MAX9173ESE-T [MAXIM]

Line Receiver, 4 Func, 4 Rcvr, CMOS, PDSO16, 0.150 INCH, MS-012AC, SOIC-16;
MAX9173ESE-T
型号: MAX9173ESE-T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Line Receiver, 4 Func, 4 Rcvr, CMOS, PDSO16, 0.150 INCH, MS-012AC, SOIC-16

光电二极管 接口集成电路
文件: 总14页 (文件大小:335K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2595; Rev 0; 10/02  
Quad LVDS Line Receiver with Flow-Through  
Pinout and “In-Path” Fail-Safe  
General Description  
Features  
The MAX9173 quad low-voltage differential signaling  
(LVDS) line receiver is ideal for applications requiring  
high data rates, low power, and low noise. The  
MAX9173 is guaranteed to receive data at speeds up  
to 500Mbps (250MHz) over controlled-impedance  
media of approximately 100. The transmission media  
can be printed circuit (PC) board traces or cables.  
Accepts LVDS and LVPECL Inputs  
Fully Compatible with DS90LV048A  
Low 1.0mA (max) Disable Supply Current  
In-Path Fail-Safe Circuitry  
Flow-Through Pinout  
Simplifies PC Board Layout  
Reduces Crosstalk  
The MAX9173 accepts four LVDS differential inputs and  
translates them to LVCMOS/LVTTL outputs. The  
MAX9173 inputs are high impedance and require an  
external termination resistor when used in a point-to-  
point connection.  
Guaranteed 500Mbps Data Rate  
400ps Pulse Skew (max)  
Conforms to ANSI TIA/EIA-644 LVDS Standard  
High-Impedance LVDS Inputs when Powered-Off  
Available in Tiny 3mm x 3mm QFN Package  
The device supports a wide common-mode input range  
of 0.05V to V  
- 0.05V, allowing for ground potential  
CC  
differences and common-mode noise between the dri-  
ver and the receiver. A fail-safe feature sets the output  
high when the inputs are open, or when the inputs are  
undriven and shorted or undriven and parallel terminat-  
ed. The EN and EN inputs control the high-impedance  
outputs. The enables are common to all four receivers.  
Inputs conform to the ANSI TIA/EIA-644 LVDS stan-  
dard. The flow-through pinout simplifies board layout  
and reduces crosstalk by separating the LVDS inputs  
and LVCMOS/LVTTL outputs. The MAX9173 operates  
from a single 3.3V supply, and is specified for opera-  
tion from -40°C to +85°C. Refer to the MAX9121/  
MAX9122 data sheet for lower jitter quad LVDS  
receivers with parallel fail-safe. Refer to the MAX9123  
data sheet for a quad LVDS line driver with flow-  
through pinout.  
Ordering Information  
PART  
TEMP RANGE  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
PIN-PACKAGE  
16 TSSOP  
MAX9173EUE  
MAX9173ESE  
MAX9173ETE*  
16 SO  
16 Thin QFN-EP**  
*Future product. Contact factory for availability.  
**EP = Exposed pad.  
Typical Operating Circuit  
LVDS SIGNALS  
MAX9173  
MAX9123  
The device is available in 16-pin TSSOP, SO, and  
space-saving thin QFN packages.  
Tx  
100  
Rx  
Applications  
Digital Copiers  
Tx  
Tx  
Tx  
100Ω  
100Ω  
100Ω  
Rx  
Rx  
Rx  
Laser Printers  
Cellular Phone Base Stations  
Network Switches/Routers  
Backplane Interconnect  
Clock Distribution  
LVTTL/LVCMOS  
DATA INPUTS  
LVTTL/LVCMOS  
DATA OUTPUTS  
LCD Displays  
Telecom Switching Equipment  
Pin Configurations and Functional Diagram appear at end of  
data sheet.  
100SHIELDED TWISTED CABLE OR MICROSTRIP BOARD TRACES  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
Quad LVDS Line Receiver with Flow-Through  
Pinout and “In-Path” Fail-Safe  
ABSOLUTE MAXIMUM RATINGS  
CC  
IN_+, IN_- to GND .................................................-0.3V to +4.0V  
OUT_, EN, EN to GND................................-0.3V to (V + 0.3V)  
V
to GND ..........................................................-0.3V to +4.0V  
Junction Temperature......................................................+150°C  
Storage Temperature Range.............................-65°C to +150°C  
ESD Protection (Human Body Model, IN_+, IN_-) ............ 7.0kV  
Lead Temperature (soldering, 10s) .................................+300°C  
CC  
Continuous Power Dissipation (T = +70°C)  
A
16-Pin TSSOP (derate 9.4mW/°C above T = +70°C)..755mW  
A
16-Pin SO (derate 8.7mW/°C above T = +70°C) ........696mW  
A
16-Pin QFN (derate 14.7mW/°C above T = +70°C)..1177mW  
A
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
DC ELECTRICAL CHARACTERISTICS  
(V  
= 3.0V to 3.6V, differential input voltage |V | = 0.1V to 1.2V, common-mode input voltage V  
= |V /2| to V  
- |V /2|, outputs  
CC ID  
CC  
ID  
CM  
ID  
enabled, and T = -40°C to +85°C. Typical values are at V  
= 3.3V, V  
= 1.2V, |V | = 0.2V, and T = +25°C, unless otherwise  
CM ID A  
A
CC  
noted.) (Notes 1, 2)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
LVDS INPUTS (IN_+, IN_-)  
Differential Input High Threshold  
Differential Input Low Threshold  
Input Current (Noninverting Input)  
V
-45  
-45  
-2.5  
0
mV  
mV  
µA  
TH  
V
-100  
+0.5  
TL  
I
Figure 1  
-5  
IN_+  
Power-Off Input Current  
(Noninverting Input)  
V
V
= 0 to 3.6V, V  
= 0 or open (Figure 1)  
= 0 to 3.6V,  
IN_+  
IN_-  
I
-0.5  
-0.5  
-0.5  
0
+5.0  
0
+0.5  
+10  
+0.5  
µA  
µA  
µA  
IN_+OFF  
CC  
Input Current (Inverting Input)  
I
Figure 1  
IN_-  
Power-Off Input Current  
(Inverting Input)  
V
V
= 0 to 3.6V, V  
= 0 to 3.6V,  
IN_+  
IN_-  
I
IN_-OFF  
= 0 or open, Figure 1  
CC  
OH  
LVCMOS/LVTTL OUTPUTS (OUT_)  
Open, undriven short, or  
2.7  
2.7  
3.2  
undriven parallel termination  
Output High Voltage (Table 1)  
V
I
I
= -4.0mA  
V
OH  
V
= 0  
3.2  
0.1  
-77  
ID  
Output Low Voltage  
Output Short-Circuit Current  
Output High-Impedance Current  
LOGIC INPUTS (EN, EN)  
Input High Voltage  
V
= +4.0mA, V = -100mV  
0.25  
-120  
+1  
V
OL  
OS  
OZ  
OL  
ID  
I
I
V
= 0 (Note 3)  
-45  
-1  
mA  
µA  
OUT_  
Disabled, V  
= 0 or V  
CC  
OUT_  
V
2.0  
0
V
V
V
IH  
CC  
Input Low Voltage  
V
0.8  
+15  
-1.5  
IL  
IN  
Input Current  
I
V
= high or low  
= -18mA  
-15  
µA  
V
IN  
Input Clamp Voltage  
POWER SUPPLY  
V
I
-0.88  
CL  
CL  
Supply Current  
I
Inputs open  
Disabled, inputs open  
12  
15  
mA  
mA  
CC  
Disabled Supply Current  
I
0.56  
1.0  
CCZ  
2
_______________________________________________________________________________________  
Quad LVDS Line Receiver with Flow-Through  
Pinout and “In-Path” Fail-Safe  
AC ELECTRICAL CHARACTERISTICS  
(V  
= 3.0V to 3.6V, C = 15pF, |V | = 0.2V, V  
= 1.2V, and T = -40°C to +85°C. Typical values are at V  
= 3.3V and T =  
CC A  
CC  
L
ID  
CM  
A
+25°C, unless otherwise noted.) (Notes 47)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Differential Propagation Delay  
High to Low  
t
t
t
t
Figures 2 and 3  
Figures 2 and 3  
1.2  
2.01  
2.7  
ns  
PHLD  
PLHD  
SKD1  
SKD2  
Differential Propagation Delay  
Low to High  
1.2  
2.07  
60  
2.7  
400  
500  
ns  
ps  
ps  
ns  
Differential Pulse Skew  
Figures 2 and 3 (Note 8)  
Figures 2 and 3 (Note 9)  
|t  
- t  
|
PHLD PLHD  
Differential Channel-to-Channel  
Skew  
100  
t
t
Figures 2 and 3 (Note 10)  
Figures 2 and 3 (Note 11)  
Figures 2 and 3  
1
SKD3  
SKD4  
Differential Part-to-Part Skew  
1.5  
1.0  
1.0  
14  
14  
14  
14  
Rise Time  
t
t
0.66  
0.62  
9.5  
9.5  
3
ns  
ns  
TLH  
THL  
PHZ  
Fall Time  
Figures 2 and 3  
Disable Time High to Z  
Disable Time Low to Z  
Enable Time Z to High  
Enable Time Z to Low  
Maximum Operating Frequency  
t
R
R
R
R
= 2k, Figures 4 and 5  
= 2k, Figures 4 and 5  
= 2k, Figures 4 and 5  
= 2k, Figures 4 and 5  
ns  
L
L
L
L
t
ns  
PLZ  
PZH  
t
ns  
t
3
ns  
PZL  
f
All channels switching (Note 12)  
250  
MHz  
MAX  
Note 1: Current into a pin is defined as positive. Current out of a pin is defined as negative. All voltages are referenced to ground  
except V , V , and V  
.
ID  
TH TL  
Note 2: Devices are 100% production tested at T = +25°C and are guaranteed by design for T = -40°C to +85°C as specified.  
A
A
Note 3: Short only one output at a time. Do not exceed the absolute maximum junction temperature specification.  
Note 4: AC parameters are guaranteed by design and characterization.  
Note 5: C includes scope probe and test jig capacitance.  
L
Note 6: Pulse generator output conditions: t = t < 1ns (0% to 100%), frequency = 250MHz, 50% duty cycle, V  
= 1.3V, V  
=
OL  
R
F
OH  
1.1V. High-impedance delay pulse generator output conditions: t = t < 3ns (0% to 100%), frequency = 1MHz, 50% duty  
R
F
cycle, V  
= 3V and V = 0.  
OH  
OL  
Note 7: Propagation delay and differential pulse skew decrease when |V | is increased from 200mV to 400mV. Skew specifications  
ID  
apply for 200mV ≤ |V | ≤ 1.2V over the common-mode range V  
= |V |/2 to V  
- |V |/2.  
CC ID  
ID  
CM  
ID  
Note 8:  
Note 9:  
t
t
is the magnitude of the difference of differential propagation delays in a channel. t  
= |t  
PHLD  
- t  
|.  
SKD1  
SKD2  
SKD1  
PLHD  
PHLD PLHD  
is the magnitude of the difference of the t  
or t  
of one channel and the t  
or t  
of any other channel  
PLHD  
PHLD  
on the same part.  
Note 10: t is the magnitude of the difference of any differential propagation delays between parts operating over rated conditions  
SKD3  
at the same V and within 5°C of each other.  
CC  
Note 11: t  
is the magnitude of the difference of any differential propagation delays between parts operating over rated conditions.  
SKD4  
Note 12: 60% to 40% duty cycle, V = 0.4V (max), V  
= 2.7V (min), load = 15pF.  
OL  
OH  
_______________________________________________________________________________________  
3
Quad LVDS Line Receiver with Flow-Through  
Pinout and “In-Path” Fail-Safe  
Typical Operating Characteristics  
(V  
= 3.3V, V  
= 1.2V, |V | = 0.2V, f = 100MHz, input rise and fall time = 1ns (0% to 100%), C = 15pF, and T = +25°C, unless  
CC  
CM  
ID  
L
A
otherwise noted.) (Figures 2 and 3)  
DIFFERENTIAL THRESHOLD VOLTAGE  
vs. SUPPLY VOLTAGE  
SUPPLY CURRENT vs. FREQUENCY  
SUPPLY CURRENT vs. TEMPERATURE  
100  
16  
15  
14  
13  
12  
11  
10  
9
-35  
-39  
-43  
-47  
-51  
-55  
C = 15pF  
L
ALL INPUTS OPEN  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
ALL CHANNELS  
SWITCHING  
V
TH  
ONE CHANNEL  
SWITCHING  
V
TL  
8
0.01  
0.1  
1
10  
100  
1000  
-40  
-15  
10  
35  
60  
85  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
FREQUENCY (MHz)  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
OUTPUT SHORT-CIRCUIT CURRENT  
vs. SUPPLY VOLTAGE  
OUTPUT HIGH-IMPEDANCE CURRENT  
vs. SUPPLY VOLTAGE  
OUTPUT HIGH VOLTAGE  
vs. SUPPLY VOLTAGE  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
-95  
-100  
-0.010  
-0.015  
-0.020  
-0.025  
-0.030  
3.7  
3.6  
3.5  
3.4  
3.3  
3.2  
3.1  
3.0  
2.9  
2.8  
2.7  
I
= -4mA  
ALL INPUTS OPEN  
OH  
EN = LOW, EN = HIGH, V  
= 0  
OUT  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
DIFFERENTIAL PROPAGATION DELAY  
vs. SUPPLY VOLTAGE  
OUTPUT LOW VOLTAGE  
vs. SUPPLY VOLTAGE  
DIFFERENTIAL PROPAGATION DELAY  
vs. TEMPERATURE  
98  
97  
96  
95  
94  
93  
92  
91  
90  
89  
88  
2.20  
2.15  
2.10  
2.05  
2.00  
1.95  
1.90  
2.30  
2.25  
2.20  
2.15  
2.10  
2.05  
2.00  
1.95  
1.90  
1.85  
1.80  
I
= 4mA  
OL  
t
PLHD  
t
PLHD  
t
PHLD  
t
PHLD  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
-40  
-15  
10  
35  
60  
85  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
4
_______________________________________________________________________________________  
Quad LVDS Line Receiver with Flow-Through  
Pinout and “In-Path” Fail-Safe  
Typical Operating Characteristics (continued)  
(V  
= 3.3V, V  
= 1.2V, |V | = 0.2V, f = 100MHz, input rise and fall time = 1ns (0% to 100%), C = 15pF, and T = +25°C, unless  
CC  
CM  
ID  
L
A
otherwise noted.) (Figures 2 and 3)  
DIFFERENTIAL PROPAGATION DELAY  
DIFFERENTIAL PROPAGATION DELAY  
vs. DIFFERENTIAL INPUT VOLTAGE  
DIFFERENTIAL PROPAGATION DELAY  
vs. LOAD  
vs. COMMON-MODE VOLTAGE  
2.7  
2.40  
2.35  
2.30  
2.25  
2.20  
2.15  
2.10  
2.05  
2.00  
1.95  
1.90  
3.0  
2.9  
2.8  
2.7  
2.6  
2.5  
2.4  
2.3  
2.2  
2.1  
2.0  
1.9  
1.8  
1.7  
2.6  
2.5  
2.4  
2.3  
t
PLHD  
t
t
PLHD  
PLHD  
t
PHLD  
2.2  
2.1  
2.0  
1.9  
1.8  
t
PHLD  
t
PHLD  
0.1  
0.6  
1.1  
1.6  
2.1  
2.6  
3.1  
0.1  
0.3  
0.5  
0.7  
0.9  
1.1  
10  
20  
30  
LOAD (pF)  
40  
50  
COMMON-MODE VOLTAGE (V)  
DIFFERENTIAL INPUT VOLTAGE (V)  
TRANSITION TIME vs. SUPPLY VOLTAGE  
TRANSITION TIME vs. TEMPERATURE  
TRANSITION TIME vs. LOAD  
720  
680  
640  
600  
560  
800  
750  
700  
650  
600  
550  
500  
450  
400  
2000  
1800  
1600  
1400  
1200  
1000  
800  
t
TLH  
t
t
TLH  
TLH  
t
THL  
t
THL  
t
THL  
600  
400  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
-40  
-15  
10  
35  
60  
85  
10  
20  
30  
40  
50  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
LOAD (pF)  
DIFFERENTIAL PULSE SKEW  
vs. INPUT TRANSITION TIME  
DIFFERENTIAL PULSE SKEW  
vs. SUPPLY VOLTAGE  
400  
350  
300  
250  
200  
150  
100  
50  
120  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
f = 50MHz  
0
1.0  
1.5  
2.0  
2.5  
3.0  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
INPUT TRANSITION TIME (ns)  
SUPPLY VOLTAGE (V)  
_______________________________________________________________________________________  
5
Quad LVDS Line Receiver with Flow-Through  
Pinout and “In-Path” Fail-Safe  
Pin Description  
PIN  
NAME  
FUNCTION  
TSSOP/SO  
QFN  
15  
16  
1
1
2
3
4
5
6
7
8
IN1-  
IN1+  
IN2+  
IN2-  
IN3-  
IN3+  
IN4+  
IN4-  
Inverting Differential Receiver Input for Receiver 1  
Noninverting Differential Receiver Input for Receiver 1  
Noninverting Differential Receiver Input for Receiver 2  
Inverting Differential Receiver Input for Receiver 2  
Inverting Differential Receiver Input for Receiver 3  
Noninverting Differential Receiver Input for Receiver 3  
Noninverting Differential Receiver Input for Receiver 4  
Inverting Differential Receiver Input for Receiver 4  
2
3
4
5
6
Receiver Enable Inputs. When EN = high and EN = low or open, the outputs are active.  
For other combinations of EN and EN, the outputs are disabled and in high  
impedance.  
9, 16  
7, 14  
EN, EN  
10  
11  
12  
8
9
OUT4  
OUT3  
GND  
LVCMOS/LVTTL Receiver Output for Receiver 4  
LVCMOS/LVTTL Receiver Output for Receiver 3  
Ground  
10  
Power-Supply Input. Bypass V  
Place the smaller value cap as close to the pin as possible.  
to GND with 0.1µF and 0.001µF ceramic capacitors.  
CC  
13  
11  
V
CC  
14  
15  
12  
13  
OUT2  
OUT1  
EP  
LVCMOS/LVTTL Receiver Output for Receiver 2  
LVCMOS/LVTTL Receiver Output for Receiver 1  
Exposed Pad  
Exposed Pad. Solder to ground plane for proper heat dissipation.  
Table 1. Input/Output Function Table  
ENABLES  
INPUTS  
OUTPUT  
EN  
EN  
(IN_+) - (IN_-)  
OUT_  
V
0  
H
L
ID  
H
L or open  
V
-100mV  
ID  
Open, undriven short, or undriven parallel termination  
H
Z
All other combinations of ENABLE pins  
Dont care  
translates it to an LVTTL/LVCMOS output. The receiver  
is specified to detect differential signals as low as  
100mV and as high as 1.2V within an input voltage  
Detailed Description  
LVDS is a signaling method intended for point-to-point  
communication over a controlled-impedance medium  
as defined by the ANSI TIA/EIA-644 and IEEE 1596.3  
standards. LVDS uses a lower voltage swing than other  
common communication standards, achieving higher  
data rates with reduced power consumption while  
reducing EMI and system susceptibility to noise.  
range of 0 to V . The 250mV to 400mV differential out-  
CC  
put of an LVDS driver is nominally centered around a  
1.2V offset. This offset, coupled with the receivers 0 to  
V
input voltage range, allows more than 1V shift in  
CC  
the signal (as seen by the receiver). This allows for a  
difference in ground references of the transmitter and  
the receiver, the common-mode effects of coupled  
noise, or both.  
The MAX9173 is a 500Mbps, four-channel LVDS receiv-  
er intended for high-speed, point-to-point, low-power  
applications. Each channel accepts an LVDS input and  
6
_______________________________________________________________________________________  
Quad LVDS Line Receiver with Flow-Through  
Pinout and “In-Path” Fail-Safe  
Fail-Safe  
V
CC  
The MAX9173 fail-safe drives the receiver output high  
when the differential input is:  
2.5µA  
Open  
IN_+  
IN_-  
Undriven and shorted  
Undriven and terminated  
OUT_  
Without fail-safe, differential noise at the input may  
switch the receiver and appear as data to the receiving  
system. An open input occurs when a cable and termi-  
nation are disconnected. An undriven, terminated input  
occurs when a cable is disconnected with the termina-  
tion still connected across the receiver inputs or when  
the driver of a receiver is in high impedance. An undriv-  
en, shorted input can occur due to a shorted cable.  
45mV  
5µA  
“In-Path” vs. “Parallel” Fail-Safe  
The MAX9173 has in-path fail-safe that is compatible  
with in-path fail-safe receivers, such as the  
DS90LV048A. Refer to the MAX9121/MAX9122 data  
sheet for pin-compatible receivers with parallel fail-safe  
and lower jitter. Refer to the MAX9130 data sheet for a  
single LVDS receiver with parallel fail-safe in an SC70  
package.  
Figure 1. Input with Fail-Safe Network  
sists of a 100pF capacitor charged to the ESD test volt-  
age, which is then discharged into the test device  
through a 1.5kresistor.  
Applications Information  
Differential Traces  
Input trace characteristics affect the performance of the  
MAX9173. Use controlled-impedance board traces. For  
point-to-point connections, match the receiver input ter-  
mination resistor to the differential characteristic imped-  
ance of the board traces.  
The MAX9173 with in-path fail-safe is designed with a  
+45mV input offset voltage, a 2.5µA current source  
between V  
and the noninverting input, and a 5µA  
CC  
current sink between the inverting input and ground  
(Figure 1). If the differential input is open, the 2.5µA  
current source pulls the input to approximately V  
-
CC  
Eliminate reflections and ensure that noise couples as  
common mode by running the differential traces close  
together. Reduce skew by matching the electrical  
length of the traces. Excessive skew can result in a  
degradation of magnetic field cancellation.  
0.8V and the 5µA current sink pulls the inverting input  
to ground, which drives the receiver output high. If the  
differential input is shorted or terminated with a typical  
value termination resistor, the +45mV offset drives the  
receiver output high. If the input is terminated and float-  
ing, the receiver output is driven high by the +45mV off-  
set, and the 2:1 current sink to current source ratio  
(5µA:2.5µA) pulls the inputs to ground. This can be an  
advantage when switching between drivers on a multi-  
point bus because the change in common-mode volt-  
age from ground to the typical driver offset voltage of  
Each channels differential signals should be routed  
close to each other to cancel their external magnetic  
field. Maintain a constant distance between the differ-  
ential traces to avoid discontinuities in differential  
impedance. Minimize the number of vias to further pre-  
vent impedance discontinuities.  
1.2V is not as much as the change from V  
to 1.2V  
CC  
Cables and Connectors  
LVDS transmission media typically have controlled dif-  
ferential impedance of 100. Use cables and connec-  
tors that have matched differential impedance to  
minimize impedance discontinuities.  
(parallel fail-safe pulls the bus to V ).  
CC  
ESD Protection  
ESD-protection structures are incorporated on all pins  
to protect against electrostatic discharges encountered  
during handling and assembly. The receiver inputs of  
the MAX9173 have 7.0kV of protection against static  
electricity (per Human Body Model).  
Avoid the use of unbalanced cables such as coaxial  
cable. Balanced cables such as twisted pair offer  
superior signal quality and tend to generate less EMI  
due to magnetic field canceling effects. Balanced  
cables pick up noise as common mode, which is reject-  
ed by the LVDS receiver.  
Figure 6a shows the Human Body Model, and Figure  
6b shows the current waveform it generates when dis-  
charged into a low-impedance load. This model con-  
_______________________________________________________________________________________  
7
Quad LVDS Line Receiver with Flow-Through  
Pinout and “In-Path” Fail-Safe  
inputs should be separated by 180° from the  
Termination  
The MAX9173 requires an external termination resistor.  
The termination resistor should match the differential  
impedance of the transmission line. Termination resis-  
tance values may range between 90to 132,  
depending on the characteristic impedance of the  
transmission medium.  
LVTTL/LVCMOS outputs to reduce crosstalk.  
For LVDS applications, a four-layer PC board that pro-  
vides separate layers of power, ground, LVDS inputs, and  
output signals is recommended. When using the QFN  
package, solder the exposed pad (EP) to the ground  
plane using an array of vias for proper heat dissipation.  
When using the MAX9173, minimize the distance be-  
tween the input termination resistors and the MAX9173  
receiver inputs. Use 1% surface-mount resistors.  
Chip Information  
Board Layout  
In general, separate the LVDS inputs from single-ended  
outputs to reduce crosstalk. Take special care when  
routing traces with the QFN package. Ideally, the LVDS  
TRANSISTOR COUNT: 1462  
PROCESS: CMOS  
IN_+  
PULSE  
GENERATOR  
OUT_  
C
L
IN_-  
50*  
50*  
*50REQUIRED FOR PULSE GENERATOR.  
Figure 2. Propagation Delay and Transition Time Test Circuit  
IN_-  
1.3V  
1.1V  
V
ID  
= 0.2V  
1.2V (0V DIFFERENTIAL)  
IN_+  
t
t
PHLD  
PLHD  
V
OH  
80%  
80%  
1.5V  
1.5V  
20%  
20%  
V
OL  
OUT_  
t
t
THL  
TLH  
Figure 3. Propagation Delay and Transition Time Test Waveforms  
_______________________________________________________________________________________  
8
Quad LVDS Line Receiver with Flow-Through  
Pinout and “In-Path” Fail-Safe  
V
CC  
S
1
R
L
IN_+  
IN_-  
DEVICE  
UNDER  
TEST  
OUT_  
GENERATOR  
EN  
EN  
C
L
50Ω  
1/4 MAX9173  
C INCLUDES LOAD AND TEST JIG CAPACITANCE.  
L
S = V FOR t AND t MEASUREMENTS.  
1
CC  
PZL  
PLZ  
S = GND FOR t AND t MEASUREMENTS.  
1
PZH  
PHZ  
Figure 4. High-Impedance Delay Test Circuit  
EN WHEN EN = GND OR OPEN  
1.5V  
3V  
0
1.5V  
1.5V  
3V  
0
1.5V  
EN WHEN EN = V  
CC  
t
PZL  
V
CC  
t
t
PLZ  
50%  
OUTPUT WHEN  
= -100mV  
0.5V  
V
V
OL  
V
ID  
t
PZH  
PHZ  
OUTPUT WHEN  
= 0  
OH  
0.5V  
V
ID  
50%  
GND  
Figure 5. High-Impedance Delay Waveforms  
R
C
1M  
R 1500  
D
I
P
100%  
90%  
PEAK-TO-PEAK RINGING  
(NOT DRAWN TO SCALE)  
I
r
DISCHARGE  
RESISTANCE  
CHARGE-CURRENT  
LIMIT RESISTOR  
AMPERES  
HIGH-  
VOLTAGE  
DC  
DEVICE  
UNDER  
TEST  
C
STORAGE  
CAPACITOR  
s
36.8%  
100pF  
SOURCE  
10%  
0
TIME  
0
t
RL  
t
DL  
CURRENT WAVEFORM  
Figure 6a. Human Body ESD Test Modules  
Figure 6b. Human Body Current Waveform  
_______________________________________________________________________________________  
9
Quad LVDS Line Receiver with Flow-Through  
Pinout and “In-Path” Fail-Safe  
Pin Configurations  
TOP VIEW  
IN1-  
1
2
3
4
5
6
7
8
16 EN  
IN1+  
IN2+  
IN2-  
IN3-  
IN3+  
IN4+  
IN4-  
15 OUT1  
14 OUT2  
IN2+  
IN2-  
IN3-  
IN3+  
1
2
3
4
12 OUT2  
11  
10 GND  
OUT3  
V
CC  
MAX9173  
13 V  
CC  
MAX9173  
12 GND  
11 OUT3  
10 OUT4  
9
9
EN  
TSSOP/SO  
THIN QFN-EP  
Functional Diagram  
V
CC  
IN1+  
OUT1  
OUT2  
OUT3  
OUT4  
IN1-  
IN2+  
IN2-  
IN3+  
IN3-  
IN4+  
IN4-  
EN  
EN  
MAX9173  
GND  
10 ______________________________________________________________________________________  
Quad LVDS Line Receiver with Flow-Through  
Pinout and “In-Path” Fail-Safe  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
______________________________________________________________________________________ 11  
Quad LVDS Line Receiver with Flow-Through  
Pinout and “In-Path” Fail-Safe  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
D2  
b
0.10 M  
C
A
B
D
D2/2  
D/2  
E/2  
E2/2  
- A -  
(NE - 1)  
X e  
C
E2  
E
L
L
- B -  
k
e
C
L
(ND - 1)  
X e  
C
L
C
L
0.10  
C
0.08  
C
A
A2  
A1  
L
L
e
e
PROPRIETARY INFORMATION  
TITLE:  
PACKAGE OUTLINE  
12 & 16L, QFN THIN, 3x3x0.8 mm  
APPROVAL  
DOCUMENT CONTROL NO.  
REV.  
1
21-0136  
C
2
12 ______________________________________________________________________________________  
Quad LVDS Line Receiver with Flow-Through  
Pinout and “In-Path” Fail-Safe  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
EXPOSED PAD VARIATIONS  
NOTES:  
1. DIMENSIONING & TOLERANCING CONFORM TO ASME Y14.5M-1994.  
2. ALL DIMENSIONS ARE IN MILLIMETERS. ANGLES ARE IN DEGREES.  
3. N IS THE TOTAL NUMBER OF TERMINALS.  
4. THE TERMINAL #1 IDENTIFIER AND TERMINAL NUMBERING CONVENTION SHALL CONFORM TO  
JESD 95-1 SPP-012. DETAILS OF TERMINAL #1 IDENTIFIER ARE OPTIONAL, BUT MUST BE LOCATED  
WITHIN THE ZONE INDICATED. THE TERMINAL #1 IDENTIFIER MAY BE EITHER A MOLD OR  
MARKED FEATURE.  
5. DIMENSION b APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.20 mm AND 0.25 mm  
FROM TERMINAL TIP.  
6. ND AND NE REFER TO THE NUMBER OF TERMINALS ON EACH D AND E SIDE RESPECTIVELY.  
7. DEPOPULATION IS POSSIBLE IN A SYMMETRICAL FASHION.  
8. COPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS.  
9. DRAWING CONFORMS TO JEDEC MO220 REVISION C.  
PROPRIETARY INFORMATION  
TITLE:  
PACKAGE OUTLINE  
12 & 16L, QFN THIN, 3x3x0.8 mm  
APPROVAL  
DOCUMENT CONTROL NO.  
REV.  
2
21-0136  
C
2
______________________________________________________________________________________ 13  
Quad LVDS Line Receiver with Flow-Through  
Pinout and “In-Path” Fail-Safe  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
INCHES  
MILLIMETERS  
DIM  
A
MIN  
MAX  
0.069  
0.010  
0.019  
0.010  
MIN  
1.35  
0.10  
0.35  
0.19  
MAX  
1.75  
0.25  
0.49  
0.25  
0.053  
0.004  
0.014  
0.007  
N
A1  
B
C
e
0.050 BSC  
1.27 BSC  
E
0.150  
0.228  
0.016  
0.157  
0.244  
0.050  
3.80  
5.80  
0.40  
4.00  
6.20  
1.27  
E
H
H
L
VARIATIONS:  
INCHES  
1
MILLIMETERS  
DIM  
D
MIN  
MAX  
0.197  
0.344  
0.394  
MIN  
4.80  
8.55  
9.80  
MAX  
5.00  
N
8
MS012  
AA  
TOP VIEW  
0.189  
0.337  
0.386  
D
8.75 14  
10.00 16  
AB  
D
AC  
D
C
A
B
0 -8  
e
A1  
L
FRONT VIEW  
SIDE VIEW  
PROPRIETARY INFORMATION  
TITLE:  
PACKAGE OUTLINE, .150" SOIC  
APPROVAL  
DOCUMENT CONTROL NO.  
REV.  
1
21-0041  
B
1
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
14 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2002 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY