MAX9018BEKA-T [MAXIM]

SOT23, Dual, Precision, 1.8V, Nanopower Comparators With/Without Reference; SOT23封装,双路,高精度, 1.8V ,纳安级功耗比较器,带/不带基准
MAX9018BEKA-T
型号: MAX9018BEKA-T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

SOT23, Dual, Precision, 1.8V, Nanopower Comparators With/Without Reference
SOT23封装,双路,高精度, 1.8V ,纳安级功耗比较器,带/不带基准

比较器 放大器 放大器电路 光电二极管 信息通信管理
文件: 总16页 (文件大小:445K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2874; Rev 1; 7/03  
SOT23, Dual, Precision, 1.8V, Nanopower  
Comparators With/Without Reference  
General Description  
Features  
The single MAX9015/MAX9016 and dual MAX9017–  
MAX9020 nanopower comparators in space-saving  
SOT23 packages feature Beyond-the-Rails™ inputs  
and are guaranteed to operate down to 1.8V. The A-  
grade packages feature an on-board 1.236V 1ꢀ ref-  
erence, while the B-grade packages feature a 1.24V  
1.75ꢀ reference. An ultra-low supply current of 0.85ꢁA  
(MAX9019/MAX9020), 1ꢁA (MAX9015/MAX9016), or  
1.2ꢁA (MAX9017/MAX9018) makes the MAX9015–  
MAX9020 family of comparators ideal for all 2-cell bat-  
tery monitoring/management applications.  
Ultra-Low Total Supply Current  
0.85µA (MAX9019/MAX9020)  
1.0µA (MAX9015A/MAX9016A)  
1.2µA (MAX9017/MAX9018)  
Guaranteed Operation Down to 1.8V  
Precision VOS < 5mV (max)  
Internal 1.236V 1ꢀ ꢁeꢂerence (A Grade)  
Input Voltage ꢁange Extends 200mV  
Beyond-the-ꢁails  
CMOS Push-Pull Output with 6mA Driꢃe  
The unique design of the MAX9015–MAX9020 output  
stage limits supply-current surges while switching,  
which virtually eliminates the supply glitches typical of  
many other comparators. This design also minimizes  
overall power consumption under dynamic conditions.  
The MAX9015/MAX9017/MAX9019 have a push-pull  
output stage that sinks and sources current. Large  
Capability (MAX9015/MAX9017/MAX9019)  
Open-Drain Output Versions Aꢃailable  
(MAX9016/MAX9018/MAX9020)  
Crowbar-Current-Free Switching  
Internal 4mV Hysteresis ꢂor Clean Switching  
No Phase ꢁeꢃersal ꢂor Oꢃerdriꢃen Inputs  
®
internal output drivers allow Rail-to-Rail output swing  
with loads up to 6mA. The MAX9016/MAX9018/MAX9020  
have an open-drain output stage that makes them suit-  
able for mixed-voltage system design. All devices are  
available in the ultra-small 8-pin SOT23 package.  
Dual Versions in Space-Saꢃing 8-Pin SOT23  
Package  
Ordering Information  
Refer to the MAX9117–MAX9120 data sheet for similar  
single comparators with or without reference in a tiny  
SC70 package.  
PIN-  
TOP  
PAꢁT  
TEMP ꢁANGE  
PACKAGE  
MAꢁK  
MAX9015AEKA-T -40°C to +85°C 8 SOT23-8  
MAX9016AEKA-T -40°C to +85°C 8 SOT23-8  
MAX9017AEKA-T -40°C to +85°C 8 SOT23-8  
MAX9017BEKA-T -40°C to +85°C 8 SOT23-8  
AEIW  
AEIX  
AEIQ  
AEIS  
Applications  
Window Detectors  
2-Cell Battery  
Monitoring/Management  
Sensing at Ground or  
Supply Line  
Ordering Information continued at end of data sheet.  
Ultra-Low Power Systems  
Mobile Communications  
Notebooks and PDAs  
Pin Configurations appear at end of data sheet.  
Beyond-the-Rails is a trademark of Maxim Integrated Products, Inc.  
Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd.  
Telemetry and Remote  
Systems  
Medical Instruments  
Threshold Detectors/  
Discriminators  
Selector Guide  
PAꢁT  
MAX9015A  
MAX9016A  
MAX9017A  
MAX9017B  
MAX9018A  
MAX9018B  
MAX9019  
COMPAꢁATOꢁ(S) INTEꢁNAL ꢁEFEꢁENCE (V)  
OUTPUT TYPE  
Push-pull  
SUPPLY CUꢁꢁENT (µA)  
1
1
2
2
2
2
2
2
1.236 1ꢀ  
1.236 1ꢀ  
1.236 1ꢀ  
1.240 1.75ꢀ  
1.236 1ꢀ  
1.240 1.75ꢀ  
1
Open drain  
Push-pull  
1
1.2  
1.2  
1.2  
1.2  
0.85  
0.85  
Push-pull  
Open drain  
Open drain  
Push-pull  
MAX9020  
Open drain  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
SOT23, Dual, Precision, 1.8V, Nanopower  
Comparators With/Without Reference  
ABSOLUTE MAXIMUM ꢁATINGS  
Supply Voltage (V  
to V )....................................................6V  
Output Short-Circuit Duration (REF, OUT_, REF/INA-) ...........10s  
CC  
EE  
IN+, IN-, INA+, INB+, INA-, INB-,  
Continuous Power Dissipation (T = +70°C)  
A
REF/INA-, REF..................................(V - 0.3V) to (V  
Output Voltage (OUT_)  
+ 0.3V)  
8-Pin SOT23 (derate 9.1mW/°C above +70°C)............727mW  
Operating Temperature Range ...........................-40°C to +85°C  
Storage Temperature Range.............................-65°C to +150°C  
Junction Temperature......................................................+150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
EE  
CC  
MAX9015A, MAX9017_, MAX9019....(V - 0.3V) to (V + 0.3V)  
EE  
CC  
MAX9016A, MAX9018_, MAX9020...................(V - 0.3V) to +6V  
EE  
Output Current (REF, OUT_, REF/INA-)............................ 50mA  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTꢁICAL CHAꢁACTEꢁISTICS—MAX9015–MAX9018 (Single and Duals with ꢁEF)  
(V = 5V, V = 0V, V = V  
, T = -40°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.) (Note 1)  
REF A A  
EE  
IN  
CC  
-
PARAMETER  
SYMBOL  
CONDITIONS  
Inferred from the PSRR test  
MIN  
TYP  
MAX  
5.5  
UNITS  
Supply Voltage Range  
V
1.8  
V
CC  
V
V
= 1.8V, T = +25°C  
1.0  
1.1  
1.5  
CC  
CC  
A
= 5.0V, T = +25°C  
1.7  
A
MAX9015A/  
MAX9016A  
V
= 5.0V,  
CC  
2.0  
T
A
= T to T  
MIN MAX  
Supply Current  
I
µA  
CC  
V
V
V
= 1.8V, T = +25°C  
1.2  
1.4  
1.9  
2.3  
CC  
CC  
A
= 5.0V, T = +25°C  
MAX9017_/  
MAX9018_  
A
= 5.0V,  
CC  
2.8  
T
A
= T to T  
MIN MAX  
Input Common-Mode  
Voltage Range  
(MAX9015A/MAX9016A)  
Inferred from the output swing test,  
- 0.2V < V < V + 0.2V  
V
V
V
V
- 0.2  
V
V
+ 0.2  
V
V
CM  
EE  
EE  
CC  
CC  
V
EE  
CM  
CC  
IN+ Voltage Range  
(MAX9017_/MAX9018_)  
Inferred from the output swing test  
- 0.2  
+ 0.2  
IN+  
T
T
= +25°C  
0.15  
5
A
V
V
- 0.2V < V  
+ 0.2V (Note 2)  
<
CM  
EE  
Input Offset Voltage  
V
V
mV  
mV  
nA  
OS  
HB  
CC  
= T  
to T  
10  
A
MIN  
MAX  
Input-Referred Hysteresis  
V
- 0.2V < V  
< V + 0.2V (Note 3)  
CC  
4
EE  
CM  
T
= +25°C  
0.15  
1
2
A
A
Input Bias Current (IN+,  
IN-, INA+, INB+, INB-)  
I
B
T
= T  
to T  
MAX  
MIN  
Power-Supply Rejection  
Ratio  
PSRR  
V
= 1.8V to 5.5V  
0.1  
1
mV/V  
mV  
CC  
T
A
T
A
T
A
T
A
T
A
T
A
T
A
T
A
= +25°C  
100  
200  
300  
350  
450  
200  
300  
350  
450  
V
= 1.8V,  
CC  
I
= 1mA  
SOURCE  
= T  
to T  
MIN  
MAX  
MAX  
MAX  
MAX  
Output Voltage Swing High  
(MAX9015A/MAX9017_)  
V
- V  
OH  
CC  
= +25°C  
= T to T  
250  
105  
285  
V
= 5.0V,  
CC  
I
= 6mA  
SOURCE  
MIN  
= +25°C  
= T to T  
V
= 1.8V,  
= 1mA  
CC  
I
SINK  
MIN  
Output Voltage Swing Low  
(MAX9015A/MAX9017_)  
V
mV  
OL  
= +25°C  
= T to T  
V
= 5.0V,  
= 6mA  
CC  
I
SINK  
MIN  
2
_______________________________________________________________________________________  
SOT23, Dual, Precision, 1.8V, Nanopower  
Comparators With/Without Reference  
ELECTRICAL CHARACTERISTICSMAX9015MAX9018 (Single and Duals with REF)  
(continued)  
(V = 5V, V = 0V, V = V  
, T = -40°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.) (Note 1)  
REF A A  
EE  
IN  
CC  
-
PARAMETER  
SYMBOL  
CONDITIONS  
= 5.5V, V = 5.5V  
OUT  
MIN  
TYP  
MAX  
UNITS  
Output Leakage Current  
(MAX9016A/MAX9018_)  
I
V
0.001  
1
µA  
LEAK  
CC  
Sourcing, V  
=
OUT  
V
V
= 1.8V  
= 5.0V  
3
CC  
CC  
V
EE  
(MAX9015A/  
35  
MAX9017_ only)  
Output Short-Circuit Current  
I
mA  
µs  
SC  
V
V
= 1.8V  
= 5.0V  
3
33  
7
CC  
CC  
Sinking,  
V
V
V
= V  
CC  
OUT  
= 1.8V  
= 5.0V  
CC  
CC  
High-to-Low Propagation  
Delay (Note 4)  
t
PD-  
6
MAX9015A/MAX9017_  
MAX9016A/MAX9018_,  
11  
V
V
= 1.8V  
= 5.0V  
CC  
CC  
12  
28  
31  
R
= 100kto V  
CC  
PULLUP  
Low-to-High Propagation  
Delay (Note 4)  
t
µs  
PD+  
MAX9015A/MAX9017_  
MAX9016A/MAX9018_,  
R
= 100kto V  
CC  
PULLUP  
Rise Time  
t
C = 15pF (MAX9015A/MAX9017_)  
1.6  
0.2  
µs  
µs  
RISE  
L
Fall Time  
t
C = 15pF  
L
FALL  
Power-Up Time  
t
1.2  
ms  
ON  
T
A
T
A
T
A
T
A
= +25°C, 1.0ꢀ  
1.224  
1.205  
1.218  
1.184  
1.236  
1.248  
1.267  
1.262  
1.296  
MAX901_A  
MAX901_B  
= T  
to T  
, 2.5ꢀ  
MIN  
MAX  
Reference Voltage  
V
V
REF  
= +25°C, 1.75ꢀ  
= T to T , 4.5ꢀ  
1.240  
MIN  
MAX  
Reference Voltage  
Temperature Coefficient  
TC  
40  
ppm/°C  
REF  
BW = 10Hz to 1kHz, C  
BW = 10Hz to 6kHz, C  
= 1nF  
= 1nF  
29  
60  
REF  
Reference Output Voltage  
Noise  
E
µV  
RMS  
N
REF  
V  
V  
/
/
REF  
Reference Line Regulation  
Reference Load Regulation  
1.8V V  
5.5V  
0.5  
mV/V  
CC  
CC  
V  
REF  
I
= 0 to 100nA  
0.03  
mV/nA  
OUT  
I  
OUT  
_______________________________________________________________________________________  
3
SOT23, Dual, Precision, 1.8V, Nanopower  
Comparators With/Without Reference  
ELECTRICAL CHARACTERISTICSMAX9019/MAX9020 (Duals without REF)  
(V  
= 5V, V = 0V, T = -40°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.) (Note 1)  
EE A A  
CC  
PARAMETER  
SYMBOL  
CONDITIONS  
Inferred from the PSRR test  
MIN  
TYP  
MAX  
5.5  
UNITS  
Supply Voltage Range  
V
1.8  
V
CC  
V
V
= 1.8V, T = +25°C  
0.85  
1.1  
1.50  
1.70  
CC  
CC  
A
= 5.0V, T = +25°C  
A
MAX9019/  
MAX9020  
Supply Current  
I
µA  
V
CC  
V
= 5.0V,  
CC  
2.0  
T
A
= T  
to T  
MIN  
MAX  
Input Common-Mode  
Voltage Range  
Inferred from the output swing test,  
V
V
- 0.2  
V
+ 0.2  
CC  
CM  
EE  
V
- 0.2V < V  
< V  
+ 0.2V  
EE  
CM  
CC  
T
= +25°C  
1
5
A
A
V
V
- 0.2V < V  
<
EE  
CM  
Input Offset Voltage  
V
V
mV  
mV  
OS  
HB  
+ 0.2V (Note 2)  
CC  
T
= T  
to T  
10  
MIN  
MAX  
Input-Referred Hysteresis  
V
- 0.2V < V  
< V  
+ 0.2V (Note 3)  
4
EE  
CM  
CC  
T
A
T
A
= +25°C  
0.15  
1
Input Bias Current  
(INA-, INA+, INB+, INB-)  
I
B
nA  
= T  
to T  
2
MIN  
MAX  
Power-Supply Rejection Ratio  
PSRR  
V
= 1.8V to 5.5V  
0.1  
55  
1
mV/V  
CC  
T
T
T
T
T
T
T
T
= +25°C  
200  
300  
350  
450  
200  
300  
350  
450  
A
A
A
A
A
A
A
A
V
= 1.8V,  
CC  
I
= 1mA  
SOURCE  
= T  
to T  
Output Voltage Swing High  
(MAX9019 Only)  
MIN  
MAX  
MAX  
MAX  
MAX  
V
- V  
OH  
mV  
CC  
= +25°C  
= T to T  
190  
55  
V
I
= 5.0V,  
CC  
= 6mA  
SOURCE  
MIN  
= +25°C  
= T to T  
V
= 1.8V,  
= 1mA  
CC  
I
SINK  
MIN  
Output Voltage Swing Low  
V
mV  
µA  
mA  
µs  
OL  
= +25°C  
= T to T  
190  
V
= 5.0V,  
= 6mA  
CC  
I
SINK  
MIN  
Output Leakage Current  
(MAX9020 Only)  
I
V
= 5.5V, V = 5.5V  
OUT  
0.001  
1
LEAK  
CC  
V
V
V
V
= 1.8V  
= 5.0V  
= 1.8V  
= 5.0V  
3
35  
3
CC  
CC  
CC  
CC  
Sourcing, V  
V
=
OUT  
(MAX9019 only)  
EE  
Output Short-Circuit Current  
I
SC  
Sinking, V  
= V  
CC  
OUT  
33  
7
V
V
= 1.8V  
CC  
CC  
High-to-Low Propagation  
Delay (Note 4)  
t
PD-  
= 5.0V  
6
MAX9019  
11  
V
V
= 1.8V  
CC  
CC  
MAX9020, R  
=
=
PULLUP  
12  
28  
31  
100kto V  
CC  
Low-to-High Propagation  
Delay (Note 4)  
t
µs  
PD+  
MAX9019  
= 5.0V  
MAX9020, R  
100kto V  
PULLUP  
CC  
4
_______________________________________________________________________________________  
SOT23, Dual, Precision, 1.8V, Nanopower  
Comparators With/Without Reference  
ELECTRICAL CHARACTERISTICSMAX9019/MAX9020 (Duals without REF) (continued)  
(V  
= 5V, V = 0V, T = -40°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.) (Note 1)  
EE A A  
CC  
PARAMETER  
SYMBOL  
CONDITIONS  
C = 15pF (MAX9019 only)  
MIN  
TYP  
1.6  
MAX  
UNITS  
µs  
Rise Time  
t
RISE  
L
Fall Time  
t
C = 15pF  
L
0.2  
µs  
FALL  
Power-Up Time  
t
1.2  
ms  
ON  
Note 1: All devices are 100ꢀ tested at T = +25°C. Specifications over temperature (T = T  
to T  
) are guaranteed by design,  
MAX  
A
A
MIN  
not production tested.  
Note 2: V is defined as the center of the hysteresis band at the input.  
OS  
Note 3: The hysteresis-related trip points are defined as the edges of the hysteresis band, measured with respect to the center of  
the band (i.e., V ) (Figure 1).  
OS  
Note 4: Specified with an input overdrive (V  
) of 100mV, and a load capacitance of C = 15pF. V  
is defined  
OVERDRIVE  
OVERDRIVE  
L
above and beyond the offset voltage and hysteresis of the comparator input.  
Typical Operating Characteristics  
(V  
= 5V, V = 0V, C = 15pF, V  
= 100mV, T = +25°C, unless otherwise noted.)  
CC  
EE  
L
OVERDRIVE A  
MAX9015/MAX9016  
SUPPLY CURRENT  
vs. SUPPLY VOLTAGE AND TEMPERATURE  
MAX9017/MAX9018  
SUPPLY CURRENT  
vs. SUPPLY VOLTAGE AND TEMPERATURE  
MAX9019/MAX9020  
SUPPLY CURRENT  
vs. SUPPLY VOLTAGE AND TEMPERATURE  
1.6  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
T
A
= +85°C  
T
A
= +85°C  
T
= +85°C  
A
T
A
= +25°C  
T
A
= +25°C  
T
= +25°C  
= -40°C  
A
T
A
T
A
= -40°C  
T
= -40°C  
A
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
SUPPLY VOLTAGE (V)  
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
SUPPLY VOLTAGE (V)  
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
SUPPLY VOLTAGE (V)  
MAX9015/MAX9016  
SUPPLY CURRENT vs. TEMPERATURE  
MAX9017/MAX9018  
SUPPLY CURRENT vs. TEMPERATURE  
MAX9019/MAX9020  
SUPPLY CURRENT vs. TEMPERATURE  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
V
= 5V  
CC  
V
CC  
= 5V  
V
= 5V  
CC  
V
CC  
= 3V  
V
CC  
= 3V  
V
CC  
= 3V  
V
= 1.8V  
CC  
V
CC  
= 1.8V  
V
CC  
= 1.8V  
35  
-40  
-15  
10  
60  
85  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
_______________________________________________________________________________________  
5
SOT23, Dual, Precision, 1.8V, Nanopower  
Comparators With/Without Reference  
Typical Operating Characteristics (continued)  
(V  
= 5V, V = 0V, C = 15pF, V  
= 100mV, T = +25°C, unless otherwise noted.)  
CC  
EE  
L
OVERDRIVE  
A
MAX9015/MAX9016  
SUPPLY CURRENT  
vs. OUTPUT TRANSITION FREQUENCY  
MAX9017/MAX9018  
SUPPLY CURRENT  
vs. OUTPUT TRANSITION FREQUENCY  
MAX9019/MAX9020  
SUPPLY CURRENT  
vs. OUTPUT TRANSITION FREQUENCY  
50  
45  
40  
35  
30  
25  
20  
15  
35  
30  
25  
20  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
V
CC  
= 1.8V  
V
CC  
= 1.8V  
V
CC  
= 1.8V  
15  
10  
5
V
CC  
= 3V  
V
CC  
= 3V  
V
CC  
= 5V  
V
CC  
= 5V  
V
CC  
= 5V  
V
CC  
= 3V  
10  
5
0
0
0
1
10  
100  
1k  
10k  
100k  
1
10  
100  
1k  
10k  
100k  
1
10  
100  
1k  
10k  
100k  
OUTPUT TRANSITION FREQUENCY (Hz)  
OUTPUT TRANSITION FREQUENCY (Hz)  
OUTPUT TRANSITION FREQUENCY (Hz)  
OUTPUT VOLTAGE LOW  
vs. SINK CURRENT  
OUTPUT VOLTAGE LOW  
vs. SINK CURRENT AND TEMPERATURE  
OUTPUT VOLTAGE HIGH  
vs. SOURCE CURRENT  
750  
700  
650  
600  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
600  
500  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
V
CC  
= 3V  
V
CC  
= 3V  
T
A
= +25°C  
V
= 1.8V  
CC  
400  
300  
200  
100  
0
V
= 1.8V  
CC  
T
= +85°C  
A
V
CC  
= 5V  
V
CC  
= 5V  
T
A
= -40°C  
0
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
SINK CURRENT (mA)  
SINK CURRENT (mA)  
SOURCE CURRENT (mA)  
OUTPUT VOLTAGE HIGH  
vs. SOURCE CURRENT AND TEMPERATURE  
SHORT-CIRCUIT TO V (SINK CURRENT)  
CC  
SHORT-CIRCUIT TO GND  
(SOURCE CURRENT) vs.TEMPERATURE  
vs. TEMPERATURE  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
40  
35  
30  
25  
20  
15  
10  
5
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
V
CC  
= 5V  
V
CC  
= 5V  
T
A
= +25°C  
T
A
= +85°C  
V
CC  
= 3V  
V
CC  
= 3V  
T
A
= -40°C  
V
CC  
= 1.8V  
V
CC  
= 1.8V  
35  
0
0
0
1
2
3
4
5
6
7
8
9
10  
-40  
-15  
10  
60  
85  
-40  
-15  
10  
35  
60  
85  
SOURCE CURRENT (mA)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
6
_______________________________________________________________________________________  
SOT23, Dual, Precision, 1.8V, Nanopower  
Comparators With/Without Reference  
Typical Operating Characteristics (continued)  
(V  
= 5V, V = 0V, C = 15pF, V  
= 100mV, T = +25°C, unless otherwise noted.)  
CC  
EE  
L
OVERDRIVE  
A
INPUT OFFSET VOLTAGE DISTRIBUTION  
OFFSET VOLTAGE vs. TEMPERATURE  
REFERENCE VOLTAGE DISTRIBUTION  
8
7
6
5
4
3
2
1
0
2.0  
30  
25  
20  
15  
10  
5
A GRADE  
1.6  
1.2  
0.8  
V
CC  
= 1.8V  
0.4  
0
V
CC  
= 5V  
-0.4  
-0.8  
-1.2  
-1.6  
-2.0  
0
-1.5 -1.2 -0.9 -0.6 -0.3  
V
0
0.3 0.6 0.9 1.2 1.5  
-40  
-15  
10  
35  
60  
85  
1.232 1.234 1.236 1.238 1.240  
(mV)  
TEMPERATURE (°C)  
V
REF  
(V)  
OS  
HYSTERESIS VOLTAGE  
vs. TEMPERATURE  
REFERENCE VOLTAGE  
vs. TEMPERATURE  
REFERENCE VOLTAGE  
vs. SUPPLY VOLTAGE  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.240  
1.238  
1.236  
1.234  
1.232  
1.230  
1.240  
1.239  
1.238  
1.237  
1.236  
1.235  
1.234  
A GRADE  
V
CC  
= 1.8V  
V
CC  
= 3V  
V
CC  
= 5V  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
REFERENCE VOLTAGE vs. REFERENCE  
SINK CURRENT AND TEMPERATURE  
REFERENCE VOLTAGE  
vs. REFERENCE SOURCE CURRENT  
REFERENCE VOLTAGE  
vs. REFERENCE SINK CURRENT  
1.255  
1.250  
1.245  
1.248  
1.246  
1.244  
1.242  
V
CC  
= 3V  
T
A
= +85°C  
1.238  
1.235  
1.232  
1.229  
1.226  
V
= 1.8V  
= 3V  
CC  
V
= 1.8V  
CC  
CC  
T
A
= +25°C  
1.240  
1.235  
1.230  
1.225  
1.240  
1.238  
1.236  
1.234  
1.232  
V
V
= 5V  
CC  
CC  
V
= 5V  
CC  
V
= 3V  
80  
T
A
= -40°C  
0
40  
80  
120  
160  
200  
0
40  
80  
120  
160  
200  
0
40  
120  
160  
200  
REFERENCE SINK CURRENT (nA)  
REFERENCE SOURCE CURRENT (nA)  
REFERENCE SINK CURRENT (nA)  
_______________________________________________________________________________________  
7
SOT23, Dual, Precision, 1.8V, Nanopower  
Comparators With/Without Reference  
Typical Operating Characteristics (continued)  
(V  
= 5V, V = 0V, C = 15pF, V  
= 100mV, T = +25°C, unless otherwise noted.)  
CC  
EE  
L
OVERDRIVE A  
INPUT BIAS CURRENT  
vs. INPUT BIAS VOLTAGE  
PROPAGATION DELAY (t  
vs. TEMPERATURE  
)
PROPAGATION DELAY (t  
vs. TEMPERATURE  
)
PD+  
PD-  
1.000  
16  
14  
12  
10  
50  
40  
30  
20  
10  
0
IN+ = 2.5V  
0.600  
0.200  
V
= 5V  
= 3V  
CC  
V
= 1.8V  
= 3V  
CC  
8
6
4
2
0
V
CC  
-0.200  
-0.600  
-1.000  
V
CC  
V
= 5V  
CC  
V
CC  
= 1.8V  
-0.5  
0.5  
1.5  
2.5  
3.5  
4.5  
5.5  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
INPUT BIAS VOLTAGE (IN-) (V)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
PROPAGATION DELAY (t  
vs. INPUT OVERDRIVE  
)
PROPAGATION DELAY (t  
vs. CAPACITIVE LOAD  
)
PROPAGATION DELAY (t  
vs. CAPACITIVE LOAD  
)
PD+  
PD-  
PD-  
180  
160  
140  
200  
50  
40  
30  
20  
10  
0
V
= 1.8V  
= 3V  
CC  
CC  
CC  
V
CC  
= 1.8V  
180  
160  
140  
120  
100  
80  
V
V
V
CC  
= 3V  
120  
100  
80  
= 5V  
V
CC  
= 1.8V  
= 3V  
V
CC  
= 5V  
60  
V
CC  
= 5V  
60  
40  
20  
0
40  
20  
V
CC  
0
0.01  
0.1  
1
10  
100  
1000  
0.01  
0.1  
1
10  
100  
1000  
0
10  
20  
30  
40  
50  
CAPACITIVE LOAD (nF)  
CAPACITIVE LOAD (nF)  
INPUT OVERDRIVE (mV)  
PROPAGATION DELAY (t  
vs. INPUT OVERDRIVE  
)
PROPAGATION DELAY (t  
vs. PULLUP RESISTANCE  
)
PD-  
PD+  
PROPAGATION DELAY (t  
vs. PULLUP RESISTANCE  
)
PD+  
10  
200  
40  
V
= 1.8V  
CC  
35  
30  
25  
V
= 5V  
= 3V  
CC  
9
8
7
6
5
4
160  
120  
80  
V
= 5V  
= 3V  
CC  
V
CC  
= 3V  
V
CC  
V
CC  
20  
15  
10  
5
V
= 5V  
CC  
V
CC  
= 1.8V  
40  
V
= 1.8V  
CC  
0
0
10k  
100k  
1M  
10M  
0
10  
20  
30  
40  
50  
10k  
100k  
1M  
10M  
R
()  
INPUT OVERDRIVE (mV)  
PULLUP  
R
()  
PULLUP  
8
_______________________________________________________________________________________  
SOT23, Dual, Precision, 1.8V, Nanopower  
Comparators With/Without Reference  
Typical Operating Characteristics (continued)  
(V  
= 5V, V = 0V, C = 15pF, V  
= 100mV, T = +25°C, unless otherwise noted.)  
CC  
EE  
L
OVERDRIVE A  
PROPAGATION DELAY (t ) (V = 5V)  
PROPAGATION DELAY (t ) (V = 5V)  
PROPAGATION DELAY (t ) (V = 3V)  
PD- CC  
MAX9015 toc36  
PD-  
CC  
PD+  
CC  
MAX9015 toc34  
MAX9015 toc35  
V
V
V
IN+  
50mV/div  
IN+  
50mV/div  
IN+  
50mV/div  
V
OUT  
2V/div  
V
OUT  
2V/div  
V
OUT  
2V/div  
2µs/div  
10µs/div  
2µs/div  
PROPAGATION DELAY (t ) (V = 3V)  
PROPAGATION DELAY (t ) (V = 1.8V)  
PROPAGATION DELAY (t ) (V = 1.8V)  
PD+ CC  
MAX9015 toc39  
PD+  
CC  
PD-  
CC  
MAX9015 toc37  
MAX9015 toc38  
V
V
V
IN+  
50mV/div  
IN+  
50mV/div  
IN+  
50mV/div  
V
OUT  
1V/div  
V
V
OUT  
1V/div  
OUT  
2V/div  
10µs/div  
2µs/div  
10µs/div  
1kHz RESPONSE (V = 5V)  
SLOW POWER-UP/DOWN RESPONSE  
POWER-UP RESPONSE  
MAX9015 toc42  
CC  
MAX9015 toc40  
MAX9015 toc41  
V
CC  
2V/div  
IN+  
50mV/div  
AC-COUPLED  
V
CC  
1V/div  
V
OUT  
2V/div  
OUT  
2V/div  
V
REF  
1V/div  
V
OUT  
1V/div  
200µs/div  
40µs/div  
20µs/div  
_______________________________________________________________________________________  
9
SOT23, Dual, Precision, 1.8V, Nanopower  
Comparators With/Without Reference  
Pin Description  
PIN  
NAME  
FUNCTION  
MAX9015/  
MAX9016  
MAX9017/  
MAX9018  
MAX9019/  
MAX9020  
1
2
4
4
REF  
IN-  
1.24V Reference Output  
Comparator Inverting Input  
3
IN+  
Comparator Noninverting Input  
Negative Supply Voltage  
4
V
EE  
5, 8  
6
8
8
N.C.  
OUT  
No Connection. Not internally connected.  
Comparator Output  
7
V
Positive Supply Voltage  
CC  
1
1
OUTA  
INA+  
INB+  
INB-  
Comparator A Output  
3
3
Comparator A Noninverting Input  
Comparator B Noninverting Input  
Comparator B Inverting Input  
Comparator B Output  
5
5
6
6
7
7
OUTB  
INA-  
2
Comparator A Inverting Input  
REF/  
INA-  
1.24V Reference Output. Internally connected to the inverting input of  
comparator A (MAX9017/MAX9018 only).  
2
Functional Diagrams  
8
7
8
V
CC  
V
CC  
V
CC  
3
3
INA+  
INA+  
3
IN+  
OUTA  
OUTB  
1
OUTA  
OUTB  
1
7
OUT  
6
REF/INA-  
INB+  
2
5
INA-  
INB+  
2
5
2
1
IN-  
MAX9019  
MAX9020  
MAX9015  
MAX9016  
REF  
7
REF  
6
INB-  
INB-  
6
1.24V  
V
EE  
V
EE  
MAX9017  
MAX9018  
REF  
4
4
1.24V  
V
EE  
4
10 ______________________________________________________________________________________  
SOT23, Dual, Precision, 1.8V, Nanopower  
Comparators With/Without Reference  
Output Stage Circuitry  
The MAX9015MAX9020 feature a unique break-  
Detailed Description  
The MAX9015MAX9018 feature an on-board 1.24V  
before-make output stage capable of driving 8mA  
loads rail-to-rail. Many comparators consume orders of  
magnitude more current during switching than during  
steady-state operation. However, with the MAX9015–  
MAX9020 family of comparators, the supply-current  
change during an output transition is extremely small.  
In the Typical Operating Characteristics, the Supply  
Current vs. Output Transition Frequency graphs show  
the minimal supply-current increase as the output  
switching frequency approaches 1kHz. This character-  
istic reduces the need for power-supply filter capaci-  
tors to reduce glitches created by comparator  
switching currents. In battery-powered applications,  
this characteristic results in a substantial increase in  
battery life.  
0.5ꢀ ( 1.45ꢀ for the B grade) reference, yet draw an  
ultra-low supply current. The MAX9019/MAX9020  
(duals without reference) consume just 850nA of supply  
current. All devices are guaranteed to operate down to  
1.8V supply. Their common-mode input voltage range  
extends 200mV beyond-the-rails. An internal 4mV hys-  
teresis ensures clean output switching, even with slow-  
moving input signals. Large internal output drivers  
swing rail-to-rail with up to 6mA loads (MAX9015/  
MAX9017/MAX9019).  
The output stage employs a unique design that mini-  
mizes supply-current surges while switching, which vir-  
tually eliminates the supply glitches typical of many  
other comparators. The MAX9015/MAX9017/MAX9019  
have a push-pull output stage that sinks as well as  
sources current. The MAX9016/MAX9018/MAX9020  
have an open-drain output stage that can be pulled  
Reference (MAX9015–MAX9018)  
The MAX9015MAX9018sinternal +1.24V reference  
has a typical temperature coefficient of 40ppm/°C over  
the full -40°C to +85°C temperature range. The refer-  
ence is a very-low-power bandgap cell, with a typical  
35koutput impedance. REF can source and sink up  
to 100nA to external circuitry. For applications needing  
increased drive, buffer REF with a low input-bias cur-  
rent op amp such as the MAX4162. Most applications  
require no REF bypass capacitor. For noisy environ-  
ments or fast transients, connect a 1nF to 10nF ceramic  
capacitor from REF to GND.  
beyond V  
up to 5.5V above V . These open-drain  
EE  
CC  
versions are ideal for implementing wire-ORed output  
logic functions.  
Input Stage Circuitry  
The input common-mode voltage ranges extend from  
V
- 0.2V to V  
+ 0.2V. These comparators operate  
CC  
EE  
at any differential input voltage within these limits. Input  
bias current is typically 150pA at the trip point, if the  
input voltage is between the supply rails. Comparator  
inputs are protected from overvoltage by internal ESD  
protection diodes connected to the supply rails. As the  
input voltage exceeds the supply rails, these ESD pro-  
tection diodes become forward biased and begin to  
conduct increasing input bias current (see the Input  
Bias Current vs. Input Bias Voltage graph in the Typical  
Operating Characteristics).  
Applications Information  
Low-Voltage, Low-Power Operation  
The MAX9015MAX9020 are ideally suited for use with  
most battery-powered systems. Table 1 lists a variety of  
battery types, capacities, and approximate operating  
times for the MAX9015MAX9020, assuming nominal  
conditions.  
Table 1. Battery Applications Using the MAX9015MAX9020  
MAX9015A/  
MAX9016A  
OPERATING OPERATING  
MAX9017/  
MAX9018  
MAX9019/  
MAX9020  
OPERATING  
TIME (hr)  
CAPACITY,  
AA SIZE  
(mA-hr)  
BATTERY  
TYPE  
V
V
LIFE  
FRESH  
(V)  
END-OF-  
(V)  
RECHARGEABLE  
TIME (hr)  
TIME (hr)  
Alkaline (2 cells)  
No  
3.0  
2.4  
1.8  
2000  
750  
2000k  
1540k  
1333k  
500k  
Nickel-cadmium  
(2 cells)  
Yes  
1.8  
750k  
570k  
Nickel-metal-hydride  
(2 cells)  
Yes  
Yes  
2.4  
3.6  
1.8  
2.9  
1000  
1000  
1000k  
1000k  
770k  
770k  
660k  
660k  
Lithium-ion (1 cell)  
______________________________________________________________________________________ 11  
SOT23, Dual, Precision, 1.8V, Nanopower  
Comparators With/Without Reference  
Internal Hysteresis  
THRESHOLDS  
Many comparators oscillate in the linear region of oper-  
ation because of noise or undesired parasitic feed-  
back. Oscillations can occur when the voltage on one  
input is equal or very close to the voltage on the other  
input. The MAX9015MAX9020 have internal 4mV hys-  
teresis to counter parasitic effects and noise.  
IN+  
V
THR  
HYSTERESIS  
BAND  
IN-  
V
HB  
V
THF  
The hysteresis in a comparator creates two trip points:  
one for the rising input voltage (V  
) and one for the  
THR  
falling input voltage (V  
) (Figure 1). The difference  
THF  
between the trip points is the hysteresis (V ). When  
HB  
OUT  
the comparators input voltages are equal, the hystere-  
sis effectively causes one comparator input to move  
quickly past the other, thus taking the input out of the  
region where oscillation occurs. Figure 1 illustrates the  
case in which the comparators inverting input has a  
fixed voltage applied, and the noninverting input is var-  
ied. If the inputs were reversed, the figure would be the  
same, except with an inverted output.  
Figure 1. Threshold Hysteresis Band  
V
CC  
R3  
Additional Hysteresis  
(MAX9015/MAX9017/MAX9019)  
R1  
V
IN  
V
CC  
(Push-Pull Outputs)  
OUT  
R2  
The MAX9015/MAX9017/MAX9019 feature a built-in  
4mV hysteresis band (V ). Additional hysteresis can  
HB  
V
EE  
be generated with three resistors using positive feed-  
back (Figure 2). Use the following procedure to calcu-  
late resistor values:  
MAX9015  
MAX9017  
MAX9019  
V
REF  
1) Select R3. Input bias current at IN_+ is less than  
2nA, so the current through R3 should be at least  
0.2µA to minimize errors caused by input bias cur-  
rent. The current through R3 at the trip point is  
Figure 2. MAX9015/MAX9017/MAX9019 Additional Hysteresis  
(V  
- V  
)/R3. Considering the two possible out-  
REF  
OUT  
4) Choose the trip point for V rising (V  
) such that:  
put states in solving for R3 yields two formulas: R3  
= V /IR3 or R3 = (V - V )/I . Use the small-  
IN  
THR  
REF  
CC  
REF R3  
V
er of the two resulting resistor values. For example,  
HB  
V
THR  
> V  
1 +  
REF  
when using the MAX9017 (V  
= 1.24V) and V  
CC  
REF  
V
CC  
= 5V, and if we choose I = 0.2µA, then the two  
R3  
resistor values are 6.2Mand 19M. Choose a  
6.2Mstandard value for R3.  
where V  
is the trip point for V rising. This is the  
IN  
THR  
threshold voltage at which the comparator switches  
its output from low to high as V rises above the  
IN  
trip point. For this example, choose 3V.  
2) Choose the hysteresis band required (V ). For this  
HB  
example, choose 50mV.  
5) Calculate R2 as follows:  
3) Calculate R1 according to the following equation:  
1
R2 =  
V
HB  
V
1
R1  
1
R3  
THR  
X R1  
R1 = R3  
V
CC  
V
REF  
1
For this example, insert the values:  
R2 =  
= 43.99kΩ  
3.0V  
(1.24V X 62k)  
1
1
50mV  
5V  
62kΩ  
6.2MΩ  
R1 = 6.2MΩ  
= 12kΩ  
For this example, choose a 44.2kstandard value.  
12 ______________________________________________________________________________________  
SOT23, Dual, Precision, 1.8V, Nanopower  
Comparators With/Without Reference  
6) Verify the trip voltages and hysteresis as follows:  
4) Choose the trip point for V rising (V  
) such that:  
IN  
THR  
V
rising: = 2.992V, which is equivalent to REF  
IN  
V
HB  
times R1 divided by the parallel combination of R1,  
R2:  
V
THR  
> V  
1 +  
REF  
V
CC  
1
R1  
1
R2  
1
R3  
(V  
is the trip point for V rising). This is the  
IN  
THR  
VTHR = VREF x R1  
+
+
threshold voltage at which the comparator switches  
its output from low to high as V rises above the  
IN  
trip point. For this example, choose 3V:  
and R3.  
5) Calculate R2 as follows:  
V
IN  
falling: = 2.942V:  
1
R2 =  
R1 x V  
R3  
CC  
VTHF = VTHR  
V
1
R1  
1
R3  
THR  
x R1  
V
REF  
Hysteresis = V  
- V  
= 50mV.  
THF  
THR  
1
Additional Hysteresis  
R2 =  
= 51.1kΩ  
(MAX9016/MAX9018/MAX9020)  
(Open-Drain Outputs)  
3.0V  
1.24V x 72kΩ  
1
1
72kΩ  
6.2MΩ  
The MAX9016/MAX9018/MAX9020 feature a built-in 4mV  
hysteresis band. These devices have open-drain outputs  
and require an external pullup resistor (Figure 3).  
Additional hysteresis can be generated using positive  
feedback, but the formulas differ slightly from those of  
the MAX9015/MAX9017/MAX9019. Use the following  
procedure to calculate resistor values:  
For this example, choose a 49.9kstandard value.  
6) Verify the trip voltages and hysteresis as follows:  
1
1
R2  
1
R3  
V
IN  
rising: V  
= V  
x R1  
+
+
REF  
THR  
R1  
1) Select R3. Input bias current at IN_+ is less than  
2nA, so the current through R3 should be at least  
0.2µA to minimize errors caused by input bias cur-  
rent. The current through R3 at the trip point is  
= 3.043V  
1
1
R2  
1
R3  
V
IN  
falling: V  
= V  
x R1  
+
+
THF  
REF  
R1  
(V  
- V  
)/R3. Considering the two possible out-  
OUT  
REF  
put states in solving for R3 yields two formulas: R3  
= V /I or R3 = [(V - V )/I ] - R4. Use the  
R1  
R3 + R4  
x V  
= 2.993V  
CC  
REF R3  
CC  
REF R3  
smaller of the two resulting resistor values. For  
example, when using the MAX9018 (V = 1.24V)  
Hysteresis = V  
- V  
= 50mV.  
THF  
REF  
THR  
and V  
= 5V, and if we choose I = 0.2µA, and  
CC  
R3  
R4 = 1M, then the two resistor values are 6.2MΩ  
V
CC  
and 18M. Choose a 6.2Mstandard value for R3.  
R3  
2) Choose the hysteresis band required (V ).  
HB  
3) Calculate R1 according to the following equation.  
For this example, insert the values:  
R1  
R4  
V
IN  
V
V
CC  
OUT  
V
HB  
R1 = (R3 + R4)  
R2  
V
CC  
EE  
MAX9016  
MAX9018  
MAX9020  
V
REF  
50mV  
5V  
R1 = (6.2MΩ + 1M)  
= 72kΩ  
Figure 3. MAX9016/MAX9018/MAX9020 Additional Hysteresis  
______________________________________________________________________________________ 13  
SOT23, Dual, Precision, 1.8V, Nanopower  
Comparators With/Without Reference  
Board Layout and Bypassing  
V
IN  
5V  
The MAX9015MAX9020 ultra-low supply current typi-  
cally requires no power-supply bypass capacitors.  
However, when the supply has high output impedance,  
long lead lengths or excessive noise, or fast transients,  
V
OTH  
V
UTH  
= 4.2V  
= 2.9V  
R3  
V
CC  
INA+  
bypass V  
to V  
CC  
with a 0.1µF capacitor placed as  
EE  
pin as possible. Minimize signal trace  
CC  
close to the V  
OUTA  
POWER-  
GOOD  
lengths to reduce stray capacitance. Use a ground  
plane and surface-mount components for best perfor-  
mance. If REF is decoupled, use a low-leakage ceram-  
ic capacitor.  
REF/INA-  
REF  
1.24V  
R2  
Window Detector  
The MAX9018 is ideal for window detectors (undervolt-  
age/overvoltage detectors). Figure 4 shows a window  
detector circuit for a single-cell Li+ battery with a 2.9V  
end-of-life charge, a peak charge of 4.2V, and a nomi-  
nal value of 3.6V. Choose different thresholds by  
changing the values of R1, R2, and R3. OUTA provides  
an active-low undervoltage indication, and OUTB pro-  
vides an active-low overvoltage indication. ANDing the  
two open-drain outputs provides an active-high, power-  
good signal.  
V
EE  
MAX9018  
INB+  
INB-  
OUTB  
R1  
V
EE  
Figure 4. Window Detector Circuit  
The design procedure is as follows:  
For this example, choose a 499kstandard value 1ꢀ  
1) Select R1. The input bias current into INB- is nor-  
mally less than 2nA, so the current through R1  
should exceed 100nA for the thresholds to be accu-  
rate. In this example, choose R1 = 1.24MΩ  
(1.24V/1µA).  
resistor.  
4) Calculate R3:  
R3 = (R2 + R3) - R2  
= 2.95M- 546kΩ  
= 240MΩ  
2) Calculate R2 + R3. The overvoltage threshold  
should be 4.2V when V is rising. The design  
IN  
equation is as follows:  
5) Verify the resistor values. The equations are as fol-  
lows, evaluated for the above example:  
V
OTH  
+ V  
R2 + R3 = R1 x  
1  
Overvoltage threshold:  
V
REF  
HB  
(R1 + R2 +R3)  
V
= (V  
+ V ) x  
= 4.20V  
= 2.97V  
OTH  
REF  
HB  
R1  
4.2V  
1.24V + 0.004  
= 1.24Mx  
=2.95MΩ  
1  
Undervoltage threshold:  
(R1 + R2 +R3)  
(R1 + R2)  
V
UTH  
= (V  
V ) x  
REF  
HB  
3) Calculate R2. The undervoltage threshold should  
be 2.9V when V is falling. The design equation is  
IN  
as follows:  
where the internal hysteresis band, V , is 4mV.  
HB  
V
REF  
V
V  
HB  
R2 = (R1 + R2 + R3) x  
R1  
Zero-Crossing Detector  
UTH  
Figure 5 shows a zero-crossing detector application.  
The MAX9015/MAX9016/MAX9019/MAX9020sinvert-  
ing input is connected to ground, and its noninverting  
(1.236)  
2.9  
= (1.24MΩ + 2.95M) x  
= 546kΩ  
1.24MΩ  
input is connected to a 100mV  
signal source. As the  
P-P  
signal at the noninverting input crosses zero, the com-  
parators output changes state.  
14 ______________________________________________________________________________________  
SOT23, Dual, Precision, 1.8V, Nanopower  
Comparators With/Without Reference  
Ordering Information (continued)  
V
CC  
PIN-  
PACKAGE  
TOP  
MARK  
PART  
TEMP RANGE  
V
CC  
100mV  
P-P  
MAX9018AEKA-T -40°C to +85°C 8 SOT23-8  
MAX9018BEKA-T -40°C to +85°C 8 SOT23-8  
AEIR  
AEIT  
AEIU  
AEIV  
IN+  
IN-  
OUT  
MAX9019EKA-T  
MAX9020EKA-T  
-40°C to +85°C 8 SOT23-8  
-40°C to +85°C 8 SOT23-8  
MAX9015  
MAX9016  
MAX9019  
EE MAX9020  
V
Typical Application Circuit  
V
IN  
5V  
V
OTH  
V
UTH  
= 4.2V  
= 2.9V  
Figure 5. Zero-Crossing Detector  
R3  
V
CC  
INA+  
Logic-Level Translator  
The open-drain comparators can be used to convert 5V  
logic to 3V logic levels. The MAX9020 can be powered  
by the 5V supply voltage, and the pullup resistor for the  
MAX9020s open-drain output is connected to the 3V  
supply voltage. This configuration allows the full 5V  
logic swing without creating overvoltage on the 3V logic  
inputs. For 3V to 5V logic-level translations, connect the  
UNDERVOLTAGE  
OUTA  
REF/INA-  
REF  
1.24V  
R2  
V
EE  
MAX9017  
INB+  
INB-  
3V supply voltage to V  
the pullup resistor.  
and the 5V supply voltage to  
CC  
OUTB OVERVOLTAGE  
Chip Information  
R1  
TRANSISTOR COUNT: 349  
PROCESS: BiCMOS  
V
EE  
Pin Configurations  
TOP VIEW  
REF  
IN-  
1
2
3
4
8
7
6
5
N.C.  
OUTA  
REF/INA-  
INA+  
1
2
3
4
8
7
6
5
V
OUTA  
INA-  
1
2
3
4
8
7
6
5
V
CC  
CC  
V
OUTB  
OUTB  
INB-  
CC  
MAX9015  
MAX9016  
MAX9017  
MAX9018  
MAX9019  
MAX9020  
IN+  
OUT  
N.C.  
INB-  
INB+  
INA+  
V
V
EE  
V
INB+  
EE  
EE  
SOT23  
SOT23  
SOT23  
______________________________________________________________________________________ 15  
SOT23, Dual, Precision, 1.8V, Nanopower  
Comparators With/Without Reference  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.  
SEE DETAIL "A"  
SYMBOL  
MIN  
MAX  
e
b
A
0.90  
0.00  
0.90  
0.28  
0.09  
2.80  
2.60  
1.50  
0.30  
1.45  
0.15  
1.30  
0.45  
0.20  
3.00  
3.00  
1.75  
0.60  
C
L
A1  
A2  
b
C
D
E
C
C
L
E1  
L
E
E1  
L
0.25 BSC.  
L2  
e
PIN 1  
I.D. DOT  
(SEE NOTE 6)  
0.65 BSC.  
1.95 REF.  
e1  
0
0
8
e1  
D
C
C
L
L2  
A2  
A
GAUGE PLANE  
A1  
SEATING PLANE  
C
0
L
NOTE:  
1. ALL DIMENSIONS ARE IN MILLIMETERS.  
2. FOOT LENGTH MEASURED FROM LEAD TIP TO UPPER RADIUS OF  
HEEL OF THE LEAD PARALLEL TO SEATING PLANE C.  
DETAIL "A"  
3. PACKAGE OUTLINE EXCLUSIVE OF MOLD FLASH & METAL BURR.  
4. PACKAGE OUTLINE INCLUSIVE OF SOLDER PLATING.  
5. COPLANARITY 4 MILS. MAX.  
6. PIN 1 I.D. DOT IS 0.3 MM MIN. LOCATED ABOVE PIN 1.  
PROPRIETARY INFORMATION  
TITLE:  
7. SOLDER THICKNESS MEASURED AT FLAT SECTION OF LEAD  
BETWEEN 0.08mm AND 0.15mm FROM LEAD TIP.  
8. MEETS JEDEC MO178.  
PACKAGE OUTLINE, SOT-23, 8L BODY  
APPROVAL  
DOCUMENT CONTROL NO.  
REV.  
1
21-0078  
D
1
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
16 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2003 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX9018BEKA/V+T

Comparator,
MAXIM

MAX9019

SOT23, Dual, Precision, 1.8V, Nanopower Comparators With/Without Reference
MAXIM

MAX9019EKA

SOT23, Dual, Precision, 1.8V, Nanopower Comparators With/Without Reference
MAXIM

MAX9019EKA+T

Comparator, 2 Func, 10000uV Offset-Max, 28000ns Response Time, BICMOS, PDSO8, MO-178, SOT-23, 8 PIN
MAXIM

MAX9019EKA+TG0N

Comparator,
MAXIM

MAX9019EKA-T

SOT23, Dual, Precision, 1.8V, Nanopower Comparators With/Without Reference
MAXIM

MAX901A

High-Speed, Low-Power Voltage Comparators
MAXIM

MAX901ACPE

Analog Comparator
MAXIM

MAX901ACPE

QUAD COMPARATOR, 3000uV OFFSET-MAX, 10ns RESPONSE TIME, PDIP16, PLASTIC, DIP-16
ROCHESTER

MAX901ACPE+

Comparator, 4 Func, 3000uV Offset-Max, 10ns Response Time, PDIP16, DIP-16
MAXIM

MAX901ACPP

High-Speed, Low-Power Voltage Comparators
MAXIM

MAX901ACSE

VOLT COMPARATOR|QUAD|SOP|16PIN|PLASTIC
MAXIM