MAX8930 [MAXIM]

WLED Charge Pump, RGB, OLED Boost, LDOs with ALC and CAI; WLED电荷泵, RGB , OLED升压, LDO,具有ALC和CAI
MAX8930
型号: MAX8930
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

WLED Charge Pump, RGB, OLED Boost, LDOs with ALC and CAI
WLED电荷泵, RGB , OLED升压, LDO,具有ALC和CAI

文件: 总52页 (文件大小:4660K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-4921; Rev 0; 3/10  
WLED Charge Pump, RGB, OLED Boost,  
LDOs with ALC and CAI  
General Description  
Features  
Sꢀ White_LED_Charge_Pump  
The MAX8930 integrates a charge pump for white LED  
display backlighting with ambient light control (ALC)  
feature. The high-efficiency, adaptive-mode 1x/-0.5x  
charge pump drives up to 11 LEDs (8 WLEDs + RGB  
LED) with constant current for uniform brightness. The  
LED current is adjustable from 0.1mA to 25.6mA in 256  
Sꢀ Adaptive_1x_or_-0.5x_Negative_Modes  
Sꢀ 11_Low-Dropout_LED_Current_Sinks_with_25.6mA_  
to_0.1mA_in_256_Dimming_Steps  
Sꢀ Ramp-Up/Down_Control_for_Main_White_LED  
Sꢀ Ramp-Up/Down_Control_for_RGB_LED  
2
linear steps through I C. High accuracy and LED-to-LED  
Sꢀ Individual_Brightness_Control_for_Each_White,_  
current matching are maintained throughout the adjust-  
ment range. The MAX8930 includes soft-start, thermal  
shutdown, open-circuit, and short-circuit protection.  
RGB_LED  
Sꢀ Low_240µA_(typ)_Quiescent_Current  
Three 200mA LDOs are provided with programmable  
output voltages to provide power to external circuitry.  
These three LDOs can also be configured for a GPO  
function through the I C. A step-up converter is also  
available on the MAX8930 for biasing a PMOLED sub-  
panel.  
Sꢀ Ambient_Light_Control_(ALC)_for_Any_Type_of_Light_  
Sensor  
Sꢀ Content_Adaptive_Interface  
2
2
Sꢀ I C-Compatible_Control_Interface  
Sꢀ Three_Programmable_LDOs_Up_to_200mA  
Sꢀ Step-Up_DC-DC_Converter_with_Programmable_  
The MAX8930 is available in the 49-bump, 3.17mm x  
3.17mm WLP package.  
Output_for_PMOLED_Application  
Sꢀ Low_0.1µA_Shutdown_Current  
Sꢀ 2.7V_to_5.5V_Supply_Voltage_Range  
Sꢀ Thermal_Shutdown  
Simplified Application Circuit  
INPUT  
Sꢀ Open_and_Short-Circuit_Protection  
WLED1  
WLED2  
INPUT 2.7V TO 5.5V  
PV1  
PV2  
PV3  
PV5  
PV4  
BIAS  
Applications  
Cell Phones and Smartphones  
WLED3  
WLED4  
WLED5  
WLED6  
WLED7  
WLED8  
PDAs, Digital Cameras, Camcorders, and Other  
Portable Equipment  
INPUT 1.7V TO 5.5V  
INPUT  
Ordering Information  
LIGHT  
SENSOR  
SENSE  
PART  
TEMP_RANGE  
PIN-PACKAGE  
RLED  
GLED  
BLED  
MAX8930  
49 WLP  
0.4mm pitch  
MAX8930EWJ+  
-40NC to +85NC  
KEY  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
CHG  
LDO1  
LDO2  
2.3V TO 3.1V, 200mA  
2.3V TO 3.1V, 200mA  
1.2V, 1.5V, 1.8V, 2.5V, 200mA  
13V TO 16.5V  
SCL  
SDA  
LDO3  
OUT  
EN  
Typical Operating Circuit appears at end of data sheet.  
µP  
CAI  
PLAYR  
PLAYG  
PLAYB  
REFBP  
V
DD  
FILT  
_ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ _Maxim Integrated Products_ _ 1  
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,  
or visit Maxim’s website at www.maxim-ic.com.  
WLED Charge Pump, RGB, OLED Boost,  
LDOs with ALC and CAI  
ABSOLUTE_MAXIMUM_RATINGS  
PV_, V  
EN, CAI, PLAY_, BIAS,  
LX, OUT to PGND3 ...............................................-0.3V to +22V  
KEY to AGND ...........................................-0.3V to (V + 0.3V)  
DD,  
SENSE, REFBP, ECAGND to AGND.................-0.3V to +6.0V  
PV3  
PV_, V , PGND_, AGND to NEG.......................-0.3V to +6.0V  
Continuous Power Dissipation (T = +70NC)  
DD  
A
ECAGND, PGND_ to AGND.................................-0.3V to +0.3V  
WLED_, RGB_, C1N, C2N,  
49-Pin WLP 3.17mm x 3.17mm  
(derate 20mW/NC above +70NC)................................1600mW  
Operating Temperature Range.......................... -40NC to +85NC  
Junction Temperature .....................................................+150NC  
Storage Temperature Range............................ -65NC to +150NC  
Soldering Temperature (reflow) ......................................+260NC  
C1P, C2P to NEG.........-0.3V to (V  
+ V  
+ V  
+ 0.3V)  
+ 0.3V)  
+ 0.3V)  
+ 0.3V)  
+ 0.3V)  
PV1  
PV2  
PV3  
FILT to AGND.......................................... -0.3V to (V  
PV3  
SCL, SDA to AGND.................................. -0.3V to (V  
DD  
LDO_ to AGND............................ -0.3V to (V  
SW to PGND3.......................................... -0.3V to (V  
V
PV5  
PV3 + PV4  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL_CHARACTERISTICS  
(V  
PV_  
= V  
= V  
= 3.7V, V  
and V  
= 0V, T = -40°C to +85°C, unless otherwise noted. Typical values are at  
AGND A  
EN  
DD  
PGND_  
T
= +25°C.) (Note 1)  
A
PARAMETER  
CONDITIONS  
MIN  
2.7  
TYP  
MAX  
5.5  
UNITS  
PV1, PV2, PV3, PV5 Operating  
Voltage  
V
Undervoltage Lockout Threshold  
UVLO Hysteresis  
V
V
V
V
V
rising  
2
2.25  
2.45  
100  
2.65  
V
mV  
V
PV1, PV2, PV3, PV5  
PV4 Operating Voltage  
1.7  
1.7  
5.5  
5.5  
1
is supply voltage for I C input block only; all other  
DD  
V
Operating Range  
V
DD  
logic is supplied from PV_  
T
A
T
A
T
A
T
A
= +25NC  
= +85NC  
= +25NC  
= +85NC  
0.1  
0.1  
2
PV_ Shutdown Supply Current 1  
EN = AGND, V = 0V  
FA  
FA  
DD  
2
(All Outputs Off, I C Disabled)  
10  
PV_ Shutdown Supply Current 2  
V
V
= V  
, EN = AGND  
DD  
PV3  
2
(All Outputs Off, I C Enabled)  
2
V
DD  
Shutdown Threshold  
falling, hysteresis = 50mV  
1.15  
1.4  
240  
1.65  
400  
V
DD  
1x mode, no load, ALC off, step-up off, I  
= 0mA  
FA  
LDO_  
-0.5x mode, 4MHz switching, each I  
= 0.1mA,  
LED_  
Supply Current  
ALC off, I  
(Note 2)  
= 0mA, step-up I = 0mA at V  
= 2.7V  
PV3  
6.8  
mA  
LDO  
o
Reference Bypass (REFBP)  
Output Voltage  
0FA P I  
P 1FA  
1.164  
1.200  
1.236  
5
V
REFBP  
REFBP Supply Rejection  
Thermal Shutdown  
2.5V P V  
P 5.5V  
0.2  
+160  
20  
mV  
NC  
NC  
PV3  
Thermal Shutdown Hysteresis  
2_ _ _ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ  
WLED Charge Pump, RGB, OLED Boost,  
LDOs with ALC and CAI  
2
I C_INTERFACE_CHARACTERISTICS  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
0.7 x  
SDA, SCL Input High Voltage  
SDA, SCL Input Low Voltage  
SDA, SCL Input Current  
V
V
= 1.7V to 5.5V  
= 1.7V to 5.5V  
V
DD  
V
DD  
0.3 x  
V
DD  
V
DD  
T
T
= +25NC  
= +85NC  
0.01  
0.1  
1
V
V
= 0V or V = 5.5V,  
A
IL  
IH  
FA  
= 5.5V  
DD  
A
SDA Output Low Voltage  
Clock Frequency  
I
= 3mA, for acknowledge (Note 3)  
0.03  
0.4  
V
SDA  
(Note 3)  
100  
1.3  
400  
kHz  
Bus-Free Time Between START  
and STOP  
t
t
(Note 3)  
Fs  
Fs  
BUF  
Hold Time Repeated START  
Condition  
(Note 3)  
0.6  
0.1  
HD,STA  
SCL Low Period  
SCL High Period  
t
t
(Note 3)  
1.3  
0.6  
0.2  
0.2  
Fs  
Fs  
LOW  
(Note 3)  
HIGH  
Setup Time Repeated START  
Condition  
t
(Note 3)  
0.6  
0.1  
Fs  
SU,STA  
SDA Hold Time  
t
t
t
(Note 3)  
(Note 3)  
(Note 3)  
0
0.01  
50  
Fs  
ns  
Fs  
HD,DAT  
SU,DAT  
SU,STO  
SDA Setup Time  
100  
0.6  
Setup Time for STOP Condition  
0.1  
CHARGE_PUMP_CHARACTERISTICS  
PARAMETER  
Switching Frequency  
Pump Soft-Start Time  
Charge-Pump Regulation  
CONDITIONS  
MIN  
4.3  
TYP  
4
MAX  
UNITS  
MHz  
ms  
0.5  
V , V  
PV1 PV2  
- V  
5
V
NEG  
Voltage (and OVP)  
Open-Loop NEG Output  
Resistance  
(0.5 x (V  
V
) - V  
)/I  
1.3  
2.49  
I
PV1 or PV2  
NEG NEG  
Guaranteed Output Current  
LED V  
= 3.9V, V  
= V = 3.2V  
PV2  
281  
mA  
kI  
FMAX  
PV1  
NEG Discharge Resistance in  
Shutdown  
All LEDs off  
10  
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ_ _ 3  
WLED Charge Pump, RGB, OLED Boost,  
LDOs with ALC and CAI  
CURRENT_SINK_DRIVER_CHARACTERISTICS  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
2
Current Setting Range  
WLED1–WLED8, RGB programmable by I C  
0.1  
25.6  
mA  
0
(default)  
0.016  
0.064  
0.128  
0.256  
0.512  
1.024  
2.048  
Main WLED_ and RGB ramp-up/ramp-down in 0.1mA  
increments; 8 steps are programmable through I C;  
ramp-up and ramp-down times are set separately  
ms/  
0.1mA  
WLED_, RGB Ramp-Up/Ramp-  
Down Time  
2
25.6mA setting, T = +25NC  
-2.5  
-50  
+2.5  
+50  
10  
A
WLED_, RGB Current Accuracy  
WLED_, RGB Current Matching  
%
%
I
0.1mA setting, T = +25NC  
Q10  
5
A
WLED1–WLED8, RGB (Note 4)  
1x mode  
2.68  
4.12  
62  
WLED_, RGB R  
DSON  
-0.5x mode  
T
T
= 0NC to +85NC  
= -40NC  
120  
150  
200  
A
1x mode  
WLED_, RGB Current Regulator 25.6mA setting  
62  
mV  
mV  
A
Dropout Voltage  
(Note 5)  
-0.5x mode  
95  
WLED_, RGB Current Regulator  
Switchover Threshold  
(1x to -0.5x)  
V
LED  
falling  
125  
150  
175  
WLED_, RGB Current Regulator  
Switchover Hysteresis  
100  
mV  
T
T
= +25NC  
= +85NC  
0.01  
0.1  
5
WLED_, RGB Leakage in  
Shutdown  
A
All LEDs off  
FA  
A
LDO1_CHARACTERISTICS  
PARAMETER  
CONDITIONS  
= 3.6V  
PV3  
MIN  
TYP  
MAX  
UNITS  
Output Voltage V  
(Default)  
200mA at V  
2.522  
2.231  
2.425  
2.522  
2.619  
2.716  
2.813  
2.910  
3.007  
200  
2.6  
2.3  
2.5  
2.6  
2.7  
2.8  
2.9  
3.0  
3.1  
2.678  
2.369  
2.575  
2.678  
2.781  
2.884  
2.987  
3.090  
3.193  
V
LDO1  
Programmable Output Voltage  
I
= 50mA  
V
LDO1  
Output Current  
Current Limit  
mA  
mA  
mV  
mV  
mV  
V
= 90% of nominal regulation voltage (Note 3)  
LDO1  
= 200mA, T = +25NC  
LDO1 A  
250  
475  
120  
2.4  
25  
750  
300  
Dropout Voltage  
Line Regulation  
Load Regulation  
I
3.4V P V  
P 5.5V, I  
= 150mA  
PV3_  
LDO1  
1mA < I  
< 200mA  
LDO1  
4_ _ _ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ  
WLED Charge Pump, RGB, OLED Boost,  
LDOs with ALC and CAI  
LDO1_CHARACTERISTICS_(continued)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Power-Supply Rejection  
f = 10Hz to 10kHz, I  
= 10mA, C = 1FF  
LDO1  
60  
dB  
LDO1  
DV  
/DV  
LDO1 PV3  
Output Noise Voltage (RMS)  
Minimum Output Capacitor  
Startup Time from Shutdown  
Startup Transient Overshoot  
Shutdown Output Impedance  
f = 100Hz to 100kHz, I  
= 10mA, C  
= 1FF  
45  
1
FV  
RMS  
LDO1  
LDO1  
I
I
I
< 200mA  
FF  
Fs  
LDO1  
LDO1  
LDO1  
= 150mA (Note 3)  
= 150mA (Note 3)  
40  
3
100  
50  
mV  
kI  
2
LDO1 disabled through I C (default on)  
1
LDO2_CHARACTERISTICS  
PARAMETER  
CONDITIONS  
= 3.6V  
PV3  
MIN  
TYP  
MAX  
UNITS  
Output Voltage V  
(Default)  
200mA at V  
2.813  
2.231  
2.425  
2.522  
2.619  
2.716  
2.813  
2.910  
3.007  
200  
2.9  
2.3  
2.5  
2.6  
2.7  
2.8  
2.9  
3.0  
3.1  
2.987  
2.369  
2.575  
2.678  
2.781  
2.884  
2.987  
3.090  
3.193  
V
LDO2  
Programmable Output Voltage  
I
= 50mA  
V
LDO2  
Output Current  
mA  
mA  
mV  
mV  
mV  
Current Limit  
V
= 90% of nominal regulation voltage (Note 4)  
LDO2  
= 200mA, T = +25NC  
LDO2 A  
250  
475  
120  
2.4  
25  
750  
300  
Dropout Voltage  
Line Regulation  
Load Regulation  
Power-Supply Rejection  
I
3.4V P V  
P 5.5V, I  
= 150mA  
PV3_  
LDO2  
1mA < I  
< 200mA  
LDO2  
f = 10Hz to 10kHz, I  
= 10mA, C  
= 1FF  
60  
dB  
LDO2  
LDO2  
DV  
/DV  
PV3  
LDO2  
Output Noise Voltage (RMS)  
Minimum Output Capacitor  
Startup Time from Shutdown  
Startup Transient Overshoot  
Shutdown Output Impedance  
f = 100Hz to 100kHz, I  
= 10mA, C  
= 1FF  
45  
1
FV  
RMS  
LDO2  
LDO2  
I
I
I
< 200mA  
FF  
Fs  
LDO2  
LDO2  
LDO2  
= 150mA (Note 3)  
= 150mA (Note 3)  
40  
3
100  
50  
mV  
kI  
2
LDO2 disabled through I C (default on)  
1
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ_ _ 5  
WLED Charge Pump, RGB, OLED Boost,  
LDOs with ALC and CAI  
LDO3_CHARACTERISTICS  
PARAMETER  
CONDITIONS  
= 2.4V  
PV4  
MIN  
1.7  
TYP  
MAX  
5.5  
UNITS  
Input Operating Range  
V
V
V
PV4  
Output Voltage V  
200mA at V  
1.764  
1.164  
1.455  
1.764  
2.425  
1.80  
1.2  
1.854  
1.236  
1.545  
1.854  
2.575  
200  
LDO3  
V
V
= 1.8V, I  
= 50mA  
= 50mA  
PV4  
PV4  
LDO3  
1.5  
Programmable Output Voltage  
V
1.80  
2.5  
= 3.7V, I  
LDO3  
Output Current  
mA  
mA  
mV  
mV  
mV  
Current Limit  
V
= 90% of nominal regulation voltage (Note 4)  
250  
475  
120  
2.4  
25  
750  
LDO3  
Dropout Voltage  
Line Regulation  
Load Regulation  
Power-Supply Rejection  
I
= 200mA, T = +25NC  
300  
LDO3  
A
2.4V P V  
P 5.5V, I  
= 150mA  
PV4  
LDO3  
1mA < I  
< 200mA  
LDO3  
f = 10Hz to 10kHz, I  
= 10mA, C  
= 2.2FF  
60  
75  
dB  
LDO3  
LDO3  
DV  
/DV  
PV4  
LDO3  
Output Noise Voltage (RMS)  
Minimum Output Capacitor  
Startup Time from Shutdown  
Startup Transient Overshoot  
Shutdown Output Impedance  
f = 100Hz to 100kHz, I  
= 10mA, C  
= 2.2FF  
FV  
RMS  
LDO3  
LDO3  
0FA < I  
< 200mA (Note 3)  
2.2  
FF  
Fs  
LDO3  
I
I
= 150mA (Note 3)  
= 150mA (Note 3)  
100  
3
250  
50  
LDO3  
LDO3  
mV  
kI  
2
LDO3 disabled through I C (default on)  
1
STEP-UP_CONVERTER_CHARACTERISTICS  
PARAMETER  
Input Operating Range  
Line Regulation  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
V
V
V
2.7  
5.5  
PV5  
= 14V, I  
= 14V, I  
= 5mA, V = 2.7V to 5.5V  
0.1  
0.1  
%/V  
%/mA  
V
OUT  
OUT  
OUT  
PV5  
Load Regulation  
= 0mA to 5mA, V  
= 3.7V  
OUT  
PV5  
LX Voltage Range  
20  
289  
2
LX Switch Current Limit  
192  
241  
0.01  
0.1  
1.5  
4.0  
0.3  
0.01  
0.1  
0.2  
0.9  
11  
mA  
T
T
= +25NC  
= +85NC  
V
= 20V, step-up  
A
A
LX  
LX Leakage Current  
FA  
converter disabled  
I
I
A
Isolation pMOS R  
pMOS Rectifier R  
V
= 2.7V, I  
= 100mA  
2.4  
DS(ON)  
PV5  
SW  
LX to OUT, V  
= 3.7V, I = 100mA  
LX  
DS(ON)  
PV5  
Isolation pMOS Current Limit  
Isolation pMOS Leakage Current  
SW Soft-Start Time  
V
= 3.7V, V  
= 0V  
0.15  
0.6  
1
PV5  
SW  
T
T
= +25NC  
= +85NC  
SW = PGND3,  
A
A
FA  
V
V
V
= 5.5V  
PV5  
PV5  
PV5  
= 2.7V  
ms  
I
nMOS R  
= 3.7V, I = 100mA  
LX  
1.5  
14  
DS(ON)  
Maximum LX On-Time  
Minimum LX Off-Time  
OVP Threshold  
8
Fs  
Fs  
V
V
> 12V  
1.6  
2
2.4  
19.4  
OUT  
No feedback, V  
rising  
17.6  
18.5  
1
OUT  
OVP Threshold Hysteresis  
V
6_ _ _ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ  
WLED Charge Pump, RGB, OLED Boost,  
LDOs with ALC and CAI  
STEP-UP_CONVERTER_CHARACTERISTICS_(continued)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Current Limit Propagation Delay  
(LX)  
55  
ns  
T
T
= 0NC to +85NC  
= -40NC  
-2  
+2  
A
A
Output Voltage Accuracy  
V
V
= 3.7V, I  
= 0mA  
= 0mA  
%
V
PV5  
PV5  
OUT  
OUT  
-2.5  
+2.5  
13.0  
13.5  
14.0  
14.5  
15.0  
15.5  
16.0  
16.5  
Programmable Output Voltage  
= 3.7V, I  
AMBIENT_LIGHT_SENSOR_INTERFACE  
PARAMETER  
BIAS Output Voltage  
BIAS Output Current  
BIAS Dropout Voltage  
CONDITIONS  
MIN  
TYP  
MAX  
3.15  
30  
UNITS  
V
I
= 200FA, V  
= 3.2V to 5.5V  
2.85  
3.0  
BAIS  
PV3  
V
= 3.0V Q5%  
mA  
mV  
BIAS  
BIAS  
I
= 10mA (Note 3)  
125  
250  
V
x
BIAS  
SENSE Input Voltage Range  
0
V
255/256  
BIAS Discharge Resistance in  
Shutdown  
1.0  
8
1.5  
kI  
ADC Resolution  
Bit  
ADC Integral Nonlinearity Error  
-3  
-1  
1
+3  
+1  
LSB  
ADC Differential Nonlinearity  
Error  
LSB  
SENSE Input Impedance  
T
= +25NC (Note 3)  
MI  
A
Bit 0 = 0 in 02h register  
Bit = 1 in 02h register  
32  
ms  
Waiting Time for ADC Movement  
After ALCEN = 1  
V
BIAS  
= 3V  
64  
(default)  
ms  
KEY_CHARACTERISTICS  
PARAMETER  
CONDITIONS  
MIN  
1.8  
TYP  
MAX  
UNITS  
Low-Level Output Voltage  
High-Level Output Voltage  
I
I
= 1mA  
0.4  
V
V
SINK  
= 1mA  
SOURCE  
T
= +25NC  
0.01  
0.1  
1
1
At complementary output,  
= 3.7V (Note 6)  
A
A
A
A
nMOS Output Leakage Current  
pMOS Output Leakage Current  
FA  
FA  
V
PV3  
T
T
T
= +85NC  
= +25NC  
= +85NC  
0.01  
0.1  
At complementary output,  
= 3.7V (Note 6)  
V
PV3  
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ_ _ 7  
WLED Charge Pump, RGB, OLED Boost,  
LDOs with ALC and CAI  
CAI_CHARACTERISTICS  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
PWM Low-Level Input Voltage  
PWM High-Level Input Voltage  
PWM Dimming Frequency  
Current Dimming Range  
0.4  
1.4  
0.1  
0
V
C
FILT  
= 0.1FF (Note 3)  
0.2  
15  
kHz  
mA  
Duty cycle = 0% to 100% (Note 3)  
25.6  
PWM Dimming Resolution  
1% P duty cycle P 100% (Note 3)  
0.256  
10  
mA/%  
Time from CAI enable until dimming control switches to  
CAI input (Note 4)  
CAI Enable Blanking Time (t )  
B
ms  
T
T
= +25NC  
= +85NC  
0.1  
1
1
A
Input Leakage Current  
CAI = GND or V  
= 3.7V  
FA  
CAI  
A
GPO_(OPEN-DRAIN_OUTPUT)_CHARACTERISTICS  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Low-Level Output Voltage  
I
= 1mA  
0.2  
V
SINK  
T
T
= +25NC  
= +85NC  
0.1  
1
A
A
Output Leakage Current  
V
= 2.6V  
FA  
LDO__  
EN_CHARACTERISTICS  
PARAMETER  
Low-Level Input Voltage  
High-Level Input Voltage  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
0.4  
V
V
1.4  
T
T
= +25NC  
= +85NC  
0.1  
1
1
A
A
Input Leakage Current  
V
EN  
= 0V or 3.7V  
FA  
PLAYR/PLAYG/PLAYB_CHARACTERISTICS  
PARAMETER  
Low-Level Input Voltage  
High-Level Input Voltage  
ON/OFF PWM Frequency  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
0.4  
V
V
1.4  
2
(Note 3)  
200  
Hz  
PLAY_ active high  
(Bit 1 = low in Register 20h) (Note 3)  
PLAY_ Minimum High Time  
80  
80  
Fs  
PLAY_ active low  
(Bit 1= high in Register 20h) (Note 3)  
PLAY_ Minimum Low Time  
Pulldown Resistor to AGND  
Fs  
800  
kI  
8_ _ _ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ  
WLED Charge Pump, RGB, OLED Boost,  
LDOs with ALC and CAI  
CHG_PIN_CHARACTERISTICS  
PARAMETER  
Low-Level Voltage  
CONDITIONS  
MIN  
TYP  
0.05  
0.1  
1
MAX  
0.2  
1
UNITS  
V
I
= 5mA  
= 3.7V  
CHG  
T
T
= +25NC  
= +85NC  
A
A
Leakage Current  
FA  
V
CHG  
Note_1:_ Limits are 100% production tested at T = +25NC. Limits over the operating temperature range are guaranteed by design.  
A
Note_2:_ 0.1mA LED load current is not included.  
Note_3:_ Guaranteed by design. Not production tested.  
Note_4:_ LED current matching is defined as: (I  
- I  
)/25.6mA. Matching is for LEDs within the RGB group (RLED, GLED,  
MAX MAX  
BLED) or the white LED group (WLED1–WLED8).  
Note_5:_ Dropout voltage is defined as the LED_ to AGND voltage at which current into LED_ drops 10% from the value at V  
=
LED_  
0.5V at 1x mode.  
Note_6:_ V  
= 0V when pulling low, leakage current from PV3. V  
= 3.7V when pulling high, leakage current is to GND.  
KEY  
KEY  
Typical Operating Characteristics  
(V  
PV_  
= V = 3.7V, circuit of Figure 1, T = +25°C, unless otherwise noted.)  
EN A  
WLED EFFICIENCY vs. INPUT VOTLAGE,  
6 MATCHED WLEDS  
WLED EFFICIENCY vs. INPUT VOTLAGE,  
6 MISMATCHED WLEDS  
EFFICIENCY vs. Li+ BATTERY VOLTAGE  
DRIVING 6 MATCHED LEDs  
100  
100  
90  
80  
70  
60  
50  
40  
100  
90  
80  
70  
60  
50  
40  
I
= 1.6mA, 6.4mA, 16mA, 20.8mA  
I
= 1.6mA, 6.4mA, 16mA, 20.8mA  
LED_  
LED_  
16mA/LED  
90  
80  
70  
60  
50  
40  
20.8mA/LED  
1.6mA/LED  
6.4mA/LED  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
4.2 3.9  
3.8  
3.7  
3.6  
3.5 3.4 3.0  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
Li+ BATTERY VOLTAGE (V, TIME-WEIGHTED)  
EFFICIENCY vs. Li+ BATTERY VOLTAGE  
DRIVING 6 MISMATCHED LEDs  
WLED CURRENT MATCHING  
vs. INPUT VOTLAGE  
WLED—CHARGE PUMP INACTIVE  
MAX8930 toc06  
0.0265  
0.0264  
0.0263  
0.0262  
0.0261  
0.0260  
0.0259  
0.0258  
0.0257  
0.0256  
0.0255  
0.0254  
100  
90  
80  
70  
60  
50  
40  
V
= 3.8V, I  
= 25.6mA  
LED_  
PV_  
I
= 25.6mA  
LED_  
1.6mA/LED  
6.4mA/LED  
V
C1P  
0V  
0V  
V
C1N  
V
V
0V  
0V  
0V  
C2P  
20.8mA/LED  
16mA/LED  
C2N  
NEG  
V
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
4.2 3.9  
3.8  
3.7  
3.6  
3.5 3.4 3.0  
100ns/div  
INPUT VOLTAGE (V)  
Li+ BATTERY VOLTAGE (V, TIME-WEIGHTED)  
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ_ _ 9  
WLED Charge Pump, RGB, OLED Boost,  
LDOs with ALC and CAI  
Typical Operating Characteristics (continued)  
(V  
PV_  
= V = 3.7V, circuit of Figure 1, T = +25°C, unless otherwise noted.)  
EN  
A
WLED—DIMMING CURRENT TRANSIENT  
WITH SLOPE CONTROL  
WLED—CHARGE PUMP ACTIVE  
MAX8930 toc07  
MAX8930 toc08  
V
C1P  
20mA  
2V/div  
0V  
I
I
LED1  
0V  
2V/div  
V
C1N  
10mA/div  
10mA/div  
1mA  
1mA  
20mA  
2V/div  
0V  
V
C2P  
C2N  
NEG  
V
= 3.8V, I  
= 25.6mA  
LED  
PV_  
LED2  
V
V
0V  
2V/div  
0V  
2V/div  
0.256ms/0.1mA SLOPE  
10ms/div  
100ns/div  
WLED—DIMMING CURRENT TRANSIENT  
WLED—DIMMING CURRENT TRANSIENT  
2
BY I C  
BY CAI  
MAX8930 toc09  
MAX8930 toc10  
2V/div  
0mA  
V
CAI  
20mA  
10mA  
I
V
LED1  
LED2  
2V/div  
0mA  
SDA  
10mA/div  
10mA/div  
10mA/div  
0mA  
20mA  
I
LED1  
10mA  
I
10mA/div  
0mA  
I
LED2  
2
I C SETTING = 25.6mA TO 20mA  
1ms/div  
4ms/div  
WLED—DIMMING CURRENT TRANSIENT  
WLED—DIMMING CURRENT TRANSIENT  
2
BY CAI AND I C  
BY ALC  
MAX8930 toc11  
MAX8930 toc12  
2V/div  
0mA  
V
V
CAI  
SENSE  
1V/div  
0V  
I
LED1  
20mA/div  
0mA  
10mA/div  
0mA  
I
I
LED1  
LED2  
I
LED2  
20mA/div  
0mA  
10mA/div  
0mA  
2
I C SETTING = 20mA  
2ms/div  
100ms/div  
10_ _ _ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ  
WLED Charge Pump, RGB, OLED Boost,  
LDOs with ALC and CAI  
Typical Operating Characteristics (continued)  
(V  
PV_  
= V = 3.7V, circuit of Figure 1, T = +25°C, unless otherwise noted.)  
EN  
A
WLED—DIMMING CURRENT TRANSIENT  
WLED—DIMMING CURRENT TRANSIENT  
BY ALC WITH SLOPE CONTROL  
BY ALC AND CAI  
MAX8930 toc13  
MAX8930 toc14  
V
2V/div  
0V  
CAI  
V
SENSE  
1V/div  
0V  
2V/div  
0mA  
V
SENSE  
I
20mA/div  
0mA  
LED1  
LED2  
I
LED1  
LED2  
10mA/div  
0mA  
I
20mA/div  
0mA  
10mA/div  
0mA  
I
0.256ms/0.1mA SLOPE  
100ms/div  
100ms/div  
WLED—LED1 OPEN CIRCUIT,  
WLED—LED1 OPEN CIRCUIT,  
V
= 3.2V  
PV  
V
= 3.8V  
PV  
MAX8930 toc16  
MAX8930 toc15  
0V  
0V  
V
LED1  
V
I
LED1  
1V/div  
1V/div  
V
0V  
2V/div  
NEG  
V
0V  
2V/div  
NEG  
LED1  
I
LED1  
20mA/div  
20mA/div  
0mA  
0mA  
I
LED2  
I
20mA/div  
LED2  
20mA/div  
0mA  
0mA  
400µs/div  
400µs/div  
RGB—PLAY_ ON/OFF TRANSITION,  
RGB—CURRENT TRANSIENT BY  
2
LOGIC-HIGH  
I C WITH SLOPE CONTROL  
MAX8930 toc18  
MAX8930 toc17  
5V/div  
0V  
10mA/div  
0V  
V
PLAY_  
I
RLED  
I
10mA/div  
0mA  
RLED  
0.256ms/0.1mA SLOPE  
2
I C SETTING = 10mA  
I
GLED  
I
10mA/div  
0mA  
GLED  
10mA/div  
0mA  
10mA/div  
0mA  
10mA/div  
0mA  
I
BLED  
I
BLED  
10ms/div  
10ms/div  
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ_ _ 11  
WLED Charge Pump, RGB, OLED Boost,  
LDOs with ALC and CAI  
Typical Operating Characteristics (continued)  
(V  
PV_  
= V = 3.7V, circuit of Figure 1, T = +25°C, unless otherwise noted.)  
EN  
A
RGB—PLAY_ ON/OFF TRANSITION,  
LOGIC-LOW  
RGB—PLAY_ ON/OFF TRANSITION  
2
AND I C COMING  
MAX8930 toc19  
MAX8930 toc20  
5V/div  
0V  
V
PLAY_  
10mA/div  
10mA/div  
10mA/div  
I
I
10mA  
10mA  
RLED  
I
10mA/div  
0mA  
RLED  
2
I C SETTING = 10mA  
GLED  
I
GLED  
10mA/div  
0mA  
I
BLED  
10mA  
10mA/div  
0mA  
I
BLED  
10ms/div  
10ms/div  
LDO SHUTDOWN—DEFAULT ACTIVE  
DISCHARGE ON  
LDO STARTUP—NO LOAD  
MAX8930 toc21  
MAX8930 toc22  
V
LDO1  
V
V
LDO1  
LDO2  
2V/div  
0V  
2V/div  
0V  
2V/div  
0V  
2V/div  
0V  
V
V
LDO2  
LDO3  
1V/div  
0V  
1V/div  
0V  
V
LDO3  
10ms/div  
2ms/div  
LDO—LINE TRANSIENT  
LDO1 LOAD TRANSIENT  
MAX8930 toc23  
MAX8930 toc24  
200mA/div  
0mA  
V
PV  
I
LDO1  
150mA  
0mA  
1V/div  
3.2V  
4.2V  
AC-COUPLED  
50mV/div  
V
LDO1  
AC-COUPLED  
50mV/div  
V
LDO1  
AC-COUPLED  
20mV/div  
V
V
LDO2  
LDO3  
AC-COUPLED  
50mV/div  
V
V
LDO2  
LDO3  
AC-COUPLED  
50mV/div  
AC-COUPLED  
50mV/div  
100µs/div  
10ms/div  
12_ _ _ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ  
WLED Charge Pump, RGB, OLED Boost,  
LDOs with ALC and CAI  
Typical Operating Characteristics (continued)  
(V  
PV_  
= V = 3.7V, circuit of Figure 1, T = +25°C, unless otherwise noted.)  
EN  
A
LDO2 LOAD TRANSIENT  
LDO3 LOAD TRANSIENT  
MAX8930 toc25  
MAX8930 toc26  
200mA/div  
0mA  
200mA/div  
0mA  
I
I
LDO2  
LDO2  
150mA  
150mA  
0mA  
0mA  
AC-COUPLED  
20mV/div  
AC-COUPLED  
20mV/div  
V
V
V
V
LDO1  
LDO2  
LDO1  
LDO2  
AC-COUPLED  
50mV/div  
AC-COUPLED  
20mV/div  
AC-COUPLED  
20mV/div  
AC-COUPLED  
50mV/div  
V
LDO3  
V
LDO3  
10ms/div  
10ms/div  
LDO1 AND LDO2—OUTPUT VOLTAGE  
LDO1 AND LDO2—OUTPUT VOLTAGE  
TRANSIENT2  
TRANSIENT1  
MAX8930 toc28  
MAX8930 toc27  
V
V
1V/div  
1V/div  
V
LDO1  
1V/div  
1V/div  
LDO1  
3.0V  
3.0V  
2.6V  
2.3V  
2.9V  
2.6V  
2.6V  
3.0V  
LDO2  
V
LDO2  
100ms/div  
100ms/div  
LDO3—OUTPUT VOLTAGE  
LDO3—OUTPUT VOLTAGE  
TRANSIENT1  
TRANSIENT2  
MAX8930 toc29  
MAX8930 toc30  
1.8V  
1.8V  
V
LDO3  
1V/div  
1V/div  
1.2V  
V
1.2V  
LDO3  
100ms/div  
100ms/div  
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ_ _ 13  
WLED Charge Pump, RGB, OLED Boost,  
LDOs with ALC and CAI  
Typical Operating Characteristics (continued)  
(V  
PV_  
= V = 3.7V, circuit of Figure 1, T = +25°C, unless otherwise noted.)  
EN  
A
2
KEY—ON/OFF BY I C  
LDO1 SHORT CIRCUIT  
MAX8930 toc32  
MAX8930 toc31  
V
SCL  
I
2V/div  
LDO1  
100mA/div  
0mA  
0V  
V
2V/div  
LDO1  
2V/div  
0V  
V
SDA  
0V  
V
V
LDO2  
LDO3  
2V/div  
0V  
2V/div  
0V  
V
KEY  
2V/div  
0V  
400µs/div  
1ms/div  
KEY—ON/OFF BY INTERNAL PWM,  
NO SLOPE  
KEY—ON/OFF BY ALC  
MAX8930 toc33  
MAX8930 toc34  
V
SENSE  
1V/div  
0V  
V
KEY  
2V/div  
0V  
V
KEY  
2V/div  
0V  
2
I C: INTERNAL 500kHz, 50% DUTY CYCLE  
200ms/div  
1ms/div  
ALC—STARTUP, t  
= 64ms  
ALC—STARTUP, t  
= 32ms  
WAIT  
MAX8930 toc36  
WAIT  
MAX8930 toc35  
V
V
BIAS  
BIAS  
2V/div  
0V  
2V/div  
0V  
V
SENSE  
V
2V/div  
0V  
2V/div  
0V  
SENSE  
V
V
KEY  
KEY  
1V/div  
0V  
1V/div  
0V  
20ms/div  
20ms/div  
14_ _ _ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ  
WLED Charge Pump, RGB, OLED Boost,  
LDOs with ALC and CAI  
Typical Operating Characteristics (continued)  
(V  
PV_  
= V = 3.7V, circuit of Figure 1, T = +25°C, unless otherwise noted.)  
EN  
A
STEP-UP EFFICIENCY  
vs. LOAD CURRENT  
STEP-UP LOAD REGULATION  
vs. OUTPUT CURRENT  
80  
70  
60  
50  
40  
30  
20  
10  
0
1.04  
1.03  
1.02  
1.01  
1.00  
0.99  
0.98  
0.97  
0.96  
V
4
= 3.6V, V  
= 14V  
V
4
= 3.6V, V  
= 14V  
IN  
OUT  
IN  
OUT  
0
2
6
8
0
2
6
8
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
STEP-UP SWITCHING FREQUENCY  
vs. INPUT VOLTAGE  
STEP-UP SWITCHING FREQUENCY  
vs OUTPUT CURRENT  
120  
100  
80  
60  
40  
20  
0
200  
180  
160  
140  
120  
100  
80  
60  
40  
V
4
= 3.6V, V  
= 14V  
20  
IN  
OUT  
I
= 5mA, V = 14V  
OUT  
OUT  
0
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
0
2
6
8
INPUT VOLTAGE (V)  
OUTPUT CURRENT (mA)  
STEP-UP SOFT-START  
STEP-UP LOAD TRANSIENT  
MAX8930 toc42  
MAX8930 toc41  
V
5V/div  
0V  
SDA  
OUT  
10V/div  
0V  
I
10mA/div  
OUT  
5mA  
V
200mA/div  
0A  
I
LX  
LX  
AC-COUPLED  
100mV/div  
V
OUT  
V
10V/div  
0V  
100µs/div  
10ms/div  
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ_ _ 15  
WLED Charge Pump, RGB, OLED Boost,  
LDOs with ALC and CAI  
Typical Operating Characteristics (continued)  
(V  
PV_  
= V = 3.7V, circuit of Figure 1, T = +25°C, unless otherwise noted.)  
EN  
A
STEP-UP LINE TRANSIENT  
STEP-UP SWITCHING WAVEFORMS  
MAX8930 toc43  
MAX8930 toc44  
4.2V  
AC-COUPLED  
200mV/div  
1V/div  
V
V
IN  
OUT  
3.2V  
V
10V/div  
0V  
LX  
AC-COUPLED  
100mV/div  
V
OUT  
I
LX  
200mA/div  
0A  
400µs/div  
4µs/div  
STEP-UP OUTPUT VOLTAGE TRANSIENT  
STEP-UP OUTPUT OPEN CIRCUIT  
MAX8930 toc46  
MAX8930 toc45  
16V  
2V/div  
10mA/div  
0A  
V
V
I
OUT  
SDA  
OUT  
14V  
V
LX  
LX  
10V/div  
0V  
2V/div  
0V  
I
200mA/div  
0A  
400µs/div  
100µs/div  
GPO—ON/OFF MODE LDO1, LDO2,  
2
LDO3 BY I C  
STEP-UP OUTPUT SHORT CIRCUIT  
MAX8930 toc48  
MAX8930 toc47  
5V/div  
0V  
V
SDA  
V
10V/div  
0V  
OUT  
V
LDO1  
LDO MODE  
GPO MODE  
2V/div  
0V  
V
LX  
LX  
10V/div  
0V  
V
V
LDO2  
LDO3  
2V/div  
0V  
I
500mA/div  
0A  
2V/div  
0V  
2ms/div  
200µs/div  
16_ _ __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
WLED Charge Pump, RGB, OLED Boost,  
LDOs with ALC and CAI  
Pin Configuration  
TOP VIEW  
1
2
3
4
5
6
7
+
ECA  
GND  
ECA  
GND  
A
B
C
D
E
PV3  
LDO1  
PV2  
PV5  
SW  
PV4  
KEY  
LDO3  
REFBP  
AGND  
SCL  
LDO2  
EN  
PV1  
C1P  
C2P  
OUT  
C1N  
LX  
PGND3  
PGND1  
PLAYG  
CHG  
NEG  
V
DD  
SDA  
PGND2  
GLED  
BLED  
WLED6  
C2N  
WLED1  
WLED2  
WLED4  
FILT  
PLAYR  
PLAYB  
WLED8  
RLED  
WLED3  
WLED5  
F
BIAS  
CAI  
ECA  
GND  
ECA  
GND  
G
SENSE  
WLED7  
Pin Description  
PIN  
NAME  
FUNCTION  
EXTERNALLYCONNECTEDTOPGND  
A1, A7,  
G1, G7  
ECAGND Connect to AGND  
POWERINPUTSUPPLYANDPOWERGROUND  
Supply Voltage Input for Ref, Bias, LDO1, and LDO2. The input voltage range is 2.7V to 5.5V. Bypass  
PV3 to AGND with a 2.2FF ceramic capacitor as close as possible to the IC. PV3 is high impedance  
during shutdown. Connect PV3 to PV1, PV2, and PV5.  
A2  
A4  
A5  
PV3  
PV2  
PV5  
Supply Voltage Input. Connect PV2 to PV1.  
Supply Voltage Input for the Step-Up Converter. The input voltage range is 2.7V to 5.5V. Bypass PV5  
to PGND3 with a 1FF ceramic capacitor as close as possible to the IC. PV5 is high impedance during  
shutdown. Connect PV5 to PV1, PV2, and PV3.  
Supply Voltage Input for LDO3. The input voltage range is 1.7V to 5.5V. Bypass PV4 to AGND with a  
2.2FF ceramic capacitor as close as possible to the IC. PV4 is high impedance during shutdown. If  
PV4 is not used separately, connect PV4 to PV1.  
B1  
B4  
PV4  
PV1  
Supply Voltage Input for Charge-Pump Circuitry. The input voltage range is 2.7V to 5.5V. Bypass PV1 to  
PGND1 and PGND2 with a 4.7FF to 10FF ceramic capacitor as close as possible to the IC. PV1 is high  
impedance during shutdown. Connect PV1 to PV2, PV3, and PV5.  
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ꢀ ꢀ 17  
WLED Charge Pump, RGB, OLED Boost,  
LDOs with ALC and CAI  
Pin Description (continued)  
PIN  
C4  
D4  
D5  
NAME  
PGND3  
PGND1  
PGND2  
FUNCTION  
Power Ground for the Step-Up Converter  
Power Ground for the Charge-Pump Block  
Power Ground for the Charge-Pump Block  
LDOFUNCTION  
Output of LDO1. The default value is 2.6V. Bypass LDO1 to AGND with a 1FF ceramic capacitor as  
close as possible to the IC.  
A3  
B3  
B2  
LDO1  
Output of LDO2. The default value is 2.9V. Bypass LDO2 to AGND with a 1FF ceramic capacitor as  
close as possible to the IC.  
LDO2  
LDO3  
Output of LDO3. The default value is 1.80V. Bypass LDO3 to AGND with a minimum 2.2FF ceramic  
capacitor as close as possible to the IC.  
LOGICANDENABLEFUNCTION  
Logic-Supply Voltage Input. Bypass V  
to AGND with a 0.1FF ceramic capacitor as close as possible  
DD  
D1  
V
DD  
to the IC. The input range is 1.7V to 5.5V.  
2
D3  
E2  
D2  
C3  
SDA  
SCL  
I C Data Input. Data is read on the rising edge of SCL. Connect a 1.5kI resistor from SDA to V  
.
DD  
2
I C Clock Input. Data is read on the rising edge of SCL. Connect a 1.5kI resistor from SCL to V  
.
DD  
AGND  
EN  
Analog Ground. Connect AGND to the system ground plane.  
Hardware Enable Input for the IC. Drive EN high to activate the IC. Drive EN low to disable the IC.  
WLEDANDRGBDIMMINGRELATEDFUNCTION  
Brightness Control Input by Contents Adaptive Interface (DPWM signal). CAI varies the brightness of  
main WLEDs from 0% to 100%. The dimming frequency is typically 200Hz. When CAI is used as the  
main control method for main white LEDs, the ramp-up/ramp-down is automatically disabled.  
F2  
CAI  
On/Off Input for the Red LED Current Regulator. The PLAYR signal can be either active high or active  
low. Program either active high or active low through the 20h register.  
E3  
E4  
F3  
E1  
PLAYR  
PLAYG  
PLAYB  
FILT  
On/Off Input for the Green LED Current Regulator. The PLAYG signal can be either active high or  
active low. Program either active high or active low through the 20h register.  
On/Off Input for the Blue LED Current Regulator. The PLAYB signal can be either active high or active  
low. Program either active high or active low through the 20h register.  
PWM Filter Capacitor. Connect a 0.1FF ceramic capacitor between FILT and AGND as close as  
possible to FILT.  
Key Backlight Control Output. Two threshold values for ON/OFF are available and programmable  
2
2
C1  
KEY  
through the I C serial interface. KEY on/off function is controlled by the I C, ALC, or the internal 500Hz  
2
PWM signal. Program the settings for KEY through the I C interface.  
1.20V Reference output. Bypass REFBP to AGND with 0.1FF ceramic capacitor as close as possible  
to the IC. Do not load REFBP.  
C2  
REFBP  
AUTOMATICLUMINANCECONTROL  
Bias Output for an External Light Sensor. Bypass BIAS to AGND with a 1FF ceramic capacitor as  
close as possible to the IC. The BIAS output is 3.0V.  
F1  
BIAS  
G2  
SENSE  
Input from Ambient Light Sensor. Connect a 5.1kI resistor from SENSE to AGND.  
CHARGE-PUMPBLOCK  
B5  
C6  
C5  
C1P  
C1N  
C2P  
Transfer Capacitor 1 Positive Connection. Connect a 1FF ceramic capacitor from C1P to C1N.  
Transfer Capacitor 1 Negative Connection. Connect a 1FF ceramic capacitor from C1P to C1N.  
Transfer Capacitor 2 Positive Connection. Connect a 1FF ceramic capacitor from C2P to C2N.  
18ꢀ ꢀ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
WLED Charge Pump, RGB, OLED Boost,  
LDOs with ALC and CAI  
Pin Description (continued)  
PIN  
C7  
NAME  
FUNCTION  
Charge-Pump Negative Output. Connect a 1FF to 2.2FF ceramic capacitor from NEG to PGND1. In  
shutdown, an internal 10kI resistor pulls NEG to PGND.  
NEG  
C2N  
D6  
Transfer Capacitor 2 Negative Connection. Connect a 1FF ceramic capacitor from C2P to C2N.  
WLEDANDRGBꢀ  
2
WLED Current Sink Regulator. Current into WLED1 is based upon the programmed internal I C  
D7  
E7  
F6  
WLED1  
registers. Connect WLED1 to the cathodes of external LEDs. WLED1 is high impedance during  
shutdown. If unused, short WLED1 to PV3.  
2
WLED Current Sink Regulator. Current into WLED2 is based upon the programmed internal I C  
WLED2  
WLED3  
WLED4  
WLED5  
WLED6  
WLED7  
WLED8  
registers. Connect WLED2 to the cathodes of external LEDs. WLED2 is high impedance during  
shutdown. If unused, short WLED2 to PV3.  
2
WLED Current Sink Regulator. Current into WLED3 is based upon the programmed internal I C  
registers. Connect WLED3 to the cathode of an external WLED. WLED3 is high impedance during  
shutdown. If unused, short WLED3 to PV3.  
2
WLED Current Sink Regulator. Current into WLED4 is based upon the programmed internal I C  
F7  
registers. Connect WLED4 to the cathode of an external LED. WLED4 is high impedance during  
shutdown. If unused, short WLED4 to P3.  
2
WLED Current Sink Regulator. Current into WLED5 is based upon the programmed internal I C  
G6  
G5  
G4  
G3  
registers. Connect WLED5 to the cathode of an external WLED. WLED5 is high impedance during  
shutdown. If unused, short WLED5 to either PV3 or disable the regulator.  
2
WLED Current Sink Regulator. Current into WLED6 is based upon the programmed internal I C  
registers. Connect WLED6 to the cathode of an external WLED. WLED6 is high impedance during  
shutdown. If unused, short WLED6 to either PV3 or disable the regulator.  
2
WLED Current Sink Regulator. Current into WLED7 is based upon the programmed internal I C  
registers. Connect WLED7 to the cathode of an external WLED. WLED7 is high impedance during  
shutdown. If unused, short WLED7 to either PV3 or disable the regulator.  
2
WLED Current Sink Regulator. Current into WLED8 is based upon the programmed internal I C  
registers. Connect WLED8 to the cathode of an external WLED. WLED8 is high impedance during  
shutdown. If unused, short WLED8 to either PV3 or disable the regulator.  
2
Red LED Connection. The brightness is set up by I C. ON/OFF is synchronized with the PWM signal  
E6  
E5  
F5  
RLED  
GLED  
BLED  
applied to PLAYR pin. RLED maximum brightness is enabled/disabled through the serial interface.  
2
Green LED Connection. The brightness is set up by I C. ON/OFF is synchronized with the PWM signal  
applied to PLAYG pin. GLED maximum brightness is enabled/disabled through the serial interface.  
2
Blue LED Connection. The brightness is set up by I C. ON/OFF is synchronized with the PWM signal  
applied to PLAYB pin. BLED maximum brightness is enabled/disabled through the serial interface.  
BOOSTCONVERTER  
Step-Up Converter Output. Bypass OUT to GND with a 1FF ceramic capacitor. During shutdown, OUT  
is pulled to PGND3 by an internal 1MI resistor.  
B6  
A6  
OUT  
SW  
Isolation Switch Output for the Step-Up Converter. SW is internally connected to the drain of a  
p-channel MOSFET and used to isolate the output of the step-up from the input during shutdown. If  
true shutdown is not required, SW can be left open with the input supply connected directly to the  
inductor.  
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ꢀ ꢀ 19  
WLED Charge Pump, RGB, OLED Boost,  
LDOs with ALC and CAI  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
Inductor Switching Connection. Connect the inductor between LX and SW. For most applications, use  
a 22FH inductor.  
B7  
LX  
STATUSINDICATOR  
F4 CHG  
Charging Status Output. CHG is an open-drain output that goes low when the battery is charging.  
2
On/off is operated by I C. CHG is high impedance when the IC is in shutdown mode. Enable CHG  
2
through the I C interface.  
External Components  
PIN  
EXTERNALCOMPONENTS  
NOTES  
10FF  
PV1, PV2, PV3, PV5  
PV4  
Total capacitance R total LDO, boost,  
System stability  
and charge-pump capacitance  
2.2FF  
LDO stability  
Decoupling  
V
DD  
0.1FF  
BIAS  
1FF  
LDO compensation  
LDO compensation  
LDO compensation  
LDO compensation  
Noise filter  
LDO1  
1FF  
LDO2  
1FF  
LDO3  
2.2FF  
FILT  
0.1FF  
REFBP  
0.1FF  
Noise filter  
C1P, C1N  
C2P, C2N  
NEG  
1FF  
Charge pump  
1FF  
2.2FF  
Charge pump  
Charge pump  
WLED1–WLED8  
RLED, GLED, BLED  
CHG  
White LED  
Red, green, blue LED  
A resister, for example 10kI  
22FH  
Current limit  
SW, LX  
OUT  
Boost converter  
Boost stability  
1FF  
SENSE  
ALC  
5.1kI  
Converter ambient light to a voltage  
Any type (linear/log) of photo IC  
Toshiba TPS852  
Note: All output capacitors are ceramic and X7R/X5R type.  
20ꢀ ꢀ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
WLED Charge Pump, RGB, OLED Boost,  
LDOs with ALC and CAI  
1µF  
1µF  
2.2µF  
C1P  
C1N  
C2P  
C2N  
NEG  
PV2  
PV1  
INPUT  
2.7V TO 5.5V  
INVERTING -0.5x  
CHARGE PUMP  
PGND1  
PGND2  
4.7µF  
4.7µF  
REFBP  
0.1µF  
0.1µF  
OVP  
OCP  
TSD  
INPUT  
4MHz  
OSC  
WLED1  
WLED2  
WLED3  
WLED4  
WLED5  
WLED6  
WLED7  
WLED8  
EN  
1.7V TO 5.5V  
BRIGHTNESS  
AND SLOPE  
CONTROL  
V
DD  
MAIN  
NEGATIVE  
CHARGE  
PUMP  
SCL  
SDA  
2
I C  
INTERFACE  
BRIGHTNESS  
AND SLOPE  
CONTROL  
SUB  
AGND  
0.1Hz TO 15kHz  
0.1µF  
PWM  
ON/OFF  
CAI  
(CONTENT  
ADAPTIVE  
INTERFACE)  
FILT  
RLED  
GLED  
BLED  
NEGATIVE  
CHARGE  
PUMP  
800kI  
ON/OFF  
2
(PLAY/I C)  
800kI  
2Hz TO 200Hz  
PLAYR  
800kI  
CHG  
PLAYG  
PLAYB  
ON/OFF  
LDO1  
PV3  
PV3  
PV4  
LDO1  
2.6V AT  
200mA  
1µF  
ALCEN = 1  
BIAS  
3V  
OUT  
1µF  
MAX8930  
LIGHT  
SENSOR  
LDO2  
SENSE  
LDO2  
SENSOR  
INTERFACE  
2.9V AT  
200mA  
ALC  
1µF  
5.1kI  
LDO3  
PV3  
LDO3  
1.8V AT  
200mA  
2.2µF  
2.2µF  
INPUT  
1.7V TO 5.5V  
PV4  
ON/OFF  
BY ALC  
2.2µF  
KEY  
SW  
ON/OFF  
BY I C  
2
PWM  
(500Hz)  
PV5  
1µF  
22µH  
ON/OFF BY ALC  
LX  
OUT  
ECAGND  
ECAGND  
ECAGND  
ECAGND  
13V TO 16.5V  
AT 8mA  
1µF  
CONTROL  
LOGIC (PFM)  
OVP  
ERROR  
AMP  
PGND3  
1.226V  
Figure 1. Typical Application and Block Diagram  
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ꢀ ꢀ 21  
WLED Charge Pump, RGB, OLED Boost,  
LDOs with ALC and CAI  
LED Charge Pump  
Detailed Description  
The charge pump drives up to 8 white LEDs (4 WLEDs  
for main and 4 WLEDs for sub) and 3 RGB LEDs with  
regulated constant current for both display backlight and  
fun light applications. By utilizing individually adaptive  
1x/-0.5x negative charge-pump modes and extremely  
low-dropout current regulators, it is able to achieve high  
efficiency over the full 1-cell lithium battery input volt-  
age range. High-frequency switching of 4MHz allows  
for tiny external components. The regulation scheme is  
optimized to ensure low EMI and low input ripple. Each  
channel for WLED and RGB LED has the capability of  
delivering 25.6mA with 256 dimming steps (0.1mA per  
step). The current-level adjustment is programmed by  
The MAX8930 integrates a negative charge pump for  
both white LED display backlighting with ambient light  
control (ALC) function, content adaptive interface (CAI)  
function, and R/G/B LED. There is one step-up converter  
for passive matrix OLED (PMOLED) oriented application  
and three LDOs with programmable output voltage. The  
three LDO outputs are able to convert to GPO (general-  
2
purpose output) status through an I C command. The  
MAX8930 includes soft-start, thermal shutdown, open-  
circuit, and short-circuit protection in the charge-pump  
circuitry.  
Reset Control  
The MAX8930 uses two different methods of reset: soft-  
ware and hardware.  
2
an I C command. Figure 2 is the flow chart of the startup  
and mode-change algorithm.  
SoftwareReset: All the registers are initiated by RESET  
= 1 at Register 00h. After that, the values in all registers  
come back to POR (power-on-reset) state. The bit of  
RESET in 00h is automatically returned to 0. Auto return  
to 0.  
SHUTDOWN  
V
DISCHARGED  
NEG  
BY RESISTOR  
RESET = 1 OR EN = 0 OR  
MAIN WLED = 0 AND  
WLED5−8 = 0 AND  
EN = HIGH, RESET = 0 AND  
MAINI2C = 1,  
MAIN WLED = 1 OR  
WLED5−8 = 1 OR  
HardwareReset: Hardware reset is done by toggling EN  
from logic-high to logic-low. All the registers under hard-  
ware reset conditions are returned to their initial values  
(POR) and stop receiving any commands.  
RI2C, GI2C, BI2C = 0  
RI2C, GI2C, BI2C = 1  
PUMP OFF  
PUMP OFF  
ALL WLED_ AND  
RGB IN 1x MODE  
Open-Circuit and Short-Circuit Protection  
If any WLED/RGB fails as an open circuit, that LED pin  
pulls to ground, and the IC is forced into -0.5X mode.  
Therefore, connect any unused WLED_/RGB pins to PV1,  
PV2, or PV3 to disable the corresponding current regu-  
lator. The MAX8930 contains special circuitry to detect  
this condition and disables the corresponding current  
regulator to avoid wasting battery current.  
ANY V  
< 150mV  
LED  
PUMP SOFT-START  
PUMP GATE-DRIVE RAMPED  
ALL WLED_ AND RGB IN  
1x MODE  
ALL V > 250mV  
LED  
Thermal Shutdown  
The MAX8930 includes a thermal-limit circuit that shuts  
down the IC at about +160NC. The part turns on after the  
IC cools by approximately 20NC.  
PUMP SOFT-START DONE  
(0.5ms TYP)  
Thermal shutdown is applied to the following blocks:  
• White and RGB LED driver  
• Step-up converter  
PUMP ON  
PUMP ON  
EACH WLED_ AND RGB IN 1x  
OR -0.5x MODE AS NEEDED  
• LDO1, LDO2, LDO3  
• SBIAS  
Figure 2. Startup and Mode Change Algorithm  
22ꢀ ꢀ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
WLED Charge Pump, RGB, OLED Boost,  
LDOs with ALC and CAI  
a minimum on-time of 80Fs in active-high mode. If bit 1  
in 20h is set to 1, then all current regulators for RGB are  
activated by active-low signal with a minimum off-time of  
80Fs. The up/down slope control can be programmed by  
the setting of the 0Bh register when the RGB LEDs are  
WLED1–WLED8 Driver Operation  
The white LED current regulators are composed of 4  
main-group drivers (WLED1–WLED4) and 4 subgroup  
drivers (WLED5–WLED8). The current of the main-group  
LEDs can be selected by an I C register. Both ambient  
light control (ALC) mode and ramp-up/ramp-down con-  
trol are applied to only the main-group white LEDs.  
2
2
controlled by I C only.  
If bit 7 in 20h is set to logic-low, then slope up/down is  
automatically deactivated.  
The subgroup LEDs can choose either individual control  
or can belong to the main group based on the status  
of a bit in the register (01h and 02h). In this function,  
combinations can be adjusted as required. For example,  
main 4ch + sub 4ch or main 5ch + sub 3ch.  
CAI (Contents Adaptive  
Interface) Operation  
A 200Hz PWM signal is applied to the CAI pin. The CAI  
signal can be from either the LCD driver module with  
gamma correction information or from the baseband  
chipset. The main WLED can be activated by either  
the high/low status of the CAI PWM signal or with either  
an active-high or active-low signal coming from either  
a LCD driver module or baseband chipset. The corre-  
sponding register bit (bit 0 in 02h) should be set to either,  
The CAI (PWM) signal from either the LCD driver module  
or baseband chipset controls only the main-group  
WLEDS. The up/down slope control can be programmed  
by the setting of the 0Ah register when the main LEDs  
2
are controlled by either I C or ALC.  
For main LEDs, there are three different dimming control  
2
2
1 or 0 by I C command.  
methods, I C, ALC, and CAI. The dimming range for  
main LEDs and sub LEDs is from 0.1mA to 25.6mA in  
0.1mA increments.  
Depending on the duty cycle, the brightness varies from  
0mA to 25.6mA with the resolution of 0.256mA per 1%  
duty variation. In control of CAI (PWM) independently, the  
RGB Driver Operation  
The brightness for each color LED has 256 different  
steps (0.1mA to 25.6mA). The RGB LED can be activat-  
ed by either the high/low status of the PLAY_ PWM signal  
2
existing brightness setting from either I C or ALC is over-  
2
written because CAI has the priority over I C and ALC.  
See the Dimming by Digital PWM on CAI Only and  
2
2
Dimming by Both Digital PWM on CAI and Either I C or  
or by I C ON/OFF command. The default dimming con-  
2
2
ALC at the Same Time sections for details on the CAI  
dimming control.  
trol is I C command. An I C command for dimming can  
adjust the current of each RGB individually. The opera-  
2
tion of ON/OFF by I C command also allows individual  
Dimming by Digital PWM on CAI Only  
When the digital PWM (DPWM) signal (100Hz ~15kHz) is  
provided by either the baseband or CPU for dimming the  
brightness, the MAX8930 DPWM function takes over the  
responsibility of dimming the main WLEDs. The dimming  
by CAI is initiated by setting CAI (bit 7 of Register 02h)  
control. However, the operation of ON/OFF by PWM to  
PLAY_ RGB is group control. To operate with either an  
active-high or active-low signal coming from the micro-  
processor such as audio processor, the register related  
to active high or active low should be selected first (the  
bit 1 in 20h). When a call comes in or music plays, all  
RGB LEDs are allowed to be activated by either a PWM  
2
to 1. After the set-up, both I C register dimming settings  
and ALC no longer control the dimming current for the  
main WLEDs. The frequency range on the CAI pin is from  
100Hz to 15kHz, where 0% duty cycle corresponds to  
0mA and 100% duty cycle corresponds to full current,  
25.6mA.  
2
signal applied to PLAY_ or a designated register by I C.  
The main purpose for the PLAY_ is for ON/OFF control  
function and not for dimming control. If the dimming cur-  
rent is set to 10mA on each RGB LED, the PWM signal  
to PLAY_ RGB turns all of the current regulators on or off  
at the same time. However, the dimming current for RGB  
When CAI is set to 1, the ramp-up/down slope for main  
WLED_ is automatically disabled by the MAX8930 con-  
trol logic. Figure 3 is the timing diagram on initiating CAI.  
The MAX8930 maintains its previous dimming setting  
2
can be set by I C command during ON/OFF operation.  
When the PLAY_ is in active-high period, the RGB cur-  
rent regulator is on with 10mA current. When the PLAY_  
is in the opposite state (active-low period), the RGB  
regulator is off with 0mA current. The default method to  
turn the RGB LED on is to pull the PLAY_ input high with  
for t (10ms typ) to allow the PWM filter time to settle to  
B
its average value before activating CAI dimming. This  
is done automatically inside the IC. The bit of MAINI2C  
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ꢀ ꢀ 23  
WLED Charge Pump, RGB, OLED Boost,  
LDOs with ALC and CAI  
2
I C COMMAND  
(CAI = 1 AT Reg 3)  
2
CAI ENABLED BY I C  
CAI (DPWM)  
SIGNAL  
2
I C COMMAND  
SHOULD BE OUT  
BEFORE 10ms  
2
DIMMING BY I C  
2
(MAINI2C = 1 AT 02h)  
DIMMING BY I C  
(MAINI2C = 0 AT 02h)  
I
I
I
1
2
2
WLED CURRENT BY CAI  
WLED CURRENT BY I C  
3
t
B
t : BLANKING TIME, THE TIME FOR CONVERTING  
B
DPWM TO AVERAGE DIMMING CURRENT  
Figure 3. Timing Diagram of Stand-Alone CAI Dimming Operation  
should be set to 0 in less than t , 10ms (typ) for CAI dim-  
B
ming to be exclusively through DPWM.  
In this combined dimming control, any dimming current  
set earlier by either the I C register or the ALC register  
2
is the value corresponding with 100% duty cycle of the  
CAI signal.  
If this setup fails, the previous dimming current is still  
effective even though bit 7 in 02h (CAI) has been set to 1.  
Ambient Light Control Operation  
Dimming of the LCD backlight and ON/OFF control of the  
keypad backlight are possible on the basis of the data  
detected by an external ambient light sensor. The ALC  
consists of the following segments:  
The current of I1, I2, and I3 of Figure 3 is different  
depending on the duty cycle of DPWM.  
t
is the settling time for the CAI input filter to calculate  
B
an average value for the dimming current.  
2
Dimming by Both Digital PWM on CAI and Either I C  
or ALC at the Same Time  
• Bias function (3V output)  
• 8-bit ADC with an average filter  
• A slope process function  
If an end-user wants to see either TV or a movie, the  
LCD driver module may take care of dimming control  
independently. In this situation, the output signal from the  
LCD module has some color information. For example,  
(16mA/LED) + gamma correction can make the user feel  
the same brightness of the LCD screen compared to  
(20mA/LED) + no gamma correction.  
• A LOG scale conversion function  
A wide range of ambient light sensors can be used with  
the MAX8930, including photo diode, photo transistor,  
photo IC (a linear output/LOG output), etc. The detected  
amount of ambient light is changed into digital data by  
24ꢀ ꢀ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
WLED Charge Pump, RGB, OLED Boost,  
LDOs with ALC and CAI  
BIAS  
BIAS VOLTAGE  
(3V)  
OFFSET  
CORRECTION  
16 AMBIENT  
LEVELS  
LINEAR/LOG  
NEG  
INPUT  
LIGHT  
SENSOR  
(LOG OR  
LINEAR)  
8-BIT  
ADC  
DATA  
CORRECTION  
AVERAGE  
FILTER  
LOGARITHMIC  
CONVERSION  
AMBIENT  
CURRENT  
CONVERSION  
SLOPE  
PROCESS  
WLED_  
SENSE  
(1x, -0.5x CP)  
DETECT  
THRESHOLD  
AND  
INPUT  
LEVEL SCALE  
HYSTERESIS  
ON/OFF  
BY ALC  
KEY  
ON/OFF  
BY I C  
2
AMBIENT LIGHT LEVEL READ  
BY I C AT THIS POINT  
PWM SLOPE  
AND  
2
PWM  
(500Hz)  
MAX DUTY  
Figure 4. ALC Block Diagram  
the embedded digital processing. This data can be read  
through the I C (0Dh).  
The operation of the bias output voltage has two options  
based on the value of the SBIAS bit (bit 7 in Register 0Ch).  
When this bit is set to 1, the bias output is synchronized  
with the measurement cycle. This means that the bias  
voltage generator is active only when a measurement  
cycle is being performed. The measurement cycle has  
four different times, 0.52s, 1.05s, 1.57s, and 2.10s. When  
this bit is set to 0, the bias output is always on as long as  
the ALCEN bit is set to 1.  
2
The conversion to LED current can be accomplished  
either through a built-in initial lookup table or a built-in  
user settable lookup table.  
When ALC is activated, the brightness settings of the  
main LEDs are controlled through the ALC control cir-  
cuitry and not by the baseband processor. The default  
setting on power-on reset is for control by the baseband  
processor.  
Brightness Data Conversion  
16 different dimming steps are available depending on  
the ambient light condition. The selection of the log or  
linear conversion is possible by the setting of the LSTY  
bit (bit 6 of register 0Ch).  
ON/OFF of ALC Block for Main WLEDs  
ALC operation can be activated independently for the  
main LED and the keypad backlight. The ALCEN bit in  
register 00h activates ambient light control. The KBALC  
bit in register 00h activates ON/OFF for the keypad back-  
light in ALC mode. For keypad backlight, the output is  
simple logic-high/logic-low.  
Lineartypesensor: LOG conversion  
Logtypesensor: Data bypass  
2
The brightness data can be read through I C (Register  
at 0Dh).  
Bias Voltage for a Sensor  
An embedded LDO with a nominal 3V output provides  
the bias voltage for the ambient light sensor. This bias  
output is enabled as soon as the ALCEN bit is set to 1.  
LED Current Conversion  
The following is the initial current value to each level  
of ambient light. This value can be overwritten by I C  
2
command.  
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ꢀ ꢀ 25  
WLED Charge Pump, RGB, OLED Boost,  
LDOs with ALC and CAI  
Table1.BrightnessDataConversionSettings  
WITHLOGCONVERSION  
(LINEARTYPEOFSENSOR)  
WITHOUTLOGCONVERSION  
(LOGTYPEOFSENSOR)  
AMBIENTLEVEL  
V
V
x 0/256 ~  
x 17/256  
SBIAS  
0h  
1h  
2h  
3h  
4h  
5h  
6h  
7h  
8h  
9h  
Ah  
Bh  
Ch  
Dh  
Eh  
Fh  
V
V
V
x 0/256  
x 1/256  
x 2/256  
SBIAS  
SBIAS  
SBIAS  
SBIAS  
V
x18/256 ~  
x 26/256  
SBIAS  
V
SBIAS  
V
x 27/256 ~  
x 36/256  
SBIAS  
V
SBIAS  
V
x 3/256 ~  
x 4/256  
V
x 37/256 ~  
x 47/256  
SBIAS  
SBIAS  
V
V
SBIAS  
SBIAS  
V
x 5/256 ~  
x 6/256  
V
x 48/256 ~  
x 59/256  
SBIAS  
SBIAS  
V
V
SBIAS  
SBIAS  
V
x 7/256 ~  
x 9/256  
V
x 60/256 ~  
x 71/256  
SBIAS  
SBIAS  
V
V
SBIAS  
SBIAS  
V
x 10/256 ~  
x 13/256  
V
x 72/256 ~  
x 83/256  
SBIAS  
SBIAS  
V
V
SBIAS  
SBIAS  
V
x 14/256 ~  
x 19/256  
V
x 84/256 ~  
SBIAS  
SBIAS  
V
V
x 95/256  
SBIAS  
SBIAS  
V
x 20/256 ~  
x 27/256  
V
x 96/256 ~  
x 107/256  
SBIAS  
SBIAS  
V
V
SBIAS  
SBIAS  
V
x 28/256 ~  
x 38/256  
V
x 108/256 ~  
SBIAS  
SBIAS  
V
V
x 119/256  
SBIAS  
SBIAS  
V
x 39/256 ~  
x 53/256  
V
x 120/256 ~  
SBIAS  
SBIAS  
V
V
x 131/256  
SBIAS  
SBIAS  
V
x 54/256 ~  
x 74/256  
V
x 132/256 ~  
SBIAS  
SBIAS  
V
V
x 143/256  
SBIAS  
SBIAS  
V
x 75/256 ~  
x 104/256  
V
x 144/256 ~  
SBIAS  
SBIAS  
V
V
x 155/256  
SBIAS  
SBIAS  
V
x 105/256 ~  
x 144/256  
V
x 156/256 ~  
SBIAS  
SBIAS  
V
V
x 168/256  
SBIAS  
SBIAS  
V
x 145/256 ~  
x 199/256  
V
x 169/256 ~  
SBIAS  
SBIAS  
V
V
x 181/256  
SBIAS  
SBIAS  
V
x 200/256 ~  
x 255/256  
V
x 182/256 ~  
SBIAS  
SBIAS  
V
V
x 255/256  
SBIAS  
SBIAS  
Table2.LEDCurrentConversion  
BRIGHTNESS  
INITIAL  
CURRENT(mA)  
BRIGHTNESS  
INITIAL  
89h  
CURRENT(mA)  
0
1
2
3
4
5
6
7
0Fh  
1.6  
3.1  
8
9
13.8  
15.3  
16.8  
18.3  
19.9  
21.4  
22.9  
25.0  
1Eh  
98h  
2Dh  
3Ch  
4Ch  
5Bh  
4.6  
A
B
C
D
E
F
A7h  
B6h  
C6h  
D5h  
E4h  
6.1  
7.7  
9.2  
6Ah  
10.7  
12.2  
79h  
F9h  
26ꢀ ꢀ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
WLED Charge Pump, RGB, OLED Boost,  
LDOs with ALC and CAI  
The Operation of ALC Function  
Table 3 shows the various conditions on the main WLED_  
current for LCD backlight.  
A/D Conversion  
The detection of ambient light condition is performed in  
periodic time steps (4 options). BIAS and ADC are turned  
off except when reading the ambient light condition. The  
sensor is also turned off in between measurements. This  
leads to lower power consumption. For the first 64ms,  
the ambient light data is discarded because the data  
might be inaccurate information in startup period. For  
Sensor Interface  
As a default value, 3V is applied from the BIAS pin. The  
sensed voltage at the SENSE pin is transformed into  
digital data by the embedded 8-bit ADC.  
Table3.ALCFunction  
ALCON/OFF  
MAINWLED_ ON/OFF  
ALCBLOCK  
LCDBACKLIGHTCURRENT  
0
0
1
1
0
1
0
1
OFF  
Setup by main LED current*  
OFF  
OFF  
ON  
Setup by ambient light data  
*The ALC for WLED backlight is disabled in this mode. It means the current for the LCD backlight is set up by the main LED cur-  
2
rent value using either I C or CAI.  
The ALC for WLED backlight is enabled in this mode. It means the current for the LCD backlight is set up by the ambient light  
data from 0h to Fh.  
ADC READ 1 CYCLE  
ALCEN = 1  
(ALCYC1, ALCYC2)  
ALC MODE ON/OFF  
ADC READ CYCLE  
AD SIGNAL START  
BIAS OUTPUT = 3V  
t
= 64ms OR 32ms  
WAIT  
1 T(AD) = 1ms  
16 TIMES  
MEASUREMENT  
ADC MOVEMENT  
t(AD) = 16.4ms  
AMBIENT LIGHT  
DATA  
t(ALC) = 80.4ms  
Figure 5. ALC A/D Conversion  
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ꢀ ꢀ 27  
WLED Charge Pump, RGB, OLED Boost,  
LDOs with ALC and CAI  
the next 16.4ms, the internal digital logic block tries to  
read the ambient light condition 16 times and calculate  
the average data. This read data is automatically saved  
in Register 0Dh.  
time is set to 2.048ms. After reading the ambient light  
condition and getting I with 20mA, the total time  
LED2  
from I  
to I  
is 0.4096s [(20mA/0.1mA) x 2.048ms  
LED1  
LED2  
= 0.4096s].  
Up/Down Slope Control  
The up/down slope control is sometimes necessary for  
dimming the main WLED_ in a natural way. The up (dark  
to bright), down (bright to dark) main WLED current tran-  
sition speeds are set individually.  
ADC Data Offset Adjustment  
The accuracy of the ALC control circuitry can be cali-  
brated in each IC using the ADC data offset adjustment  
register. This offset adjustment can correct for parameter  
variation in the IC and in the external light sensor. This  
adjustment is performed with bits 3–0 in Register 0Ch.  
The default value of the up/down slope is 0s. It is pro-  
grammable by the settings of control bits in Register  
0Ah. The up/down slope time is per 0.1mA increment;  
Table 4 shows all possibilities of dimming control for both  
main WLEDs and KEY.  
for example, if the I  
current is 0mA and the up slope  
LED1  
ORIGINAL DATA  
SLOPE-APPLIED DATA  
ILED 2  
ILED 1  
BRIGHTNESS  
Figure 6. LED Current vs. Brightness  
Table4.SummaryofDimmingControlforMainWLEDsandKEY  
2
CAIꢀ  
(PWM)  
PWM  
(500Hz)  
ALC+ꢀ  
CAI  
I C+CAIꢀ  
2
2
2
I C  
ALC  
I C+ALCꢀ I C+CAIꢀ  
+ALC  
Yes  
(default)  
DIMMING  
Yes  
Yes  
No  
No  
Yes  
Yes  
No  
MAINꢀ  
WHITE  
LEDS  
UP/  
DOWN  
SLOPE  
CONTROL  
Not  
available  
Not  
available  
Not  
available  
Not  
available  
Not  
available  
Not  
available  
Available  
Available  
Yes  
Yes  
(default)  
ON/OFF  
No  
Yes  
No  
No  
No  
No  
DUTY  
TRANSITION  
CONTROLꢀ  
TIME  
KEY  
Not  
available  
Not  
available  
Not  
available  
Not  
available  
Not  
available  
Not  
available  
Not  
available  
Available  
28ꢀ ꢀ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
WLED Charge Pump, RGB, OLED Boost,  
LDOs with ALC and CAI  
The ambient light level at which the key backlight is  
turned off can be set in register 0Fh. The default ambi-  
ent light is Ah. There is also a programmable hysteresis  
KEY (Keypad Backlight) ON/OFF  
Control Operation  
The keypad lighting is controlled by 3 methods, which  
are all exclusive of each other.  
2
level, accessed through I C in the 0Fh register. The  
default hysteresis width is 3h. See Figure 7.  
These are:  
• ALC  
There is a built in PWM that has a 500Hz operation fre-  
quency. The dimming can be adjusted by duty ratio (set  
KYDT_ bit in register 0Eh).  
• PWM  
2
• I C command  
The KEY output is simply a 1 bit value representing ON  
or OFF function.  
If KBALC (bit 1 of 00h) is set to 1, then ALC for keypad  
is ON, otherwise, it is off.  
Keypad Backlight ON/OFF Operation by ALC  
To link the keypad backlight ON/OFF control to the ALC,  
the register bit, KBALC, at register 00h, should be set to  
1 (see Table 5).  
If KYPWM (bit 0 of 03h) is set to 1, PWM for keypad is  
ON, otherwise, it is off.  
2
If KYI2C (bit 5 of 02h) is set to 1, I C for keypad is ON,  
otherwise, it is off.  
KEYPAD ON/OFF  
KEYPAD ON  
3h LEVEL  
(HYSTERESIS TO BE ON)  
KEYPAD OFF  
BRIGHTNESS LEVEL  
Ah LEVEL (THRESHOLD TO BE OFF)  
Figure 7. KEY On/Off Hysteresis  
Table5.KeypadBacklightOn/OffbyALC  
ALCEN  
KBALC  
MAINWLEDsINALCMODE  
ALCBLOCK  
KEYBACKLIGHT  
0
0
1
1
0
1
0
1
OFF  
No  
OFF  
2
ON/OFF by I C or PWM*  
2
Yes  
Yes  
ON  
ON  
ON/OFF by I C or PWM**  
ON/OFF depends on ALC data level***  
*The ALC block is disabled in this mode. In this condition, keypad backlight is activated and controlled by either internal PWM  
2
operation (500Hz) or I C.  
2
**The ALC block is enabled in this mode. However KBALC bit is still set to 0. Therefore, the on/off control should be either I C or  
internal 500Hz PWM.  
2
***The ALC block is enabled in this mode. ALC has priority over both internal PWM and I C in case KBALC bit is set to 1. This  
means that the activation of the key backlight depends on the preprogrammed on/off threshold and hysteresis width.  
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ꢀ ꢀ 29  
WLED Charge Pump, RGB, OLED Boost,  
LDOs with ALC and CAI  
The ambient light level at which the key backlight is  
turned off can be set in register 0Fh. The default ambi-  
ent light level is Ah, which is bright enough for the user  
to recognize the numbers on the keypad. At this time,  
the key output is held off. There is also a programmable  
All LDOs are controlled through the serial interface, mini-  
mizing the requirements of control lines to the MAX8930.  
Each of the LDOs are turned on or off through the setting  
of the control bits in the On/Off Control register, 00h. For  
each LDO, it is possible to set the output voltage and  
enable/disable the active pulldown resistor (1kI typ)  
during power-off. This is done in the 03h and 04h reg-  
isters. For optimized battery life, there are two external  
supply voltage inputs, PV3 for LDO1 and LDO2 and PV4  
for LDO3. This allows the input voltage of the LDO to  
be supplied from a lower voltage power rail, resulting in  
higher efficiency operation and longer battery life. LDO3  
2
hysteresis level, accessed through I C in the 0Fh regis-  
ter. The default hysteresis width is 3h. The key output is  
held high on any hysteresis value minus 1h. For example,  
if the hysteresis is set to 3h, in this default condition, the  
key output is held low at Ah level and then high at 6h level.  
Keypad Backlight ON/OFF Operation by PWM  
There is a built-in PWM signal operating at a frequency  
of 500Hz. The on/off can be adjusted by duty cycle ratio  
(set KYDT_ bit in Register 0Eh). 16 different duty values  
of PWM are available in register 0Eh. In addition, fade-in  
and fade-out can also be set up with the KYSL_ bits in  
the 0Eh register.  
is a low V LDO (V = 1.7V to 5.5V). The input voltage,  
IN  
IN  
V
PV3  
and V  
must be greater than the selected LDO1  
PV4  
to LDO3 voltages.  
GPO Operation  
Three LDO outputs have the option of being converted to  
2
GPO outputs through an I C command. Figure 9 shows  
Keypad Backlight ON/OFF Operation  
2
by I C Command  
the external connections. The register, 24h, is respon-  
sible for this setup. In GPO mode, the output capacitors  
should be removed in advance, otherwise, there is some  
delay in both turn-on and turn-off mode.  
There is a dedicated register bit (KYI2C at 02h, see  
Table 15) to both enable and disable the KEY function.  
2
This I C on/off is the default for KEY.  
Control of Duty Transition Time Control  
in Internal PWM Mode (500Hz)  
The internal 500Hz PWM can set up the duty transition  
control time by the register (KYSL1 and KYSL2 at 0Eh).  
Component Selection  
Use only ceramic capacitors with an X5R, X7R, or bet-  
ter dielectric. See the Table 6 for a list of recommended  
parts. Connect a 1FF and 2.2FF ceramic capacitor  
between LDO1, LDO2, and LDO3 and PGND3, respec-  
tively, for 200mA applications. The LDO output capaci-  
tor’s equivalent series resistance (ESR) affects stability  
and output noise. Use output capacitors with an ESR  
of 0.1I or less to ensure stability and optimum transient  
Figure 8 shows the duty transition in slope-applied mode.  
Low-Drop Output (LDO) Operation  
The linear regulators are designed for low-input, low-  
dropout, low quiescent current to maximize battery life.  
I/O VOLTAGE  
TARGET DUTY VALUE  
LDO1  
SLOPE TIME  
LDO1  
LDO2  
LDO3  
OUTPUT  
OUTPUT  
OUTPUT  
LDO2  
LDO3  
TIME  
Figure 8. Slope Time-In Internal PWM Mode (500Hz)  
Figure 9. LDO GPO Configuration  
30ꢀ ꢀ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
WLED Charge Pump, RGB, OLED Boost,  
LDOs with ALC and CAI  
Table6.RecommendedCapacitors  
VALUEꢀ  
(µF)  
DESIGNATION  
MANUFACTURER  
PARTNUMBER  
C2012X5R0J225M  
C2012X5R0J225M  
DESCRIPTION  
C
C
2.2  
TDK  
TDK  
2.2FF Q20%, 6.3V X5R ceramic capacitor  
2.2FF Q20%, 6.3V X5R ceramic capacitor  
PV3  
PV4  
2.2  
(in case of external supply)  
C
LDO1  
C
LDO2  
C
LDO3  
1
1
TDK  
TDK  
TDK  
C1005X5R0J105M  
C1005X5R0J105M  
C1005X5R0J225M  
1FF Q20%, 6.3V X5R ceramic capacitor  
1FF Q20%, 6.3V X5R ceramic capacitor  
2.2FF Q20%, 6.3V X5R ceramic capacitor  
2.2  
response. Connect C  
MAX8930 to minimize the impact of PCB trace inductance.  
as close as possible to the  
frequency varies depending on the load and input and  
output voltage and can be up to 750kHz.  
LDO  
Setting the Output Voltage  
The output voltage of the step-up converter is set by bit,  
boost1 to boost3, in Register 04h. The output voltage  
can be adjusted from 13.0V to 16.5V in 0.5V increments.  
Step-Up DC-DC Converter Operation  
The step-up DC-DC converter operates from a 2.7V to  
5.5V supply. The MAX8930 includes an internal high-  
voltage nMOSFET switch with low on-resistance and  
a synchronous rectifier to reduce losses and achieve  
higher efficiency. A true-shutdown feature disconnects  
the battery from the load and reduces the supply current  
to 0.05FA. This DC-DC converter provides adjustable  
output voltage from 13.0V to 16.5V with 0.5V steps. The  
adjustment bits are located in the 04h register.  
Shutdown  
If Bit 6, SUEN, in Register 00h is set to 0, the step-up  
converter enters shutdown. During shutdown, the output  
is disconnected from the input, and LX enters a high-  
impedance state. The capacitance and load at the out-  
put determine the rate at which V  
decays.  
OUT  
Control Scheme  
The step-up DC-DC features a minimum off-time, cur-  
rent-limited control scheme operating in discontinuous  
conduction mode. An internal p-channel MOSFET switch  
connects PV5 to SW to provide power to the inductor  
when the converter is operating. When the converter is  
shut down, this switch disconnects the input supply from  
the inductor. To boost the output voltage, an n-channel  
MOSFET switch turns on and allows the inductor current  
to ramp up to the current limit. Once the inductor cur-  
rent reaches the current limit, the switch turns off and  
the inductor current flows through synchronous recti-  
fier (pMOS) to supply the output voltage. The switching  
Soft-Start  
The step-up converter uses two soft-start mechanisms.  
When the true-shutdown feature is used, the gate of the  
internal synchronous turns on slowly to prevent inrush  
current. This takes approximately 0.04ms (typ). When  
SW is fully turned on, the internal n-channel switch  
begins boosting the input to set the output voltage.  
Protection Features  
The step-up converter has protection features designed  
to make it extremely robust to application errors. If the  
output capacitor in the application is missing, the con-  
verter protects the internal switch from being damaged.  
Table7.ProtectionFeatures  
APPLICATIONFAULTS  
PROTECTION  
True off-switch detects short, opens when current reaches the synchronous rectifier current limit,  
and restarts soft-start. This protects the inductor and the synchronous rectifier.  
Output Shorted to Ground  
LX may boost one or two times before the internal FB voltage exceeds the trip point. In the rare  
case where the capacitive loading and external loading on OUT is small enough that the energy  
in one cycle can slew it more than 22V, the internal OVP operates at the typical threshold value,  
18.5V.  
Output Capacitor Missing  
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ꢀ ꢀ 31  
WLED Charge Pump, RGB, OLED Boost,  
LDOs with ALC and CAI  
Inductor Selection  
Smaller inductance values typically offer smaller physi-  
cal size for a given series resistance or saturation cur-  
rent. The inductor’s saturation current rating should be  
greater than the peak switching current. Recommended  
inductor values range from 10FH to 100FH (e.g., 22FH,  
VLF3010AT-220MR33-1, TDK).  
this function is used in conjunction with a microproces-  
sor (FP), connect a pullup resistor between CHG and  
the logic I/O voltage to indicate charge status to the FP.  
2
I C Interface  
The slave address for MAX8930 is EC/Dh in write/read  
mode.  
Capacitor Selection  
Small, ceramic surface-mount capacitors with X7R or  
X5R temperature characteristics are recommended due  
to their small size, low cost, low equivalent series resis-  
tance (ESR), and low equivalent series inductance (ESL).  
If nonceramic capacitors are used, it is important that  
they have low ESR to reduce the output ripple voltage  
and peak-to-peak load transient voltage.  
SDA  
SCL  
CHG Charge-Indicator Output  
CHG is an open-drain output that indicates charger sta-  
tus and can be used with an LED. CHG goes low during  
charging when the bit of CHG at 02h is 1. CHG goes  
high impedance when the bit of CHG at 02h is 0. When  
DATA LINE STABLE  
DATA VALID  
CHANGE OF  
DATA ALLOWED  
Figure 10. SDA and SCL Bit Transfer  
Table8.RecommendedInductors  
DESIGNATION  
VALUE(µH)  
DCR(I)  
MANUFACTURER  
PART  
VLF3010AT-220MR33-1  
ELJPC220KF  
CURRENT(mA)  
22  
22  
22  
22  
47  
68  
1.5  
TDK  
330  
160  
105  
125  
180  
120  
4.0  
Panasonic  
Taiyo Yuden  
Taiyo Yuden  
Sumida  
1.0  
LB2016-220  
L
SW  
5.0  
LEM2520-220  
2.2  
CMD4D11-47  
3.3  
Taiyo Yuden  
LEMC3225-680  
Table9.RecommendedCapacitors  
DESIGNATION  
VALUE(µF)  
MANUFACTURER  
PART  
DESCRIPTION  
C
1
1
TDK  
C2012X5R0J105M  
TMK316BJ105KL  
1FF Q20%, 6.3V X5R ceramic capacitor  
1FF Q20%, 25V X7R ceramic capacitor  
PV5  
C
OUT  
Taiyo Yuden  
Table10.SlaveAddress  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
R/W  
1
1
1
0
1
1
0
1/0  
32ꢀ ꢀ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
WLED Charge Pump, RGB, OLED Boost,  
LDOs with ALC and CAI  
SDA  
SCL  
t
BUF  
tSU  
,DAT  
t
SU,STA  
t
t
HD,DAT  
t
HD,STA  
LOW  
t
SU,STO  
t
HIGH  
t
HD,STA  
t
R
t
F
REPEATED START  
CONDITION  
STOP  
START  
START  
CONDITION  
CONDITION CONDITION  
Figure 11. START and STOP Conditions  
SDA  
SCLK  
MASTER  
TRANSMITTER/  
RECEIVER  
SLAVE  
TRANSMITTER/  
RECEIVER  
SLAVE  
RECEIVER  
2
Figure 12. I C Master and Slave Configuration  
2
2
I C Bit Transfer  
One data bit is transferred for each clock pulse. The data  
on SDA must remain stable during the high portion of  
the clock pulse as changes in data during this time are  
interpreted as a control signal.  
I C System Configuration  
2
A device on the I C bus that generates a message is  
called a transmitter and a device that receives the mes-  
sage is a receiver. The device that controls the message  
is the master and the devices that are controlled by the  
master are called slaves.  
2
I C START and STOP Conditions  
2
Both SDA and SCL remain high when the bus is not  
busy. A high-to-low transition of SDA, while SCL is high is  
defined as the START (S) condition. A low-to-high transi-  
tion of the data line while SCL is high is defined as the  
STOP (P) condition.  
I C Acknowledge  
The number of data bytes between the START and STOP  
conditions for the transmitter and receiver are unlimited.  
Each 8-bit byte is followed by an acknowledge bit. The  
acknowledge bit is a high-level signal put on DATA by  
the transmitter during which time the master generates an  
extra acknowledge related clock pulse. A slave receiver  
that is addressed must generate an acknowledge after  
each byte it receives. Also, a master receiver must gen-  
erate an acknowledge after each byte it receives that  
has been clocked out of the slave transmitter.  
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ꢀ ꢀ 33  
WLED Charge Pump, RGB, OLED Boost,  
LDOs with ALC and CAI  
SDA OUTPUT FROM  
TRANSMITTER  
D7  
D6  
D0  
NOT ACKNOWLEDGE  
SDA OUTPUT FROM  
RECEIVER  
NOT ACKNOWLEDGE  
8
SCL FROM  
MASTER  
1
2
9
CLOCK PULSE FOR  
ACKNOWLEDGEMENT  
START CONDITION  
2
Figure 13. I C Acknowledge  
The device that acknowledges must pull down the SDA  
line during the acknowledge clock pulse, so that the SDA  
line is stable low during the high period of the acknowl-  
edge clock pulse (setup and hold times must also be  
met). A master receiver must signal an end of data to the  
transmitter by not generating an acknowledge on the last  
byte that has been clocked out of the slave. In this case,  
the transmitter must leave SDA high to enable the master  
to generate a STOP condition.  
Current Level for 8 WLEDs and 3 RGB LEDs  
The total 11 LEDs (8 WLEDs and 3 RGB LEDs) have  
linear scale current dimming by 0.1mA step as follows.  
Table11.LEDCurrentLevels  
LEDCURRENTꢀ  
BIT7  
BIT6  
BIT5  
BIT4  
BIT3  
BIT2  
BIT1  
BIT0  
(mA)  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
1
0
0
0
0
0
0
0
1
1
0
0
0
0
0
1
0
0
0
0
0
0
0
1
0
1
0
0
0
0
0
1
1
0
1
1
1
1
1
1
1
0
25.5  
25.6  
1
1
1
1
1
1
1
1
34ꢀ ꢀ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
WLED Charge Pump, RGB, OLED Boost,  
LDOs with ALC and CAI  
Table12.RegisterMap  
ADDRESSꢀ PORꢀ  
BIT7  
BIT6  
BIT5  
BIT4  
BIT3  
BIT2  
BIT1  
BIT0  
FUNCTION  
(HEX)  
(HEX)  
On/off  
control for  
boost, LDO1,  
ALCEN LDO2,  
LDO3, main  
Main  
WLED  
00h  
00  
RESET  
SUEN  
LDO1  
LDO2  
LDO3  
KBALC  
WLED_,  
ALC  
On/off  
control for  
backlight-  
related  
RGB  
slope  
LED  
slope  
01h  
02h  
00  
26  
WLED7  
WLED6  
WLED5  
Sub7  
Sub6  
Sub5  
LEDs  
On/off  
control for  
dimming-  
related  
CAI  
CHG  
KYI2C  
WLED8  
Sub8  
x
MAIN I2C  
HLCAI  
signal, bias  
output  
Output  
program for  
LDO1 and  
LDO2  
03h  
04h  
05h  
06h  
07h  
08h  
6C  
BA  
01  
01  
01  
01  
LDO10  
LDO 30  
IMLED7  
ISLED7  
ISLED7  
ISLED7  
LDO11  
LDO12  
x
LDO20  
LDO21  
Boost1  
IMLED2  
ISLED2  
ISLED2  
ISLED2  
LDO22  
Boost2  
IMLED1  
ISLED1  
ISLED1  
ISLED1  
KYPWM  
Boost3  
IMLED0  
ISLED0  
ISLED0  
ISLED0  
Output  
program for  
LDO3 and  
boost  
LDO 31 LDO1ADIS LDO2ADIS LDO3ADIS  
256 steps  
current  
scale for  
mainWLEDs  
IMLED6  
ISLED6  
ISLED6  
ISLED6  
IMLED5  
ISLED5  
ISLED5  
ISLED5  
IMLED4  
ISLED4  
ISLED4  
ISLED4  
IMLED3  
ISLED3  
ISLED3  
ISLED3  
256 steps  
current  
scale for  
sub WLED5  
256 steps  
current  
scale for  
sub WLED6  
256 steps  
current  
scale for  
sub WLED7  
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ꢀ ꢀ 35  
WLED Charge Pump, RGB, OLED Boost,  
LDOs with ALC and CAI  
Table12.RegisterMap(continued)  
ADDRESSꢀ PORꢀ  
BIT7  
BIT6  
BIT5  
BIT4  
BIT3  
BIT2  
BIT1  
BIT0  
FUNCTION  
(HEX)  
(HEX)  
256 steps  
current  
scale for  
sub WLED8  
09h  
01  
ISLED7  
ISLED6  
ISLED5  
ISLED4  
ISLED3  
ISLED2  
ISLED1  
ISLED0  
Slope con-  
trol for main  
0Ah  
00  
x
DSLP3  
DSLP2  
DSLP1  
x
USLP3  
USLP2  
USLP1 WLEDs in  
step-up/  
down  
Slope con-  
trol for RGB  
in step-up/  
down  
0Bh  
0Ch  
00  
10  
x
DSLP3  
LSTY  
DSLP2  
DSLP1  
x
USLP3  
OST2  
USLP2  
OST3  
USLP1  
Control for  
ALC-related  
functions  
SBIAS  
ALCYC1  
ALCYC2  
OST1  
OST4  
Read the  
ADC data  
0Dh  
ALDA1  
ALDA2  
ALDA3  
ALDA4  
x
x
x
TWAIT based on  
ambient  
condition  
Control for  
KYDT4 PWM slope  
and duty  
0Eh  
0Fh  
00  
A8  
KYSL1  
KYHS1  
KYSL2  
KYHS2  
x
KYDT0  
KYTH2  
KYDT1  
KYTH3  
KYDT2  
KYTH4  
KYDT3  
x
Control for  
hysteresis  
width and  
KYTH1  
x
on/off  
Current  
level of 0h  
10h  
11h  
12h  
13h  
14h  
15h  
0F  
1E  
2D  
3C  
4C  
5B  
CADA07  
CADA17  
CADA27  
CADA37  
CADA47  
CADA57  
CADA06  
CADA16  
CADA26  
CADA36  
CADA46  
CADA56  
CADA05  
CADA15  
CADA25  
CADA35  
CADA45  
CADA55  
CADA04  
CADA14  
CADA24  
CADA34  
CADA44  
CADA54  
CADA03 CADA02  
CADA13 CADA12  
CADA23 CADA22  
CADA33 CADA32  
CADA43 CADA42  
CADA53 CADA52  
CADA01 CADA00  
CADA11 CADA10  
CADA21 CADA20  
CADA31 CADA30  
CADA41 CADA40  
CADA51 CADA50  
Current  
level of 1h  
Current  
level of 2h  
Current  
level of 3h  
Current  
level of 4h  
Current  
level of 5h  
36ꢀ ꢀ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
WLED Charge Pump, RGB, OLED Boost,  
LDOs with ALC and CAI  
Table12.RegisterMap(continued)  
ADDRESSꢀ PORꢀ  
BIT7  
BIT6  
BIT5  
BIT4  
BIT3  
BIT2  
BIT1  
BIT0  
FUNCTION  
(HEX)  
(HEX)  
Current  
level of 6h  
16h  
6A  
CADA67  
CADA77  
CADA87  
CADA97  
CADA66  
CADA76  
CADA86  
CADA96  
CADA65  
CADA75  
CADA85  
CADA95  
CADA64  
CADA74  
CADA84  
CADA94  
CADA63 CADA62  
CADA73 CADA72  
CADA83 CADA82  
CADA93 CADA92  
CADA61 CADA60  
CADA71 CADA70  
CADA81 CADA80  
CADA91 CADA90  
Current  
level of 7h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
79  
89  
98  
A7  
B6  
C6  
D5  
E4  
F9  
Current  
level of 8h  
Current  
level of 9h  
Current  
level of Ah  
CADAA7 CADAA6 CADAA5 CADAA4 CADAA3 CADAA2 CADAA1 CADAA0  
CADAB7 CADAB6 CADAB5 CADAB4 CADAB3 CADAB2 CADAB1 CADAB0  
CADAC7 CADAC6 CADAC5 CADAC4 CADAC3 CADAC2 CADAC1 CADAC0  
CADAD7 CADAD6 CADAD5 CADAD4 CADAD3 CADAD2 CADAD1 CADAD0  
CADAE7 CADAE6 CADAE5 CADAE4 CADAE3 CADAE2 CADAE1 CADAE0  
Current  
level of Bh  
Current  
level of Ch  
Current  
level of Dh  
Current  
level of Eh  
Current  
level of Fh  
CADAF7  
RGBEN  
CADAF6  
x
CADAF5  
x
CADAF4  
RI2C  
CADAF3 CADAF2  
CADAF1 CADAF0  
Control for  
on/off of  
RGB  
20h  
21h  
22h  
00  
01  
01  
GI2C  
RLED3  
GLED3  
BI2C  
HLRGB  
RLED1  
GLED1  
x
Current  
RLED0 level for  
Red  
RLED7  
GLED7  
RLED6  
GLED6  
RLED5  
GLED5  
RLED4  
GLED4  
RLED2  
GLED2  
Current  
GLED0 level for  
Green  
Current  
BLED0 level for  
Blue  
23h  
24h  
01  
00  
BLED7  
GPO1  
BLED6  
GPO2  
BLED5  
x
BLED4  
GPLD1  
BLED3  
GPLD2  
BLED2  
GPLD3  
BLED1  
On/off for  
GPWD8  
x
GPO  
x = Don’t care.  
POR = Default state at reset and initial startup condition.  
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ꢀ ꢀ 37  
WLED Charge Pump, RGB, OLED Boost,  
LDOs with ALC and CAI  
Table13.On/OffRegister1forBoost,LDO1,LDO2,LDO3,MainWLED,andALC  
ADDRESSꢀ PORꢀ  
BIT7  
BIT6  
BIT5  
BIT4  
BIT3  
BIT2  
BIT1  
BIT0  
(HEX)  
(HEX)  
00  
00  
RESET  
SUEN  
LDO1  
LDO2  
LDO3  
Main WLED  
KB ALC  
ALC EN  
NAME  
POR  
R/W  
DESCRIPTION  
1: IC is reset, back to POR status  
0: Reset is off  
RESET  
SUEN  
LDO1  
LDO2  
LDO3  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
1: Boost output is on  
0: Boost output is off  
1: LDO1 output is on  
0: LDO1 output is off  
1: LDO2 output is on  
0: LDO2 output is off  
1: LDO3 output is on  
0: LDO3 output is off  
Main  
WLED  
1: Main WLEDs are on  
0: Main WLEDs are off  
1: ALC for keypad is on  
0: ALC for keypad is off  
KBALC  
ALCEN  
1: ALC function for main WLEDs is on  
0: ALC function is off  
Table14.On/OffRegister2forBacklight-RelatedWLED5,WLED6,WLED7andRGB  
ADDRESSꢀ PORꢀ  
BIT7  
BIT6  
BIT5  
BIT4  
BIT3  
BIT2  
BIT1  
BIT0  
(HEX)  
(HEX)  
01  
00  
WLED7  
WLED6  
WLED5  
Sub7  
Sub6  
Sub5  
RGB Slope LED Slope  
NAME  
POR  
R/W  
DESCRIPTION  
1: WLED7 output is on  
0: WLED7 output is off  
WLED7  
WLED6  
WLED5  
SUB7  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
1: WLED6 output is on  
0: WLED6 output is off  
1: WLED5 output is on  
0: WLED5 output is off  
1: WLED7 belongs to main group  
0: WLED7 belongs to subgroup  
1: WLED6 belongs to main group  
0: WLED6 belongs to subgroup  
SUB6  
1: WLED5 belongs to main group  
0: WLED5 belongs to subgroup  
SUB5  
1: Dimming slope for RGB LED is on  
0: Dimming slope is off  
RGB Slope  
LED Slope  
1: Dimming slope for main WLED_ is on  
0: Dimming slope is off  
38ꢀ ꢀ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
WLED Charge Pump, RGB, OLED Boost,  
LDOs with ALC and CAI  
Table15.On/OffRegister3  
ADDRESSꢀ PORꢀ  
BIT7  
BIT6  
BIT5  
BIT4  
BIT3  
BIT2  
BIT1  
BIT0  
(HEX)  
(HEX)  
2
02  
26  
CAI  
CHG  
KYI2C  
WLED8  
SUB8  
TWAIT  
MAIN I C  
HLCAI  
NAME  
POR  
R/W  
DESCRIPTION  
1: CAI Dimming for main WLEDs is on  
0: Off  
CAI  
CHG  
0
0
1
0
0
1
1
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
1: nMOS for charging indicator is on  
0: Off  
2
1: I C for keypad is on  
KYI2C  
WLED8  
SUB8  
2
0: I C for keypad is off  
1: WLED8 output is on  
0: WLED8 output is off  
1: WLED8 belongs to main group  
0: WLED8 belongs to subgroup  
1: 64ms waiting time for ALC calculation  
0: 32ms  
TWAIT  
MAINI2C  
HLCAI  
2
1: I C dimming for main WLEDs is ON  
2
0: I C dimming for main WLEDs is OFF  
1: Active low for main WLED_ activated  
0: Active high to be ON  
Table16.LDO1andLDO2Register  
ADDRESSꢀ PORꢀ  
R/W  
BIT7  
BIT6  
BIT5  
BIT4  
BIT3  
BIT2  
LDO21  
BIT1  
BIT0  
(HEX)  
(HEX)  
03  
4A  
R/W  
LDO10  
LDO11  
LDO12  
Reserved  
LDO20  
LDO22  
KYPWM  
DESCRIPTION  
LDO10  
LDO11  
LDO12  
LDO1VOLTAGE(V)  
0
0
0
2.3  
0
0
1
2.5  
0
1
0
2.6 (default)  
0
1
1
2.7  
1
0
0
2.8  
1
0
1
2.9  
1
1
0
3.0  
1
1
1
3.1  
LDO20  
LDO21  
LDO22  
LDO2VOLTAGE(V)  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
2.3  
2.5  
2.6  
2.7  
2.8  
2.9 (default)  
3.0  
3.1  
NAME  
KYPWM  
POR  
DESCRIPTION  
1: PWM for keypad is on. 0: PWM for keypad is off  
0
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ꢀ ꢀ 39  
WLED Charge Pump, RGB, OLED Boost,  
LDOs with ALC and CAI  
Table17.LDO3,Step-Up,LDO1,LDO2,andLDO3ActiveDischargeFunctionRegister  
ADDRESSꢀ PORꢀ  
R/W  
BIT7  
BIT6  
BIT5  
BIT4  
BIT3  
BIT2  
BIT1  
BIT0  
(HEX)  
(HEX)  
LDO1  
ADIS  
LDO2  
ADIS  
LDO3  
ADIS  
04  
BA  
R/W  
LDO30  
LDO31  
Boost1  
Boost2  
Boost3  
DESCRIPTION  
LDO30  
LDO31  
LDO3 voltage  
1.2V  
0
0
1
1
0
1
0
1
1.5V  
1.8V (default)  
2.5V  
NAME  
POR  
DESCRIPTION  
1: Enable LDO1 active discharge  
0: Disable LDO1 active discharge  
LDO1ADIS  
LDO2ADIS  
LDO3ADIS  
1
1
1
1: Enable LDO2 active discharge  
0: Disable LDO2 active discharge  
1: Enable LDO3 active discharge  
0: Disable LDO3 active discharge  
BOOST1  
BOOST2  
BOOST3  
OUTPUT(V)  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
13.0  
13.5  
14.0 (default)  
14.5  
15.0  
15.5  
16.0  
16.5  
Table18.DimmingCurrentRegisterforMainWLEDs  
ADDRESSꢀ  
(HEX)  
PORꢀ  
(HEX)  
BIT7  
BIT6  
BIT5  
BIT4  
BIT3  
BIT2  
IMLED2  
BIT1  
BIT0  
05  
01  
IMLED7  
IMLED6  
IMLED5  
IMLED4  
IMLED3  
IMLED1  
IMLED0  
NAME  
POR R/W  
DESCRIPTION  
IMLED7  
IMLED6  
IMLED5  
IMLED4  
IMLED3  
IMLED2  
IMLED1  
IMLED0  
0
0
0
0
0
0
0
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
BIT  
COMMENTS  
7
0
0
U
6
0
0
U
5
0
0
U
4
0
0
U
3
0
0
U
2
0
0
U
1
0
0
U
0
0
Minimum current = 0.1mA  
1
U
0.2mA set as default  
U
1
1
1
1
1
1
1
1
Maximum LED current = 25.6mA  
256 steps from 0.1 to 25.6mA by 0.1mA step by binary value increment  
40ꢀ ꢀ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
WLED Charge Pump, RGB, OLED Boost,  
LDOs with ALC and CAI  
Table19.DimmingCurrentRegisterforSubWLED5  
ADDRESSꢀ  
(HEX)  
PORꢀ  
(HEX)  
BIT7  
BIT6  
BIT5  
BIT4  
BIT3  
BIT2  
BIT1  
BIT0  
06  
01  
ISLED7  
ISLED6  
ISLED5  
ISLED4  
ISLED3  
ISLED2  
ISLED1  
ISLED0  
NAME  
ISLED7  
ISLED6  
ISLED5  
ISLED4  
ISLED3  
ISLED2  
ISLED1  
ISLED0  
POR R/W  
DESCRIPTION  
0
0
0
0
0
0
0
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
BIT  
COMMENTS  
7
0
0
U
6
0
0
U
5
0
0
U
4
0
0
U
3
0
0
U
2
0
0
U
1
0
0
U
0
0
Minimum current = 0.1mA  
1
0.2mA set as default  
U
U
1
1
1
1
1
1
1
1
Maximum LED current = 25.6mA  
256 steps from 0.1 to 25.6mA by 0.1mA step by binary value increment  
Table20.DimmingCurrentRegisterforSubWLED6  
ADDRESSꢀ  
(HEX)  
PORꢀ  
(HEX)  
BIT7  
BIT6  
BIT5  
BIT4  
BIT3  
BIT2  
BIT1  
BIT0  
07  
01  
ISLED7  
ISLED6  
ISLED5  
ISLED4  
ISLED3  
ISLED2  
ISLED1  
ISLED0  
NAME  
ISLED7  
ISLED6  
ISLED5  
ISLED4  
ISLED3  
ISLED2  
ISLED1  
ISLED0  
POR R/W  
DESCRIPTION  
0
0
0
0
0
0
0
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
BIT  
COMMENTS  
7
0
0
U
6
0
0
U
5
0
0
U
4
0
0
U
3
0
0
U
2
0
0
U
1
0
0
U
0
0
Minimum current = 0.1mA  
1
0.2mA set as default  
U
U
1
1
1
1
1
1
1
1
Maximum LED current = 25.6mA  
256 steps from 0.1 to 25.6mA by 0.1mA step by binary value increment  
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ꢀ ꢀ 41  
WLED Charge Pump, RGB, OLED Boost,  
LDOs with ALC and CAI  
Table21.DimmingCurrentRegisterforSubWLED7  
ADDRESSꢀ  
(HEX)  
PORꢀ  
(HEX)  
BIT7  
BIT6  
BIT5  
BIT4  
BIT3  
BIT2  
BIT1  
BIT0  
08  
01  
ISLED7  
ISLED6  
ISLED5  
ISLED4  
ISLED3  
ISLED2  
ISLED1  
ISLED0  
NAME  
ISLED7  
ISLED6  
ISLED5  
ISLED4  
ISLED3  
ISLED2  
ISLED1  
ISLED0  
POR R/W  
DESCRIPTION  
0
0
0
0
0
0
0
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
BIT  
COMMENTS  
7
0
0
U
6
0
0
U
5
0
0
U
4
0
0
U
3
0
0
U
2
0
0
U
1
0
0
U
0
0
Minimum current = 0.1mA  
1
0.2mA set as default  
U
U
1
1
1
1
1
1
1
1
Maximum LED current = 25.6mA  
256 steps from 0.1 to 25.6mA by 0.1mA step by binary value increment  
Table22.DimmingCurrentRegisterforSubWLED8  
ADDRESSꢀ  
(HEX)  
PORꢀ  
(HEX)  
BIT7  
BIT6  
BIT5  
BIT4  
BIT3  
BIT2  
BIT1  
BIT0  
09  
01  
ISLED7  
ISLED6  
ISLED5  
ISLED4  
ISLED3  
ISLED2  
ISLED1  
ISLED0  
NAME  
ISLED7  
ISLED6  
ISLED5  
ISLED4  
ISLED3  
ISLED2  
ISLED1  
ISLED0  
POR R/W  
DESCRIPTION  
0
0
0
0
0
0
0
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
BIT  
COMMENTS  
7
0
0
U
6
0
0
U
5
0
0
U
4
0
0
U
3
0
0
U
2
0
0
U
1
0
0
U
0
0
Minimum current = 0.1mA  
1
0.2mA set as default  
U
U
1
1
1
1
1
1
1
1
Maximum LED current = 25.6mA  
256 steps from 0.1 to 25.6mA by 0.1mA step by binary value increment  
42ꢀ ꢀ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
WLED Charge Pump, RGB, OLED Boost,  
LDOs with ALC and CAI  
Table23.SlopeControlRegisterforMainWLEDs  
ADDRESSꢀ  
(HEX)  
PORꢀ  
(HEX)  
BIT7  
BIT6  
BIT5  
BIT4  
BIT3  
BIT2  
BIT1  
BIT0  
0A  
00  
Reserved  
DSLP3  
DSLP2  
DSLP1  
Reserved  
USLP3  
USLP2  
USLP1  
NAME  
DSLP3  
DSLP2  
DSLP1  
USLP4  
USLP4  
USLP3  
POR R/W  
DESCRIPTION  
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Slope control for ramp down and up has 8 steps, respectively (see details in Table 25)  
Table24.SlopeControlRegisterforRGBLED  
ADDRESSꢀ  
(HEX)  
PORꢀ  
(HEX)  
BIT7  
BIT6  
BIT5  
BIT4  
BIT3  
BIT2  
BIT1  
BIT0  
0B  
00  
Reserved  
DSLP3  
DSLP2  
DSLP1  
Reserved  
USLP3  
USLP2  
USLP1  
NAME  
DSLP3  
DSLP2  
DSLP1  
USLP4  
USLP4  
USLP3  
POR R/W  
DESCRIPTION  
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Slope control for ramp down and up has 8 steps, respectively (see details in Table 25)  
Table25.Ramp-Up/DownTransitionTimein0.1mAStep  
BIT  
COMMENTS  
6
0
0
0
0
1
1
1
1
U
U
U
U
U
U
U
U
5
0
0
1
1
0
0
1
1
U
U
U
U
U
U
U
U
4
0
1
0
1
0
1
0
1
U
U
U
U
U
U
U
U
3
2
U
U
U
U
U
U
U
U
1
U
U
U
U
U
U
U
U
0
U
U
U
U
U
U
U
U
0 seconds (default)  
4
0.016ms (2 x 1Fs)  
6
0.068ms (2 x 1Fs)  
7
0.128ms (2 x 1Fs)  
8
0.256ms (2 x 1Fs)  
9
0.512ms (2 x 1Fs)  
10  
1.024ms (2 x 1Fs)  
11  
2.048ms (2 x 1Fs)  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0 seconds (default)  
4
0.016ms (2 x 1Fs)  
6
0.068ms (2 x 1Fs)  
7
0.128ms (2 x 1Fs)  
8
0.256ms (2 x 1Fs)  
9
0.512ms (2 x 1Fs)  
10  
1.024ms (2 x 1Fs)  
11  
2.048ms (2 x 1Fs)  
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ꢀ ꢀ 43  
WLED Charge Pump, RGB, OLED Boost,  
LDOs with ALC and CAI  
Table26.ALCControlRegister1  
ADDRESSꢀ  
(HEX)  
PORꢀ  
(HEX)  
BIT7  
BIT6  
BIT5  
BIT4  
BIT3  
BIT2  
BIT1  
BIT0  
0C  
10  
SBIAS  
LSTY  
ALCYC1  
ALCYC2  
OST1  
OST2  
OST3  
OST4  
NAME  
POR R/W  
DESCRIPTION  
1: Measurement cycle is synchronized  
0: Always on  
SBIAS  
LSTY  
0
R/W  
R/W  
1: LOG type of light sensor is connected  
0: Linear type sensor  
0
0
The measurement cycle  
R/W 00: 0.52s; 01: 1.05s  
10: 1.57s; 11: 2.10s  
ALCYC1  
ALCYC2  
1
0
OST_  
R/W Optimize the offset of ADC data  
OST1  
OST2  
OST3  
OST4  
OFFSETVALUE  
Non-offset (default)  
+1 LSB  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
+2 LSB  
+3 LSB  
+4 LSB  
+5 LSB  
+6 LSB  
+7 LSB  
-8 LSB  
-7 LSB  
-6 LSB  
-5 LSB  
-4 LSB  
-3 LSB  
-2 LSB  
-1 LSB  
44ꢀ ꢀ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
WLED Charge Pump, RGB, OLED Boost,  
LDOs with ALC and CAI  
PCB Layout  
Table27.ALCControlRegister2  
ADDRESSꢀ  
(HEX)  
PORꢀ  
(HEX)  
BIT7  
BIT6  
BIT5  
BIT4  
BIT3  
BIT2  
BIT1  
BIT0  
0D  
00  
ALDA1  
ALDA2  
ALDA3  
ALDA4  
Reserved  
Reserved  
Reserved  
Reserved  
NAME  
POR R/W  
DESCRIPTION  
16 different levels based on ambient light conditions  
ALDA_  
R
ALDA1  
ALDA2  
ALDA3  
ALDA4  
AMBIENTLIGHTCONDITION  
0h level  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1h level  
2h level  
3h level  
4h level  
5h level  
6h level  
7h level  
8h level  
9h level  
Ah level  
Bh level  
Ch level  
Dh level  
Eh level  
Fh level  
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ꢀ ꢀ 45  
WLED Charge Pump, RGB, OLED Boost,  
LDOs with ALC and CAI  
Table28.KeypadControlRegister  
ADDRESSꢀ  
(HEX)  
PORꢀ  
(HEX)  
BIT7  
BIT6  
BIT5  
BIT4  
BIT3  
BIT2  
BIT1  
BIT0  
0E  
00  
KYSL1  
KYSL2  
Reserved  
KYDT0  
KYDT1  
KYDT2  
KYDT3  
KYDT4  
NAME  
POR R/W  
DESCRIPTION  
KYSL_  
0
R/W PWM slope time is the transition time for stepping to the next duty ratio (both up and down)  
KYSL1  
KYSL2  
PWMSLOPERISINGTIME(ms)  
0
0
1
0
1
0 (default)  
0
32  
1
64  
128  
1
NAME  
POR R/W  
R/W Duty is set by the active-high period  
DESCRIPTION  
KYDT_  
0
KYDT0  
KYDT0  
KYDT2  
KYDT3  
KYDT4  
Duty ratio  
0% (default)  
6.25%  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
12.5%  
18.75%  
25.0%  
31.25%  
37.5%  
43.75%  
50.0%  
56.25%  
62.5%  
68.75%  
75.0%  
81.25%  
87.5%  
93.75%  
100%  
46ꢀ ꢀ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
WLED Charge Pump, RGB, OLED Boost,  
LDOs with ALC and CAI  
Table29.KeypadControlRegisterforALC  
ADDRESSꢀ  
(HEX)  
PORꢀ  
(HEX)  
BIT7  
BIT6  
BIT5  
BIT4  
BIT3  
BIT2  
BIT1  
BIT0  
0F  
A8  
KYHS1  
KYHS2  
KYTH1  
KYTH2  
KYTH3  
KYTH4  
Reserved  
Reserved  
NAME  
POR R/W  
DESCRIPTION  
The hysteresis values between ON and OFF.  
KYHS_  
10 R/W The value should meet the following equation.  
The value of KYTH_ - the value of KYHS_ > 1  
KYHS1  
KYHS2  
Hysteresis values  
0
0
No hysteresis  
0
1
2h  
1
0
3h  
4h  
1
1
NAME  
POR R/W  
DESCRIPTION  
KYTH_  
R/W Determine the OFF time based on ambient light condition  
KYTH1  
KYTH2  
KYTH3  
KYTH4  
Keypad off  
0h off  
1h off  
2h off  
3h off  
4h off  
5h off  
6h off  
7h off  
8h off  
9h off  
Ah off  
Bh off  
Ch off  
Dh off  
Eh off  
Fh off  
KYTH1  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ꢀ ꢀ 47  
WLED Charge Pump, RGB, OLED Boost,  
LDOs with ALC and CAI  
Table30.ControlRegisterinACL1–16ꢀ  
ADDRESSꢀ  
(HEX)  
PORꢀ  
(HEX)  
BIT7  
BIT6  
BIT5  
BIT4  
BIT3  
BIT2  
BIT1  
BIT0  
10~1F  
CADA*7  
CADA*6  
CADA*5  
CADA*4  
CADA*3  
CADA*2  
CADA*1  
CADA*0  
NAME  
POR R/W  
DESCRIPTION  
BIT  
COMMENTS  
7
0
0
U
6
0
0
U
5
0
0
U
4
0
0
U
3
0
0
U
2
0
0
U
1
0
0
U
0
0
1
U
Minimum current = 0.1mA  
CADA*  
R/W  
0.2mA set as default  
U
1
1
1
1
1
1
1
1
Maximum LED current = 25.6mA  
256 steps from 0.1 to 25.6mA by 0.1mA step by binary value increment  
*Refers to 0~F  
Table31.RGBLEDOn/OffControlRegister  
ADDRESSꢀ  
(HEX)  
PORꢀ  
(HEX)  
00  
BIT7  
BIT6  
BIT5  
BIT4  
BIT3  
BIT2  
BIT1  
BIT0  
20  
RGBEN  
Reserved  
Reserved  
RI2C  
GI2C  
BI2C  
HLRGB  
Reserved  
NAME  
POR R/W  
DESCRIPTION  
2
1: RGB LED is on by I C  
RGBEN  
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
0: RGB LED is ON by play pin  
2
1: RED LED is ON by I C  
RI2C  
GI2C  
0: Off  
2
1: Green LED is ON by I C  
0: Off  
2
1: Blue LED is ON by I C  
BI2C  
0: Off  
1: Active low for RGB LED activated  
0: Active high for RGB LED ON  
HLRGB  
Table32.RedLEDDimmingCurrentControlRegister  
ADDRESSꢀ  
(HEX)  
PORꢀ  
(HEX)  
BIT7  
BIT6  
BIT5  
BIT4  
BIT3  
BIT2  
BIT1  
BIT0  
21  
01  
RLED7  
RLED6  
RLED5  
RLED4  
RLED3  
RLED2  
RLED1  
RLED0  
NAME  
RLED7  
RLED6  
RLED5  
RLED4  
RLED3  
RLED2  
RLED1  
RLED0  
POR R/W  
DESCRIPTION  
0
0
0
0
0
0
0
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
BIT  
COMMENTS  
7
6
0
0
U
5
4
0
0
U
3
2
0
0
U
1
0
0
U
0
0
1
U
0
0
U
0
0
U
0
0
U
Minimum current = 0.1mA  
0.2mA set as default  
U
1
1
1
1
1
1
1
1
Maximum LED current = 25.6mA  
256 steps from 0.1 to 25.6mA by 0.1mA step by binary value increment  
48ꢀ ꢀ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
WLED Charge Pump, RGB, OLED Boost,  
LDOs with ALC and CAI  
Table33.GreenLEDDimmingCurrentControlRegister  
ADDRESSꢀ  
(HEX)  
PORꢀ  
(HEX)  
BIT7  
BIT6  
BIT5  
BIT4  
BIT3  
BIT2  
BIT1  
BIT0  
22  
01  
GLED7  
GLED6  
GLED5  
GLED4  
GLED3  
GLED2  
GLED1  
GLED0  
NAME  
GLED7  
GLED6  
GLED5  
GLED4  
GLED3  
GLED2  
GLED1  
GLED0  
POR R/W  
DESCRIPTION  
0
0
0
0
0
0
0
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
BIT  
COMMENTS  
7
6
0
0
U
5
4
0
0
U
3
2
0
0
U
1
0
0
U
0
0
1
U
0
0
U
0
0
U
0
0
U
Minimum current = 0.1mA  
0.2mA set as default  
U
1
1
1
1
1
1
1
1
Maximum LED current = 25.6mA  
256 steps from 0.1 to 25.6mA by 0.1mA step by binary value increment  
Table34.BlueLEDDimmingCurrentControlRegister  
ADDRESSꢀ  
(HEX)  
PORꢀ  
(HEX)  
BIT7  
BIT6  
BIT5  
BIT4  
BIT3  
BIT2  
BIT1  
BIT0  
23  
01  
BLED7  
BLED6  
BLED5  
BLED4  
BLED3  
BLED2  
BLED1  
BLED0  
NAME  
BLED7  
BLED6  
BLED5  
BLED4  
BLED3  
BLED2  
BLED1  
BLED0  
POR R/W  
DESCRIPTION  
0
0
0
0
0
0
0
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
BIT  
COMMENTS  
7
6
0
0
U
5
4
0
0
U
3
2
0
0
U
1
0
0
U
0
0
1
U
0
0
U
0
0
U
0
0
U
Minimum current = 0.1mA  
0.2mA set as default  
U
1
1
1
1
1
1
1
1
Maximum LED current = 25.6mA  
256 steps from 0.1 to 25.6mA by 0.1mA step by binary value increment  
Table35.On/OffControlRegister  
ADDRESSꢀ  
(HEX)  
POR  
(HEX)  
BIT7  
BIT6  
BIT5  
BIT4  
BIT3  
BIT2  
BIT1  
BIT0  
24  
00  
GPO1  
Reserved  
Reserved  
GPLD1  
GPLD2  
GPLD3  
Reserved  
Reserved  
NAME  
POR R/W  
DESCRIPTION  
1: GPO mode  
0: LDO Mode for LDO1, LDO2, LDO3  
GPO1  
0
0
0
0
R/W  
R/W  
R/W  
R/W  
1: Output low for LDO1 (power SW on)  
0: Output high (power SW off)  
GPLD1  
GPLD2  
GPLD3  
1: Output low for LDO2 (power SW on)  
0: Output high (Power SW off)  
1: Output low for LDO3 (power SW on)  
0: Output high (power SW off)  
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ꢀ ꢀ 49  
WLED Charge Pump, RGB, OLED Boost,  
LDOs with ALC and CAI  
Typical Operating Circuit  
C1P  
C1N C2P  
C2N  
PV2  
PV1  
NEG  
INPUT  
2.7V TO 5.5V  
PGND1  
PGND2  
INPUT  
PV3  
WLED1  
WLED2  
WLED3  
WLED4  
WLED5  
WLED6  
WLED7  
WLED8  
PV5  
PV4  
INPUT  
1.7V TO 5.5V  
REFBP  
RLED  
GLED  
BLED  
MAX8930  
V
DD  
CHG  
LDO1  
BIAS  
LDO2  
LDO3  
LIGHT  
SENSOR  
SENSE  
FILT  
INPUT  
V
DD  
SCL  
SDA  
KEY  
SW  
EN  
LX  
CAI  
µP  
OUT  
PLAYR  
PLAYG  
PLAYB  
PGND3  
ECAGND  
ECAGND  
ECAGND  
ECAGND  
AGND  
50ꢀ ꢀ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
WLED Charge Pump, RGB, OLED Boost,  
LDOs with ALC and CAI  
Good PCB layout is essential for optimizing performance.  
Chip Information  
Use large traces for the power-supply inputs to minimize  
losses due to parasitic trace resistance and route heat  
away from the device. Good design minimizes excessive  
EMI on the switching paths and voltage gradients in the  
ground plane, resulting in a stable and well regulated  
charge pump. Connect all capacitors as close as pos-  
sible to the IC and keep their traces short, direct, and  
wide. Keep noisy traces, as short as possible. Connect  
AGND, PGND1, PGND2, and PGND3 to the common  
ground plane.  
PROCESS: BiCMOS  
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ꢀ ꢀ 51  
WLED Charge Pump, RGB, OLED Boost,  
LDOs with ALC and CAI  
Package Information  
For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a “+”, “#”, or “-” in the  
package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the  
package regardless of RoHS status.  
PACKAGETYPE  
PACKAGECODE  
DOCUMENTNO.  
21-0441  
49 WLP  
W493B3+2  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied.  
Maxim reserves the right to change the circuitry and specifications without notice at any time.  
52ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ ꢀꢀꢀꢀꢀꢀꢀꢀ Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
©
2010 Maxim Integrated Products  
Maxim is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX8930EWJ+

WLED Charge Pump, RGB, OLED Boost, LDOs with ALC and CAI
MAXIM

MAX8930EWJ+T

暂无描述
MAXIM

MAX8934A

Dual-Input Linear Chargers, Smart Power Selector with Advanced Battery Temperature Monitoring
MAXIM

MAX8934AETI+

Dual-Input Linear Chargers, Smart Power Selector with Advanced Battery Temperature Monitoring
MAXIM

MAX8934AETI+T

暂无描述
MAXIM

MAX8934AEVKIT

Fully Assembled and Tested
MAXIM

MAX8934AEVKIT+

Fully Assembled and Tested
MAXIM

MAX8934BETI+

Dual-Input Linear Chargers, Smart Power Selector with Advanced Battery Temperature Monitoring
MAXIM

MAX8934BETI+T

Power Management Circuit, BICMOS, PQCC28,
MAXIM

MAX8934CETI+

Dual-Input Linear Chargers, Smart Power Selector with Advanced Battery Temperature Monitoring
MAXIM

MAX8934CETI+T

Power Management Circuit, BICMOS, PQCC28,
MAXIM

MAX8934DETI+

Dual-Input Linear Chargers, Smart Power Selector with Advanced Battery Temperature Monitoring
MAXIM