MAX9110_V01 [MAXIM]

Single/Dual LVDS Line Drivers with Ultra-Low Pulse Skew in SOT23;
MAX9110_V01
型号: MAX9110_V01
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Single/Dual LVDS Line Drivers with Ultra-Low Pulse Skew in SOT23

文件: 总9页 (文件大小:1502K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Click here for production status of specific part numbers.  
MAX9110/MAX9112  
Single/Dual LVDS Line Drivers with  
Ultra-Low Pulse Skew in SOT23  
General Description  
Features  
The MAX9110/MAX9112 single/dual-low-voltage differential  
signaling (LVDS) transmitters are designed for high-  
speed applications requiring minimum power consumption,  
space, and noise. Both devices support switching rates  
exceeding 500Mbps while operating from a single +3.3V  
supply, and feature ultra-low 250ps (max) pulse skew  
required for high-resolution imaging applications, such as  
laser printers and digital copiers.  
Low 250ps (max) Pulse Skew for High-Resolution  
Imaging and High-Speed Interconnect  
Space-Saving 8-Pin SOT23 and SO Packages  
Pin-Compatible Upgrades to DS90LV017/017A  
and DS90LV027/027A (SO Packages)  
Guaranteed 500Mbps Data Rate  
Low 22mW Power Dissipation at 3.3V  
(31mW for MAX9112)  
The MAX9110 is a single LVDS transmitter, and the  
MAX9112 is a dual LVDS transmitter.  
Conform to EIA/TIA-644 Standard  
Single +3.3V Supply  
Both devices conform to the EIA/TIA-644 LVDS standard.  
They accept LVTTL/CMOS inputs and translate them  
to low-voltage (350mV) differential outputs, minimizing  
electromagnetic interference (EMI) and power dissipation.  
These devices use a current-steering output stage,  
minimizing power consumption, even at high data rates.  
The MAX9110/MAX9112 are available in space-saving  
8-pin SOT23 and SO packages. Refer to the MAX9111/  
MAX9113 data sheet for single/dual LVDS line receivers.  
Flow-Through Pinout Simplifies PC Board Layout  
Driver Outputs High Impedance When Powered Off  
Ordering Information  
TEMP.  
RANGE  
PIN-  
PACKAGE  
TOP  
MARK  
PART  
MAX9110EKA-T -40°C to +85°C 8 SOT23-8  
MAX9110ESA -40°C to +85°C 8 SO  
MAX9112EKA-T -40°C to +85°C 8 SOT23-8  
MAX9112ESA -40°C to +85°C 8 SO  
AADN  
Applications  
AADO  
Laser Printers  
Digital Copiers  
Network Switches/Routers  
LCD Displays  
MAX9110EKA+T -40°C to +85°C 8 SOT23-8  
MAX9110ESA+T -40°C to +85°C 8 SO  
MAX9112EKA+T -40°C to +85°C 8 SOT23-8  
MAX9112ESA+T -40°C to +85°C 8 SO  
AADN  
Cellular Phone Base Backplane Interconnect  
MAX9110  
ESA  
Stations  
Clock Distribution  
Telecom Switching  
AADO  
Equipment  
MAX9112  
ESA  
Typical Operating Circuit appears at end of data sheet.  
Pin Configurations/Functional Diagrams/Truth Table  
TOP VIEW  
MAX9112  
MAX9110  
MAX9110  
MAX9112  
DIN1  
GND  
DIN2  
1
2
3
4
8
7
6
5
DO1-  
DO1+  
DO2+  
DO2-  
V
1
2
3
4
8
7
6
5
DO1-  
DO1+  
DO2+  
DO2-  
V
1
2
3
4
8
7
6
5
DO-  
DIN  
1
2
3
4
8
7
6
5
DO-  
DO+  
N.C.  
N.C.  
CC  
CC  
DIN1  
DIN2  
GND  
DIN  
N.C.  
GND  
DO+ GND  
N.C.  
N.C.  
N.C.  
V
CC  
V
CC  
SOT23  
SO  
SO  
SOT23  
DO_+  
DO_-  
DIN_  
H = LOGIC LEVEL HIGH  
L = LOGIC LEVEL LOW  
X = UNDETERMINED  
L
L
H
X
H
L
H
0.8V < V _ < 2.0V  
X
DIN  
19-1771; Rev 1; 9/19  
MAX9110/MAX9112  
Single/Dual LVDS Line Drivers with  
Ultra-Low Pulse Skew in SOT23  
Absolute Maximum Ratings  
Supply Voltage (V  
to GND).................................-0.3V to +4V  
Continuous Power Dissipation (T = +70°C)  
A
CC  
Input Voltage (V  
to GND).................. -0.3V to (V  
+ 0.3V)  
8-Pin SOT23 (derate 7.52mW/°C above +70°C) ........602mW  
8-Pin SO (derate 5.88mW/°C above +70°C)...............471mW  
Operating Temperature Range........................... -40°C to +85°C  
Storage Temperature Range............................ -65°C to +150°C  
Lead Temperature (soldering,10s) ..................................+300°C  
DIN_  
CC  
Output Voltage (V  
+, V  
Output Short-Circuit Duration  
(DO_+, DO_- to V or GND)...............................Continuous  
- to GND or V ).... -0.3V to +3.9V  
DO_  
DO_ CC  
CC  
ESD Protection (Human Body Model, DO_+, DO_-) ........ ±11kV  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these  
or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect  
device reliability.  
Electrical Characteristics  
(V  
= +3.0V to +3.6V, R = 100Ω ±1%, T = -40°C to +85°C, unless otherwise noted. Typical values are at V  
= +3.3V, T = +25°C.)  
CC A  
CC  
L
A
(Notes 1, 2)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
350  
MAX UNITS  
Differential Output Voltage  
V
Figure 1  
Figure 1  
Figure 1  
Figure 1  
250  
450  
mV  
mV  
V
OD  
Change in Magnitude of Output  
Voltage for Complementary  
Output States  
ΔV  
0
1.125  
0
2
1.25  
2
35  
OD  
OS  
Offset Voltage  
V
1.375  
25  
Change in Magnitude of Offset  
Voltage for Complementary  
Output States  
ΔV  
mV  
OS  
Power-Off Leakage Current  
I
V
= 0 or V , V = 0 or open  
CC CC  
-10  
+10  
-20  
µA  
O(OFF)  
DO_ _  
DIN_ = V , V  
DIN_ = GND, V  
+ = 0 or  
CC DO_  
Short-Circuit Output Current  
I
mA  
O(SHORT)  
- = 0  
DO_  
Input High Voltage  
Input Low Voltage  
Input Current High  
Input Current Low  
No-Load Supply Current  
V
2.0  
GND  
0
V
V
V
IH  
CC  
V
0.8  
20  
0
IL  
I
DIN_ = V  
or 2V  
10  
-3  
µA  
µA  
mA  
IH  
CC  
I
DIN_ = GND or 0.8V  
No load, DIN_ = V  
-20  
IL  
I
I
or 0  
CC  
4.5  
6.7  
9.4  
6
CC  
MAX9110  
MAX9112  
8
Supply Current  
DIN_ = V  
or 0  
mA  
CC  
CC  
13  
AC Characteristics  
(V  
= +3.0V to +3.6V, R = 100Ω ±1%, C = 5pF, T = -40°C to +85°C, unless otherwise noted. Typical values are at V = +3.3V,  
CC  
L
L
A
CC  
T
= +25°C.) (Notes 3, 4, 5; Figures 2, 3)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
Differential High-to-Low  
Propagation Delay  
t
1
1.54  
2.5  
2.5  
ns  
ns  
PHLD  
PLHD  
Differential Low-to-High  
Propagation Delay  
t
1
1.58  
Differential Pulse Skew  
t
t
40  
70  
250  
400  
ps  
ps  
SKD1  
|t  
- t  
| (Note 6)  
PHLD PLHD  
Channel-to-Channel Skew (Note 7)  
SKD2  
Maxim Integrated  
2  
www.maximintegrated.com  
MAX9110/MAX9112  
Single/Dual LVDS Line Drivers with  
Ultra-Low Pulse Skew in SOT23  
AC Characteristics (continued)  
(V  
= +3.0V to +3.6V, R = 100Ω ±1%, C = 5pF, T = -40°C to +85°C, unless otherwise noted. Typical values are at V  
= +3.3V,  
CC  
CC  
L
L
A
T
= +25°C.) (Notes 3, 4, 5; Figures 2, 3)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
t
(Note 8)  
(Note 9)  
1
SKD3  
SKD4  
Part-to-Part Skew  
ns  
1.5  
t
High-to-Low Transition Time  
Low-to-High Transition Time  
Maximum Operating Frequency  
t
0.25  
0.25  
250  
0.6  
0.6  
1
1
ns  
ns  
THL  
t
TLH  
f
(Note 10)  
MHz  
MAX  
Note 1: Maximum and minimum limits over temperature are guaranteed by design. Devices are production tested at T = +25°C.  
A
Note 2: By definition, current into the device is positive and current out of the device is negative. Voltages are referred to device  
ground except V  
.
OD  
Note 3: AC parameters are guaranteed by design and characterization.  
Note 4: C includes probe and fixture capacitance.  
L
Note 5: Signal generator conditions for dynamic tests: V = 0, V  
= 3V, f = 20MHz, 50% duty cycle, R = 50Ω, t ≤ 1ns, and t  
O R F  
OL  
OH  
≤ 1ns (0 to 100%).  
Note 6:  
Note 7:  
t
t
is the magnitude difference of differential propagation delays in a channel; t  
= | t  
- t  
|.  
SKD1  
SKD2  
SKD1  
PLHD  
PHLD PLHD  
is the magnitude difference of the t  
or t  
of one channel and the t  
or t  
of the other channel on  
PLHD  
PHLD  
PHLD  
the same device (MAX9112).  
Note 8:  
Note 9:  
Note 10:  
t
is the magnitude difference of any differential propagation delays between devices at the same V  
and within 5°C  
CC  
SKD3  
of each other.  
t
is the magnitude difference of any differential propagation delays between devices operating over the rated supply  
SKD4  
and temperature ranges.  
f
signal generator conditions: V = 0, V  
= +3V, frequency = 250MHz, t ≤ 1ns, t ≤ 1ns (0 to 100%) 50% duty  
R F  
MAX  
OL  
OH  
cycle. Transmitter output criteria: duty cycle = 45% to 55%, V  
≥ 250mV.  
OD  
Typical Operating Characteristics  
(V  
= +3.3V, R = 100Ω, C = 5pF, V = +3V, V = GND, f = 20MHz, T = +25°C, unless otherwise noted.) (Figures 2, 3)  
CC  
L
L
IH  
IL  
IN  
A
MAX9110  
SUPPLY CURRENT  
vs. INPUT FREQUENCY  
DIFFERENTIAL PROPAGATION DELAY  
vs. SUPPLY VOLTAGE  
SUPPLY CURRENT vs. TEMPERATURE  
7.4  
7.3  
7.2  
7.1  
7.0  
6.9  
6.8  
6.7  
6.6  
6.5  
6.4  
9.5  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
A: V = +3.0V  
B: V = +3.3V  
C: V = +3.6V  
CC  
CC  
9.0  
8.5  
8.0  
7.5  
7.0  
6.5  
CC  
t
PLHD  
t
PHLD  
B
C
A
1
100  
1M  
100M  
1G  
10k  
-40  
-15  
10  
35  
60  
85  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
INPUT FREQUENCY (Hz)  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
Maxim Integrated  
3
www.maximintegrated.com  
MAX9110/MAX9112  
Single/Dual LVDS Line Drivers with  
Ultra-Low Pulse Skew in SOT23  
Typical Operating Characteristics (continued)  
(V  
= +3.3V, R = 100Ω, C = 5pF, V = +3V, V = GND, f = 20MHz, T = +25°C, unless otherwise noted.) (Figures 2, 3)  
CC  
L
L
IH  
IL  
IN  
A
DIFFERENTIAL PROPAGATION DELAY  
vs. TEMPERATURE  
DIFFERENTIAL PULSE SKEW  
vs. SUPPLY VOLTAGE  
DIFFERENTIAL PULSE SKEW  
vs. TEMPERATURE  
2.0  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
t
PLHD  
t
PHLD  
-40  
-15  
10  
35  
60  
85  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
TRANSITION TIME vs. SUPPLY VOLTAGE  
TRANSITION TIME vs. TEMPERATURE  
OUTPUT VOLTAGE vs. SUPPLY VOLTAGE  
600  
580  
560  
540  
520  
500  
480  
460  
440  
420  
400  
1.50  
1.45  
1.40  
1.35  
1.30  
1.25  
1.20  
1.15  
1.10  
1.05  
1.00  
700  
650  
600  
550  
500  
450  
400  
350  
300  
OUTPUT HIGH  
t
TLH  
t
TLH  
t
THL  
t
THL  
OUTPUT LOW  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
-40  
-15  
10  
35  
60  
85  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
DIFFERENTIAL OUTPUT VOLTAGE  
vs. SUPPLY VOLTAGE  
DIFFERENTIAL OUTPUT VOLTAGE  
vs. LOAD RESISTANCE  
450  
425  
400  
375  
350  
325  
300  
275  
250  
450  
425  
400  
375  
350  
325  
300  
275  
250  
V
= +3.3V  
CC  
V
CC  
= +3V  
V
= +3.6V  
CC  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
75.0 87.5 100.0 112.5 125.0 137.5 150.0  
SUPPLY VOLTAGE (V)  
LOAD RESISTANCE ()  
Maxim Integrated  
4
www.maximintegrated.com  
MAX9110/MAX9112  
Single/Dual LVDS Line Drivers with  
Ultra-Low Pulse Skew in SOT23  
Typical Operating Characteristics (continued)  
(V  
= +3.3V, R = 100Ω, C = 5pF, V = +3V, V = GND, f = 20MHz, T = +25°C, unless otherwise noted.) (Figures 2, 3)  
CC  
L
L
IH  
IL  
IN  
A
OUTPUT HIGH VOLTAGE  
vs. LOAD RESISTANCE  
OUTPUT LOW VOLTAGE  
vs. LOAD RESISTANCE  
1.45  
1.44  
1.43  
1.42  
1.41  
1.40  
1.39  
1.38  
1.37  
1.36  
1.35  
1.10  
1.09  
1.08  
1.07  
1.06  
1.05  
1.04  
1.03  
1.02  
1.01  
1.00  
V
CC  
= +3.6V  
V
CC  
= +3.6V  
V
CC  
= +3V  
V
CC  
= +3V  
V
CC  
= +3.3V  
V
CC  
= +3.3V  
75.0 87.5 100.0 112.5 125.0 137.5 150.0  
75.0 87.5 100.0 112.5 125.0 137.5 150.0  
LOAD RESISTANCE ()  
LOAD RESISTANCE ()  
Pin Description  
PIN  
MAX9110  
MAX9112  
NAME  
FUNCTION  
SOT23  
SO  
SOT23  
4
SO  
1
4
1
1
2
V
Positive Supply  
CC  
DIN  
DIN1, DIN2  
N.C.  
Transmitter Input  
3, 5, 6  
2
3, 5, 6  
4
1, 3  
2, 3  
No Connection. Not internally connected.  
Ground  
2
4
GND  
7
7
DO+  
Noninverting Transmitter Output  
Inverting Transmitter Output  
8
8
6, 7  
6, 7  
DO2+, DO1+  
DO-  
5, 8  
5, 8  
DO2-, DO1-  
these signals to a differential voltage in the 250mV to  
450mV range across a 100Ω load while drawing only  
9.4mA of supply current for the dualchannel MAX9112.  
Detailed Description  
The MAX9110/MAX9112 single/dual LVDS transmitters  
are intended for high-speed, point-to-point, low-power  
applications. These devices accept CMOS/LVTTL inputs  
with data rates exceeding 500Mbps. The MAX9110/  
MAX9112 reduce power consumption and EMI by translating  
A current-steering approach induces less ground  
bounce and no shoot-through current, enhancing noise  
margin and system speed performance. The output  
Maxim Integrated  
5  
www.maximintegrated.com  
MAX9110/MAX9112  
Single/Dual LVDS Line Drivers with  
Ultra-Low Pulse Skew in SOT23  
DO_+  
C
L
DO_ +  
DO_ -  
R /2  
L
V
DIN_  
CC  
DIN_  
V
OS  
V
OD  
R
L
GENERATOR  
GND  
R /2  
L
50  
C
L
DO_-  
Figure 1. LVDS Transmitter V  
and V  
Test Circuit  
OS  
Figure 2. Transmitter Propagation Delay and Transition Time  
Test Circuit  
OD  
3V  
1.5V  
1.5V  
DIN_  
0
t
t
PHLD  
PLHD  
DO_ -  
DO_+  
V
OH  
OL  
0V DIFFERENTIAL  
0
V
80%  
80%  
0
V
= V + - V  
-
DIFF  
DO_  
DO_  
0
V
DIFF  
20%  
20%  
t
t
THL  
TLH  
Figure 3. Transmitter Propagation Delay and Transition Time Waveforms  
stage presents a symmetrical, high-impedance output,  
reducing differential reflection and timing distortion. The  
driver outputs are short circuit current limited and enter  
a high-impedance state when the device is not powered.  
sion loop. Because the device switches the direction of  
current flow and not voltage levels, the actual output voltage  
swing is determined by the value of the termination  
resistor at the input of an LVDS receiver. Logic states are  
determined by the direction of current flow through the  
termination resistor. With a typical 3.5mA output current,  
the MAX9110/MAX9112 produce an output voltage of  
350mV when driving a 100Ω load. The steady-state-  
voltage peak-to-peak swing is twice the differential  
voltage, or 700mV (typ).  
LVDS Operation  
The LVDS interface standard is a signaling method  
intended for point-to-point communication over a controlled  
impedance medium as defined by the EIA/TIA-644 LVDS  
standard. The LVDS standard uses a lower voltage swing  
than other common communication standards, achieving  
higher data rates with reduced power consumption while  
reducing EMI emissions and system susceptibility to  
noise.  
Applications Information  
Supply Bypassing  
Bypass V  
with high-frequency surface-mount ceramic  
CC  
LVDS transmitters such as the MAX9110/MAX9112  
convert CMOS/LVTTL signals to low-voltage differential  
signals at rates in excess of 500Mbps. The MAX9110/  
MAX9112 current-steering architecture requires a resistive  
load to terminate the signal and complete the transmis-  
0.1μF and 0.001μF capacitors in parallel, as close to the  
device as possible, with the smaller valued capacitor the  
closest. For additional supply bypassing, place a 10μF  
tantalum or ceramic capacitor at the point where power  
enters the circuit board.  
Maxim Integrated  
6  
www.maximintegrated.com  
MAX9110/MAX9112  
Single/Dual LVDS Line Drivers with  
Ultra-Low Pulse Skew in SOT23  
Differential Traces  
Board Layout  
Output trace characteristics affect the performance of the  
MAX9110/MAX9112. Use controlled impedance traces  
to match trace impedance to both transmission medium  
impedance and termination resistor. Eliminate reflections  
and ensure that noise couples as common mode by  
running the differential traces close together. Reduce skew  
by matching the electrical length of the traces. Excessive skew  
can result in a degradation of magnetic field cancellation.  
For LVDS applications, a four-layer PC board that  
provides separate power, ground, LVDS signals, and  
input signals is recommended. Isolate the input and LVDS  
signals from each other to prevent coupling. Separate the  
input and LVDS signal planes with the power and ground  
planes for best results.  
Maintain the distance between the differential traces to  
avoid discontinuities in impedance. Avoid 90° turns and  
minimize the number of vias to further prevent impedance  
discontinuities.  
Typical Operating Circuit  
+3.3V  
+3.3V  
Cables and Connectors  
0.001µF  
0.1µF  
0.001µF  
0.1µF  
Transmission media should have a differential characteristic  
impedance of about 100Ω. Use cables and connectors  
that have matched impedance to minimize impedance  
discontinuities.  
DIN_  
DRIVER  
R
= 100  
RECEIVER  
OUT_  
T
Avoid the use of unbalanced cables, such as ribbon or  
simple coaxial cable. Balanced cables, such as twisted  
pair, offer superior signal quality and tend to generate  
less EMI due to canceling effects. Balanced cables tend  
to pick up noise as common mode, which is rejected by  
the LVDS receiver.  
LVDS  
MAX9111  
MAX9113  
MAX9110  
MAX9112  
Termination  
Termination resistors should match the differential  
characteristic impedance of the transmission line.  
Because the MAX9110/MAX9112 are current-steering  
devices, an output voltage will not be generated without a  
termination resistor. Output voltage levels are dependent  
upon the termination resistor value. Resistance values  
may range between 75Ω and 150Ω.  
Chip Information  
MAX9110 TRANSISTOR COUNT: 765  
MAX9112 TRANSISTOR COUNT: 765  
PROCESS: CMOS  
Minimize the distance between the termination resistor  
and receiver inputs. Use a single 1% to 2% surface-mount  
resistor across the receiver inputs.  
Maxim Integrated  
7  
www.maximintegrated.com  
MAX9110/MAX9112  
Single/Dual LVDS Line Drivers with  
Ultra-Low Pulse Skew in SOT23  
Package Information  
For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a “+”,  
“#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing  
pertains to the package regardless of RoHS status.  
Maxim Integrated  
8  
www.maximintegrated.com  
MAX9110/MAX9112  
Single/Dual LVDS Line Drivers with  
Ultra-Low Pulse Skew in SOT23  
Revision History  
REVISION REVISION  
PAGES  
CHANGED  
DESCRIPTION  
NUMBER  
DATE  
0
1
9/00  
Initial release  
1
9/19  
Updated Ordering Information  
For pricing, delivery, and ordering information, please visit Maxim Integrated’s online storefront at https://www.maximintegrated.com/en/storefront/storefront.html.  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses  
are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits)  
shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
©
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  
2019 Maxim Integrated Products, Inc.  
9  

相关型号:

MAX9111

Single/Dual LVDS Line Receivers with Ultra-Low Pulse Skew in SOT23
MAXIM

MAX9111-MAX9113

Single/Dual LVDS Line Receivers with Ultra-Low Pulse Skew in SOT23
MAXIM

MAX9111EKA

Single/Dual LVDS Line Receivers with Ultra-Low Pulse Skew in SOT23
MAXIM

MAX9111EKA+

Line Receiver, 1 Func, 1 Rcvr, CMOS, PDSO8, MO-178BA, SOT-23, 8 PIN
MAXIM

MAX9111EKA+T

暂无描述
MAXIM

MAX9111ESA

Single/Dual LVDS Line Receivers with Ultra-Low Pulse Skew in SOT23
MAXIM

MAX9111ESA+

Line Receiver, 1 Func, 1 Rcvr, CMOS, PDSO8, 0.150 INCH, SOIC-8
MAXIM

MAX9111_09

Single/Dual LVDS Line Receivers with Ultra-Low Pulse Skew in SOT23
MAXIM

MAX9111_V01

Single/Dual LVDS Line Receivers with Ultra-Low Pulse Skew in SOT23
MAXIM

MAX9112

Single/Dual LVDS Line Drivers with Ultra-Low Pulse Skew in SOT23
MAXIM

MAX9112EKA+T

Line Driver, 2 Func, 2 Driver, CMOS, PDSO8, SOT-23, 8 PIN
MAXIM

MAX9112EKA-T

Single/Dual LVDS Line Drivers with Ultra-Low Pulse Skew in SOT23
MAXIM