of the negative charge-pump reg-  
ulator. The charge-pump controller includes a high-side  
C3 in parallel with the reservoir capacitor C  
. If the  
NEG  
voltage across C3 minus a diode drop is lower than the  
voltage across C , charge flows from C3 to C  
NEG  
NEG  
until the diode turns off. The amount of charge trans-  
ferred to the output is controlled by the variable n-chan-  
nel on-resistance.  
______________________________________________________________________________________ 13  
TFT LCD DC-DC Converter with  
Integrated Charge Pumps  
V
SUPN  
SUPN  
P3  
D4  
D5  
C3  
C3P  
R
ON  
V
NEG  
CONTROL  
C
NEG  
N3  
OSC  
R3  
FBN  
CHARGE-  
PUMP  
LOGIC  
EA  
250mV  
R4  
1.25V  
REF  
MAX8753  
C
REF  
GND  
PGND  
Figure 5. Negative Charge-Pump Regulator Block Diagram  
The linear regulator is enabled whenever REF is in reg-  
Linear Regulator  
The MAX8753 contains a linear regulator that uses an  
internal pMOS transistor to supply load currents up to  
300mA. Connect FBL to GND to set the linear regulator  
output to 2.5V. Connect an external resistive voltage-  
divider between the regulator output and GND with the  
midpoint connected to FBL to adjust the linear-regulator  
output. An error amplifier compares the FBL voltage with  
the 1.25V internal reference voltage and amplifies the  
difference. If the feedback voltage is higher than the ref-  
erence voltage, the controller lowers the gate voltage of  
the pMOS transistor, which reduces the amount of cur-  
rent delivered to the output. If the feedback voltage is  
too low, the device increases the pMOS transistors gate  
voltage, which allows more current to pass to the output  
and raises the output voltage. The linear regulator also  
includes an output current limit that protects the internal  
pass transistor against short circuits.  
ulation and SHDN is logic-high.  
The linear regulator current-limit circuitry monitors the  
current flowing through the internal pass transistor. The  
internal current limit is approximately 500mA. The linear  
regulator output declines when it is not able to supply  
the load current. If the FBL voltage drops below 0.75V,  
the current limit folds back to approximately 100mA.  
Reference Voltage (REF)  
The reference output is nominally 1.25V and can  
source up to 50µA. Bypass REF with a 0.22µF ceramic  
capacitor connected between REF and GND. The refer-  
ence remains disabled in shutdown.  
Power-Up Sequence and Shutdown Control  
When the MAX8753 is powered up, all outputs are dis-  
abled as long as SHDN is low. After SHDN is logic-  
high, the reference and the linear regulator power up  
first. The main DC-DC step-up converter, the negative  
14 ______________________________________________________________________________________  
TFT LCD DC-DC Converter with  
Integrated Charge Pumps  
charge pump, and the positive charge pump remain  
Design Procedure  
Main Step-Up Regulator  
Inductor Selection  
The minimum inductance value, peak current rating, and  
series resistance are factors to consider when selecting  
the inductor. These factors influence the converters effi-  
ciency, maximum output load capability, transient  
response time, and output voltage ripple. Physical size  
and cost are also important factors to be considered.  
disabled until LCDON is high. When LCDON is logic-  
high, the main DC-DC step-up converter powers up with  
soft-start enabled. Once the main step-up converter  
reaches regulation, the negative charge pump turns on.  
When the main step-up converter reaches regulation,  
the positive charge-pump regulator delay block is  
enabled. An internal current source starts charging the  
DLP capacitor. The voltage on DLP linearly rises  
because of the constant-charging current. When V  
DLP  
goes above V  
, the switch control block is enabled,  
REF  
The maximum output current, input voltage, output volt-  
age, and switching frequency determine the inductor  
value. Very high inductance values minimize the cur-  
rent ripple and therefore reduce the peak current,  
which decreases core losses in the inductor and I2R  
losses in the entire power path. However, large induc-  
tor values also require more energy storage and more  
turns of wire, which increase physical size and can  
increase I2R losses in the inductor. Low inductance val-  
ues decrease the physical size but increase the current  
ripple and peak current. Finding the best inductor  
involves choosing the best compromise between circuit  
efficiency, inductor size, and cost.  
and the positive charge-pump regulator begins its soft-  
start. After the positive charge-pump regulators soft-  
start is completed, the fault protection of the positive  
charge-pump regulator is also enabled.  
A logic-low level on LCDON disables the main BOOST  
converter, the negative charge pump, and the positive  
charge pump. The output capacitance and load current  
determine the rate at which each output voltage  
decays. The linear regulator and the reference remain  
enabled unless SHDN drops below its logic-low thresh-  
old. When shut down, the reference turns off and the IC  
supply current drops to 0.1µA to maximize battery life  
in portable applications. Do not leave SHDN floating. If  
unused, connect SHDN to IN.  
The equations used here include a constant LIR, which  
is the ratio of the inductor peak-to-peak ripple current  
to the average DC inductor current at the full-load cur-  
rent. The best trade-off between inductor size and cir-  
cuit efficiency for step-up regulators generally has an  
LIR between 0.3 and 0.5. However, depending on the  
AC characteristics of the inductor core material and  
ratio of inductor resistance to other power-path resis-  
tances, the best LIR can shift up or down. If the induc-  
tor resistance is relatively high, more ripple can be  
accepted to reduce the number of turns required and  
increase the wire diameter. If the inductor resistance is  
relatively low, increasing inductance to lower the peak  
current can decrease losses throughout the power  
path. If extremely thin high-resistance inductors are  
used, as is common for LCD panel applications, the  
best LIR can increase to between 0.5 and 1.0.  
Output Fault Protection  
During steady-state operation if the output of the linear  
regulator, the step-up regulator, or either of the charge-  
pump regulator outputs, does not exceed its respective  
fault-detection threshold, the MAX8753 activates an  
internal fault timer. If any condition or combination of  
conditions indicates a continuous fault for the fault timer  
duration (50ms typ), the MAX8753 sets the fault latch,  
shutting down all the outputs except the reference. Once  
the fault condition is removed, cycle the input voltage or  
toggle SHDN to clear the fault latch and reactivate the  
device. Each regulators fault-detection circuit is dis-  
abled during the regulators soft-start time.  
Thermal-Overload Protection  
The thermal-overload protection prevents excessive  
power dissipation from overheating the IC. If the junc-  
tion temperature exceeds +160°C, a thermal sensor  
immediately activates the thermal fault protection,  
which shuts down all the outputs, allowing the device to  
cool down. Once the device cools down, cycle the  
input voltage to clear the thermal fault latch and reacti-  
vate the device.  
Once a physical inductor is chosen, higher and lower  
values of the inductor should be evaluated for efficien-  
cy improvements in typical operating regions.  
In Figure 1s typical operating circuit, the LCDs gate-  
on and gate-off voltages are generated from two  
charge pumps powered by the step-up regulator. The  
additional load on V  
must therefore be considered  
MAIN  
in the inductance calculation. The effective maximum  
output current I becomes the sum of the maxi-  
MAIN(EFF)  
mum load current on the step-up regulators output  
______________________________________________________________________________________ 15  
TFT LCD DC-DC Converter with  
Integrated Charge Pumps  
plus the contributions from the positive and negative  
2
charge pumps:  
3.3V  
9V  
9V 3.3V  
0.19A ×1MHz 0.45  
0.80  
L =  
6.8µH  
I
=I  
+n  
×I  
+ 3×I  
MAIN(EFF) MAIN(MAX)  
NEG NEG POS  
Using the circuits minimum input voltage (2.6V) and  
estimating efficiency of 70% at that operating point:  
where I  
is the maximum output current, n  
MAIN(MAX)  
NEG  
is the number of negative charge-pump stages, I  
the negative charge-pump output current, and I  
the positive charge-pump output current.  
is  
is  
NEG  
POS  
0.19A × 9V  
2.6V × 0.7  
I
=
0.94A  
IN(DC,MAX)  
Calculate the approximate inductor value using the typ-  
ical input voltage (V ), the maximum output current  
The ripple current and the peak current are:  
IN  
(I  
), the expected efficiency (η  
) taken from  
MAIN(MAX)  
TYP  
an appropriate curve in the Typical Operating  
Characteristics, and an estimate of LIR based on the  
above discussion:  
2.6V × 9V 2.6V  
(
)
= 0.27A  
I
=
RIPPLE  
6.8µH× 9V ×1MHz  
2
0.27A  
V
V
V  
× f  
η
TYP  
LIR  
IN  
MAIN  
IN  
I
= 0.94A +  
=1.08A  
L =  
PEAK  
2
V
I
MAIN MAIN(EFF) OSC   
Choose an available inductor value from an appropriate  
inductor family. Calculate the maximum DC input cur-  
Output Capacitor Selection  
The total output-voltage ripple has two components: the  
capacitive ripple caused by the charging and discharg-  
ing of the output capacitance, and the ohmic ripple due  
to the capacitors equivalent series resistance (ESR):  
rent at the minimum input voltage V  
using con-  
IN(MIN)  
servation of energy and the expected efficiency at that  
operating point (η ) taken from an appropriate curve  
MIN  
in the Typical Operating Characteristics:  
V
= V  
+ V  
RIPPLE  
RIPPLE(C) RIPPLE(ESR)  
I
× V  
MAIN(EFF)  
MAIN  
I
=
IN(DC,MAX)  
I
C
V
V
V  
V
× η  
MIN  
MAIN  
MAIN IN  
IN(MIN)  
V
and  
RIPPLE(C)  
f
OUT  
MAIN OSC  
Calculate the ripple current at that operating point and  
the peak current required for the inductor:  
V
I  
R
RIPPLE(ESR) PEAK ESR(COUT)  
V
× V  
V  
(
)
IN(MIN)  
MAIN IN(MIN)  
where I is the peak inductor current (see the  
PEAK  
I
=
RIPPLE  
L × V  
× f  
Inductor Selection section). For ceramic capacitors,  
MAIN OSC  
the output voltage ripple is typically dominated by  
I
V
. The voltage rating and temperature charac-  
RIPPLE(C)  
RIPPLE  
I
=I  
+
PEAK IN(DC,MAX)  
teristics of the output capacitor must also be considered.  
2
Input Capacitor Selection  
The input capacitor (C ) (see Figure 1) reduces the  
IN  
The inductors saturation current rating and the  
MAX8753s LX current limit (I ) should exceed  
current peaks drawn from the input supply and reduces  
noise injection into the IC. A 10µF ceramic capacitor is  
used in the typical operating circuit (Figure 1) because  
of the high source impedance seen in typical lab  
setups. Actual applications usually have much lower  
source impedance since the step-up regulator often  
runs directly from the output of another regulated sup-  
LX(MAX)  
I
and the inductors DC current rating should  
PEAK  
exceed I  
. For good efficiency, choose an  
IN(DC,MAX)  
inductor with less than 0.1series resistance.  
Considering the typical operating circuit, the maximum  
load current (I  
) is 140mA with a 9V output  
MAIN(MAX)  
and a typical input voltage of 3.3V:  
ply. Typically, C can be reduced below the values  
IN  
used in the typical operating circuit. Ensure a low noise  
I
=140mA + 2 ×10mA + 3 ×10mA =190mA  
MAIN(EFF)  
supply at IN by using adequate C .  
IN  
Choosing an LIR of 0.45 and estimating efficiency of  
80% at this operating point:  
16 ______________________________________________________________________________________  
TFT LCD DC-DC Converter with  
Integrated Charge Pumps  
Rectifier Diode  
The MAX8753s high switching frequency demands a  
high-speed rectifier. Schottky diodes are recommend-  
ed for most applications because of their fast recovery  
time and low forward voltage. In general, a 2A Schottky  
diode complements the internal MOSFET well.  
where V  
= 1.25V, and V  
= 250mV is the regula-  
FBN  
REF  
tion point of the negative charge-pump regulator.  
Flying Capacitor  
Increasing the flying capacitor (C ) value lowers the  
X
effective source impedance and increases the output-  
current capability of the charge pump. Increasing the  
capacitance indefinitely has a negligible effect on out-  
put-current capability because the internal switch resis-  
tance and the diode impedance place a lower limit on  
the source impedance. A 0.1µF ceramic capacitor  
works well in most low-current applications. The flying  
capacitors voltage rating must exceed the following:  
Output-Voltage Selection  
The output voltage of the main step-up regulator can be  
adjusted by connecting a resistive voltage-divider from  
the output (V  
) to GND with the center tap connected  
MAIN  
to FB (see Figure 1). Select R2 in the 10kto 50kΩ  
range. Calculate R1 with the following equation:  
V
V
V
> V  
SUPP  
> 2V  
SUPP  
MAIN  
C1  
R1=R2×  
1  
V
FB  
C2  
V
> V  
SUPN  
C3  
where V , the step-up regulators feedback set point,  
FB  
V
> 2V  
, if used  
is 1.245V. Place R1 and R2 close to the IC.  
C4  
SUPN  
Loop Compensation  
Charge-Pump Input Capacitor  
For stability, add a pole-zero pair from FB to GND in the  
Use an input capacitor on SUPP and SUPN with a value  
equal to or greater than the flying capacitors on that  
charge pump. Place the capacitors as close to SUPP  
and SUPN as possible. Connect the capacitors directly  
to PGND.  
form of a series resistor (R  
) and capacitor  
COMP  
(C  
). R  
should be approximately half the  
COMP  
COMP  
value of the R2 feedback resistor. To further optimize  
transient response, vary R in 20% steps and  
COMP  
C
in 50% steps while observing transient  
COMP  
response waveforms.  
Charge-Pump Output Capacitor  
Increasing the output capacitance or decreasing the  
ESR reduces the output ripple voltage and the peak-to-  
peak transient voltage. With ceramic capacitors, the  
output-voltage ripple is dominated by the capacitance  
value. Use the following equation to approximate the  
required capacitor value:  
Charge-Pump Regulators  
Output Voltage Selection  
Adjust the positive charge-pump regulator output volt-  
age by connecting a resistive voltage-divider from the  
regulator output V  
to GND with the center tap con-  
POS  
nected to FBP (Figure 1). Select the lower resistor of  
the divider R6 in the 10kto 50krange. Calculate  
upper resistor R5 with the following equation:  
I
LOAD_CP  
C
OUT_CP  
2f  
V
OSC RIPPLE_CP  
V
POS  
where C  
pump, I  
is the output capacitor of the charge  
is the load current of the charge  
RIPPLE_CP  
OUT_CP  
LOAD_CP  
pump, and V  
R5 =R6×  
1  
V
FBP  
is the desired peak-to-peak  
value of the output ripple.  
where V  
= 1.25V (typ) is the regulation point of the  
FBP  
positive charge-pump regulator.  
Charge-Pump Rectifier Diode  
Adjust the negative charge-pump regulator output volt-  
age by connecting a resistive voltage-divider from the  
negative charge-pump output V  
center tap connected to FBN (Figure 1). Select R4 in  
the 20kto 100krange. Calculate R3 with the follow-  
ing equation:  
Use low-cost silicon switching diodes for D2 and D3  
with a current rating equal to or greater than two times  
the average charge-pump input current. If it helps  
avoid an extra stage, some or all of the diodes can be  
replaced with Schottky diodes with an equivalent cur-  
rent rating.  
to REF with the  
NEG  
V
V  
NEG  
FBN  
R3 =R4×  
V
V  
REF  
FBN  
______________________________________________________________________________________ 17  
TFT LCD DC-DC Converter with  
Integrated Charge Pumps  
PC Board Layout and Grounding  
Applications Information  
Careful PC board layout is important for proper opera-  
tion. Use the following guidelines for good PC board  
layout:  
Power Dissipation  
An ICs maximum power dissipation depends on the  
thermal resistance from the die to the ambient environ-  
ment and the ambient temperature. The thermal resis-  
tance depends on the IC package, PC board copper  
area, other thermal mass, and airflow.  
1) Minimize the area of the step-up regulators high-  
current loops by placing the inductor (L1), output  
diode (D1), and output capacitor (C  
) near the  
MAIN  
input capacitor (C ) and near the LX and PGND  
IN  
The MAX8753, with its exposed backside paddle sol-  
dered to 1in2 of PC board copper, can dissipate about  
1.7W into +70°C still air. More PC board copper, cooler  
ambient air, and more airflow increase the possible dissi-  
pation while less copper or warmer air decreases the  
ICs dissipation capability. The major components of  
power dissipation are the power dissipated in the step-  
up regulator, the linear regulator, and the charge pumps.  
pins. The high-current input loop goes from the posi-  
tive terminal of C to L , to the ICs LX pin, out of  
IN  
1
PGND, and to C s negative terminal. The high-cur-  
IN  
rent output loop is from the positive terminal of C  
IN  
to L1, to the output diode (D1), to the positive termi-  
nal of C , reconnecting between the output  
MAIN  
capacitor and input capacitor ground terminals.  
Connect these loop components with short, wide  
connections. Avoid using vias in the high-current  
paths. If vias are unavoidable, use many vias in par-  
allel to reduce resistance and inductance.  
Step-Up Regulator  
The largest portions of power dissipation in the step-up  
regulator are the internal MOSFET, inductor, and the  
output diode. If the step-up regulator has 90% efficien-  
cy, approximately 3% to 5% of the power is lost in the  
internal MOSFET, approximately 3% to 4% in the induc-  
tor, and approximately 1% in the output diode. The  
remaining 1% to 3% is distributed among the input and  
output capacitors and the PC board traces. If the input  
power is approximately 5W, the power lost in the inter-  
nal MOSFET is approximately 150mW to 250mW.  
2) Create a power-ground island (PGND) consisting of  
the input and output capacitor grounds, PGND pin,  
the charge-pump input capacitors, output capaci-  
tors, and diodes. Connect these together with short,  
wide traces or a small ground plane. Maximizing the  
width of the power-ground traces improves efficien-  
cy and reduces output-voltage ripple and noise  
spikes. Create an analog-ground plane (AGND)  
consisting of the GND pin, all the feedback-divider  
ground connections, the INTG and DEL capacitor  
ground connections, and the devices exposed  
backside pad. Connect the AGND and PGND  
islands by connecting the PGND pin directly to the  
exposed backside pad. Make no other connections  
between these separate ground planes.  
Linear Regulator  
The power dissipation in the linear regulator is:  
P
= (V V  
)×I  
D(LOGIC)  
IN  
LOGIC LOGIC  
Positive Charge-Pump Regulator  
The power dissipation in the positive charge-pump reg-  
ulator is:  
3) Place the feedback voltage-divider resistors as close  
to the feedback pin as possible. The dividers center  
trace should be kept short. Placing the resistors far  
away causes the FB traces to become antennas that  
can pick up switching noise. Care should be taken to  
avoid running any feedback trace near LX or the  
switching nodes in the charge pumps.  
P
= (3 × V  
V  
)×I  
D(POS)  
MAIN  
POS POS  
Negative Charge-Pump Regulator  
The power dissipation in the negative charge-pump  
regulator is:  
4) Place the IN and OUTL bypass capacitors as close  
to the device as possible. The ground connections  
of the IN and OUTL bypass capacitors should be  
connected directly to the PGND plane near the  
PGND pin with a wide trace.  
P
= (n  
xV  
+ V  
)×I  
D(NEG)  
NEG  
SUPN  
NEG NEG  
18 ______________________________________________________________________________________  
TFT LCD DC-DC Converter with  
Integrated Charge Pumps  
5) Minimize the length and maximize the width of the  
Chip Information  
traces between the output capacitors and the load  
for best transient response.  
TRANSISTOR COUNT: 6922  
PROCESS: BiCMOS  
6) Minimize the size of the LX node while keeping it  
wide and short. Keep the LX node away from the  
feedback node and analog ground. Use DC traces  
as shield if necessary.  
Refer to the MAX8753 evaluation kit for an example of  
proper board layout.  
______________________________________________________________________________________ 19  
TFT LCD DC-DC Converter with  
Integrated Charge Pumps  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
D2  
D
b
0.10 M  
C A B  
C
L
D2/2  
D/2  
k
L
MARKING  
AAAAA  
E/2  
E2/2  
C
(NE-1) X  
e
L
E2  
E
PIN # 1 I.D.  
0.35x45¡  
DETAIL A  
e/2  
PIN # 1  
I.D.  
e
(ND-1) X  
e
DETAIL B  
e
L
C
L
C
L
L1  
L
L
e
e
0.10  
C
A
0.08  
C
C
A3  
A1  
PACKAGE OUTLINE,  
16, 20, 28, 32, 40L THIN QFN, 5x5x0.8mm  
1
-DRAWING NOT TO SCALE-  
I
21-0140  
2
COMMON DIMENSIONS  
20L 5x5 28L 5x5  
EXPOSED PAD VARIATIONS  
D2 E2  
MIN. NOM. MAX. MIN. NOM. MAX.  
3.00 3.10 3.20 3.00 3.10 3.20  
3.00 3.10 3.20 3.00 3.10 3.20  
PKG.  
SYMBOL MIN. NOM. MAX. MIN. NOM. MAX. MIN. NOM. MAX. MIN. NOM. MAX. MIN. NOM. MAX.  
16L 5x5  
32L 5x5  
40L 5x5  
L
DOWN  
BONDS  
ALLOWED  
YES  
NO  
NO  
YES  
exceptions  
PKG.  
CODES  
–0.15  
A
0.70 0.75 0.80 0.70 0.75 0.80 0.70 0.75 0.80 0.70 0.75 0.80 0.70 0.75 0.80  
0.02 0.05 0.02 0.05 0.02 0.05 0.02 0.05 0.02 0.05  
0.20 REF. 0.20 REF. 0.20 REF. 0.20 REF. 0.20 REF.  
T1655-2  
T1655-3  
**  
**  
**  
**  
A1  
0
0
0
0
0
A3  
b
T1655N-1 3.00 3.10 3.20 3.00 3.10 3.20  
0.25 0.30 0.35 0.25 0.30 0.35 0.20 0.25 0.30 0.20 0.25 0.30 0.15 0.20 0.25  
4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10  
4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10  
T2055-3  
T2055-4  
T2055-5  
T2855-3  
3.00 3.10 3.20 3.00 3.10 3.20  
3.00 3.10 3.20 3.00 3.10 3.20  
D
E
NO  
**  
YES  
3.15 3.25 3.35 3.15 3.25 3.35 0.40  
3.15 3.25 3.35 3.15 3.25 3.35  
e
0.80 BSC.  
0.25  
0.65 BSC.  
0.25  
0.50 BSC.  
0.25  
0.50 BSC.  
0.25  
0.40 BSC.  
YES  
YES  
NO  
NO  
YES  
YES  
**  
**  
**  
k
-
-
-
-
-
-
-
-
0.25 0.35 0.45  
T2855-4  
T2855-5  
2.60 2.70 2.80 2.60 2.70 2.80  
2.60 2.70 2.80 2.60 2.70 2.80  
3.15 3.25 3.35 3.15 3.25 3.35  
2.60 2.70 2.80 2.60 2.70 2.80  
L
0.30 0.40 0.50 0.45 0.55 0.65 0.45 0.55 0.65 0.30 0.40 0.50 0.40 0.50 0.60  
L1  
-
-
-
-
-
-
-
-
-
-
-
-
0.30 0.40 0.50  
T2855-6  
T2855-7  
**  
**  
N
ND  
16  
4
4
20  
5
28  
7
32  
8
8
40  
10  
10  
5
7
NE  
T2855-8  
3.15 3.25 3.35 3.15 3.25 3.35 0.40  
JEDEC  
NOTES:  
WHHB  
WHHC  
WHHD-1  
WHHD-2  
-----  
T2855N-1 3.15 3.25 3.35 3.15 3.25 3.35  
NO  
YES  
NO  
YES  
NO  
**  
**  
**  
**  
**  
**  
T3255-3  
T3255-4  
T3255-5  
3.00 3.10 3.20 3.00 3.10 3.20  
3.00 3.10 3.20 3.00 3.10 3.20  
3.00 3.10 3.20 3.00 3.10 3.20  
1. DIMENSIONING & TOLERANCING CONFORM TO ASME Y14.5M-1994.  
2. ALL DIMENSIONS ARE IN MILLIMETERS. ANGLES ARE IN DEGREES.  
3. N IS THE TOTAL NUMBER OF TERMINALS.  
T3255N-1 3.00 3.10 3.20 3.00 3.10 3.20  
T4055-1 3.20 3.30 3.40 3.20 3.30 3.40  
YES  
**SEE COMMON DIMENSIONS TABLE  
4. THE TERMINAL #1 IDENTIFIER AND TERMINAL NUMBERING CONVENTION SHALL  
CONFORM TO JESD 95-1 SPP-012. DETAILS OF TERMINAL #1 IDENTIFIER ARE  
OPTIONAL, BUT MUST BE LOCATED WITHIN THE ZONE INDICATED. THE TERMINAL #1  
IDENTIFIER MAY BE EITHER A MOLD OR MARKED FEATURE.  
5. DIMENSION b APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN  
0.25 mm AND 0.30 mm FROM TERMINAL TIP.  
6. ND AND NE REFER TO THE NUMBER OF TERMINALS ON EACH D AND E SIDE RESPECTIVELY.  
7. DEPOPULATION IS POSSIBLE IN A SYMMETRICAL FASHION.  
8. COPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS.  
9. DRAWING CONFORMS TO JEDEC MO220, EXCEPT EXPOSED PAD DIMENSION FOR  
T2855-3 AND T2855-6.  
10. WARPAGE SHALL NOT EXCEED 0.10 mm.  
11. MARKING IS FOR PACKAGE ORIENTATION REFERENCE ONLY.  
12. NUMBER OF LEADS SHOWN ARE FOR REFERENCE ONLY.  
13. LEAD CENTERLINES TO BE AT TRUE POSITION AS DEFINED BY BASIC DIMENSION "e", –0.05.  
PACKAGE OUTLINE,  
16, 20, 28, 32, 40L THIN QFN, 5x5x0.8mm  
2
-DRAWING NOT TO SCALE-  
21-0140  
I
2
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
20 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2006 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products, Inc.  
Boblet  

相关型号:

MAX8753ETI+

暂无描述
MAXIM

MAX8753ETI-T

暂无描述
MAXIM

MAX8756ETI+T

Dual Switching Controller
MAXIM

MAX8757

Interleaved High-Efficiency, Dual Power-Supply Controllers for Notebook Computers
MAXIM

MAX8757ETG+

暂无描述
MAXIM

MAX8757ETI+

Interleaved High-Efficiency, Dual Power-Supply Controllers for Notebook Computers
MAXIM

MAX8757ETI+T

Dual Switching Controller
MAXIM

MAX8758

Step-Up Regulator with Switch Control and Operational Amplifier for TFT LCD
MAXIM

MAX8758ETG

Step-Up Regulator with Switch Control and Operational Amplifier for TFT LCD
MAXIM

MAX8758ETG+

Step-Up Regulator with Switch Control and Operational Amplifier for TFT LCD
MAXIM

MAX8758ETG+T

Switching Regulator, Current-mode, 3A, 1380kHz Switching Freq-Max, BICMOS, 4 X 4 MM, LEAD FREE, TQFN-24
MAXIM

MAX8759

Low-Cost, SMBus, CCFL Backlight Controller
MARKTECH