MAX9174EUB [MAXIM]

670MHz LVDS-to-LVDS and Anything-to-LVDS 1:2 Splitters; 670MHz的LVDS至LVDS和任何对LVDS 1 : 2分配器
MAX9174EUB
型号: MAX9174EUB
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

670MHz LVDS-to-LVDS and Anything-to-LVDS 1:2 Splitters
670MHz的LVDS至LVDS和任何对LVDS 1 : 2分配器

逻辑集成电路 光电二极管 驱动
文件: 总14页 (文件大小:260K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2827; Rev 0; 4/03  
670MHz LVDS-to-LVDS and Anything-to-LVDS  
1:2 Splitters  
General Description  
Features  
The MAX9174/MAX9175 are 670MHz, low-jitter, low-  
skew 1:2 splitters ideal for protection switching, loop-  
back, and clock and signal distribution. The devices  
1.0ps  
Jitter (max) at 670MHz  
(RMS)  
80ps  
Jitter (max) at 800Mbps Data Rate  
(P-P)  
feature ultra-low 1.0ps  
random jitter (max) that  
(RMS)  
+3.3V Supply  
ensures reliable operation in high-speed links that are  
highly sensitive to timing errors.  
LVDS Fail-Safe Inputs (MAX9174)  
Anything Input (MAX9175) Accepts Differential  
The MAX9174 has a fail-safe LVDS input and LVDS out-  
puts. The MAX9175 has an anything differential input  
(CML/LVDS/LVPECL) and LVDS outputs. The outputs  
can be put into high impedance using the power-down  
inputs. The MAX9174 features a fail-safe circuit that dri-  
ves the outputs high when the input is open, undriven  
and shorted, or undriven and terminated. The MAX9175  
has a bias circuit that forces the outputs high when the  
input is open. The power-down inputs are compatible  
with standard LVTTL/LVCMOS logic. The power-down  
CML/LVDS/LVPECL  
Power-Down Inputs Tolerate -1.0V and V  
+ 1.0V  
CC  
Low-Power CMOS Design  
10-Lead µMAX and Thin QFN Packages  
-40°C to +85°C Operating Temperature Range  
Conform to ANSI TIA/EIA-644 LVDS Standard  
IEC 61000-4-2 Level 4 ESD Rating  
inputs tolerate undershoot of -1V and overshoot of V  
CC  
+ 1V. The MAX9174/MAX9175 are available in 10-pin  
µMAX and 10-lead thin QFN with exposed pad pack-  
ages, and operate from a single +3.3V supply over the  
-40°C to +85°C temperature range.  
Ordering Information  
PART  
TEMP RANGE  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
PIN-PACKAGE  
10 µMAX  
MAX9174EUB  
MAX9174ETB*  
MAX9175EUB  
MAX9175ETB*  
Applications  
10 Thin QFN-EP**  
10 µMAX  
Protection Switching  
Loopback  
10 Thin QFN-EP**  
Clock Distribution  
*Future product—contact factory for availability.  
**EP = Exposed paddle.  
Functional Diagram and Pin Configurations appear at end  
of data sheet.  
Typical Application Circuit  
CLOCK DISTRIBUTION  
ASIC  
MAX9176  
MAX9174  
CLK IN  
CLK1  
ASIC  
MAX9176  
MAX9174  
CLK IN  
CLK2  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
670MHz LVDS-to-LVDS and Anything-to-LVDS  
1:2 Splitters  
ABSOLUTE MAXIMUM RATINGS  
CC  
IN+, IN- to GND...........................................……...-0.3V to +4.0V  
OUT_+, OUT_- to GND..........................................-0.3V to +4.0V  
PD0, PD1 to GND.......................................-1.4V to (V  
V
to GND..………………………………………...-0.3V to +4.0V  
Storage Temperature Range.............................-65°C to +150°C  
ESD Protection  
Human Body Model (R = 1.5k, C = 100pF)  
D
S
+ 1.4V)  
IN+, IN-, OUT_+, OUT_-...............................................… 2kV  
CC  
Single-Ended and Differential Output  
Short-Circuit Duration (OUT_+, OUT_-) .....................Continuous  
Other Pins (V , PD0, PD1)...............................................2kV  
CC  
IEC 61000-4-2 Level 4 (R = 330, C = 150pF)  
D S  
Continuous Power Dissipation (T = +70°C)  
Contact Discharge IN+, IN-, OUT_+, OUT_- ................... 8kV  
Air-Gap Discharge IN+, IN-, OUT_+, OUT_- ................. 15kV  
Lead Temperature (soldering, 10s) .................................+300°C  
A
10-Pin µMAX (derate 5.6mW/°C above +70°C)...........444mW  
10-Lead QFN (derate 24.4mW/°C above +70°C)......1951mW  
Maximum Junction Temperature .....................................+150°C  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
DC ELECTRICAL CHARACTERISTICS  
(V  
= +3.0V to +3.6V, R = 1001ꢀ, PD_ = high, differential input voltage |V | = 0.05V to 1.2V, MAX9174 input common-mode  
CC  
L ID  
= |V /2| to (2.4V - |V /2|), MAX9175 input common-mode voltage V  
voltage V  
= |V /2| to (V  
- | V /2|), T = -40°C to  
CC ID A  
CM  
ID  
ID  
CM  
ID  
+85°C, unless otherwise noted. Typical values are at V  
= +3.3V, |V | = 0.2V, V  
= +1.25V, T = +25°C.) (Notes 1, 2, 3)  
CM A  
CC  
ID  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
+50  
+20  
UNITS  
DIFFERENTIAL INPUT (IN+, IN-)  
Differential Input High Threshold  
Differential Input Low Threshold  
Input Current  
V
mV  
mV  
µA  
TH  
V
-50  
-20  
TL  
I
I
Figure 1  
IN+, IN-  
MAX9174  
V
V
= 0V or open, Figure 1  
CC  
I
IN+,  
= 3.6V or 0V, V = 3.6V  
IN-  
IN+  
Power-Off Input Current  
-20  
+20  
µA  
I
IN-  
MAX9175  
or 0V, V  
= 0V or open,  
CC  
Figure 1  
R
R
60  
108  
394  
IN1  
IN2  
Fail-Safe Input Resistors  
(MAX9174)  
V
V
= 3.6V, 0V or open, Figure 1  
= 3.6V, 0V or open, Figure 1  
kΩ  
CC  
CC  
200  
Input Resistors  
(MAX9175)  
R
212  
450  
4.5  
kΩ  
IN3  
Input Capacitance  
C
IN+ or IN- to GND (Note 4)  
pF  
IN  
PD0 PD1  
)
LVTTL/LVCMOS INPUTS (  
,
V
+
CC  
1
Input High Voltage  
V
2.0  
V
IH  
Input Low Voltage  
V
-1.0  
-1.5  
+0.8  
V
IL  
-1.0V PD_ 0V  
mA  
Input Current  
I
0V PD_ V  
-20  
+20  
µA  
IN  
CC  
V
PD_ V  
+ 1.0V  
CC  
+1.5  
mA  
CC  
LVDS OUTPUTS (OUT_+, OUT_-)  
Differential Output Voltage  
V
Figure 2  
Figure 2  
Figure 3  
250  
393  
1.0  
475  
15  
mV  
mV  
V
OD  
Change in Differential Output  
Voltage Between Logic States  
V  
OD  
OS  
Offset Voltage  
V
1.125  
1.29  
1.375  
2
_______________________________________________________________________________________  
670MHz LVDS-to-LVDS and Anything-to-LVDS  
1:2 Splitters  
DC ELECTRICAL CHARACTERISTICS (continued)  
(V  
= +3.0V to +3.6V, R = 1001ꢀ, PD_ = high, differential input voltage |V | = 0.05V to 1.2V, MAX9174 input common-mode  
CC  
L ID  
= |V /2| to (2.4V - |V /2|), MAX9175 input common-mode voltage V  
voltage V  
= |V /2| to (V  
- | V /2|), T = -40°C to  
CC ID A  
CM  
ID  
ID  
CM  
ID  
+85°C, unless otherwise noted. Typical values are at V  
= +3.3V, |V | = 0.2V, V  
= +1.25V, T = +25°C.) (Notes 1, 2, 3)  
CM A  
CC  
ID  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Change in Offset Voltage  
Between Logic States  
V  
Figure 3  
Figure 2  
1.0  
15  
mV  
OS  
Fail-Safe Differential Output  
Voltage (MAX9174)  
V
250  
86  
393  
119  
475  
160  
mV  
OD  
Differential Output Resistance  
R
V
= 3.6V or 0V  
CC  
DIFF  
V
V
= open,  
= 3.6V or 0V  
OUT_+  
OUT_-  
Power-Down Single-Ended  
Output Current  
I
PD_ = low  
-1.0  
0.03  
0.03  
+1.0  
µA  
µA  
PD  
V
V
= open,  
= 3.6V or 0V  
OUT_-  
OUT_+  
V
V
= open,  
= 3.6V or 0V  
OUT_+  
OUT_-  
Power-Off Single-Ended Output  
Current  
PD0, PD1 = low,  
I
-1.0  
-15  
+1.0  
+15  
OFF  
V
= 0V or open  
CC  
V
V
= open,  
= 3.6V or 0V  
OUT_-  
OUT_+  
V
V
= +50mV or -50mV, V  
= 0V or  
ID  
OUT_+  
Output Short-Circuit Current  
I
mA  
mA  
mA  
CC  
OS  
V
= +50mV or -50mV, V  
= 0V or V  
ID  
ID  
OUT_-  
CC  
Differential Output Short-Circuit  
Current Magnitude  
I  
V
= +50mV or -50mV, V  
= 0V (Note 4)  
OD  
15  
26  
OSD  
PD0 = V , PD1 = 0V or  
PD0 = 0V, PD1 = V  
CC  
CC  
17  
Supply Current  
I
CC  
PD0 = Vcc, PD1 = Vcc  
PD1, PD0 = 0V  
25  
35  
20  
Power-Down Supply Current  
Output Capacitance  
I
0.5  
µA  
pF  
CCPD  
C
OUT_+ or OUT_- to GND (Note 4)  
5.2  
O
_______________________________________________________________________________________  
3
670MHz LVDS-to-LVDS and Anything-to-LVDS  
1:2 Splitters  
AC ELECTRICAL CHARACTERISTICS  
(V  
age, V  
= +3.0V to +3.6V, R = 1001ꢀ, C = 5pF, differential input voltage |V | = 0.15V to 1.2V, MAX9174 input common-mode volt-  
CC  
L L ID  
= |V /2| to (2.4V - |V /2|), MAX9175 input common-mode voltage V  
= |V /2| to (V  
- |V /2|), PD_ = high, T = -40°C  
CC ID A  
CM  
ID  
ID  
CM  
ID  
to +85°C, unless otherwise noted. Typical values are at V  
= +3.3V, |V | = 0.2V, V  
= +1.25V, T = +25°C.) (Notes 5, 6, 7)  
CM A  
CC  
ID  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
1.33  
1.33  
TYP  
2.38  
2.39  
MAX  
3.23  
3.23  
80  
UNITS  
ns  
High-to-Low Propagation Delay  
Low-to-High Propagation Delay  
Added Deterministic Jitter  
Added Random Jitter  
t
t
Figures 4, 5  
PHL  
Figures 4, 5  
ns  
PLH  
t
Figures 4, 5 (Note 8)  
Figures 4, 5  
ps  
(P-P)  
DJ  
t
1.0  
ps  
(RMS)  
RJ  
Pulse Skew t  
- t  
t
Figures 4, 5  
10  
14  
141  
45  
ps  
PLH PHL  
SKP  
Output-to-Output Skew  
t
Figure 6  
ps  
ns  
SKOO  
t
t
Figures 4, 5 (Note 9)  
Figures 4, 5 (Note 10)  
Figures 4, 5  
0.4  
1.3  
SKPP1  
SKPP2  
Part-to-Part Skew  
1.9  
Rise Time  
t
110  
110  
257  
252  
10  
365  
365  
13  
ps  
ps  
ns  
µs  
R
Fall Time  
t
Figures 4, 5  
F
Power-Down Time  
t
t
Figures 7, 8  
PD  
PD0, PD1 = L H, Figures 7, 8  
18  
35  
Power-Up Time  
PD0 = H, PD1 = L H, Figures 7, 8  
PD1 = H, PD0 L H, Figures 7, 8  
92  
103  
103  
PU  
ns  
92  
Figures 4, 5, V  ≥ 250mV  
(Note 11)  
OD  
Maximum Data Rate  
D
800  
670  
Mbps  
MHz  
mA  
RMAX  
Maximum Switching Frequency  
Switching Supply Current  
PRBS Supply Current  
f
Figures 4, 5, V  ≥ 250mV (Note 11)  
OD  
MAX  
f
f
= 670MHz  
= 155MHz  
55  
35  
37  
65  
44  
46  
IN  
IN  
I
CCSW  
23  
I
D
= 800Mbps, 2 - 1 PRBS input  
R
mA  
CCPR  
Note 1: Current into a pin is defined as positive. Current out of a pin is defined as negative. All voltages are referenced to ground  
except V , V , V , V , and V  
.
OD  
TH TL ID OD  
Note 2: Maximum and minimum limits over temperature are guaranteed by design and characterization. Devices are 100ꢀ tested at  
= +25°C.  
T
A
Note 3: Tolerance on all external resistors (including figures) is 1ꢀ.  
Note 4: Guaranteed by design.  
Note 5: AC parameters are guaranteed by design and characterization and are not production tested. Limits are set at 6 sigma.  
Note 6: C includes scope probe and test jig capacitance.  
L
Note 7: Pulse-generator output for differential inputs IN+, IN- (unless otherwise noted): f = 670MHz, 50ꢀ duty cycle, R = 50, t  
=
R
O
700ps, and t = 700ps (0ꢀ to 100ꢀ). Pulse-generator output for single-ended inputs PD0, PD1: t = t = 1.5ns (0.2V to  
F
R
F
CC  
0.8V ), 50ꢀ duty cycle, V  
= V  
OD  
+ 1.0V settling to V , V = -1.0V settling to zero, f = 10kHz.  
CC  
OH  
CC CC OL  
Note 8: Pulse-generator output for t : |V | = 0.15V, V = 1.25V, data rate 800Mbps, 223 - 1 PRBS, R = 50, t = 700ps, and t  
DJ  
OS  
O
R
F
= 700ps (0ꢀ to 100ꢀ).  
Note 9: t is the magnitude of the difference of any differential propagation delays between devices operating under identical  
SKPP1  
conditions.  
Note 10:t is the magnitude of the difference of any differential propagation delays between devices operating over rated con-  
SKPP2  
ditions.  
Note 11:Meets all AC specifications.  
4
_______________________________________________________________________________________  
670MHz LVDS-to-LVDS and Anything-to-LVDS  
1:2 Splitters  
Typical Operating Characteristics  
((MAX9174) V  
= +3.3V, |V | = 0.15V, V  
= 1.25V, T = +25°C, R = 1001ꢀ, C = 5pf, PD_ = V , unless otherwise noted.)  
CC  
ID  
CM A L L CC  
OUTPUT RISE/FALL TIME  
vs. TEMPERATURE  
DIFFERENTIAL OUTPUT VOLTAGE  
vs. FREQUENCY  
SUPPLY CURRENT vs. TEMPERATURE  
300  
290  
280  
270  
260  
250  
240  
230  
220  
210  
38  
37  
36  
35  
34  
33  
32  
410  
400  
390  
380  
370  
360  
350  
340  
330  
320  
310  
300  
f
IN  
= 155MHz  
f
= 155MHz  
IN  
t
R
t
F
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
0
100 200 300 400 500 600 700 800  
FREQUENCY (MHz)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
OUTPUT-TO-OUTPUT SKEW  
vs. TEMPERATURE  
DIFFERENTIAL PROPAGATION DELAY  
vs. TEMPERATURE  
SUPPLY CURRENT vs. FREQUENCY  
20  
18  
16  
14  
12  
10  
8
60  
55  
50  
45  
40  
35  
30  
25  
20  
3.0  
2.9  
2.8  
2.7  
2.6  
2.5  
2.4  
2.3  
2.2  
2.1  
2.0  
f
IN  
= 155MHz  
f
IN  
= 155MHz  
t
PHL  
6
4
t
PLH  
2
0
-40  
-15  
10  
35  
60  
85  
0
100 200 300 400 500 600 700 800  
FREQUENCY (MHz)  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
OUTPUT RISE/FALL TIME  
vs. SUPPLY VOLTAGE  
SUPPLY CURRENT vs. DATA RATE  
SUPPLY CURRENT vs. SUPPLY VOLTAGE  
300  
290  
280  
270  
260  
250  
240  
230  
220  
210  
200  
45  
40  
35  
30  
25  
20  
15  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
PRBS 223 - 1  
f
IN  
= 155MHz  
f
IN  
= 155MHz  
t
R
t
F
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
0
100 200 300 400 500 600 700 800  
DATA RATE (Mbps)  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
_______________________________________________________________________________________  
5
670MHz LVDS-to-LVDS and Anything-to-LVDS  
1:2 Splitters  
Typical Operating Characteristics (continued)  
((MAX9174) V  
= +3.3V, |V | = 0.15V, V  
= 1.25V, T = +25°C, R = 1001ꢀ, C = 5pf, PD_ = V , unless otherwise noted.)  
CC  
ID  
CM  
A
L
L
CC  
DIFFERENTIAL PROPAGATION DELAY  
vs. SUPPLY VOLTAGE  
OUTPUT-TO-OUTPUT SKEW  
vs. SUPPLY VOLTAGE  
DIFFERENTIAL OUTPUT VOLTAGE  
vs. LOAD RESISTANCE  
3.0  
2.9  
2.8  
2.7  
2.6  
2.5  
2.4  
2.3  
2.2  
2.1  
2.0  
10  
9
8
7
6
5
4
3
2
1
0
500  
450  
400  
350  
300  
250  
200  
f
= 155MHz  
f = 155MHz  
IN  
IN  
t
PHL  
t
PLH  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
50 60 70 80 90 100 110 120 130 140 150  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
LOAD RESISTANCE ()  
PROPAGATION DELAY  
vs. INPUT COMMON-MODE VOLTAGE  
PROPAGATION DELAY  
vs. INPUT COMMON-MODE VOLTAGE  
2.8  
2.7  
2.6  
2.5  
2.4  
2.3  
2.2  
3.0  
2.9  
2.8  
2.7  
2.6  
2.5  
2.4  
2.3  
2.2  
2.1  
2.0  
MAX9174  
IN  
f
= 155MHz  
IN  
f
= 155MHz  
t
t
PHL  
PHL  
t
PLH  
t
PLH  
0.075  
0.825  
1.575  
2.325  
0.075 0.525 0.975 1.425 1.875 2.325 2.775 3.225  
INPUT COMMON-MODE VOLTAGE (V)  
INPUT COMMON-MODE VOLTAGE (V)  
OUTPUT-TO-OUTPUT SKEW  
vs. INPUT COMMON-MODE VOLTAGE  
OUTPUT-TO-OUTPUT SKEW  
vs. INPUT COMMON-MODE VOLTAGE  
8.0  
7.8  
7.6  
7.4  
7.2  
7.0  
6.8  
6.6  
6.4  
6.2  
6.0  
6.0  
MAX9175  
= 155MHz  
MAX9174  
IN  
f
IN  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
f
= 155MHz  
0.075  
0.825  
1.575  
2.325  
0.075 0.525 0.975 1.425 1.875 2.325 2.775 3.225  
INPUT COMMON-MODE VOLTAGE (V)  
INPUT COMMON-MODE VOLTAGE (V)  
6
_______________________________________________________________________________________  
670MHz LVDS-to-LVDS and Anything-to-LVDS  
1:2 Splitters  
Pin Description  
PIN  
NAME  
FUNCTION  
µMAX  
QFN  
1
2
3
1
2
3
IN+  
IN-  
Noninverting Differential Input  
Inverting Differential Input  
Ground  
GND  
LVTTL/LVCMOS Input. OUT0+, OUT0- are high impedance to ground when PD0 is low.  
4
5
4
5
PD0  
PD1  
Internal pulldown resistor to GND.  
LVTTL/LVCMOS Input. OUT1+, OUT1- are high impedance to ground when PD1 is low.  
Internal pulldown resistor to GND.  
6
7
6
7
OUT0-  
Inverting LVDS Output 0  
Noninverting LVDS Output 0  
Power Supply  
OUT0+  
8
8
V
CC  
9
9
OUT1-  
Inverting LVDS Output 1  
Noninverting LVDS Output 1  
10  
10  
OUT1+  
Exposed  
Pad  
EP  
Exposed Pad. Solder to ground.  
A differential output voltage is produced by steering  
Detailed Description  
current through the parallel combination of the integrat-  
ed differential output resistor and transmission line  
impedance/termination resistor. When driving a 100Ω  
termination resistor, a differential voltage of 250mV to  
475mV is produced. For loads greater than 100, the  
output voltage is larger, and for loads less than 100,  
the output voltage is smaller. See the Differential Output  
Voltage vs. Load Resistance curve in Typical Operating  
Characteristics for more information. The outputs are  
short-circuit current limited for single-ended and differ-  
ential shorts.  
The MAX9174/MAX9175 are 670MHz, low-jitter, low-  
skew 1:2 splitters ideal for protection switching, loop-  
back, and clock and signal distribution. The devices  
feature ultra-low 80ps  
deterministic jitter (max) that  
P-P  
ensures reliable operation in high-speed links that are  
highly sensitive to timing error.  
The MAX9174 has a fail-safe LVDS input and LVDS out-  
puts. The MAX9175 has an anything differential input  
(CML/LVDS/LVPECL) and LVDS outputs. The outputs  
can be put into high impedance using the power-down  
inputs. The MAX9174 features a fail-safe circuit that dri-  
ves the outputs high when the input is open, undriven  
and shorted, or undriven and terminated. The MAX9175  
has a bias circuit that forces the outputs high when the  
input is open. The power-down inputs are compatible  
with standard LVTTL/LVCMOS logic.  
MAX9174 Input Fail-Safe  
The fail-safe feature of the MAX9174 sets the outputs  
high when the differential input is:  
Open  
Undriven and shorted  
Undriven and terminated  
The power-down inputs tolerate undershoot of -1V and  
overshoot of VCC + 1V. The MAX9174/MAX9175 are  
available in 10-pin µMAX and 10-lead thin QFN pack-  
ages, and operate from a single +3.3V supply over the  
-40°C to +85°C temperature range.  
Without a fail-safe circuit, when the input is undriven,  
noise at the input may switch the outputs and it may  
appear to the system that data is being sent. Open or  
undriven terminated input conditions can occur when a  
cable is disconnected or cut, or when a driver output is  
in high impedance. A shorted input can occur because  
of a cable failure.  
Current-Mode LVDS Outputs  
The LVDS outputs use a current-steering configuration.  
This approach results in less ground bounce and less  
output ringing, enhancing noise margin and system  
speed performance.  
_______________________________________________________________________________________  
7
670MHz LVDS-to-LVDS and Anything-to-LVDS  
1:2 Splitters  
When the input is driven with a differential signal of |V |  
ID  
Table 1. Input Function Table  
= 50mV to 1.2V within a voltage range of 0 to 2.4V, the  
fail-safe circuit is not activated. If the input is open,  
undriven and shorted, or undriven and terminated, an  
internal resistor in the fail-safe circuit pulls the input  
above VCC - 0.3V, activating the fail-safe circuit and  
forcing the outputs high (Figure 1).  
INPUT  
OUTPUTS  
(IN+) - (IN-)  
+50mV  
(OUT_+) - (OUT_-)  
H
-50mV  
L
-50mV < VID < +50mV  
Indeterminate  
Overshoot and Undershoot Voltage  
Protection  
The MAX9174/MAX9175 are designed to protect the  
power-down inputs (PD0 and PD1) against latchup due  
to transient overshoot and undershoot voltage. If the  
input voltage goes above VCC or below GND by up to  
1V, an internal circuit limits input current to 1.5mA.  
MAX9175  
Open  
Open, undriven  
short, or undriven  
parallel termination  
H
MAX9174  
Table 2. Power-Down Function Table  
Applications Information  
PD1  
PD0  
OUT_+, OUT_-  
Both outputs enabled  
H
H
Power-Supply Bypassing  
pin with high-frequency surface-mount  
Bypass the V  
CC  
Shutdown to minimum power,  
outputs high impedance to ground  
L or open  
L or open  
High  
L or open  
High  
ceramic 0.1µF and 0.001µF capacitors in parallel as  
close to the device as possible, with the smaller valued  
OUT0 enabled, OUT1 high  
impedance to ground  
capacitor closest to V  
.
CC  
Differential Traces  
OUT1 enabled, OUT0 high  
impedance to ground  
L or open  
Input and output trace characteristics affect the perfor-  
mance of the MAX9174/MAX9175. Use controlled-  
impedance differential traces (100typ). To reduce  
radiated noise and ensure that noise couples as com-  
mon mode, route the differential input and output sig-  
nals within a pair close together. Reduce skew by  
matching the electrical length of the two signal paths  
that make up the differential pair. Excessive skew can  
result in a degradation of magnetic field cancellation.  
Maintain a constant distance between the differential  
traces to avoid discontinuities in differential impedance.  
Minimize the number of vias to further prevent imped-  
ance discontinuities.  
V
CC  
V
CC  
R
IN2  
R
R
IN3  
IN3  
COMPARATOR  
- 0.3V  
IN+  
IN-  
IN+  
R
IN1  
TO  
OUTPUT  
V
CC  
R
IN1  
Cables and Connectors  
Interconnect for LVDS typically has a controlled differ-  
ential impedance of 100. Use cables and connectors  
that have matched differential impedance to minimize  
impedance discontinuities.  
IN-  
DIFFERENTIAL  
RCVR  
MAX9174 INTERNAL FAIL-SAFE CIRCUIT  
MAX9175 INPUT  
Figure 1. Input Structure  
Avoid the use of unbalanced cables such as ribbon or  
simple coaxial cable. Balanced cables such as twisted  
pair offer superior signal quality and tend to generate  
less EMI due to magnetic field canceling effects.  
Balanced cables pick up noise as common mode,  
which is rejected by the LVDS receiver.  
termination resistor across the differential input and at  
the far end of the interconnect driven by the LVDS out-  
puts. Place the input termination resistor as close to the  
receiver input as possible. Termination resistors should  
match the differential impedance of the transmission  
line. Use 1ꢀ surface-mount resistors.  
Termination  
The MAX9174/MAX9175 require external input and out-  
put termination resistors. For LVDS, connect an input  
8
_______________________________________________________________________________________  
670MHz LVDS-to-LVDS and Anything-to-LVDS  
1:2 Splitters  
OUT_+  
5k  
OUT_+  
R /2  
L
1.25V  
1.25V  
IN+  
IN-  
IN+  
IN-  
1.20V  
1.25V  
1.20V  
1.25V  
V
OD  
V
= 0 TO V  
TEST CC  
R
L
VOS  
1.20V  
1.20V  
R /2  
L
OUT_ -  
5kΩ  
OUT_ -  
Figure 2. V  
Test Circuit  
OD  
Figure 3. V Test Circuit  
OS  
5k  
OUT1+  
R
L
OUT1-  
5kΩ  
5kΩ  
C
C
L
L
V
= 0 TO V  
CC  
TEST  
OUT0+  
IN+  
IN-  
PULSE  
GENERATOR  
R
L
OUT0-  
5kΩ  
50Ω  
50Ω  
C
C
L
L
Figure 4. Transition Time, Propagation Delay, and Output-to-Output Skew Test Circuit  
The MAX9174/MAX9175 feature an integrated differen-  
tial output resistor. This resistor reduces jitter by damp-  
ing reflections produced by a mismatch between the  
transmission line and termination resistor at the far end  
of the interconnect.  
IEC 61000-4-2 Level 4  
ESD Protection  
The IEC 61000-4-2 standard (Figure 9) specifies ESD  
tolerance for electronic systems. The IEC 61000-4-2  
model specifies a 150pF capacitor that is discharged  
into the device through a 330resistor. The MAX9174/  
MAX9175 differential inputs and outputs are rated for  
IEC 61000-4-2 level 4 ( 8kV Contact Discharge and  
15kV Air-Gap Discharge). The Human Body Model  
(HBM, Figure 10) specifies a 100pF capacitor that is  
discharged into the device through a 1.5kresistor.  
IEC 61000-4-2 level 4 discharges higher peak current  
and more energy than the HBM due to the lower series  
resistance and larger capacitor.  
Board Layout  
Separate the differential and single-ended signals to  
reduce crosstalk. A four-layer printed circuit board with  
separate layers for power, ground, differential signals,  
and single-ended logic signals is recommended.  
Separate the differential signals from the logic signals  
with power and ground planes for best results.  
_______________________________________________________________________________________  
9
670MHz LVDS-to-LVDS and Anything-to-LVDS  
1:2 Splitters  
IN-  
IN+  
t
t
PHL  
PLH  
OUT_-  
OUT_+  
V
= ((V  
+) + (V  
))/2  
OUT_-  
OS  
OUT_  
80%  
0V  
20%  
80%  
0V  
V
OD+  
V
OD-  
20%  
(OUT_+) - (OUT_-)  
t
t
F
R
Figure 5. Transition Time and Propagation Delay Timing  
IN+  
IN-  
OUT0+  
OUT0-  
OUT1+  
OUT1-  
t
SKOO  
t
SKOO  
Figure 6. Output-to-Output Skew  
10 ______________________________________________________________________________________  
670MHz LVDS-to-LVDS and Anything-to-LVDS  
1:2 Splitters  
V
V
+ 1V  
CC  
CC  
PD_  
V
0
/2  
CC  
-1.0V  
t
t
PD  
PU  
V
OH  
OUT_+ WHEN V = +50mV  
ID  
50%  
50%  
50%  
50%  
OUT_- WHEN V = -50mV  
ID  
1.25V  
1.25V  
OUT_+ WHEN V = -50mV  
ID  
OUT_- WHEN V = +50mV  
ID  
V
OL  
t
t
PU  
PD  
Figure 7. Power-Up/Down Delay Waveform  
OUT1+  
MAX9174  
MAX9175  
R /2  
L
1.25V  
1.20V  
IN+  
IN-  
1.25V  
R /2  
L
OUT1-  
OUT0+  
1.25V  
1.20V  
R /2  
L
1.25V  
R /2  
L
OUT0-  
PULSE  
GENERATOR  
50Ω  
Figure 8. Power-Up/Down Delay Test Circuit  
______________________________________________________________________________________ 11  
670MHz LVDS-to-LVDS and Anything-to-LVDS  
1:2 Splitters  
R
R
R
R
D
1.5kΩ  
C
D
C
50TO 100Ω  
330Ω  
1MΩ  
DISCHARGE  
RESISTANCE  
DISCHARGE  
RESISTANCE  
CHARGE-CURRENT-  
LIMIT RESISTOR  
CHARGE-CURRENT-  
LIMIT RESISTOR  
HIGH-  
VOLTAGE  
DC  
HIGH-  
VOLTAGE  
DC  
DEVICE  
UNDER  
TEST  
DEVICE  
UNDER  
TEST  
C
C
STORAGE  
CAPACITOR  
s
STORAGE  
CAPACITOR  
s
100pF  
150pF  
SOURCE  
SOURCE  
Figure 9. IEC 61000-4-2 Contact Discharge ESD Test Model  
Figure 10. Human Body ESD Test Model  
Functional Diagram  
Pin Configurations  
TOP VIEW  
OUT1+  
MAX9174  
MAX9175  
IN+  
IN-  
1
2
3
4
5
10 OUT1+  
IN+  
IN-  
1
2
3
4
5
10 OUT1+  
LVDS  
DRIVER 0  
9
8
7
6
OUT1-  
9
8
7
6
OUT1-  
IN+  
IN-  
MAX9174  
MAX9175  
OUT1-  
OUT0+  
MAX9174  
MAX9175  
GND  
PD0  
PD1  
V
CC  
GND  
V
CC  
DIFFERENTIAL  
RECEIVER  
OUT0+ PD0  
OUT0- PD1  
OUT0+  
OUT0-  
EXPOSED PAD  
µMAX  
THIN QFN  
(LEADS UNDER PACKAGE)  
LVDS  
DRIVER 1  
OUT0-  
PD0  
PD1  
Chip Information  
TRANSISTOR COUNT: 693  
PROCESS: CMOS  
12 ______________________________________________________________________________________  
670MHz LVDS-to-LVDS and Anything-to-LVDS  
1:2 Splitters  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
e
4X S  
10  
10  
INCHES  
DIM MIN  
MAX  
MILLIMETERS  
MIN  
-
MAX  
1.10  
0.15  
0.95  
3.05  
3.00  
3.05  
3.00  
5.05  
0.70  
A
-
0.043  
0.006  
0.037  
0.120  
0.118  
0.120  
0.118  
0.199  
A1  
A2  
D1  
D2  
E1  
E2  
H
0.002  
0.030  
0.116  
0.114  
0.116  
0.114  
0.187  
0.05  
0.75  
2.95  
2.89  
2.95  
2.89  
4.75  
0.40  
H
ÿ 0.50 0.1  
0.6 0.1  
L
0.0157 0.0275  
0.037 REF  
L1  
b
0.940 REF  
0.007  
0.0106  
0.177  
0.090  
0.270  
1
1
e
0.0197 BSC  
0.500 BSC  
0.6 0.1  
c
0.0035 0.0078  
0.0196 REF  
0.200  
BOTTOM VIEW  
0.498 REF  
S
TOP VIEW  
α
0∞  
6∞  
0∞  
6∞  
D2  
E2  
GAGE PLANE  
A2  
c
A
E1  
b
L
α
A1  
D1  
L1  
FRONT VIEW  
SIDE VIEW  
PROPRIETARY INFORMATION  
TITLE:  
PACKAGE OUTLINE, 10L uMAX/uSOP  
APPROVAL  
DOCUMENT CONTROL NO.  
REV.  
1
21-0061  
I
1
______________________________________________________________________________________ 13  
670MHz LVDS-to-LVDS and Anything-to-LVDS  
1:2 Splitters  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
L
A
D2  
D
A2  
PIN 1 ID  
1
N
1
C0.35  
b
[(N/2)-1] x e  
REF.  
E
E2  
PIN 1  
INDEX  
AREA  
DETAIL A  
e
k
A1  
C
L
C
L
L
L
e
e
A
DALLAS  
SEMICONDUCTOR  
PROPRIETARY INFORMATION  
TITLE:  
PACKAGE OUTLINE, 6, 8 & 10L,  
TDFN, EXPOSED PAD, 3x3x0.80 mm  
APPROVAL  
DOCUMENT CONTROL NO.  
REV.  
NUMBER OF LEADS SHOWN ARE FOR REFERENCE ONLY  
1
2
21-0137  
D
COMMON DIMENSIONS  
SYMBOL  
MIN.  
0.70  
2.90  
2.90  
0.00  
0.20  
MAX.  
A
0.80  
3.10  
3.10  
0.05  
0.40  
D
E
A1  
L
k
0.25 MIN.  
0.20 REF.  
A2  
PACKAGE VARIATIONS  
PKG. CODE  
T633-1  
N
6
D2  
E2  
e
JEDEC SPEC  
b
[(N/2)-1] x e  
1.90 REF  
1.95 REF  
2.00 REF  
1.50 0.10 2.30 0.10 0.95 BSC  
1.50 0.10 2.30 0.10 0.65 BSC  
MO229 / WEEA  
MO229 / WEEC  
0.40 0.05  
0.30 0.05  
T833-1  
8
T1033-1  
10  
1.50 0.10 2.30 0.10 0.50 BSC MO229 / WEED-3 0.25 0.05  
DALLAS  
SEMICONDUCTOR  
PROPRIETARY INFORMATION  
TITLE:  
PACKAGE OUTLINE, 6, 8 & 10L,  
TDFN, EXPOSED PAD, 3x3x0.80 mm  
APPROVAL  
DOCUMENT CONTROL NO.  
REV.  
2
2
21-0137  
D
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
14 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2003 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY