MAX8868EZK30 [MAXIM]

Low-Noise, Low-Dropout, 150mA Linear Regulators in SOT23;
MAX8868EZK30
型号: MAX8868EZK30
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Low-Noise, Low-Dropout, 150mA Linear Regulators in SOT23

文件: 总8页 (文件大小:116K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1302; Rev 1; 3/98  
Lo w -No is e , Lo w -Dro p o u t ,  
1 5 0 m A Lin e a r Re g u la t o rs in S OT2 3  
7/MAX68  
_______________Ge n e ra l De s c rip t io n  
____________________________Fe a t u re s  
The MAX8867/MAX8868 low-noise, low-dropout linear  
regulators operate from a 2.5V to 6.5V input and deliver  
up to 150mA. Typical output noise for these devices is  
Low Output Noise: 30µV  
RMS  
Low 55mV Dropout at 50mA Output  
(165mV at 150mA output)  
just 30µV  
, and typical dropout is only 165mV at  
RMS  
150mA. The output voltage is preset to voltages in the  
ra ng e of 2.5V to 5.0V, in 100mV inc re me nts . The  
MAX8867 and MAX8868 are pin-compatible with the  
MAX8863 and MAX8864, except for the BP pin.  
Low 85µA No-Load Supply Current  
Low 100µA Operating Supply Current  
(even in dropout)  
Designed with an internal P-channel MOSFET pass  
tra ns is tor, the MAX8867/MAX8868 ma inta in a low  
100µA supply current, independent of the load current  
and dropout voltage. Other features include a 10nA  
logic-controlled shutdown mode, short-circuit and ther-  
mal-shutdown protection, and reverse battery protec-  
tion. The MAX8868 also includes an auto-discharge  
function, which actively discharges the output voltage  
to ground when the device is placed in shutdown. Both  
devices come in a miniature 5-pin SOT23 package.  
Thermal-Overload and Short-Circuit Protection  
Reverse Battery Protection  
Output Current Limit  
Preset Output Voltages (±1.4% accuracy)  
10nA Logic-Controlled Shutdown  
______________Ord e rin g In fo rm a t io n  
________________________Ap p lic a t io n s  
PART**  
TEMP. RANGE  
0°C to +70°C  
-40°C to +85°C  
0°C to +70°C  
-40°C to +85°C  
PIN-PACKAGE  
Dice*  
Cellular Telephones  
Cordless Telephones  
PCS Telephones  
PCMCIA Cards  
Modems  
MAX8867C/Dxy  
MAX8867EUKxy-T  
MAX8868C/Dxy  
MAX8868EUKxy-T  
Hand-Held Instruments  
Palmtop Computers  
Electronic Planners  
5 SOT23-5  
Dice*  
5 SOT23-5  
*Dice are tested at T = +25°C.  
**xy is the output voltage code (see Expanded Ordering  
Information table).  
A
__________________P in Co n fig u ra t io n  
TOP VIEW  
SHDN  
GND  
IN  
1
2
3
5
4
BP  
___Ex p a n d e d Ord e rin g In fo rm a t io n  
MAX8867  
MAX8868  
PRESET  
SOT TOP MARK  
MAX8867 MAX8868  
ACAY ACBF  
OUTPUT  
VOLTAGE (xy)  
CODE  
OUTPUT  
VOLTAGE  
(V)  
OUT  
MAX886_EUK25  
MAX886_EUK28  
MAX886_EUK29  
MAX886_EUK30  
MAX886_EUK32  
MAX886_EUK33  
MAX886_EUK36  
MAX886_EUK50  
Other xy***  
2.50  
2.80  
2.84  
3.00  
3.15  
3.30  
3.60  
5.00  
x.y0  
SOT23-5  
ACAZ  
ACBA  
ACBB  
ACBC  
ACBD  
ACCZ  
ACBE  
ACBG  
ACBH  
ACBI  
ACBJ  
ACBK  
ACDA  
ACBL  
__________Typ ic a l Op e ra t in g Circ u it  
INPUT  
2.5V TO 6.5V  
OUTPUT  
PRESET  
2.5V TO 5.0V  
150mA  
IN  
OUT  
C
IN  
C
OUT  
1µF  
1µF  
MAX8867  
MAX8868  
SHDN  
OFF  
ON  
BP  
***Other xy between 2.5V and 5.0V are available in 100mV incre-  
ments. Contact factory for other versions. Minimum order  
quantity is 25,000 units.  
C
GND  
BP  
0.01µF  
________________________________________________________________ Maxim Integrated Products  
1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800.  
For small orders, phone 408-737-7600 ext. 3468.  
Lo w -No is e , Lo w -Dro p o u t ,  
1 5 0 m A Lin e a r Re g u la t o rs in S OT2 3  
ABSOLUTE MAXIMUM RATINGS  
IN to GND....................................................................-7V to +7V  
Output Short-Circuit Duration ............................................Infinite  
SHDN to GND..............................................................-7V to +7V  
SHDN to IN...............................................................-7V to +0.3V  
Operating Temperature Range ...........................-40°C to +85°C  
Junction Temperature ......................................................+150°C  
..................................................................................140°C/W  
Storage Temperature Range .............................-65°C to +160°C  
Lead Temperature (soldering, 10sec) .............................+300°C  
θ
JB  
OUT, BP to GND..........................................-0.3V to (V + 0.3V)  
IN  
Continuous Power Dissipation (T = +70°C)  
A
SOT23-5 (derate 7.1mW/°C above +70°C)...................571mW  
Stresses beyond those listed under Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V = V  
+ 0.5V, T = -40°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.) (Note 1)  
IN  
OUT(NOMINAL)  
A
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
2.5  
TYP  
MAX  
6.5  
1.4  
2
UNITS  
Input Voltage (Note 2)  
V
IN  
V
7/MAX68  
I
= 0mA, T = +25°C  
-1.4  
-3  
OUT  
A
Output Voltage Accuracy  
%
I
= 0mA to 120mA  
OUT  
Maximum Output Current  
Current Limit  
150  
160  
mA  
mA  
I
390  
85  
LIM  
No load  
180  
120  
Ground Pin Current  
I
Q
µA  
I
= 150mA  
= 1mA  
100  
1.1  
55  
OUT  
I
OUT  
I
= 50mA  
= 150mA  
Dropout Voltage (Note 2)  
mV  
OUT  
I
165  
0
OUT  
Line Regulation  
Load Regulation  
V  
V
IN  
= (V  
+ 0.1V) to 6.5V, I = 1mA  
OUT  
-0.15  
0.15  
0.04  
%/V  
LNR  
OUT  
V  
I
= 0mA to 120mA, C = 1µF  
OUT  
0.01  
30  
%/mA  
LDR  
OUT  
C
C
= 10µF  
OUT  
OUT  
f = 10Hz to 100kHz,  
Output Voltage Noise  
SHUTDOWN  
e
µV  
RMS  
n
C
= 0.01µF  
BP  
= 100µF  
20  
V
V
= 2.5V to 5.5V  
= 2.5V to 5.5V  
IN  
2.0  
IH  
IN  
V
nA  
µA  
µs  
SHDN Input Threshold  
V
IL  
V
0.4  
T
= +25°C  
0.01  
0.5  
100  
A
I
V
SHDN  
= V  
SHDN Input Bias Current  
SHDN  
IN  
T
A
= +85°C  
T
A
= +25°C  
0.01  
0.2  
1
Shutdown Supply Current  
I
V
OUT  
= 0V  
Q, SHDN  
T
A
= +85°C  
T
A
= +25°C  
30  
150  
300  
Shutdown Exit Delay  
(Note 3)  
C
C
= 0.1µF,  
BP  
= 1µF, no load  
OUT  
T
A
= -40°C to +85°C  
Shutdown Discharge  
Resistance  
MAX8868 only  
300  
2
_______________________________________________________________________________________  
Lo w -No is e , Lo w -Dro p o u t ,  
1 5 0 m A Lin e a r Re g u la t o rs in S OT2 3  
7/MAX68  
ELECTRICAL CHARACTERISTICS (continued)  
(V = V  
+ 0.5V, T = -40°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.) (Note 1)  
IN  
OUT(NOMINAL)  
A
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
THERMAL PROTECTION  
Thermal Shutdown  
Temperature  
T
155  
15  
°C  
°C  
SHDN  
Thermal Shutdown  
Hysteresis  
T  
SHDN  
Note 1: Limits are 100% production tested at T = +25°C. Limits over the operating temperature range are guaranteed through  
A
correlation using Statistical Quality Control (SQC) Methods.  
Note 2: The dropout voltage is defined as V - V  
, when V  
is 100mV below the value of V  
for V = V  
+ 0.5V.  
IN  
OUT  
OUT  
OUT  
IN  
OUT  
Note 3: Time needed for V  
to reach 95% of final value.  
OUT  
__________________________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s  
(V = V  
IN  
+ 0.5V, C = 1µF, C  
= 1µF, C = 0.01µF, T = +25°C, unless otherwise noted.)  
OUT(NOMINAL)  
IN  
OUT  
BP  
A
GROUND PIN CURRENT  
vs. LOAD CURRENT  
MAX886_EUK25  
OUTPUT VOLTAGE vs. LOAD CURRENT  
MAX886_EUK50  
OUTPUT VOLTAGE vs. LOAD CURRENT  
110  
105  
100  
95  
2.60  
2.55  
2.50  
5.2  
5.1  
5.0  
MAX886_EUK50  
MAX886_EUK25  
90  
85  
80  
75  
2.45  
2.40  
4.9  
4.8  
70  
65  
60  
0
50  
100  
150  
0
50  
100  
150  
0
50  
100  
150  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
MAX886_EUK50  
MAX886_EUK25  
GROUND PIN CURRENT vs. INPUT VOLTAGE  
OUTPUT VOLTAGE vs. INPUT VOLTAGE  
GROUND PIN CURRENT vs. INPUT VOLTAGE  
6
5
120  
100  
120  
100  
I
= 50mA  
I
= 50mA  
LOAD  
LOAD  
MAX886_EUK50  
4
3
2
1
0
80  
60  
40  
20  
0
80  
60  
40  
20  
0
NO LOAD  
NO LOAD  
MAX886_EUK25  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
0
1
2
3
4
5
6
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
_______________________________________________________________________________________  
3
Lo w -No is e , Lo w -Dro p o u t ,  
1 5 0 m A Lin e a r Re g u la t o rs in S OT2 3  
____________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(V = V  
+ 0.5V, C = 1µF, C  
= 1µF, C = 0.01µF, T = +25°C, unless otherwise noted.)  
IN  
OUT(NOMINAL)  
IN  
OUT  
BP  
A
MAX886_EUK25  
OUTPUT VOLTAGE vs. TEMPERATURE  
MAX886_EUK50  
OUTPUT VOLTAGE vs. TEMPERATURE  
GROUND PIN CURRENT vs. TEMPERATURE  
2.60  
2.55  
200  
180  
160  
140  
120  
100  
80  
5.20  
I
= 50mA  
LOAD  
I
= 50mA  
LOAD  
I
= 50mA  
LOAD  
5.10  
5.00  
4.90  
4.80  
MAX886_EUK50  
MAX886_EUK25  
2.50  
2.45  
2.40  
60  
40  
20  
0
-40 -20  
0
20  
40  
60  
80  
100  
-40 -20  
0
20  
40  
60  
80  
100  
-40 -20  
0
20  
40  
60  
80  
100  
7/MAX68  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
MAX886_EUK25  
DROPOUT VOLTAGE vs. LOAD CURRENT  
MAX886_EUK50  
DROPOUT VOLTAGE vs. LOAD CURRENT  
POWER-SUPPLY REJECTION RATIO  
vs. FREQUENCY  
70  
60  
50  
40  
30  
20  
10  
0
250  
200  
150  
100  
50  
200  
150  
T = +85°C  
A
C
= 10µF  
OUT  
T = +85°C  
A
T = +25°C  
A
C
OUT  
= 1µF  
100  
50  
0
T = +25°C  
A
T = -40°C  
A
T = -40°C  
A
I
C
= 50mA  
= 0.1µF  
LOAD  
BP  
0
0
20 40 60 80 100 120 140 160  
LOAD CURRENT (mA)  
0
20 40 60 80 100 120 140 160  
LOAD CURRENT (mA)  
0.01  
0.1  
1
10  
100  
1000  
FREQUENCY (kHz)  
OUTPUT NOISE SPECTRAL DENSITY  
vs. FREQUENCY  
OUTPUT NOISE vs. BP CAPACITANCE  
OUTPUT NOISE vs. LOAD CURRENT  
10  
1
80  
70  
60  
C
= 10µF  
= 0.01µF  
OUT  
C = 10µF  
OUT  
C
= 0.01µF  
= 10mA  
BP  
C
BP  
I = 10mA  
I
LOAD  
LOAD  
50  
40  
30  
20  
f = 10Hz TO 100kHz  
f = 10Hz TO 100kHz  
MAX886_EUK50  
MAX886_EUK30  
60  
50  
40  
30  
20  
MAX886_EUK50  
MAX886_EUK30  
C
= 1µF  
OUT  
0.1  
0.01  
MAX886_EUK25  
MAX886_EUK25  
10  
0
C
= 10µF  
OUT  
10  
0
0.1  
1
10  
FREQUENCY (kHz)  
100  
1000  
0.001  
0.01  
BP CAPACITANCE (µF)  
0.1  
1
10  
100  
LOAD CURRENT (mA)  
4
_______________________________________________________________________________________  
Lo w -No is e , Lo w -Dro p o u t ,  
1 5 0 m A Lin e a r Re g u la t o rs in S OT2 3  
7/MAX68  
____________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(V = V  
IN  
+ 0.5V, C = 1µF, C  
= 1µF, C = 0.01µF, T = +25°C, unless otherwise noted.)  
OUT BP A  
OUT(NOMINAL)  
IN  
LOAD-TRANSIENT RESPONSE  
NEAR DROPOUT  
LOAD-TRANSIENT RESPONSE  
LINE-TRANSIENT RESPONSE  
MAX8867/8-18  
MAX8867/8-19  
MAX8867/8-20  
4V  
3V  
3.01V  
3.00V  
2.99V  
3.01V  
V
IN  
3.00V  
2.99V  
V
OUT  
V
OUT  
3.001V  
2.999V  
V
OUT  
50mA  
0mA  
50mA  
0mA  
I
LOAD  
I
LOAD  
100µs/div  
= 50mA  
10µs/div  
MAX886_EUK30, V = V + 0.5V,  
10µs/div  
MAX886_EUK30, V = V + 0.1V,  
MAX886_EUK30, I  
LOAD  
IN OUT  
IN OUT  
C
= 10µF, I  
= 0mA TO 50mA  
IN  
LOAD  
C
= 10µF, I  
= 0mA TO 50mA  
IN  
LOAD  
MAX8868  
ENTERING SHUTDOWN  
MAX886_EUK50  
SHUTDOWN EXIT DELAY  
MAX886_EUK25  
SHUTDOWN EXIT DELAY  
MAX8867/8-25  
MAX8867-23  
MAX8867-21  
2V  
0V  
V
SHDN  
V
SHDN  
V
SHDN  
2V  
0V  
2V  
0V  
C
BP  
= 0.01µF  
C
BP  
= 0.01µF  
V
OUT  
4V  
V
OUT  
2V  
1V  
0V  
C
BP  
= 0.1µF  
V
OUT  
C
BP  
= 0.1µF  
2V  
0V  
0V  
500µs/div  
5µs/div  
5µs/div  
NO LOAD  
I
= 50mA  
I
= 50mA  
LOAD  
LOAD  
MAX886_EUK25  
REGION OF STABLE C  
ESR  
OUT  
10Hz TO 100kHz OUTPUT NOISE  
vs. LOAD CURRENT  
100  
10  
1
C
= 10µF  
OUT  
C
= 1µF  
OUT  
V
OUT  
50µV/div  
STABLE REGION  
0.1  
0.01  
0
20  
40 60 80 100 120 140  
LOAD CURRENT (mA)  
1ms/div  
C
OUT  
= 10µF, C = 0.1µF, I  
= 10mA  
BP  
LOAD  
_______________________________________________________________________________________  
5
Lo w -No is e , Lo w -Dro p o u t ,  
1 5 0 m A Lin e a r Re g u la t o rs in S OT2 3  
______________________________________________________________P in De s c rip t io n  
PIN  
NAME  
FUNCTION  
Active-Low Shutdown Input. A logic low reduces the supply current to 10nA. On the MAX8868, a logic low  
also causes the output voltage to discharge to GND. Connect to IN for normal operation.  
1
SHDN  
Ground. This pin also functions as a heatsink. Solder to a large pad or the circuit-board ground plane to  
maximize power dissipation.  
2
GND  
Regulator Input. Supply voltage can range from 2.5V to 6.5V. Bypass with a 1µF capacitor to GND (see  
Capacitor Selection and Regulator Stability section).  
3
4
5
IN  
OUT  
BP  
Regulator Output. Sources up to 150mA. Bypass with a 1µF (<0.2typical ESR) capacitor to GND.  
Reference-Noise Bypass. Bypass with a low-leakage, 0.01µF ceramic capacitor for reduced noise at the  
output.  
REVERSE  
BATTERY  
PROTECTION  
IN  
7/MAX68  
SHDN  
MOS DRIVER  
P
ERROR  
AMP  
WITH I  
LIMIT  
SHUTDOWN  
AND POWER-ON  
CONTROL  
MAX8867  
MAX8868  
OUT  
N
*
1.25V  
REF  
THERMAL  
SENSOR  
GND  
* AUTO-DISCHARGE, MAX8868 ONLY  
BP  
Figure 1. Functional Diagram  
The 1.25V bandgap reference is connected to the error  
amplifiers inverting input. The error amplifier compares  
this reference with the feedback voltage and amplifies  
the difference. If the feedback voltage is lower than the  
reference voltage, the pass-transistor gate is pulled  
lower, which allows more current to pass to the output  
and increases the output voltage. If the feedback volt-  
age is too high, the pass-transistor gate is pulled up,  
allowing less current to pass to the output. The output  
voltage is fed back through an internal resistor voltage  
divider connected to the OUT pin.  
_______________De t a ile d De s c rip t io n  
The MAX8867/MAX8868 are low-noise, low-dropout,  
low-quiescent-current linear regulators designed pri-  
marily for battery-powered applications. The parts are  
available with preset output voltages varying from 2.5V  
to 5.0V in 100mV increments. These devices can sup-  
ply loads up to 150mA. As illustrated in Figure 1, the  
MAX8867/MAX8868 consist of a 1.25V reference, error  
amplifier, P-channel pass transistor, and internal feed-  
back voltage divider.  
6
_______________________________________________________________________________________  
Lo w -No is e , Lo w -Dro p o u t ,  
1 5 0 m A Lin e a r Re g u la t o rs in S OT2 3  
7/MAX68  
An external bypass capacitor connected to the BP pin  
Op e ra t in g Re g io n a n d P o w e r Dis s ip a t io n  
The MAX8867/MAX8868s maximum power dissipation  
depends on the thermal resistance of the case and cir-  
cuit board, the temperature difference between the die  
junction and ambient air, and the rate of air flow. The  
reduces noise at the output. Additional blocks include a  
current limiter, reverse battery protection, thermal sen-  
sor, and shutdown logic. The MAX8868 also includes  
an auto-discharge function, which actively discharges  
the output voltage to ground when the device is placed  
in shutdown mode.  
power dissipation across the device is P = I  
(V  
OUT IN  
-
V ). The maximum power dissipation is:  
OUT  
P
= (T - T ) / (θ + θ  
)
BA  
MAX  
J
A
JB  
Ou t p u t Vo lt a g e  
The MAX8867/MAX8868 are supplied with factory-set  
output voltages from 2.5V to 5V, in 100mV increments.  
Except for the MAX886_EUK29 and the MAX886_EUK32  
(which have an output voltage preset at 2.84V and  
3.15V, respectively), the two-digit suffix allows the cus-  
tomer to choose the output voltage in 100mV increments.  
For example, the MAX8867EUK33 has a preset output  
voltage of 3.3V. (see Expanded Ordering Information).  
where T - T is the temperature difference between the  
J
A
MAX8867/MAX8868 die junction and the surrounding  
air, θ (or θ ) is the thermal resistance of the pack-  
JB  
JC  
age, and θ  
is the thermal resistance through the  
BA  
printed circuit board, copper traces, and other materi-  
als to the surrounding air.  
The GND pin of the MAX8867/MAX8868 performs the  
dual function of providing an electrical connection to  
ground and channeling heat away. Connect the GND  
pin to ground using a large pad or ground plane.  
In t e rn a l P -Ch a n n e l P a s s Tra n s is t o r  
The MAX8867/MAX8868 feature a 1.1typical P-chan-  
ne l MOSFET p a s s tra ns is tor. This p rovid e s s e ve ra l  
advantages over similar designs using PNP pass tran-  
sistors, including longer battery life. The P-channel  
MOSFET requires no base drive, which reduces quies-  
cent current considerably. PNP-based regulators waste  
considerable current in dropout when the pass transis-  
tor saturates. They also use high base-drive currents  
under large loads. The MAX8867/MAX8868 do not suf-  
fer from these problems and consume only 100µA of  
quiescent current whether in dropout, light-load, or  
heavy-load applications (see the Typical Operating  
Characteristics).  
Re ve rs e Ba t t e ry P ro t e c t io n  
The MAX8867/MAX8868 ha ve a uniq ue p rote c tion  
scheme that limits the reverse supply current to 1mA  
when either V or V  
falls below ground. Their cir-  
IN  
SHDN  
cuitry monitors the polarity of these two pins and dis-  
connects the internal circuitry and parasitic diodes  
when the battery is reversed. This feature prevents  
device damage.  
No is e Re d u c t io n  
An external 0.01µF bypass capacitor at BP, in conjunction  
with an internal 200kresistor, creates a 80Hz lowpass  
filter for noise reduction. The MAX8867/MAX8868 exhibit  
Cu rre n t Lim it  
The MAX8867/MAX8868 include a current limiter, which  
monitors and controls the pass transistors gate voltage,  
limiting the output current to 390mA. For design purposes,  
consider the current limit to be 160mA minimum to 500mA  
maximum. The output can be shorted to ground for an  
indefinite amount of time without damaging the part.  
30µV  
a nd C  
of output voltage noise with C  
= 0.01µF  
RMS  
BP  
= 10µF. Start-up time is minimized by a  
OUT  
power-on circuit that pre-charges the bypass capacitor.  
The Typical Operating Characteristics show graphs of  
Noise vs. BP Capacitance, Noise vs. Load Current, and  
Output Noise Spectral Density.  
__________Ap p lic a t io n s In fo rm a t io n  
Th e rm a l-Ove rlo a d P ro t e c t io n  
Thermal-overload protection limits total power dissipa-  
tion in the MAX8867/MAX8868. When the junction tem-  
Ca p a c it o r S e le c t io n a n d  
Re g u la t o r S t a b ilit y  
perature exceeds T = +170°C, the thermal sensor  
Norma lly, us e a 1µF c a p a c itor on the MAX8867/  
MAX8868s input and a 1µF to 10µF capacitor on the  
output. Larger input capacitor values and lower ESRs  
provide better supply-noise rejection and line-transient  
response. Reduce noise and improve load-transient  
re s p ons e , s ta b ility, a nd p owe r-s up p ly re je c tion b y  
using large output capacitors. For stable operation over  
the full temperature range and with load currents up to  
150mA, a minimum of 1µF is recommended. Note that  
some ceramic dielectrics exhibit large capacitance and  
J
signals the shutdown logic, turning off the pass transis-  
tor and allowing the IC to cool. The thermal sensor will  
turn the pass transistor on again after the ICs junction  
temperature cools by 20°C, resulting in a pulsed output  
during continuous thermal-overload conditions.  
Thermal-overload protection is designed to protect the  
MAX8867/MAX8868 in the event of fault conditions. For  
continual operation, do not exceed the absolute maxi-  
mum junction-temperature rating of T = +150°C.  
J
_______________________________________________________________________________________  
7
Lo w -No is e , Lo w -Dro p o u t ,  
1 5 0 m A Lin e a r Re g u la t o rs in S OT2 3  
ESR variation with temperature. With dielectrics such as  
Z5U and Y5V, it may be necessary to use 2.2µF or  
more to ensure stability at temperatures below -10°C.  
With X7R or X5R dielectrics, 1µF should be sufficient at  
all operating temperatures. Also, for high-ESR tantalum  
capacitors, 2.2µF or more may be needed to maintain  
ESR in the stable region. A graph of the Region of  
Whe n op e ra ting from s ourc e s othe r tha n b a tte rie s ,  
improved supply-noise rejection and transient response  
can be achieved by increasing the values of the input  
and output bypass capacitors, and through passive filter-  
ing techniques. The Typical Operating Characteristics  
show the MAX8867/MAX8868s line- and load-transient  
responses.  
Stable C  
Typical Operating Characteristics.  
ESR vs. Load Current is shown in the  
OUT  
Lo a d -Tra n s ie n t Co n s id e ra t io n s  
The MAX8867/MAX8868 loa d -tra ns ie nt re s p ons e  
graphs (see Typical Operating Characteristics) show  
two components of the output response: a DC shift  
from the output impedance due to the load current  
change, and the transient response. A typical transient  
for a step change in the load current from 0mA to 50mA  
is 12mV. Increasing the output capacitors value and  
decreasing the ESR attenuates the overshoot.  
Use a 0.01µF bypass capacitor at BP for low output volt-  
a g e nois e . Inc re a s ing the c a p a c ita nc e will s lig htly  
decrease the output noise, but increase the start-up time.  
Values above 0.1µF provide no performance advantage  
and are not recommended (see Shutdown Exit Delay  
graph in the Typical Operating Characteristics).  
P S RR a n d Op e ra t io n fro m  
S o u rc e s Ot h e r t h a n Ba t t e rie s  
In p u t -Ou t p u t (Dro p o u t ) Vo lt a g e  
A regulators minimum input-output voltage differential  
(or dropout voltage) determines the lowest usable sup-  
ply voltage. In battery-powered systems, this will deter-  
mine the useful end-of-life battery voltage. Because the  
MAX8867/MAX8868 use a P-channel MOSFET pass  
transistor, their dropout voltage is a function of drain-to-  
The MAX8867/MAX8868 are designed to deliver low  
dropout voltages and low quiescent currents in battery-  
powered systems. Power-supply rejection is 63dB at  
low frequencies and rolls off above 10kHz. See the  
Power-Supply Rejection Ratio Frequency graph in the  
Typical Operating Characteristics.  
7/MAX68  
source on-resistance (R  
) multiplied by the load  
DS(ON)  
current (see Typical Operating Characteristics).  
___________________Ch ip In fo rm a t io n  
TRANSISTOR COUNT: 247  
SUBSTRATE CONNECTED TO GND  
________________________________________________________P a c k a g e In fo rm a t io n  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
8 _____________________Ma x im In t e g ra t e d P ro d u c t s , 1 2 0 S a n Ga b rie l Drive , S u n n yva le , CA 9 4 0 8 6 4 0 8 -7 3 7 -7 6 0 0  
© 1998 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY