MAX9077 [MAXIM]

Low-Cost, Ultra-Small, 3レA Single-Supply Comparators; 低成本,超小型, 3μA ,单电源比较器
MAX9077
型号: MAX9077
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Low-Cost, Ultra-Small, 3レA Single-Supply Comparators
低成本,超小型, 3μA ,单电源比较器

比较器
文件: 总8页 (文件大小:111K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1547; Rev 0; 10/99  
Lo w -Co s t , Ult ra -S m a ll, 3 µA  
S in g le -S u p p ly Co m p a ra t o rs  
5/MAX907  
Ge n e ra l De s c rip t io n  
Fe a t u re s  
The MAX9075/MAX9077 single/dual comparators are  
optimized for +3V and +5V single-supply applications.  
These comparators have a 580ns propagation delay and  
consume just 3µA per comparator. The combination of  
low-power, single-supply operation down to +2.1V, and  
ultra-small footprint makes these devices ideal for all  
portable applications.  
580ns Propagation Delay from Only 3µA  
+2.1V to +5.5V Single-Supply Operation  
Ground-Sensing Inputs  
Rail-to-Rail Outputs  
No Output Phase Inversion for Overdriven Inputs  
No Differential Clamp Across Inputs  
The MAX9075/MAX9077 have a common-mode input  
voltage range of -0.2V to V - 1.2V. Unlike many com-  
CC  
parators, there is no differential clamp between the  
inputs, allowing the differential input voltage range to  
extend Rail-to-Rail . All inputs and outputs tolerate a  
Available in Ultra-Small Packages  
5-Pin SC70 (MAX9075)  
®
8-Pin SOT23 (MAX9077)  
continuous short-circuit fault condition to either rail.  
The design of the output stage limits supply-current  
surges while switching (typical of many other compara-  
tors), minimizing power consumption under dynamic  
conditions. Large internal push-pull output drivers allow  
rail-to-rail output swing with loads up to 2mA, making  
these devices ideal for interface with TTL/CMOS logic.  
Ord e rin g In fo rm a t io n  
PIN-  
TOP  
The MAX9075 single comparator is available in 5-pin  
SC70 and SOT23-5 packages, while the MAX9077 dual  
c omp a ra tor is a va ila b le in 8-p in SOT23-8 a nd SO  
packages.  
PART  
TEMP. RANGE  
PACKAGE MARK  
MAX9075EXK-T  
MAX9075EUK-T  
MAX9077EKA-T  
MAX9077ESA  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
5 SC70-5  
5 SOT23-5  
8 SOT23-8  
8 SO  
AAC  
ADLX  
AAAD  
Ap p lic a t io n s  
Battery-Powered Systems  
Threshold Detectors/Discriminators  
Keyless Entry Systems  
IR Receivers  
Typ ic a l Op e ra t in g Circ u it  
Digital Line Receivers  
V
CC  
P in Co n fig u ra t io n s  
TOP VIEW  
V
IN  
V
CC  
MAX9075  
MAX9077  
OUT  
GND  
IN+  
1
2
3
5
V
CC  
IN+  
IN-  
MAX9075  
OUT  
4
IN-  
V
REF  
GND  
SC70-5/SOT23-5  
Pin Configurations continued at end of data sheet.  
________________________________________________________________ Maxim Integrated Products  
1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800.  
For small orders, phone 1-800-835-8769.  
Lo w -Co s t , Ult ra -S m a ll, 3 µA  
S in g le -S u p p ly Co m p a ra t o rs  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage  
5-Pin SOT23 (derate 7.1mW/°C above +70°C)..........571mW  
8-Pin SOT23 (derate 5.3mW/°C above +70°C)..........421mW  
8-Pin SO (derate 5.88mW/°C above +70°C)..............471mW  
Operating Temperature Range ...........................-40°C to +85°C  
Storage Temperature Range .............................-65°C to +150°C  
Lead Temperature (soldering, 10sec) .............................+300°C  
V
CC  
to GND .....................................................................+6V  
All Other Pins to GND...........................-0.3V to (V + 0.3V)  
CC  
Duration of Output Short Circuit to GND or V ........Continuous  
Continuous Power Dissipation (T = +70°C)  
CC  
A
5-Pin SC70 (derate 2.5mW/°C above +70°C)............200mW  
Stresses beyond those listed under Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V = +5V, V = -0.2V, T = T  
to T , unless otherwise noted. Typical values are at T = +25°C.) (Note 1)  
MAX A  
CC  
CM  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
Inferred from PSRR  
MIN  
TYP  
MAX  
5.5  
UNITS  
Operating Supply Voltage Range  
V
CC  
2.1  
V
T
= +25°C  
3
5.2  
A
V
= 5V  
CC  
5/MAX907  
Supply Current per Comparator  
I
CC  
T
A
= T  
to T  
MAX  
6.6  
µA  
MIN  
V
= 3V  
2.4  
77  
CC  
Power-Supply Rejection Ratio  
Common-Mode Voltage Range  
PSRR  
2.1V V 5.5V  
54  
dB  
V
CC  
V
1.2  
-
CC  
V
CMR  
(Note 2)  
-0.2  
Input Offset Voltage  
Input Offset Current  
Input Bias Current  
V
±1  
1
±8  
mV  
nA  
nA  
pF  
OS  
I
OS  
I
V
= 0 (Note 3)  
-5  
3
-20  
0.4  
B
CM  
Input Capacitance  
C
IN  
Common-Mode Rejection Ratio  
CMRR  
-0.2V V (V - 1.2V)  
60  
82  
dB  
CM  
CC  
V
-
CC  
OUT_ Output Voltage High  
V
OH  
I
= 2mA  
V
SOURCE  
0.4  
OUT_ Output Voltage Low  
Propagation Delay Low to High  
Propagation Delay High to Low  
Rise/Fall Time  
V
OL  
I
= 2mA  
V
ns  
ns  
ns  
SINK  
t
C
C
C
= 10pF, overdrive = 100mV  
= 10pF, overdrive = 100mV  
= 10pF  
580  
250  
1.6  
PD+  
LOAD  
LOAD  
LOAD  
t
PD-  
Note 1: All devices are 100% production tested at T = +25°C. All temperature limits are guaranteed by design.  
A
Note 2: Inferred from CMRR. Either input can be driven to the absolute maximum limit without output inversion, as long as the other  
input is within the input voltage range.  
Note 3: Guaranteed by design.  
2
_______________________________________________________________________________________  
Lo w -Co s t , Ult ra -S m a ll, 3 µA  
S in g le -S u p p ly Co m p a ra t o rs  
5/MAX907  
Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s  
(V = +5V, V = 0, 100mV overdrive, T = +25°C, unless otherwise noted.)  
CC  
CM  
A
OUTPUT VOLTAGE LOW vs.  
OUTPUT VOLTAGE LOW vs.  
OUTPUT VOLTAGE LOW vs.  
SINK CURRENT (V = 3V)  
CC  
SINK CURRENT (V = 5V)  
CC  
SINK CURRENT (V = 2.1V)  
CC  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
7
6
5
4
3
2
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
T = +25°C  
T = +25°C  
A
A
T = +25°C  
A
T = +85°C  
T = +85°C  
T = +85°C  
A
A
A
T = -40°C  
A
T = -40°C  
A
T = -40°C  
A
1
0
0
0
5
10 15 20 25 30 35 40  
SINK CURRENT (mA)  
0
10 20 30 40 50 60 70 80 90  
SINK CURRENT (mA)  
0
5
10  
15  
20  
SINK CURRENT (mA)  
OUTPUT VOLTAGE HIGH vs.  
SOURCE CURRENT (V = 3V)  
CC  
OUTPUT VOLTAGE HIGH vs.  
SOURCE CURRENT (V = 2.1V)  
OUTPUT VOLTAGE HIGH vs.  
SOURCE CURRENT (V = 5V)  
CC  
CC  
3.5  
3.0  
2.5  
2.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
6
5
4
T = -40°C  
A
T = -40°C  
A
T = -40°C  
A
T = +85°C  
A
3
2
1
T = +85°C  
A
T = +85°C  
A
1.5  
1.0  
T = +25°C  
A
T = +25°C  
A
T = +25°C  
A
0.5  
0
0
-0.5  
-1  
-0.5  
0
5
10 15 20 25 30 35 40 45  
SOURCE CURRENT (mA)  
0
10 20 30 40 50 60 70 80 90 100  
SOURCE CURRENT (mA)  
0
2
4
6
8
10 12 14 16 18  
SOURCE CURRENT (mA)  
SHORT-CIRCUIT SOURCE CURRENT  
vs. TEMPERATURE  
SHORT-CIRCUIT SINK CURRENT  
vs. TEMPERATURE  
SUPPLY CURRENT vs.  
TEMPERATURE (OUT = HIGH)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
4.5  
4.0  
V
= 5V  
CC  
70  
60  
50  
40  
30  
20  
10  
0
V
= 5V  
CC  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
= 5V  
CC  
V
= 3V  
CC  
V
= 2.1V  
CC  
V
= 3V  
V
CC  
= 3V  
CC  
V
= 2.1V  
CC  
V = 2.1V  
CC  
-55 -35 -15  
5
25  
45  
65  
85  
-55 -35 -15  
5
25  
45  
65  
85  
-55 -35 -15  
5
25  
45  
65  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
_______________________________________________________________________________________  
3
Lo w -Co s t , Ult ra -S m a ll, 3 µA  
S in g le -S u p p ly Co m p a ra t o rs  
Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(V = +5V, V = 0, 100mV overdrive, T = +25°C, unless otherwise noted.)  
CC  
CM  
A
SUPPLY CURRENT vs.  
TEMPERATURE (OUT = LOW)  
SUPPLY CURRENT vs.  
OUTPUT TRANSITION FREQUENCY  
INPUT OFFSET VOLTAGE  
vs. TEMPERATURE  
4.0  
1000  
100  
10  
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.6  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
V
= 5V  
CC  
V
= 5V  
CC  
V
CC  
= 3V  
V
CC  
= 2.1V  
V
CC  
= 3V  
V = 5V  
CC  
V
CC  
= 3V  
V
= 2.1V  
CC  
0.5  
0
-0.7  
-0.8  
V
CC  
= 2.1V  
1
-55 -35 -15  
5
25  
45  
65  
85  
1
10  
100  
1k  
10k 100k 1M  
-55 -35 -15  
5
25  
45  
65  
85  
5/MAX907  
TEMPERATURE (°C)  
TRANSITION FREQUENCY (Hz)  
TEMPERATURE (°C)  
PROPAGATION DELAY  
vs. LOAD CAPACITANCE  
PROPAGATION DELAY  
PROPAGATION DELAY  
vs. INPUT OVERDRIVE (t  
)
vs. INPUT OVERDRIVE (t  
)
PD-  
PD+  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
t
PD+  
V
= 2.1V  
t
CC  
PD-  
V
CC  
= 5V  
V
= 3V  
CC  
V
CC  
= 3V  
V
= 5V  
CC  
V
CC  
= 2.1V  
0.2  
0
0
50  
100  
150  
200  
250  
0
50  
100  
150  
200  
250  
0
500  
1000  
1500  
2000  
LOAD CAPACITANCE (pF)  
INPUT OVERDRIVE (mV)  
INPUT OVERDRIVE (mV)  
PROPAGATION DELAY  
vs. TEMPERATURE (V = 2.1V)  
CC  
PROPAGATION DELAY  
vs. TEMPERATURE (V = 3V)  
PROPAGATION DELAY  
vs. TEMPERATURE (V = 5V)  
CC  
CC  
600  
500  
400  
300  
200  
100  
0
500  
450  
400  
350  
800  
700  
600  
500  
t
PD+  
t
PD+  
t
PD+  
t
300  
250  
200  
150  
100  
50  
PD-  
400  
300  
200  
t
PD-  
t
PD-  
100  
0
0
-55 -35 -15  
5
25  
45  
65  
85  
-55 -35 -15  
5
25  
45  
65  
85  
-55 -35 -15  
5
25  
45  
65  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
4
_______________________________________________________________________________________  
Lo w -Co s t , Ult ra -S m a ll, 3 µA  
S in g le -S u p p ly Co m p a ra t o rs  
5/MAX907  
Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(V = +5V, V = 0, 100mV overdrive, T = +25°C, unless otherwise noted.)  
CC  
CM  
A
PROPAGATION DELAY (t  
)
PROPAGATION DELAY (t  
)
PD-  
PD+  
MAX9075/7 toc20  
MAX9075/7 toc19  
V
CC  
= 5V  
V
CC  
= 5V  
V
IN  
50mV/div  
2V/div  
V
IN  
50mV/div  
2V/div  
V
OUT  
V
OUT  
100ns/div  
100ns//div  
PROPAGATION DELAY (t  
)
PROPAGATION DELAY (t  
)
PD-  
PD+  
MAX9075/7 toc22  
MAX9075/7 toc23  
V
CC  
= 3V  
V
CC  
= 3V  
V
IN  
V
IN  
50mV/div  
1V/div  
50mV/div  
1V/div  
V
OUT  
V
OUT  
100ns/div  
100ns/div  
INPUT BIAS CURRENT  
vs. TEMPERATURE  
TRIANGLE WAVE  
MAX9075/7 toc21  
7
6
V
= 3V  
CC  
V
= 5V  
CC  
5
4
3
2
1
0
V
CC  
= 3V  
50mV/div  
1V/div  
V
IN  
V
CC  
= 2.1V  
V
OUT  
-55 -35 -15  
5
25  
45  
65  
85  
200µs/div  
TEMPERATURE (°C)  
_______________________________________________________________________________________  
5
Lo w -Co s t , Ult ra -S m a ll, 3 µA  
S in g le -S u p p ly Co m p a ra t o rs  
P in De s c rip t io n  
PIN  
MAX9075  
MAX9077  
NAME  
FUNCTION  
SOT23-5  
SC70-5  
SO  
SOT23-8  
1
2
1
2
1
1
OUT  
OUTA  
GND  
IN+  
Comparator Output  
Output of Comparator A  
Ground  
4
2
3
3
3
4
Noninverting Comparator Input  
4
4
INA+  
IN-  
Noninverting Input of Comparator A  
Inverting Comparator Input  
2
3
5
5
INA-  
Inverting Input of Comparator A  
Positive Supply Voltage  
8
8
V
CC  
5/MAX907  
5
5
INB+  
INB-  
Noninverting Input of Comparator B  
Inverting Input of Comparator B  
Output of Comparator B  
6
6
7
7
OUTB  
De t a ile d De s c rip t io n  
Ap p lic a t io n s In fo rm a t io n  
The MAX9075/MAX9077 feature a 580ns propagation  
delay from an ultra-low supply current of only 3µA per  
comparator. These devices are capable of single-sup-  
ply operation in the +2.1V to +5.5V range. Large inter-  
nal output drivers allow rail-to-rail output swing with up  
to 2mA loads. Both comparators offer a push-pull out-  
put that sinks and sources current.  
Ad d in g Hys t e re s is  
Hysteresis extends the comparators noise margin by  
increasing the upper threshold and decreasing the  
lower threshold. A voltage divider from the output of the  
comparator sets the trip voltage. Therefore, the trip  
voltage is related to the output voltage. Set the hystere-  
sis with three resistors using positive feedback, as  
shown in Figure 1.  
Co m p a ra t o r Ou t p u t  
The MAX9075/MAX9077 are designed to maintain a  
low supply current during repeated transitions by limit-  
ing the shoot-through current.  
The design procedure is as follows:  
1) Choose R3. The leakage current of IN+ may cause a  
small error; however, the current through R3 can be  
approximately 500nA and still maintain accuracy.  
The added supply current due to the circuit at the  
No is e Co n s id e ra t io n s , Co m p a ra t o r In p u t  
The inp ut c ommon-mod e volta g e ra ng e for the s e  
trip point is V /R3; 10Mis a good practical value  
CC  
devices extends from -0.2V to V - 1.2V. Unlike many  
CC  
for R3, as this keeps the current well below the sup-  
ply current of the chip.  
other comparators, the MAX9075/MAX9077 can oper-  
ate at any differential input voltage within these limits.  
Input bias current is typically -5nA if the input voltage is  
between the supply rails.  
2) Choose the hysteresis voltage (V  
), which is the  
HYS  
voltage between the upper and lower thresholds. In  
this example, choose V = 50mV and assume  
HYS  
Although the comparators have a very high gain, useful  
gain is limited by noise. The comparator has a wide-  
band peak-to-peak noise of approximately 7V.  
V
REF  
= 1.2V and V = 5V.  
CC  
3) Calculate R1 as follows:  
R1 = R3 · V / V = 10M· 0.05 / 5 = 100kΩ  
HYS  
CC  
6
_______________________________________________________________________________________  
Lo w -Co s t , Ult ra -S m a ll, 3 µA  
S in g le -S u p p ly Co m p a ra t o rs  
5/MAX907  
4) Choose the threshold voltage for V rising (V  
). In  
THR  
IN  
this example, choose V  
= 3V.  
THR  
V
CC  
5) Calculate R2 as follows:  
R3  
R2 = 1 / {[V / (V  
1 / {[3 / (1.2 · 100k)] - 1/100k - 1/10M} = 67.114kΩ  
· R1)] - 1/R1 - 1/R3} =  
REF  
THR  
R1  
V
IN  
V
CC  
OUT  
A 1% preferred value is 64.9k.  
R2  
GND  
6) Verify the threshold voltages with these formulas:  
MAX9075  
MAX9077  
V
IN  
rising:  
V
REF  
V
THR  
= V  
· R1 (1/R1 + 1/R2 + 1/R3)  
REF  
V
IN  
falling:  
V
THF  
= V  
- (R1 · V ) / R3  
Figure 1. Adding Hysteresis  
THR CC  
7) Check the error due to input bias current (5nA). If the  
error is too large, reduce R3 and recalculate.  
P in Co n fig u ra t io n s (c o n t .)  
V
= I (R1 · R2 · R3) / (R1 + R2 + R3) = 0.2mV  
B
TH  
Bo a rd La yo u t a n d Byp a s s in g  
TOP VIEW  
Use 10nF power-supply bypass capacitors. Use 100nF  
bypass capacitors when supply impedance is high,  
when supply leads are long, or when excessive noise is  
expected on the supply lines. Minimize signal trace  
le ng ths to re d uc e s tra y c a p a c ita nc e . Minimize the  
capacitive coupling between IN- and OUT. For slow-  
moving inp ut s ig na ls (ris e time > 1ms ) us e a 1nF  
capacitor between IN+ and IN-.  
OUTA  
GND  
1
2
8
7
V
CC  
OUTB  
MAX9077  
INA-  
3
4
6
5
INB-  
INA+  
INB+  
Ch ip In fo rm a t io n  
TRANSISTOR COUNT: 86 (MAX9075)  
142 (MAX9077)  
SOT23-8  
OUTA  
INA-  
1
2
3
4
8
7
6
5
V
CC  
OUTB  
INB-  
MAX9077  
INA+  
GND  
INB+  
SO  
_______________________________________________________________________________________  
7
Lo w -Co s t , Ult ra -S m a ll, 3 µA  
S in g le -S u p p ly Co m p a ra t o rs  
P a c k a g e In fo rm a t io n  
5/MAX907  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
8
_____________________Ma x im In t e g ra t e d P ro d u c t s , 1 2 0 S a n Ga b rie l Drive , S u n n yva le , CA 9 4 0 8 6 4 0 8 -7 3 7 -7 6 0 0  
© 1999 Maxim Integrated Products Printed USA is a registered trademark of Maxim Integrated Products.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY