MAX8795A_1106 [MAXIM]

TFT-LCD DC-DC Converter with Operational Amplifiers 2.5V to 5.5V Input Supply Range; TFT -LCD DC- DC转换器,运算放大器2.5V至5.5V输入电压范围
MAX8795A_1106
型号: MAX8795A_1106
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

TFT-LCD DC-DC Converter with Operational Amplifiers 2.5V to 5.5V Input Supply Range
TFT -LCD DC- DC转换器,运算放大器2.5V至5.5V输入电压范围

转换器 运算放大器 CD
文件: 总31页 (文件大小:636K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-079ꢀ; Rev ꢁ; 6/11  
TFT-LCD DC-DC Converter with  
Operational Amplifiers  
MX8795A  
General Description  
Features  
o 2.5V to 5.5V Input Supply Range  
The MAX8795A includes a high-performance step-up  
regulator, two linear-regulator controllers, and five high-  
current operational amplifiers for active-matrix, thin-film  
transistor (TFT), liquid-crystal displays (LCDs). Also  
included is a logic-controlled, high-voltage switch with  
adjustable delay.  
o 1.2MHz Current-Mode Step-Up Regulator  
Fast Transient Response to Pulsed Load  
High-Accuracy Output Voltage (1%)  
Built-In 20V, 3A, 0.16n-Channel MOSFET  
High Efficiency (85%)  
The step-up DC-DC converter provides the regulated  
supply voltage for the panel source driver ICs. The con-  
verter is a high-frequency (1.2MHz) current-mode regu-  
lator with an integrated 20V n-channel MOSFET that  
allows the use of ultra-small inductors and ceramic  
capacitors. It provides fast transient response to pulsed  
loads while achieving efficiencies over 85%.  
o Linear-Regulator Controllers for V  
and V  
GOFF  
GON  
o High-Performance Operational Amplifiers  
130mA Output Short-Circuit Current  
45V/µs Slew Rate  
20MHz, -3dB Bandwidth  
Rail-to-Rail Inputs/Outputs  
o Logic-Controlled, High-Voltage Switch with  
The gate-on and gate-off linear-regulator controllers  
provide regulated TFT gate-on and gate-off supplies  
using external charge pumps attached to the switching  
node. The MAX8795A includes five high-performance  
operational amplifiers. These amplifiers are designed to  
drive the LCD backplane (VCOM) and/or the gamma-  
correction divider string. The device features high out-  
put current ( 1ꢀ0mA), fast slew rate (ꢁ5V/ꢂs), wide  
bandwidth (20MHz), and rail-to-rail inputs and outputs.  
Adjustable Delay  
o Timer-Delay Fault Latch for All Regulator Outputs  
o Thermal-Overload Protection  
o 0.6mA Quiescent Current  
Minimal Operating Circuit  
V
V
CP  
CN  
The MAX8795A is available in a lead-free, ꢀ2-pin, thin  
QFN package with a maximum thickness of 0.8mm for  
ultra-thin LCD panels, as well as in a ꢀ2-pin LQFP  
package with 0.8mm pin pitch.  
V
V
MAIN  
IN  
LX  
IN  
FB  
STEP-UP  
CONTROLLER  
PGND  
AGND  
COMP  
Applications  
Notebook Computer Displays  
LCD Monitor Panels  
V
V
CP  
MAX8795A  
DRVP  
FBP  
GATE-ON  
CONTROLLER  
GON  
Automotive Displays  
SRC  
COM  
DRN  
DEL  
CTL  
SWITCH  
CONTROL  
V
V
CN  
Ordering Information  
DRVN  
FBN  
PART  
TEMP RANGE  
-ꢁ0°C to +85°C  
-ꢁ0°C to +105°C  
-ꢁ0°C to +105°C  
-ꢁ0°C to +105°C  
PIN-PACKAGE  
ꢀ2 Thin QFN  
ꢀ2 LQFP  
GATE-OFF  
CONTROLLER  
GOFF  
SUP  
MAX8795AETJ+  
MAX8795AGCJ+  
MAX8795AGTJ+  
MAX8795AGTJ/V+  
NEG1  
OUT1  
OP1  
OP2  
ꢀ2 TQFN  
REF  
POS1  
NEG2  
REF  
ꢀ2 TQFN  
NEG4  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
/V denotes an automotive-qualified part.  
OUT2  
POS2  
OUT4  
OP4  
POS4  
NEG5  
OUT3  
POS3  
OUT5  
POS5  
OP3  
OP5  
BGND  
EP  
Pin Configurations appear at end of data sheet.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,  
or visit Maxim’s website at www.maxim-ic.com.  
TFT-LCD DC-DC Converter with  
Operational Amplifiers  
ABSOLUTE MAXIMUM RATINGS  
IN, CTL to AGND...................................................-0.3V to +7.5V  
OUT_ Maximum Continuous Output Current.................... 75mA  
LX Switch Maximum Continuous RMS Current.....................1.6A  
COMP, FB, FBP, FBN, DEL, REF to AGND ....-0.3V to (V + 0.3V)  
IN  
PGND, BGND to AGND...................................................... 0.3V  
LX to PGND ............................................................-0.3V to +20V  
SUP to AGND .........................................................-0.3V to +20V  
DRVP to AGND.......................................................-0.3V to +36V  
Continuous Power Dissipation (T = +70°C)  
A
32-Pin Thin QFN (derate 34.5mW/°C above +70°C) 2758mW  
32-Pin LQFP (derate 48.4mW/°C above +70°C)....1652.9mW  
Operating Temperature Range, E Grade............-40°C to +85°C  
Operating Temperature Range, G Grade .........-40°C to +105°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
Soldering Temperature (reflow) .......................................+260°C  
POS_, NEG_, OUT_ to AGND...................-0.3V to (V  
+ 0.3V)  
SUP  
DRVN to AGND...................................(V - 30V) to (V + 0.3V)  
IN  
IN  
SRC to AGND.........................................................-0.3V to +40V  
COM, DRN to AGND ................................-0.3V to (V + 0.3V)  
SRC  
MX8795A  
DRN to COM............................................................-30V to +30V  
POS_ to NEG_ RMS Current ...................................5mA (Note 1)  
Note 1: See Figure 2 for the op amp clamp structure.  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V = 3V, V  
= V  
= 14V, V  
= V  
= V = 0V, I  
BGND  
= 25µA, T = 0°C to +85°C. Typical values are at T = +25°C,  
REF A A  
PGND  
AGND  
IN  
MAIN  
SUP  
unless otherwise noted.)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
IN Supply Range  
V
(Note 2)  
2.5  
6.0  
V
IN  
IN Undervoltage-Lockout  
Threshold  
V
V
rising, typical hysteresis = 50mV  
2.05  
2.25  
0.6  
2
2.45  
1.0  
3
V
UVLO  
IN  
V
= V  
= 1.3V, V  
= 0V,  
FB  
FBP  
FBN  
LX not switching  
IN Quiescent Current  
I
mA  
IN  
V
= 1.2V, V  
= 1.4V, V  
= 0V,  
FBN  
FB  
FBP  
LX switching  
Duration-to-Trigger Fault  
Condition  
FB or FBP below threshold or FBN above  
threshold  
200  
ms  
V
T
T
= +25°C to +85°C  
= 0°C to +85°C  
1.238  
1.232  
1.250  
1.250  
1.262  
1.266  
10  
A
REF Output Voltage  
No external load  
0 < I < 50µA  
A
REF Load Regulation  
REF Sink Current  
mV  
µA  
LOAD  
In regulation  
10  
REF Undervoltage Lockout  
Threshold  
Rising edge; typical hysteresis = 160mV  
1.15  
V
Temperature rising  
Hysteresis  
+160  
15  
Thermal Shutdown  
°C  
MAIN STEP-UP REGULATOR  
Output Voltage Range  
V
f
V
18  
V
kHz  
%
MAIN  
IN  
Operating Frequency  
1000  
86  
1200  
90  
1400  
93  
OSC  
Oscillator Maximum Duty Cycle  
T
T
= +25°C to +85°C  
= 0°C to +85°C  
1.221  
1.212  
1.10  
1.233  
1.233  
1.14  
-1  
1.245  
1.248  
1.17  
A
FB Regulation Voltage  
V
No load  
falling  
V
FB  
A
FB Fault Trip Level  
FB Load Regulation  
FB Line Regulation  
FB Input Bias Current  
V
V
%
FB  
0 < I  
< full load, transient only  
MAIN  
V
V
= 2.5V to 6V  
= 1.233V  
0.1  
0.4  
%/V  
nA  
IN  
+100  
+200  
FB  
2
_______________________________________________________________________________________  
TFT-LCD DC-DC Converter with  
Operational Amplifiers  
MX8795A  
ELECTRICAL CHARACTERISTICS (continued)  
(V = 3V, V  
= V  
= 14V, V  
= V  
= V = 0V, I  
BGND  
= 25µA, T = 0°C to +85°C. Typical values are at T = +25°C,  
PGND  
AGND  
IN  
MAIN  
SUP  
REF  
A
A
unless otherwise noted.)  
PARAMETER  
FB Transconductance  
FB Voltage Gain  
SYMBOL  
CONDITIONS  
2.5µA  
From FB to COMP  
= 200mA  
MIN  
TYP  
160  
700  
160  
10  
MAX  
UNITS  
µS  
I  
=
75  
280  
COMP  
V/V  
mΩ  
µA  
LX On-Resistance  
LX Leakage Current  
LX Current Limit  
R
I
LX  
260  
20  
LX(ON)  
I
LX  
V
V
= 19V  
LX  
FB  
I
= 1.2V, duty cycle = 75%  
2.5  
0.1  
3.0  
0.2  
14  
3.5  
0.3  
A
LIM  
Current-Sense Transresistance  
Soft-Start Period  
V/A  
ms  
t
SS  
V
REF  
128  
/
Soft-Start Step Size  
V
OPERATIONAL AMPLIFIERS  
SUP Supply Range  
V
6.0  
18.0  
19.9  
V
V
SUP  
SUP Overvoltage Fault Threshold  
18.0  
19  
Buffer configuration, V  
no load  
_ = V  
/ 2,  
POS  
SUP  
SUP Supply Current  
I
3.5  
5.0  
mA  
SUP  
Input Offset Voltage  
Input Bias Current  
V
(V  
(V  
_, V  
_, V  
_) V  
SUP  
/ 2  
0
0
12  
mV  
nA  
OS  
NEG  
POS  
OUT  
I
_ , V  
_, V  
POS  
_) V / 2  
OUT SUP  
-50  
0
+50  
BIAS  
NEG  
Input Common-Mode Voltage  
Range  
V
V
V
CM  
SUP  
Common-Mode Rejection Ratio  
Open-Loop Gain  
CMRR  
0 (V  
_, V _) V  
POS SUP  
45  
80  
dB  
dB  
NEG  
125  
V
-
V
-
SUP  
100  
SUP  
50  
Output Voltage Swing, High  
V
I
I
_ = 5mA  
_ = -5mA  
mV  
OH  
OUT  
Output Voltage Swing, Low  
Short-Circuit Current  
V
50  
100  
mV  
mA  
OL  
OUT  
To V  
/ 2, source or sink  
75  
60  
130  
SUP  
DC, 6V V  
(V  
18V,  
SUP  
Power-Supply Rejection Ratio  
PSRR  
dB  
_, V _) V  
POS  
/ 2  
NEG  
SUP  
Slew Rate  
45  
20  
V/µs  
MHz  
-3dB Bandwidth  
R = 10k, C = 10pF, buffer configuration  
L
L
GATE-ON LINEAR-REGULATOR CONTROLLER  
FBP Regulation Voltage  
FBP Fault Trip Level  
V
I
= 100µA  
1.231  
0.96  
-50  
1.250  
1.00  
1.269  
1.04  
+50  
V
V
FBP  
DRVN  
V
V
falling  
FBP  
FBP  
FBP Input Bias Current  
I
= 1.25V  
nA  
FBP  
FBP Effective Load-Regulation  
Error (Transconductance)  
V
= 10V, I  
= 50µA to 1mA  
-0.7  
-1.5  
10  
%
DRVP  
DRVP  
FBP Line (IN) Regulation Error  
DRVP Sink Current  
I
= 100µA, 2.5V < V < 6V  
1
5
mV  
mA  
µA  
DRVP  
IN  
I
V
V
= 1.1V, V  
= 10V  
= 34V  
1
DRVP  
FBP  
FBP  
DRVP  
DRVP  
DRVP Off-Leakage Current  
Soft-Start Period  
= 1.4V, V  
0.01  
14  
10  
t
ms  
SS  
V
128  
/
REF  
Soft-Start Step Size  
V
_______________________________________________________________________________________  
3
TFT-LCD DC-DC Converter with  
Operational Amplifiers  
ELECTRICAL CHARACTERISTICS (continued)  
(V = 3V, V  
IN  
= V  
= 14V, V  
= V  
= V = 0V, I  
BGND  
= 25µA, T = 0°C to +85°C. Typical values are at T = +25°C,  
REF A A  
PGND  
AGND  
MAIN  
SUP  
unless otherwise noted.)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
GATE-OFF LINEAR-REGULATOR CONTROLLER  
FBN Regulation Voltage  
FBN Fault Trip Level  
V
I
= 100µA, V  
- V  
FBN  
0.984  
370  
1
1.015  
470  
V
FBN  
DRVN  
REF  
V
V
rising  
420  
mV  
nA  
FBN  
FBN  
FBN Input Bias Current  
I
= 0.25V  
-50  
+50  
FBN  
MX8795A  
FBN Effective Load-Regulation  
Error (Transconductance)  
V
= -10V, I  
= 50µA to 1mA  
11  
25  
5
mV  
DRVN  
DRVN  
DRVN  
FBN Line (IN) Regulation Error  
DRVN Source Current  
DRVN Off-Leakage Current  
Soft-Start Period  
I
= 0.1mA, 2.5V < V < 6V  
0.7  
5
mV  
mA  
µA  
IN  
I
V
V
= 300mV, V = -10V  
DRVN  
1
DRVN  
FBN  
FBN  
= 0V, V  
= -25V  
-0.01  
14  
-10  
DRVN  
t
ms  
SS  
(V  
REF  
-
Soft-Start Step Size  
V
) /  
V
FBN  
128  
POSITIVE GATE-DRIVER TIMING AND CONTROL SWITCHES  
DEL Capacitor Charge Current  
DEL Turn-On Threshold  
During startup, V  
= 1V  
4
5
6
µA  
V
DEL  
V
1.19  
1.25  
1.31  
TH(DEL)  
DEL Discharge Switch  
On-Resistance  
During UVLO, V = 2.0V  
20  
IN  
CTL Input Low Voltage  
V
V
= 2.5V to 5.5V  
= 2.5V to 5.5V  
0.6  
+1  
V
V
IN  
IN  
CTL Input High Voltage  
2
CTL Input Leakage Current  
CTL-to-SRC Propagation Delay  
SRC Input Voltage Range  
CTL = AGND or IN  
-1  
µA  
ns  
V
100  
36  
300  
200  
10  
V
V
V
= 1.5V, CTL = IN  
= 1.5V, CTL = AGND  
= 1.5V, CTL = IN  
200  
115  
5
DEL  
DEL  
DEL  
SRC Input Current  
I
µA  
SRC  
SRC-to-COM Switch On-Resistance  
R
SRC(ON)  
DRN(ON)  
DRN-to-COM Switch  
On-Resistance  
R
V
= 1.5V, CTL = AGND  
30  
60  
DEL  
4
_______________________________________________________________________________________  
TFT-LCD DC-DC Converter with  
Operational Amplifiers  
MX8795A  
ELECTRICAL CHARACTERISTICS  
(V = 3V, V  
= V  
= 14V, V  
= V  
= V = 0V, I  
= 25µA, T = -40°C to +85°C, unless otherwise noted.) (Note 3)  
REF A  
PGND  
AGND  
BGND  
IN  
MAIN  
SUP  
PARAMETER  
IN Supply Range  
SYMBOL  
CONDITIONS  
MIN  
MAX  
UNITS  
V
(Note 2)  
2.5  
6.0  
V
IN  
IN Undervoltage-Lockout  
Threshold  
V
V
rising, typical hysteresis = 150mV  
2.05  
2.45  
1.0  
3
V
UVLO  
IN  
V
= V  
= 1.3V, V  
= 0V,  
FBN  
FB  
FBP  
LX not switching  
IN Quiescent Current  
I
mA  
IN  
V
= 1.2V, V  
= 1.4V, V  
= 0V,  
FB  
FBP  
FBN  
LX switching  
No external load  
Rising edge; typical hysteresis = 160mV  
REF Output Voltage  
REF Undervoltage-Lockout  
Threshold  
1.218  
1.277  
1.15  
V
V
MAIN STEP-UP REGULATOR  
Output Voltage Range  
Operating Frequency  
FB Regulation Voltage  
FB Line Regulation  
V
f
V
18  
1400  
1.260  
0.4  
V
kHz  
V
MAIN  
IN  
900  
OSC  
V
No load  
= 2.5V to 6V  
1.198  
FB  
V
%/V  
µS  
mΩ  
A
IN  
FB Transconductance  
LX On-Resistance  
I  
=
2.5µA  
75  
280  
260  
3.5  
COMP  
R
I
LX  
= 200mA  
LX(ON)  
LX Current Limit  
I
V
= 1.2V, duty cycle = 75%  
FB  
2.5  
LIM  
OPERATIONAL AMPLIFIERS  
SUP Supply Range  
V
6
18  
V
V
SUP  
SUP Overvoltage Fault Threshold  
18.0  
19.9  
Buffer configuration, V  
no load  
_ = V  
/ 2,  
POS  
SUP  
SUP Supply Current  
I
5
mA  
mV  
V
SUP  
Input Offset Voltage  
V
(V  
NEG  
_, V _, I  
POS  
_) = V / 2  
OUT SUP  
12  
OS  
Input Common-Mode Voltage  
Range  
V
V
0
V
SUP  
CM  
V
-
SUP  
100  
Output Voltage Swing, High  
Output Voltage Swing Low  
Short-Circuit Current  
I
I
_ = 5mA  
_ = -5mA  
mV  
mA  
OH  
OUT  
V
100  
OL  
OUT  
Source  
Sink  
75  
75  
To V  
/ 2  
SUP  
GATE-ON LINEAR-REGULATOR CONTROLLER  
FBP Regulation Voltage  
V
I
= 100µA  
= 10V, I  
1.210  
1.280  
-1.5  
10  
V
FBP  
DRVP  
FBP Effective Load-Regulation  
Error (Transconductance)  
V
= 50µA to 1mA  
DRVP  
%
DRVP  
FBP Line (IN) Regulation Error  
DRVP Sink Current  
I
= 100µA, 2.5V < V < 6V  
mV  
mA  
DRVP  
IN  
I
V
= 1.1V, V = 10V  
DRVP  
1
DRVP  
FBP  
_______________________________________________________________________________________  
5
TFT-LCD DC-DC Converter with  
Operational Amplifiers  
ELECTRICAL CHARACTERISTICS (continued)  
(V = 3V, V  
= V  
= 14V, V  
= V  
= V = 0V, I  
= 25µA, T = -40°C to +85°C, unless otherwise noted.) (Note 3)  
REF A  
PGND  
AGND  
BGND  
IN  
MAIN  
SUP  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
MAX  
UNITS  
GATE-OFF LINEAR-REGULATOR CONTROLLER  
FBN Regulation Voltage  
V
I
= 100µA, V  
- V  
FBN  
0.972  
1.022  
25  
V
FBN  
DRVN  
REF  
FBN Effective Load-Regulation  
Error (Transconductance)  
V
= -10V, I  
= 50µA to 1mA  
mV  
DRVN  
DRVN  
DRVN  
FBN Line (IN) Regulation Error  
DRVN Source Current  
I
= 0.1mA, 2.5V < V < 6V  
5
mV  
mA  
IN  
MX8795A  
I
V
= 300mV, V = -10V  
DRVN  
1
DRVN  
FBN  
POSITIVE GATE-DRIVER TIMING AND CONTROL SWITCHES  
DEL Capacitor Charge Current  
DEL Turn-On Threshold  
CTL Input Low Voltage  
During startup, V  
= 1V  
4
6
µA  
V
DEL  
V
1.19  
1.31  
0.6  
TH(DEL)  
V
V
= 2.5V to 5.5V  
V
IN  
IN  
CTL Input High Voltage  
SRC Input Voltage Range  
= 2.5V to 5.5V  
2
V
36  
300  
200  
10  
V
V
V
V
V
= 1.5V, CTL = IN  
DEL  
DEL  
DEL  
DEL  
SRC Input Current  
I
µA  
SRC  
= 1.5V, CTL = AGND  
= 1.5V, CTL = IN  
SRC-to-COM Switch On-Resistance  
DRN-to-COM Switch On-Resistance  
R
SRC(ON)  
R
= 1.5V, CTL = AGND  
60  
DRN(ON)  
ELECTRICAL CHARACTERISTICS  
(V = 3V, V  
= V  
= 14V, V  
= V  
= V  
= 0V, I  
= 25µA, T = 0°C to +105°C. Typical values are at T = +25°C,  
A
REF A  
PGND  
AGND  
BGND  
IN  
MAIN  
SUP  
unless otherwise noted.)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
IN Supply Range  
V
(Note 2)  
2.5  
6.0  
V
IN  
IN Undervoltage-Lockout  
Threshold  
V
V
rising, typical hysteresis = 50mV  
2.05  
2.25  
0.6  
2
2.45  
1.0  
3
V
UVLO  
IN  
V
= V  
= 1.3V, V  
= 0V,  
FBN  
FB  
FBP  
LX not switching  
IN Quiescent Current  
I
mA  
IN  
V
= 1.2V, V  
= 1.4V, V  
= 0V,  
FBN  
FB  
FBP  
LX switching  
Duration-to-Trigger Fault  
Condition  
V
FB or FBP below threshold or FBN above  
threshold  
200  
ms  
V
T
T
= +25°C to +105°C  
= 0°C to +105°C  
1.238  
1.232  
1.250  
1.250  
1.262  
1.266  
10  
A
REF Output Voltage  
No external load  
A
REF Load Regulation  
REF Sink Current  
0 < I  
< 50µA  
mV  
µA  
LOAD  
In regulation  
10  
REF Undervoltage-Lockout  
Threshold  
Rising edge, typical hysteresis = 160mV  
1.15  
V
Temperature rising  
Hysteresis  
+160  
15  
Thermal Shutdown  
°C  
6
_______________________________________________________________________________________  
TFT-LCD DC-DC Converter with  
Operational Amplifiers  
MX8795A  
ELECTRICAL CHARACTERISTICS (continued)  
(V = 3V, V  
= V  
= 14V, V  
= V  
= V  
= 0V, I  
= 25µA, T = 0°C to +105°C. Typical values are at T = +25°C,  
A
REF A  
PGND  
AGND  
BGND  
IN  
MAIN  
SUP  
unless otherwise noted.)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
MAIN STEP-UP REGULATOR  
Output Voltage Range  
V
f
V
18  
V
kHz  
%
MAIN  
IN  
Operating Frequency  
1000  
86  
1200  
90  
1400  
93  
OSC  
Oscillator Maximum Duty Cycle  
T
T
= +25°C to +105°C  
= 0°C to +105°C  
1.221  
1.212  
1.10  
1.233  
1.233  
1.14  
-1  
1.245  
1.248  
1.17  
A
FB Regulation Voltage  
V
No load  
V falling  
FB  
V
V
FB  
A
FB Fault Trip Level  
FB Load Regulation  
FB Line Regulation  
FB Input Bias Current  
FB Transconductance  
FB Voltage Gain  
0 < I  
< full load, transient only  
MAIN  
V
V
= 2.5V to 6V  
= 1.233V  
0.1  
0.4  
+200  
280  
%/V  
nA  
IN  
+100  
160  
700  
160  
10  
FB  
µS  
I  
=
2.5µA  
From FB to COMP  
= 200mA  
75  
COMP  
V/V  
mΩ  
µA  
A
LX On-Resistance  
LX Leakage Current  
LX Current Limit  
R
I
LX  
300  
20  
LX(ON)  
I
LX  
V
V
= 19V  
LX  
FB  
I
= 1.2V, duty cycle = 75%  
2.5  
0.1  
3.0  
3.5  
0.3  
LIM  
Current-Sense Transresistance  
Soft-Start Period  
0.2  
V/A  
ms  
t
14  
SS  
V
/
REF  
128  
Soft-Start Step Size  
V
OPERATIONAL AMPLIFIERS  
SUP Supply Range  
V
6.0  
18.0  
19.9  
SUP  
V
SUP Overvoltage Fault Threshold  
18.0  
19  
Buffer configuration, V  
no load  
= V  
/ 2,  
SUP  
POS_  
SUP Supply Current  
I
3.5  
5.0  
mA  
SUP  
Input Offset Voltage  
Input Bias Current  
V
(V  
, V  
NEG_ POS  
_, V  
) V  
/ 2  
/ 2  
0
0
12  
mV  
nA  
OS  
OUT_  
SUP  
I
(V , V , V ) V  
NEG_ POS_ OUT_  
-50  
0
+50  
BIAS  
SUP  
Input Common-Mode Voltage  
Range  
V
V
V
CM  
SUP  
Common-Mode Rejection Ratio  
Open-Loop Gain  
CMRR  
0 (V  
, V  
) V  
45  
80  
dB  
dB  
NEG_ POS_  
SUP  
125  
V
-
V
-
SUP  
100  
SUP  
50  
Output Voltage Swing, High  
V
I
I
= 5mA  
mV  
OH  
OUT_  
Output Voltage Swing, Low  
Short-Circuit Current  
V
= -5mA  
50  
100  
mV  
mA  
OL  
OUT_  
To V  
/ 2, source or sink  
75  
60  
130  
SUP  
DC, 6V V  
(V  
18V,  
SUP  
Power-Supply Rejection Ratio  
PSRR  
dB  
, V  
) V  
/ 2  
NEG_ POS_  
SUP  
V/µs  
MHz  
Slew Rate  
45  
20  
-3dB Bandwidth  
R = 10k, C = 10pF, buffer configuration  
L L  
_______________________________________________________________________________________  
7
TFT-LCD DC-DC Converter with  
Operational Amplifiers  
ELECTRICAL CHARACTERISTICS (continued)  
(V = 3V, V  
= V  
= 14V, V  
= V  
= V  
= 0V, I  
= 25µA, T = 0°C to +105°C. Typical values are at T = +25°C,  
A
REF A  
PGND  
AGND  
BGND  
IN  
MAIN  
SUP  
unless otherwise noted.)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
GATE-ON LINEAR-REGULATOR CONTROLLER  
FBP Regulation Voltage  
FBP Fault Trip Level  
V
I
= 100µA  
1.231  
0.96  
-50  
1.250  
1.00  
1.269  
1.04  
+50  
V
V
FBP  
DRVP  
V
V
falling  
FBP  
FBP  
FBP Input Bias Current  
I
= 1.25V  
nA  
FBP  
FBP Effective Load-Regulation  
Error (Transconductance)  
MX8795A  
V
= 10V, I  
= 50µA to 1mA  
-0.7  
-1.5  
10  
%
DRVP  
DRVP  
FBP Line (IN) Regulation Error  
DRVP Sink Current  
I
= 100µA, 2.5V < V < 6V  
1
5
mV  
mA  
DRVP  
IN  
I
V
V
= 1.1V, V  
= 10V  
= 34V  
1
DRVP  
FBP  
FBP  
DRVP  
DRVP  
DRVP Off-Leakage Current  
Soft-Start Period  
= 1.4V, V  
0.01  
14  
10  
µA  
ms  
t
SS  
V
128  
REF /  
Soft-Start Step Size  
V
GATE-OFF LINEAR-REGULATOR CONTROLLER  
FBN Regulation Voltage  
FBN Fault Trip Level  
V
I
= 100µA, V  
rising  
- V  
FBN  
0.984  
340  
1
1.015  
510  
V
FBN  
DRVN  
REF  
V
V
420  
mV  
nA  
FBN  
FBN Input Bias Current  
I
-50  
+50  
FBN  
FBN = 0.25V  
FBN Effective Load-Regulation  
Error (Transconductance)  
V
= -10V, I  
= 50µA to 1mA  
11  
25  
5
mV  
DRVN  
DRVN  
DRVN  
FBN Line (IN) Regulation Error  
DRVN Source Current  
DRVN Off-Leakage Current  
Soft-Start Period  
I
= 0.1mA, 2.5V < V < 6V  
0.7  
5
mV  
mA  
µA  
IN  
I
V
V
= 300mV, V = -10V  
DRVN  
1
DRVN  
FBN  
FBN  
= 0V, V  
= -25V  
-0.01  
14  
-10  
DRVN  
t
ms  
SS  
(V  
REF -  
Soft-Start Step Size  
V
/
V
FBN)  
128  
POSITIVE GATE-DRIVER TIMING AND CONTROL SWITCHES  
DEL Capacitor Charge Current  
DEL Turn-On Threshold  
During startup, V  
= 1V  
4
5
6
µA  
V
DEL  
V
1.19  
1.25  
1.31  
TH(DEL)  
DEL Discharge Switch  
On-Resistance  
During UVLO, V = 2.0V  
20  
IN  
CTL Input Low Voltage  
V
V
= 2.5V to 5.5V  
= 2.5V to 5.5V  
0.6  
+1  
V
V
IN  
IN  
CTL Input High Voltage  
2
CTL Input Leakage Current  
CTL-to-SRC Propagation Delay  
SRC Input Voltage Range  
CTL = AGND or IN  
-1  
µA  
ns  
V
100  
36  
300  
200  
12  
V
V
V
V
= 1.5V, CTL = IN  
200  
115  
5
DEL  
DEL  
DEL  
DEL  
SRC Input Current  
I
µA  
SRC  
= 1.5V, CTL = AGND  
= 1.5V, CTL = IN  
SRC-to-COM Switch On-Resistance  
DRN-to-COM Switch On-Resistance  
R
SRC(ON)  
R
= 1.5V, CTL = AGND  
30  
70  
DRN(ON)  
8
_______________________________________________________________________________________  
TFT-LCD DC-DC Converter with  
Operational Amplifiers  
MX8795A  
ELECTRICAL CHARACTERISTICS  
(V = 3V, V  
= V  
= 14V, V  
= V  
= V = 0V, I  
= 25µA, T = -40°C to +105°C, unless otherwise noted.) (Note3)  
REF A  
PGND  
AGND  
BGND  
IN  
MAIN  
SUP  
PARAMETER  
IN Supply Range  
SYMBOL  
CONDITIONS  
MIN  
MAX  
UNITS  
V
(Note 2)  
2.5  
6.0  
V
IN  
IN Undervoltage-Lockout  
Threshold  
V
V
rising, typical hysteresis = 150mV  
2.05  
2.45  
1.0  
V
UVLO  
IN  
V
= V  
= 1.3V, V  
= 0V,  
FBN  
FB  
FBP  
LX not switching  
IN Quiescent Current  
REF Output Voltage  
I
mA  
IN  
V
= 1.2V, V  
= 1.4V, V  
= 0V,  
FBN  
FB  
FBP  
3
LX switching  
No external load  
1.218  
1.277  
1.15  
V
V
REF Undervoltage-Lockout  
Threshold  
Rising edge, typical hysteresis = 160mV  
MAIN STEP-UP REGULATOR  
Output Voltage Range  
Operating Frequency  
FB Regulation Voltage  
FB Line Regulation  
V
f
V
18  
1400  
1.260  
0.4  
V
kHz  
V
MAIN  
IN  
900  
OSC  
V
No load  
= 2.5V to 6V  
1.198  
FB  
V
%/ V  
µS  
IN  
FB Transconductance  
LX On-Resistance  
I  
=
2.5µA  
= 200mA  
LX  
75  
280  
300  
3.5  
COMP  
R
I
mΩ  
A
LX(ON)  
LX Current Limit  
I
V
= 1.2V, duty cycle = 75%  
FB  
2.5  
LIM  
OPERATIONAL AMPLIFIERS  
SUP Supply Range  
V
6
18  
V
V
SUP  
SUP Overvoltage Fault Threshold  
18.0  
19.9  
Buffer configuration, V  
no load  
= V  
SUP  
/ 2,  
POS_  
SUP  
/ 2  
SUP Supply Current  
Input Offset Voltage  
I
5
mA  
mV  
V
SUP  
V
(V , V , V ) V  
NEG_ POS_ OUT_  
12  
OS  
CM  
OH  
Input Common-Mode Voltage  
Range  
V
V
0
V
SUP  
V
-
SUP  
100  
Output Voltage Swing, High  
Output Voltage Swing, Low  
Short-Circuit Current  
I
I
= 5mA  
mV  
mV  
mA  
OUT_  
V
= -5mA  
100  
OL  
OUT_  
Source  
Sink  
75  
75  
To V  
/ 2  
SUP  
_______________________________________________________________________________________  
9
TFT-LCD DC-DC Converter with  
Operational Amplifiers  
ELECTRICAL CHARACTERISTICS (continued)  
(V = 3V, V  
= V  
= 14V, V  
= V  
= V = 0V, I  
= 25µA, T = -40°C to +105°C, unless otherwise noted.) (Note3)  
REF A  
PGND  
AGND  
BGND  
IN  
MAIN  
SUP  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
MAX  
UNITS  
GATE-ON LINEAR-REGULATOR CONTROLLER  
FBP Regulation Voltage  
V
I
= 100µA  
1.210  
1.280  
-1.5  
10  
V
FBP  
DRVP  
FBP Effective Load-Regulation  
Error (Transconductance)  
V
= 10V, I  
= 50µA to 1mA  
%
DRVP  
DRVP  
FBP Line (IN) Regulation Error  
DRVP Sink Current  
I
= 100µA, 2.5V < V < 6V  
mV  
mA  
DRVP  
IN  
MX8795A  
I
V
= 1.1V, V = 10V  
DRVP  
1
DRVP  
FBP  
GATE-OFF LINEAR-REGULATOR CONTROLLER  
FBN Regulation Voltage  
V
I
= 100µA, V  
- V  
FBN  
0.972  
1.022  
25  
V
FBN  
DRVN  
REF  
FBN Effective Load-Regulation  
Error (Transconductance)  
V
= -10V, I  
= 50µA to 1mA  
mV  
DRVN  
DRVN  
DRVN  
FBN Line (IN) Regulation Error  
DRVN Source Current  
I
= 0.1mA, 2.5V < V < 6V  
5
mV  
mA  
IN  
I
V
= 300mV, V = -10V  
DRVN  
1
DRVN  
FBN  
POSITIVE GATE-DRIVER TIMING AND CONTROL SWITCHES  
DEL Capacitor Charge Current  
DEL Turn-On Threshold  
CTL Input Low Voltage  
During startup, V  
= 1V  
4
6
µA  
V
DEL  
V
1.19  
1.31  
0.6  
TH(DEL)  
V
V
= 2.5V to 5.5V  
V
IN  
IN  
CTL Input High Voltage  
SRC Input Voltage Range  
= 2.5V to 5.5V  
2
V
36  
V
V
V
= 1.5V, CTL = IN  
300  
200  
DEL  
DEL  
SRC Input Current  
I
µA  
SRC  
= 1.5V, CTL = AGND  
SRC-to-COM Switch  
On-Resistance  
R
R
V
V
= 1.5V, CTL = IN  
12  
70  
SRC(ON)  
DEL  
DRN-to-COM Switch  
On-Resistance  
= 1.5V, CTL = AGND  
DRN(ON)  
DEL  
Note 2: For 5.5V < V < 6.0V, use MAX8795A for no longer than 1% of IC lifetime. For continuous operation, input voltage should  
IN  
not exceed 5.5V.  
Note 3: Specifications to -40°C and +105°C are guaranteed by design, not production tested.  
10 ______________________________________________________________________________________  
TFT-LCD DC-DC Converter with  
Operational Amplifiers  
MX8795A  
Typical Operating Characteristics  
(Circuit of Figure 1, V = 5V, V  
= 14V, V  
= 25V, V  
= -10V, T = +25°C, unless otherwise noted.)  
IN  
MAIN  
GON  
GOFF A  
STEP-UP SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
STEP-UP EFFICIENCY  
vs. LOAD CURRENT  
SWITCHING FREQUENCY  
vs. INPUT VOLTAGE  
18  
15  
12  
9
90  
1.4  
1.3  
1.2  
1.1  
1.0  
NO LOAD, SUP DISCONNECTED,  
R1 = 221k, R2 = 21.5kΩ  
85  
80  
CURRENT INTO INDUCTOR  
CURRENT INTO IN PIN  
6
75  
70  
3
V
V
= 5V  
IN  
= 13.9V  
MAIN  
0
2.5 3.0  
3.5 4.0 4.5 5.0 5.5 6.0  
SUPPLY VOLTAGE (V)  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
1
10  
100  
1000  
INPUT VOLTAGE (V)  
LOAD CURRENT (mA)  
STEP-UP REGULATOR PULSED  
LOAD-TRANSIENT RESPONSE  
STEP-UP REGULATOR SOFT-START  
(HEAVY LOAD)  
TIMER-DELAYED OVERLOAD PROTECTION  
MAX8795A toc05  
MAX8795A toc04  
MAX8795A toc06  
A
A
50mA  
0V  
B
A
13.9V  
B
0V  
C
B
0A  
0A  
0U  
C
0A  
10µs/div  
A: LOAD CURRENT, 1A/div  
B: V , 200mV/div, AC-COUPLED  
2ms/div  
40ms/div  
A: V , 5V/div  
A: V  
, 2V/div  
IN  
MAIN  
B: V , 5V/div  
MAIN  
B: INDUCTOR CURRENT, 1A/div  
MAIN  
C: INDUCTOR CURRENT, 1A/div  
C: INDUCTOR CURRENT, 1A/div  
REF VOLTAGE LOAD REGULATION  
GATE-ON REGULATOR LOAD REGULATION  
GATE-ON REGULATOR LINE REGULATION  
1.2500  
1.2495  
1.2490  
1.2485  
1.2480  
1.2475  
1.2470  
0
-0.1  
-0.3  
-0.5  
-0.2  
-0.4  
-0.6  
-0.8  
I
200mA  
I
= 20mA  
BOOST =  
15  
POS  
0
10  
20  
30  
40  
50  
0
5
10  
20  
25  
26  
27  
28  
29  
30  
LOAD CURRENT (µA)  
LOAD CURRENT (mA)  
INPUT VOLTAGE (V)  
______________________________________________________________________________________ 11  
TFT-LCD DC-DC Converter with  
Operational Amplifiers  
Typical Operating Characteristics (continued)  
(Circuit of Figure 1, V = 5V, V  
= 14V, V  
= 25V, V  
= -10V, T = +25°C, unless otherwise noted.)  
IN  
MAIN  
GON  
GOFF A  
GATE-OFF REGULATOR LOAD REGULATION  
GATE-OFF REGULATOR LINE REGULATION  
POWER-UP SEQUENCE  
MAX8795A toc12  
0.2  
0
0.4  
0.2  
0
A
0V  
B
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
MX8795A  
0V  
0V  
-0.4  
-0.6  
C
D
-0.8  
-1.0  
I
= 50mA  
I
= 0mA  
40  
NEG  
BOOST  
0V  
0
10  
20  
30  
50  
-16  
-14  
-12  
-10  
4ms/div  
A: V  
, 10V/div  
C: V , 10V/div  
NEG  
LOAD CURRENT (mA)  
MAIN  
INPUT VOLTAGE (V)  
B: V , 20V/div  
POS  
D: V , 20V/div  
COM  
OPERATIONAL-AMPLIFIER  
SUP SUPPLY CURRENT  
vs. SUP VOLTAGE  
RAIL-TO-RAIL INPUT/OUTPUT  
MAX8795A toc14  
3.6  
3.5  
3.4  
3.3  
3.2  
3.1  
3.0  
V
SUP  
= 15V  
A
0V  
B
2.9  
2.8  
0V  
6
8
10  
12  
(V)  
14  
16  
18  
4µs/div  
A: INPUT SIGNAL, 5V/div  
B: OUTPUT SIGNAL, 5V/div  
V
SUP  
12 ______________________________________________________________________________________  
TFT-LCD DC-DC Converter with  
Operational Amplifiers  
MX8795A  
Typical Operating Characteristics (continued)  
(Circuit of Figure 1, V = 5V, V  
IN  
= 14V, V  
= 25V, V  
= -10V, T = +25°C, unless otherwise noted.)  
MAIN  
GON  
GOFF A  
OPERATIONAL-AMPLIFIER  
OPERATIONAL-AMPLIFIER  
LARGE-SIGNAL RESPONSE  
OPERATIONAL-AMPLIFIER  
SMALL-SIGNAL RESPONSE  
LOAD-TRANSIENT RESPONSE  
MAX8795A toc15  
MAX8795A toc16  
MAX8795A toc17  
V
= 15V  
SUP  
A
0V  
A
A
0V  
0V  
B
+50mA  
B
0mA  
B
-50mA  
0V  
0V  
400ns/div  
1µs/div  
A: INPUT SIGNAL, 5V/div  
B: OUTPUT SIGNAL, 5V/div  
400ns/div  
A: OUTPUT VOLTAGE, 1V/div, AC-COUPLED  
B: OUTPUT CURRENT, 50mA/div  
A: INPUT SIGNAL, 100mV/div  
B: OUTPUT SIGNAL, 100mV/div  
Pin Description  
PIN  
1
NAME  
SRC  
FUNCTION  
Switch Input. Source of the internal high-voltage p-channel MOSFET. Bypass SRC to PGND with a  
minimum 0.1µF capacitor close to the pins.  
2
REF  
Reference Bypass Terminal. Bypass REF to AGND with a minimum of 0.22µF close to the pins.  
Analog Ground for Step-Up Regulator and Linear Regulators. Connect to power ground (PGND)  
underneath the IC.  
3
AGND  
Power Ground. PGND is the source of the main step-up n-channel power MOSFET. Connect PGND to  
the output-capacitor ground terminals through a short, wide PCB trace. Connect to analog ground  
(AGND) underneath the IC.  
4
PGND  
5
6
OUT1  
NEG1  
POS1  
OUT2  
NEG2  
POS2  
BGND  
POS3  
OUT3  
Operational-Amplifier 1 Output  
Operational-Amplifier 1 Inverting Input  
7
Operational-Amplifier 1 Noninverting Input  
Operational-Amplifier 2 Output  
8
9
Operational-Amplifier 2 Inverting Input  
10  
11  
12  
13  
Operational-Amplifier 2 Noninverting Input  
Analog Ground for Operational Amplifiers. Connect to power ground (PGND) underneath the IC.  
Operational-Amplifier 3 Noninverting Input  
Operational-Amplifier 3 Output  
Operational-Amplifier Power Input. Positive supply rail for the operational amplifiers. Typically  
14  
SUP  
connected to V  
. Bypass SUP to BGND with a 0.1µF capacitor.  
MAIN  
15  
16  
POS4  
NEG4  
Operational-Amplifier 4 Noninverting Input  
Operational-Amplifier 4 Inverting Input  
______________________________________________________________________________________ 13  
TFT-LCD DC-DC Converter with  
Operational Amplifiers  
Pin Description (continued)  
PIN  
17  
NAME  
OUT4  
POS5  
NEG5  
OUT5  
FUNCTION  
Operational-Amplifier 4 Output  
18  
19  
20  
Operational-Amplifier 5 Noninverting Input  
Operational-Amplifier 5 Inverting Input  
Operational-Amplifier 5 Output  
n-Channel Power MOSFET Drain and Switching Node. Connect the inductor and Schottky diode to LX  
and minimize the trace area for lowest EMI.  
21  
22  
23  
LX  
IN  
MX8795A  
Supply Voltage Input. IN can range from 2.5V to 6V.  
Step-Up Regulator Feedback Input. Regulates to 1.233V (nominal). Connect a resistive voltage-divider  
FB  
from the output (V  
) to FB to analog ground (AGND). Place the divider within 5mm of FB.  
MAIN  
Step-Up Regulator Error-Amplifier Compensation Point. Connect a series RC from COMP to AGND.  
See the Loop Compensation section for component selection guidelines.  
24  
25  
26  
27  
COMP  
FBP  
Gate-On Linear-Regulator Feedback Input. FBP regulates to 1.25V (nominal). Connect FBP to the  
center of a resistive voltage-divider between the regulator output and AGND to set the gate-on linear-  
regulator output voltage. Place the resistive voltage-divider within 5mm of FBP.  
Gate-On Linear-Regulator Base Drive. Open drain of an internal n-channel MOSFET. Connect DRVP to  
the base of an external pnp pass transistor. See the Pass-Transistor Selection section.  
DRVP  
FBN  
Gate-Off Linear-Regulator Feedback Input. FBN regulates to 250mV (nominal). Connect FBN to the  
center of a resistive voltage-divider between the regulator output and REF to set the gate-off linear-  
regulator output voltage. Place the resistive voltage-divider within 5mm of FBN.  
Gate-Off Linear-Regulator Base Drive. Open drain of an internal p-channel MOSFET. Connect DRVN to  
the base of an external npn pass transistor. See the Pass-Transistor Selection section.  
28  
29  
DRVN  
DEL  
High-Voltage Switch Delay Input. Connect a capacitor from DEL to AGND to set the high-voltage  
switch startup delay.  
High-Voltage Switch Control Input. When CTL is high, the high-voltage switch between COM and SRC  
is on and the high-voltage switch between COM and DRN is off. When CTL is low, the high-voltage  
switch between COM and SRC is off and the high-voltage switch between COM and DRN is on. CTL is  
inhibited by the undervoltage lockout or when the voltage on DEL is less than 1.25V.  
30  
CTL  
31  
32  
DRN  
COM  
EP  
Switch Input. Drain of the internal high-voltage back-to-back p-channel MOSFETs connected to COM.  
Internal High-Voltage MOSFET Switch Common Terminal. Do not allow the voltage on COM to exceed  
V
.
SRC  
Exposed Paddle. Must be connected to AGND. Do not use as the only ground connection.  
14 ______________________________________________________________________________________  
TFT-LCD DC-DC Converter with  
Operational Amplifiers  
MX8795A  
-10V gate-driver supplies. The input voltage range for the  
Typical Operating Circuit  
The MAX8795A typical operating circuit (Figure 1) is a  
complete power-supply system for TFT LCDs. The circuit  
generates a +14V source-driver supply and +25V and  
IC is from +2.5V to +5.5V. The listed load currents in  
Figure 1 are available from a +4.5V to +5.5V supply.  
Table 1 lists some recommended components, and Table  
2 lists the contact information of component suppliers.  
LX  
D1  
L1  
3.0µH  
V
V
IN  
4.5V TO 5.5V  
MAIN  
14V/500mA  
C2  
22µF  
C1  
22µF  
R1  
R10  
10Ω  
LX  
LX  
137kΩ  
C3  
0.1µF  
1%  
IN  
FB  
C13  
0.1µF  
R2  
13.3kΩ  
1%  
C4  
0.1µF  
D2  
180kΩ  
AGND  
PGND  
LX  
COMP  
C14  
68pF  
C12  
220µF  
C11  
0.1µF  
R9  
6.8kΩ  
R3  
6.8kΩ  
C10  
0.1µF  
MAX8795A  
D3  
DRVP  
FBP  
Q1  
DRVN  
FBN  
Q2  
R7  
324kΩ  
1%  
R4  
191kΩ  
1%  
V
GOFF  
-10V/50mA  
R5  
10.0kΩ  
1%  
C5  
0.47µF  
C9  
0.22µF  
R8  
31.6kΩ  
1%  
SRC  
V
GON  
REF  
COM  
25V/20mA  
C8  
0.22µF  
DRN  
R6  
1kΩ  
CTL  
SUP  
DEL  
C7  
0.033µF  
C6  
0.1µF  
BGND  
NEG1  
R19  
100kΩ  
R17  
100kΩ  
R15  
100kΩ  
R13  
100kΩ  
R11  
100kΩ  
OUT1  
NEG2  
POS1  
OUT2  
POS2  
POS3  
POS4  
POS5  
OUT3  
NEG4  
OUT4  
TO VCOM  
BACKPLANE  
R12  
100kΩ  
R14  
100kΩ  
R16  
100kΩ  
NEG5  
OUT5  
R18  
100kΩ  
R20  
100kΩ  
EP  
Figure 1. Typical Operating Circuit  
Table 1. Component List  
DESIGNATION  
DESCRIPTION  
DESIGNATION  
DESCRIPTION  
22µF, 6.3V X5R ceramic capacitor (1210)  
TDK C3225X5R0J227M  
3.0µH, 3A inductor  
Sumida CDRH6D28-3R0  
C1  
L1  
22µF, 16V X5R ceramic capacitor (1812)  
TDK C4532X5X1C226M  
200mA, 40V pnp bipolar transistor (SOT23)  
Fairchild MMBT3906  
C2  
D1  
Q1  
Q2  
3A, 30V Schottky diode (M-flat)  
Toshiba CMS02  
200mA, 40V npn bipolar transistor (SOT23)  
Fairchild MMBT3904  
200mA, 100V, dual ultra-fast diodes (SOT23)  
Fairchild MMBD4148SE  
D2, D3  
______________________________________________________________________________________ 15  
TFT-LCD DC-DC Converter with  
Operational Amplifiers  
Table 2. Component Suppliers  
SUPPLIER  
PHONE  
FAX  
WEBSITE  
www.fairchildsemi.com  
Fairchild  
408-822-2000  
847-545-6700  
847-803-6100  
949-455-2000  
408-822-2102  
847-545-6720  
847-390-4405  
949-859-3963  
Sumida  
TDK  
www.sumida.com  
www.component.tdk.com  
www.toshiba.com/taec  
Toshiba  
Detailed Description  
V
CN  
V
CP  
The MAX8795A contains a high-performance step-up  
switching regulator, two low-cost linear-regulator con-  
trollers, multiple high-current operational amplifiers,  
and startup timing and level-shifting functionality useful  
for active-matrix TFT LCDs. Figure 2 shows the  
MAX8795A functional diagram.  
MX8795A  
V
IN  
V
MAIN  
LX  
FB  
IN  
STEP-UP  
CONTROLLER  
Main Step-Up Regulator  
The main step-up regulator employs a current-mode,  
fixed-frequency PWM architecture to maximize loop  
bandwidth and provide fast transient response to  
pulsed loads typical of TFT-LCD panel source drivers.  
The 1.2MHz switching frequency allows the use of low-  
profile inductors and ceramic capacitors to minimize  
the thickness of LCD panel designs. The integrated  
high-efficiency MOSFET and the IC’s built-in digital  
soft-start functions reduce the number of external com-  
ponents required while controlling inrush currents. The  
PGND  
AGND  
COMP  
V
V
CP  
MAX8795A  
DRVP  
FBP  
GATE-ON  
CONTROLLER  
GON  
SRC  
COM  
DRN  
DEL  
CTL  
SWITCH  
CONTROL  
output voltage can be set from V to 18V with an exter-  
IN  
nal resistive voltage-divider.  
V
V
CN  
The regulator controls the output voltage and the power  
delivered to the output by modulating the duty cycle (D)  
of the internal power MOSFET in each switching cycle.  
The duty cycle of the MOSFET is approximated by:  
DRVN  
FBN  
GATE-OFF  
CONTROLLER  
GOFF  
SUP  
NEG1  
V
V  
IN  
MAIN  
V
D ≈  
MAIN  
OUT1  
OP1  
OP2  
Figure 3 shows the functional diagram of the step-up  
regulator. An error amplifier compares the signal at FB  
to 1.233V and changes the COMP output. The voltage  
at COMP sets the peak inductor current. As the load  
varies, the error amplifier sources or sinks current to the  
COMP output accordingly to produce the inductor peak  
current necessary to service the load. To maintain sta-  
bility at high duty cycles, a slope-compensation signal  
is summed with the current-sense signal.  
REF  
POS1  
NEG2  
REF  
NEG4  
OUT2  
POS2  
OUT4  
OP4  
POS4  
NEG5  
OUT3  
POS3  
OUT5  
POS5  
OP3  
OP5  
On the rising edge of the internal clock, the controller sets  
a flip-flop, turning on the n-channel MOSFET and applying  
the input voltage across the inductor. The current through  
the inductor ramps up linearly, storing energy in its  
magnetic field. Once the sum of the current-feedback  
signal and the slope compensation exceeds the COMP  
BGND  
EP  
Figure 2. MAX8795A Functional Diagram  
16 ______________________________________________________________________________________  
TFT-LCD DC-DC Converter with  
Operational Amplifiers  
MX8795A  
FROM CHARGE-PUMP  
V
MAIN  
LX  
OUTPUT  
RESET DOMINANT  
S
CLOCK  
pnp PASS  
TRANSISTOR  
DRVP  
PGND  
R
Q
npn CASCODE  
TRANSISTOR  
ILIM  
COMPARATOR  
V
GON  
MAX8795A  
SOFT-  
START  
V
LIMIT  
FBP  
SLOPE COMP  
PWM  
COMPARATOR  
CURRENT  
SENSE  
Σ
Figure 4. Using Cascoded npn for Charge-Pump Output  
Voltages > 36V  
OSCILLATOR  
FAULT  
COMPARATOR  
LX  
0.1µF  
TO FAULT LATCH  
V
MAIN  
14V  
ERROR AMP  
1.14V  
FB  
0.1µF  
68pF  
1.233V  
COMP  
6.8kΩ  
DRVP  
Q1  
V
GON  
35V  
Figure 3. Step-Up Regulator Functional Diagram  
MAX8795A  
voltage, the controller resets the flip-flop and turns off  
the MOSFET. Since the inductor current is continuous,  
a transverse potential develops across the inductor that  
turns on the diode (D1). The voltage across the induc-  
tor then becomes the difference between the output  
voltage and the input voltage. This discharge condition  
forces the current through the inductor to ramp back  
down, transferring the energy stored in the magnetic  
field to the output capacitor and the load. The MOSFET  
remains off for the rest of the clock cycle.  
0.47µF  
0.22µF  
274kΩ  
47pF  
1%  
FBP  
10.2kΩ  
1%  
150pF  
Figure 5. The linear regulator controls the intermediate charge-  
pump stage.  
Gate-On Linear-Regulator Controller, REG P  
The gate-on linear-regulator controller (REG P) is an  
analog gain block with an open-drain n-channel output.  
It drives an external pnp pass transistor with a 6.8kΩ  
base-to-emitter resistor (Figure 1). Its guaranteed base-  
drive sink current is at least 1mA. The regulator including  
Q1 in Figure 1 uses a 0.47µF ceramic output capacitor  
and is designed to deliver 20mA at 25V. Other output  
voltages and currents are possible with the proper pass  
transistor and output capacitor. See the Pass-Transistor  
Selection and Stability Requirements sections.  
REG P is typically used to provide the TFT-LCD gate  
drivers’ gate-on voltage. Use a charge pump with as  
many stages as necessary to obtain a voltage exceed-  
ing the required gate-on voltage (see the Selecting the  
Number of Charge-Pump Stages section). Note the  
voltage rating of DRVP is 36V. If the charge-pump out-  
put voltage can exceed 36V, an external cascode npn  
transistor should be added as shown in Figure 4.  
Alternately, the linear regulator can control an interme-  
diate charge-pump stage while regulating the final  
charge-pump output (Figure 5).  
______________________________________________________________________________________ 17  
TFT-LCD DC-DC Converter with  
Operational Amplifiers  
REG P is enabled after the REF voltage exceeds 1.0V.  
Each time it is enabled, the controller goes through a  
soft-start routine that ramps up its internal reference  
DAC in 128 steps.  
As the operational amplifier’s capacitive load increases,  
the amplifier’s bandwidth decreases and gain peaking  
increases. A 5to 50small resistor placed between  
OUT_ and the capacitive load reduces peaking, but also  
reduces the gain. An alternative method of reducing  
peaking is to place a series RC network (snubber) in par-  
allel with the capacitive load. The RC network does not  
continuously load the output or reduce the gain. Typical  
values of the resistor are between 100and 200, and  
the typical value of the capacitor is 10nF.  
Gate-Off Linear-Regulator Controller, REG N  
The gate-off linear-regulator controller (REG N) is an  
analog gain block with an open-drain p-channel output.  
It drives an external npn pass transistor with a 6.8kΩ  
base-to-emitter resistor (Figure 1). Its guaranteed base-  
drive source current is at least 1mA. The regulator  
including Q2 in Figure 1 uses a 0.47µF ceramic output  
capacitor and is designed to deliver 50mA at -10V. Other  
output voltages and currents are possible with the proper  
pass transistor and output capacitor (see the Pass-  
Transistor Selection and Stability Requirements sections).  
MX8795A  
Undervoltage Lockout (UVLO)  
The UVLO circuit compares the input voltage at IN with the  
UVLO threshold (2.25V rising, 2.20V falling, typ) to ensure  
the input voltage is high enough for reliable operation. The  
50mV (typ) hysteresis prevents supply transients from  
causing a restart. Once the input voltage exceeds the  
UVLO rising threshold, startup begins. When the input volt-  
age falls below the UVLO falling threshold, the controller  
turns off the main step-up regulator, turns off the linear-  
regulator outputs, and disables the switch control block;  
the operational-amplifier outputs are high impedance.  
REG N is typically used to provide the TFT-LCD gate  
drivers’ gate-off voltage. A negative voltage can be  
produced using a charge-pump circuit as shown in  
Figure 1. REG N is enabled after the voltage on REF  
exceeds 1.0V. Each time it is enabled, the control goes  
through a soft-start routine that ramps down its internal  
reference DAC from V  
to 250mV in 128 steps.  
REF  
Reference Voltage (REF)  
The reference output is nominally 1.25V and can  
source at least 50µA (see the Typical Operating  
Characteristics). Bypass REF with a 0.22µF ceramic  
capacitor connected between REF and AGND.  
Operational Amplifiers  
The MAX8795A has five operational amplifiers. The opera-  
tional amplifiers are typically used to drive the LCD back-  
plane (VCOM) or the gamma-correction divider string.  
They feature 130mA output short-circuit current, 45V/µs  
slew rate, and 20MHz/3dB bandwidth. The rail-to-rail input  
and output capability maximizes system flexibility.  
Power-Up Sequence and Soft-Start  
Once the voltage on IN exceeds approximately 2.25V, the  
reference turns on. With a 0.22µF REF bypass capacitor,  
the reference reaches its regulation voltage of 1.25V in  
approximately 1ms. When the reference voltage exceeds  
1.0V, the IC enables the main step-up regulator, the gate-  
on linear-regulator controller, and the gate-off linear-regu-  
lator controller simultaneously.  
Short-Circuit Current Limit and Input Clamp  
The operational amplifiers limit short-circuit current to  
approximately 130mA if the output is directly shorted to  
SUP or to BGND. If the short-circuit condition persists, the  
junction temperature of the IC rises until it reaches the  
thermal-shutdown threshold (+160°C typ). Once the junc-  
tion temperature reaches the thermal-shutdown threshold,  
an internal thermal sensor immediately sets the thermal  
fault latch, shutting off all the IC’s outputs. The device  
remains inactive until the input voltage is cycled.  
The IC employs soft-start for each regulator to minimize  
inrush current and voltage overshoot and to ensure a well-  
defined startup behavior. Each output uses a 7-bit soft-start  
DAC. For the step-up and the gate-on linear regulator, the  
DAC output is stepped in 128 steps from zero up to the ref-  
erence voltage. For the gate-off linear regulator, the DAC  
output steps from the reference down to 250mV in 128  
steps from zero up to the reference voltage. For the gate-  
off linear regulator’s voltage ramp soft-start, the DAC output  
steps from the reference down to 250mV in 128 steps. The  
soft-start duration is 14ms (typ) for all three regulators, and  
DEL remains pulled down to AGND during the soft start  
period.  
The operational amplifiers have 4V input clamp structures  
in series with a 500resistance and a diode (Figure 2).  
Driving Pure Capacitive Load  
The operational amplifiers are typically used to drive  
the LCD backplane (VCOM) or the gamma-correction  
divider string. The LCD backplane consists of a distrib-  
uted series capacitance and resistance, a load that can  
be easily driven by the operational amplifier. However,  
if the operational amplifier is used in an application with  
a pure capacitive load, steps must be taken to ensure  
stable operation.  
Once the main step-up regulator, the gate-on linear-regula-  
tor controller, and the gate-off linear-regulator controller  
reach regulation, a 5µA current source starts charging  
18 ______________________________________________________________________________________  
TFT-LCD DC-DC Converter with  
Operational Amplifiers  
MX8795A  
C
. Once the C  
capacitor voltage exceeds 1.25V  
DEL  
DEL  
(typ), the switch-control block is and op amps are enabled  
as shown in Figure 6. After the switch-control block is  
enabled, COM can be connected to SRC or DRN through  
the internal p-channel switches, depending upon the state of  
V
IN  
2.25V  
V
REF  
1.05V  
CTL. Before startup and when IN is less than V  
internally connected to AGND to discharge C  
, DEL is  
. Select  
UVLO  
DEL  
V
MAIN  
GON  
C
to set the initial start-up delay and the switch-control  
DEL  
block startup delay times using the following equation:  
I6µA  
1.25V  
V
C
= DELAY_TIME ×  
DEL  
Switch-Control Block  
The switch-control input (CTL) is not activated until all  
four of the following conditions are satisfied: the input  
V
GOFF  
V
DEL  
12ms  
1.25V  
SWITCH  
voltage exceeds V  
, the soft-start routine of all the  
UVLO  
regulators is complete, there is no fault condition detect-  
INPUT  
SOFT- SOFT-  
VOLTAGE START START  
OK BEGINS ENDS  
CONTROL  
ENABLED  
ed, and V  
exceeds its turn-on threshold. Once acti-  
DEL  
vated and if CTL is high, the 5internal p-channel  
switch (Q1) between COM and SRC turns on and the  
Figure 6. Power-Up Sequence  
IN  
MAX8795A  
5µA  
2.25V  
FB OK  
FBP OK  
FBN OK  
SRC  
Q1  
DEL  
REF  
COM  
Q2  
CTL  
DRN  
Figure 7. Switch-Control Block  
______________________________________________________________________________________ 19  
TFT-LCD DC-DC Converter with  
Operational Amplifiers  
30p-channel switch (Q2) between DRN and COM  
average DC inductor current at the full load current. The  
turns off. If CTL is low, Q1 turns off and Q2 turns on.  
best trade-off between inductor size and circuit efficiency  
for step-up regulators generally has an LIR between 0.3  
and 0.6. However, depending on the AC characteristics of  
the inductor core material and ratio of inductor resistance  
to other power-path resistances, the best LIR can shift up  
or down. If the inductor resistance is relatively high, more  
ripple can be accepted to reduce the number of turns  
required and increase the wire diameter. If the inductor  
resistance is relatively low, increasing inductance to lower  
the peak current can decrease losses throughout the  
power path. If extremely thin high-resistance inductors are  
used, as is common for LCD-panel applications, the best  
LIR can increase to between 0.5 and 1.0.  
Fault Protection  
During steady-state operation, if the output of the main  
regulator or any of the linear-regulator outputs does not  
exceed its respective fault-detection threshold, the  
MAX8795A activates an internal fault timer. If any condi-  
tion or combination of conditions indicates a continuous  
fault for the fault-timer duration (200ms typ), the  
MAX8795A sets the fault latch to shut down all the outputs  
except the reference. Once the fault condition is removed,  
cycle the input voltage (below the UVLO falling threshold)  
to clear the fault latch and reactivate the device. The fault-  
detection circuit is disabled during the soft-start time.  
MX8795A  
Once a physical inductor is chosen, higher and lower  
values of the inductor should be evaluated for efficien-  
cy improvements in typical operating regions.  
Thermal-Overload Protection  
Thermal-overload protection prevents excessive power dis-  
sipation from overheating the MAX8795A. When the junc-  
tion temperature exceeds +160°C, a thermal sensor  
immediately activates the fault protection, which shuts  
down all outputs except the reference, allowing the device  
to cool down. Once the device cools down by approximate-  
ly 15°C, cycle the input voltage (below the UVLO falling  
threshold) to clear the fault latch and reactivate the device.  
Calculate the approximate inductor value using the typ-  
ical input voltage (V ), the maximum output current  
IN  
(I  
), the expected efficiency (η  
) taken from  
MAIN(MAX)  
TYP  
an appropriate curve in the Typical Operating  
Characteristics section, and an estimate of LIR based  
on the above discussion:  
2
η
TYP  
LIR  
V
V
V  
× f  
IN  
MAIN IN  
The thermal-overload protection protects the controller  
in the event of fault conditions. For continuous opera-  
tion, do not exceed the absolute maximum junction  
temperature rating of +150°C.  
L =  
V
I
MAIN MAIN(MAX) OSC ⎠  
Choose an available inductor value from an appropriate  
inductor family. Calculate the maximum DC input cur-  
Design Procedure  
Main Step-Up Regulator  
Inductor Selection  
The minimum inductance value, peak current rating,  
and series resistance are factors to consider when  
selecting the inductor. These factors influence the con-  
verter’s efficiency, maximum output load capability,  
transient-response time, and output voltage ripple. Size  
and cost are also important factors to consider.  
rent at the minimum input voltage (V ) using con-  
IN(MIN)  
servation of energy and the expected efficiency at that  
operating point (η ) taken from the appropriate curve  
MIN  
in the Typical Operating Characteristics:  
I
× V  
MAIN(MAX)  
MAIN  
I
=
IN(DC,MAX)  
V
× η  
MIN  
IN(MIN)  
Calculate the ripple current at that operating point and  
the peak current required for the inductor:  
The maximum output current, input voltage, output volt-  
age, and switching frequency determine the inductor  
value. Very high inductance values minimize the current  
ripple, and therefore, reduce the peak current, which  
decreases core losses in the inductor and conduction  
losses in the entire power path. However, large inductor  
values also require more energy storage and more turns of  
wire, which increase size and can increase conduction  
losses in the inductor. Low inductance values decrease  
the size, but increase the current ripple and peak current.  
Finding the best inductor involves choosing the best com-  
promise between circuit efficiency, inductor size, and cost.  
V
×(V  
V  
)
IN(MIN)  
MAIN  
IN(MIN)  
I
=
RIPPLE  
L × V  
× f  
MAIN OSC  
I
RIPPLE  
I
=I  
+
PEAK IN(DC,MAX)  
2
The inductor’s saturation current rating and the  
MAX8795A’s LX current limit (I ) should exceed I  
,
PEAK  
LIM  
and the inductor’s DC current rating should exceed  
I
. For good efficiency, choose an inductor with  
IN(DC,MAX)  
less than 0.1series resistance.  
Considering the typical operating circuit, the maximum  
load current (I  
) is 500mA with a 14V output and  
MAIN(MAX)  
The equations used here include a constant LIR, which is  
the ratio of the inductor peak-to-peak ripple current to the  
20 ______________________________________________________________________________________  
TFT-LCD DC-DC Converter with  
Operational Amplifiers  
MX8795A  
a typical input voltage of 5V. Choosing an LIR of 0.5 and  
estimating efficiency of 85% at this operating point:  
be tolerated on C if IN is decoupled from C using an  
IN IN  
RC lowpass filter (see R10 and C13 in Figure 1).  
2
⎟ ⎜  
⎠ ⎝  
Rectifier Diode  
5V  
14V  
14V 5V  
0.5A ×1.2MHz 0.5  
0.85  
⎞ ⎛  
⎞⎛  
⎟⎜  
L =  
3.3µH  
The MAX8795A’s high switching frequency demands a  
high-speed rectifier. Schottky diodes are recommended  
for most applications because of their fast recovery time  
and low forward voltage. In general, a 2A Schottky  
diode complements the internal MOSFET well.  
⎠⎝  
Using the circuit’s minimum input voltage (4.5V) and  
estimating efficiency of 80% at that operating point:  
0.5A ×14V  
4.5V × 0.8  
I
=
1.94A  
IN(DC,MAX)  
Output-Voltage Selection  
The output voltage of the main step-up regulator can be  
adjusted by connecting a resistive voltage-divider from the  
output (V ) to AGND with the center tap connected to  
MAIN  
FB (see Figure 1). Select R2 in the 10kto 50krange.  
The ripple current and the peak current are:  
4.5V ×(14V 4.5V)  
3.3µH×14V ×1.2MHz  
I
I
=
0.77A  
RIPPLE  
Calculate R1 with the following equation:  
0.77A  
2
=1.94A +  
2.33A  
PEAK  
V
MAIN  
R1=R2×  
1  
Output-Capacitor Selection  
V
FB  
The total output voltage ripple has two components: the  
capacitive ripple caused by the charging and discharging  
of the output capacitance, and the ohmic ripple due to the  
capacitor’s equivalent series resistance (ESR):  
where V , the step-up regulator’s feedback set point,  
FB  
is 1.233V. Place R1 and R2 close to the IC.  
Loop Compensation  
V
= V  
+ V  
RIPPLE(C) RIPPLE(ESR)  
Choose R  
to set the high-frequency integrator  
COMP  
RIPPLE  
gain for fast transient response. Choose C  
the integrator zero to maintain loop stability.  
to set  
COMP  
I
C
V
V
V  
IN  
MAIN  
MAIN  
V
RIPPLE(C)  
f
OUT  
MAIN OSC  
For low-ESR output capacitors, use the following equa-  
tions to obtain stable performance and good transient  
response:  
and:  
V
I  
R
RIPPLE(ESR) PEAK ESR(COUT)  
where I  
is the RIPPLE inductor current (see the  
RIPPLE  
253× V × V  
×C  
OUT  
IN  
OUT  
R
COMP  
Inductor Selection section). For ceramic capacitors, the  
output voltage ripple is typically dominated by  
L ×I  
MAIN(MAX)  
V
×C  
OUT  
V
. The voltage rating and temperature charac-  
RIPPLE(C)  
OUT  
C
COMP  
teristics of the output capacitor must also be considered.  
10×I  
×R  
MAIN(MAX)  
COMP  
Input-Capacitor Selection  
To further optimize transient response, vary R  
in  
COMP  
The input capacitor (C ) reduces the current peaks  
IN  
20% steps and C  
in 50% steps while observing  
COMP  
drawn from the input supply and reduces noise injection  
into the IC. A 22µF ceramic capacitor is used in the typi-  
cal applications circuit (Figure 1) because of the high  
source impedance seen in typical lab setups. Actual  
applications usually have much lower source impedance  
since the step-up regulator often runs directly from the  
transient-response waveforms.  
Charge Pumps  
Selecting the Number of Charge-Pump Stages  
For highest efficiency, always choose the lowest num-  
ber of charge-pump stages that meet the output  
requirement. Figures 8 and 9 show the positive and  
negative charge-pump output voltages for a given  
output of another regulated supply. Typically, C can  
IN  
be reduced below the values used in the typical applica-  
tions circuit. Ensure a low-noise supply at IN by using  
V
MAIN  
for one-, two-, and three-stage charge pumps.  
adequate C . Alternately, greater voltage variation can  
IN  
______________________________________________________________________________________ 21  
TFT-LCD DC-DC Converter with  
Operational Amplifiers  
The number of positive charge-pump stages is given by:  
the forward-voltage drop of the charge-pump diode,  
and V  
is the dropout margin for the linear reg-  
= 0.3V.  
DROPOUT  
ulator. Use V  
V
+ V  
V  
DROPOUT  
GON  
DROPOUT MAIN  
n
=
POS  
V
2× V  
D
The number of negative charge-pump stages is given by:  
MAIN  
where n  
is the number of positive charge-pump  
is the gate-on linear-regulator REG P out-  
V + V  
POS  
GOFF  
DROPOUT  
n
=
NEG  
stages, V  
GON  
V
2× V  
MAIN  
D
put, V  
is the main step-up regulator output, V is  
MAIN  
D
where n  
is the number of negative charge-pump  
NEG  
stages, V  
is the gate-off linear-regulator REG N  
GOFF  
MX8795A  
POSITIVE CHARGE-PUMP  
output, V  
is the main step-up regulator output, V  
MAIN  
D
OUTPUT VOLTAGE vs. V  
MAIN  
is the forward-voltage drop of the charge-pump diode,  
and V is the dropout margin for the linear reg-  
60  
50  
40  
30  
20  
10  
0
DROPOUT  
ulator. Use V  
3-STAGE CHARGE PUMP  
V
= 0.3V TO 1V  
D
= 0.3V.  
DROPOUT  
The above equations are derived based on the  
assumption that the first stage of the positive charge  
pump is connected to V  
and the first stage of the  
MAIN  
2-STAGE CHARGE PUMP  
negative charge pump is connected to ground.  
Sometimes fractional stages are more desirable for bet-  
ter efficiency. This can be done by connecting the first  
stage to V or another available supply. If the first  
IN  
charge-pump stage is powered from V , the above  
IN  
equations become:  
1-STAGE CHARGE PUMP  
2
4
6
8
10  
12  
14  
V
+ V  
+ V  
GON  
DROPOUT IN  
n
=
=
POS  
V
(V)  
MAIN  
V
2× V  
D
MAIN  
V  
+ V  
+ V  
GOFF  
DROPOUT IN  
n
Figure 8. Positive Charge-Pump Output Voltage vs. V  
MAIN  
NEG  
V
2× V  
D
MAIN  
Flying Capacitors  
Increasing the flying-capacitor (C ) value lowers the  
X
NEGATIVE CHARGE-PUMP  
OUTPUT VOLTAGE vs. V  
MAIN  
effective source impedance and increases the output-  
current capability. Increasing the capacitance indefinitely  
has a negligible effect on output-current capability  
because the internal switch resistance and the diode  
impedance place a lower limit on the source imped-  
ance. A 0.1µF ceramic capacitor works well in most  
low-current applications. The flying capacitor’s voltage  
rating must exceed the following:  
-0  
-5  
1-STAGE  
CHARGE PUMP  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-45  
2-STAGE  
CHARGE PUMP  
3-STAGE  
CHARGE PUMP  
V
> n× V  
MAIN  
CX  
where n is the stage number in which the flying capaci-  
tor appears, and V is the output voltage of the  
V
D
= 0.3V TO 1V  
MAIN  
2
4
6
8
10  
12  
14  
main step-up regulator.  
V
(V)  
MAIN  
Figure 9. Negative Charge-Pump Output Voltage vs. V  
MAIN  
22 ______________________________________________________________________________________  
TFT-LCD DC-DC Converter with  
Operational Amplifiers  
MX8795A  
Charge-Pump Output Capacitor  
voltage, and power dissipation. The transistor’s current  
gain limits the guaranteed maximum output current to:  
Increasing the output capacitance or decreasing the  
ESR reduces the output ripple voltage and the peak-to-  
peak transient voltage. With ceramic capacitors, the  
output voltage ripple is dominated by the capacitance  
value. Use the following equation to approximate the  
required capacitor value:  
V
BE  
I
= I  
×h  
FE(MIN)  
LOAD(MAX)  
DRV  
R
BE  
where I  
is the minimum guaranteed base-drive cur-  
DRV  
rent, V is the transistor’s base-to-emitter forward volt-  
BE  
I
LOAD_CP  
age drop, and R  
is the pullup resistor connected  
BE  
C
OUT_CP  
2f  
V
between the transistor’s base and emitter. Furthermore,  
the transistor’s current gain increases the linear regula-  
tor’s DC loop gain (see the Stability Requirements sec-  
tion), so excessive gain destabilizes the output.  
Therefore, transistors with current gain over 100 at the  
maximum output current can be difficult to stabilize and  
are not recommended unless the high gain is needed to  
meet the load-current requirements.  
OSC RIPPLE_CP  
where C  
pump, I  
is the output capacitor of the charge  
is the load current of the charge  
OUT_CP  
LOAD_CP  
pump, and V  
output ripple.  
is the peak-to-peak value of the  
RIPPLE_CP  
Charge-Pump Rectifier Diodes  
Use low-cost silicon switching diodes with a current rat-  
ing equal to or greater than two times the average  
charge-pump input current. If it helps avoid an extra  
stage, some or all of the diodes can be replaced with  
Schottky diodes with an equivalent current rating.  
The transistor’s saturation voltage at the maximum out-  
put current determines the minimum input-to-output  
voltage differential that the linear regulator can support.  
Also, the package’s power dissipation limits the usable  
maximum input-to-output voltage differential. The maxi-  
mum power-dissipation capability of the transistor’s  
package and mounting must exceed the actual power  
dissipated in the device. The power dissipated equals  
Linear-Regulator Controllers  
Output-Voltage Selection  
Adjust the gate-on linear-regulator (REG P) output volt-  
age by connecting a resistive voltage-divider from the  
REG P output to AGND with the center tap connected  
to FBP (Figure 1). Select the lower resistor of the divider  
R5 in the range of 10kto 30k. Calculate the upper  
resistor R4 with the following equation:  
the maximum load current (I  
) multiplied  
LOAD(MAX)_LR  
by the maximum input-to-output voltage differential:  
P =I ×(V V  
)
OUT_LR  
LOAD(MAX)_LR  
IN(MAX)_LR  
where V  
linear regulator, and V  
the linear regulator.  
is the maximum input voltage of the  
IN(MAX)_LR  
_
is the output voltage of  
OUT LR  
V
V
GON  
R4 =R5×  
1  
FBP  
Stability Requirements  
The MAX8795A linear-regulator controllers use an inter-  
nal transconductance amplifier to drive an external  
pass transistor. The transconductance amplifier, the  
pass transistor, the base-emitter resistor, and the out-  
put capacitor determine the loop stability. The following  
applies to both linear-regulator controllers in the  
MAX8795A.  
where V  
= 1.25V (typ).  
FBP  
Adjust the gate-off linear-regulator REG N output volt-  
age by connecting a resistive voltage-divider from  
V
to REF with the center tap connected to FBN  
GOFF  
(Figure 1). Select R8 in the 20kto 50krange.  
Calculate R7 with the following equation:  
The transconductance amplifier regulates the output  
voltage by controlling the pass transistor’s base cur-  
rent. The total DC loop gain is approximately:  
V
V
V  
GOFF  
FBN  
R7 =R8×  
V  
REF  
FBN  
where V  
= 250mV, V  
= 1.25V. Note that REF can  
FBN  
REF  
10  
V
T
I
×h  
BIAS FE  
only source up to 50µA; using a resistor less than 20kΩ  
A
× 1+  
× V  
REF  
V_LR  
I
LOAD_LR  
for R8 results in higher bias current than REF can supply.  
Pass-Transistor Selection  
where V is 26mV at room temperature, and I  
is the  
T
BIAS  
BE  
The pass transistor must meet specifications for current  
current through the base-to-emitter resistor (R ). For  
gain (h ), input capacitance, collector-emitter saturation  
FE  
the MAX8795A, the bias currents for both the gate-on  
______________________________________________________________________________________ 23  
TFT-LCD DC-DC Converter with  
Operational Amplifiers  
and gate-off linear-regulator controllers are 0.1mA.  
Therefore, the base-to-emitter resistor for both linear  
regulators should be chosen to set 0.1mA bias current:  
4) Next, calculate the pole set by the linear regulator’s  
feedback resistance and the capacitance between  
FB_ and AGND (including stray capacitance):  
V
0.7V  
BE  
R
=
=
6.8kΩ  
1
BE  
f
=
0.1mA 0.1mA  
POLE_FB  
2π ×C ×(R  
||R  
)
FB  
UPPER  
LOWER  
The output capacitor and the load resistance create the  
dominant pole in the system. However, the internal  
amplifier delay, pass transistor’s input capacitance,  
and the stray capacitance at the feedback node create  
additional poles in the system, and the output capaci-  
tor’s ESR generates a zero. For proper operation, use  
the following equations to verify the linear regulator is  
properly compensated:  
where CFB is the capacitance between FB_ and  
AGND, R is the upper resistor of the linear regu-  
UPPER  
lator’s feedback divider, and R  
tor of the divider.  
is the lower resis-  
LOWER  
MX8795A  
5) Next, calculate the zero caused by the output  
capacitor’s ESR:  
1
1) First, determine the dominant pole set by the linear  
regulator’s output capacitor and the load resistor:  
f
=
POLE_ESR  
2π ×C  
×R  
ESR  
OUT_LR  
I
LOAD(MAX)_LR  
f
=
POLE_LR  
2π ×C  
× V  
OUT_LR  
where RESR is the equivalent series resistance of  
COUT_LR.  
OUT_LR  
The unity-gain crossover of the linear regulator is:  
= A  
To ensure stability, choose C  
large enough so  
OUT_LR  
f
f  
V_LR POLE_LR  
CROSSOVER  
the crossover occurs well before the poles and zero  
calculated in steps 2 to 5. The poles in steps 3 and 4  
generally occur at several megahertz, and using  
ceramic capacitors ensures the ESR zero occurs at  
several megahertz as well. Placing the crossover below  
500kHz is sufficient to avoid the amplifier-delay pole  
and generally works well, unless unusual component  
choices or extra capacitances move one of the other  
poles or the zero below 1MHz.  
2) The pole created by the internal amplifier delay is  
approximately 1MHz:  
f
= 1MHz  
POLE_AMP  
3) Next, calculate the pole set by the transistor’s input  
capacitance, the transistor’s input resistance, and  
the base-to-emitter pullup resistor:  
1
f
=
POLE_IN  
2π ×C ×(R ||R )  
IN  
BE  
IN  
Applications Information  
where :  
Power Dissipation  
An IC’s maximum power dissipation depends on the  
thermal resistance from the die to the ambient environ-  
ment and the ambient temperature. The thermal resis-  
tance depends on the IC package, PCB copper area,  
other thermal mass, and airflow.  
g
h
m
FE  
C
=
, R  
=
IN  
IN  
2πf  
g
m
T
g
m
is the transconductance of the pass transistor, and f  
T
is the transition frequency. Both parameters can be found  
in the transistor’s data sheet. Because RBE is much  
greater than RIN, the above equation can be simplified:  
The MAX8795A, with its exposed backside paddle sol-  
dered to 1in2 of PCB copper and a large internal ground  
plane layer, can dissipate approximately 2.76W into  
+70°C still air. More PCB copper, cooler ambient air,  
and more airflow increase the possible dissipation, while  
less copper or warmer air decreases the IC’s dissipation  
capability. The major components of power dissipation  
are the power dissipated in the step-up regulator and  
the power dissipated by the operational amplifiers.  
1
f
=
POLE_IN  
2π ×C ×R  
IN  
IN  
Substituting for CIN and RIN yields:  
f
T
f
=
POLE_IN  
h
FE  
24 ______________________________________________________________________________________  
TFT-LCD DC-DC Converter with  
Operational Amplifiers  
MX8795A  
Step-Up Regulator  
• Create a power-ground island (PGND) consisting of  
the input and output capacitor grounds, PGND pin,  
and any charge-pump components. Connect all of  
these together with short, wide traces or a small  
ground plane. Maximizing the width of the power-  
ground traces improves efficiency and reduces out-  
put voltage ripple and noise spikes. Create an  
analog ground plane (AGND) consisting of the  
AGND pin, all the feedback-divider ground connec-  
tions, the operational-amplifier divider ground con-  
nections, the COMP and DEL capacitor ground  
connections, and the device’s exposed backside  
paddle. Connect the AGND and PGND islands by  
connecting the PGND pin directly to the exposed  
backside paddle. Make no other connections  
between these separate ground planes.  
The largest portions of power dissipation in the step-up  
regulator are the internal MOSFET, the inductor, and the  
output diode. If the step-up regulator has 90% efficiency,  
approximately 3% to 5% of the power is lost in the internal  
MOSFET, approximately 3% to 4% in the inductor, and  
approximately 1% in the output diode. The remaining 1%  
to 3% is distributed among the input and output capacitors  
and the PCB traces. If the input power is about 5W, the  
power lost in the internal MOSFET is approximately 150mW  
to 250mW.  
Operational Amplifier  
The power dissipated in the operational amplifiers  
depends on their output current, the output voltage,  
and the supply voltage:  
• Place all feedback voltage-divider resistors within  
5mm of their respective feedback pins. The divider’s  
center trace should be kept short. Placing the resis-  
tors far away causes their FB traces to become  
antennas that can pick up switching noise. Take  
care to avoid running any feedback trace near LX or  
the switching nodes in the charge pumps, or pro-  
vide a ground shield.  
PD  
=I  
×(V  
× V  
V  
)
SOURCE OUT_(SOURCE)  
SUP  
OUT_  
PD  
=I  
SINK OUT_(SINK) OUT_  
where I  
is the output current sourced by  
OUT_(SOURCE)  
the operational amplifier, and I  
is the output  
OUT_(SINK)  
current that the operational amplifier sinks.  
In a typical case where the supply voltage is 13V and  
the output voltage is 6V with an output source current  
of 30mA, the power dissipated is 180mW.  
• Place the IN pin and REF pin bypass capacitors as  
close as possible to the device. The ground connec-  
tion of the IN bypass capacitor should be connected  
directly to the AGND pin with a wide trace.  
PCB Layout and Grounding  
Careful PCB layout is important for proper operation.  
Use the following guidelines for good PCB layout:  
• Minimize the length and maximize the width of the  
traces between the output capacitors and the load  
for best transient responses.  
• Minimize the area of high-current loops by placing  
the inductor, the output diode, and the output  
capacitors near the input capacitors and near the  
LX and PGND pins. The high-current input loop  
goes from the positive terminal of the input capacitor  
to the inductor, to the IC’s LX pin, out of PGND, and  
to the input capacitor’s negative terminal. The high-  
current output loop is from the positive terminal of  
the input capacitor to the inductor, to the output  
diode (D1), and to the positive terminal of the output  
capacitors, reconnecting between the output capac-  
itor and input capacitor ground terminals. Connect  
these loop components with short, wide connec-  
tions. Avoid using vias in the high-current paths. If  
vias are unavoidable, use many vias in parallel to  
reduce resistance and inductance.  
• Minimize the size of the LX node while keeping it  
wide and short. Keep the LX node away from feed-  
back nodes (FB, FBP, and FBN) and analog ground.  
Use DC traces to shield if necessary.  
Refer to the MAX8795A evaluation kit for an example of  
proper PCB layout.  
Chip Information  
TRANSISTOR COUNT: 6595  
PROCESS: BiCMOS  
______________________________________________________________________________________ 25  
TFT-LCD DC-DC Converter with  
Operational Amplifiers  
Pin Configurations  
TOP VIEW  
24 23 22 21 20 19 18 17  
FBP 25  
DRVP 26  
FBN 27  
16 NEG4  
15 POS4  
14 SUP  
MX8795A  
DRVN 28  
13 OUT3  
12 POS3  
11 BGND  
10 POS2  
MAX8795A  
DEL 29  
CTL 30  
DRN 31  
COM 32  
9
NEG2  
1
2
3
4
5
6
7
8
THIN QFN  
5mm x 5mm  
TOP VIEW  
24 23 22 21 20 19 18 17  
16  
15  
FBP 25  
DRVP 26  
NEG4  
POS4  
14 SUP  
27  
28  
29  
30  
31  
32  
FBN  
DRVN  
DEL  
OUT3  
POS3  
13  
12  
MAX8795A  
11 BGND  
CTL  
10  
9
POS2  
NEG2  
DRN  
COM  
+
1
2
3
4
5
6
7
8
LQFP  
7mm x 7mm  
26 ______________________________________________________________________________________  
TFT-LCD DC-DC Converter with  
Operational Amplifiers  
MX8795A  
Package Information  
For the latest package outline information and land patterns (footprints), go to www.maxim-ic.com/packages. Note that a "+", "#", or  
"-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing per-  
tains to the package regardless of RoHS status.  
PACKAGE  
TYPE  
PACKAGE  
CODE  
OUTLINE  
NO.  
LAND PATTERN  
NO.  
32 TQFN  
32 LQFP  
T3255+3  
C32+2  
21-0140  
21-0054  
90-0025  
90-0111  
______________________________________________________________________________________ 27  
TFT-LCD DC-DC Converter with  
Operational Amplifiers  
Package Information (continued)  
For the latest package outline information and land patterns (footprints), go to www.maxim-ic.com/packages. Note that a "+", "#", or  
"-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing per-  
tains to the package regardless of RoHS status.  
MX8795A  
28 ______________________________________________________________________________________  
TFT-LCD DC-DC Converter with  
Operational Amplifiers  
MX8795A  
Package Information (continued)  
For the latest package outline information and land patterns (footprints), go to www.maxim-ic.com/packages. Note that a "+", "#", or  
"-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing per-  
tains to the package regardless of RoHS status.  
______________________________________________________________________________________ 29  
TFT-LCD DC-DC Converter with  
Operational Amplifiers  
Package Information (continued)  
For the latest package outline information and land patterns (footprints), go to www.maxim-ic.com/packages. Note that a "+", "#", or  
"-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing per-  
tains to the package regardless of RoHS status.  
MX8795A  
30 ______________________________________________________________________________________  
TFT-LCD DC-DC Converter with  
Operational Amplifiers  
MX8795A  
Revision History  
REVISION  
NUMBER  
REVISION  
DATE  
PAGES  
DESCRIPTION  
CHANGED  
0
1
2
3
4
4/07  
6/07  
12/10  
3/11  
6/11  
Initial release  
0
Added LQFP package and G temperature grade versions  
Added TQFN version  
1, 2, 6–30  
1–10, 27–30  
Added automotive-qualified part  
1
1
Corrected automotive /V temperature range  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 31  
© 2011 Maxim Integrated Products  
Maxim is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX8795A_12

TFT-LCD DC-DC Converter with Operational Amplifiers
MAXIM

MAX8796

1-Phase, Quick-PWM Intel IMVP-6/GMCH Controllers
MAXIM

MAX8796EVKIT

1-Phase, Quick-PWM Intel IMVP-6/GMCH Controllers
MAXIM

MAX8796GTJ+

PLASTIC ENCAPSULATED DEVICES
MAXIM

MAX8796GTJ+C8V

1-Phase, Quick-PWM Intel IMVP-6/GMCH Controllers
MAXIM

MAX8796GTJ+G05

1-Phase, Quick-PWM Intel IMVP-6/GMCH Controllers
MAXIM

MAX8796GTJ+G071

1-Phase, Quick-PWM Intel IMVP-6/GMCH Controllers
MAXIM

MAX8796GTJ+G1D

Switching Controller, Current-mode, 600kHz Switching Freq-Max, BICMOS, 5 X 5 MM, ROHS COMPLIANT, TQFN-32
MAXIM

MAX8796GTJ+G51

1-Phase, Quick-PWM Intel IMVP-6/GMCH Controllers
MAXIM

MAX8796GTJ+GA4

1-Phase, Quick-PWM Intel IMVP-6/GMCH Controllers
MAXIM

MAX8796GTJ+GB4

1-Phase, Quick-PWM Intel IMVP-6/GMCH Controllers
MAXIM

MAX8796GTJ+GC1

1-Phase, Quick-PWM Intel IMVP-6/GMCH Controllers
MAXIM