MAX9250GCM+T [MAXIM]

Line Receiver, CMOS, PQFP48,;
MAX9250GCM+T
型号: MAX9250GCM+T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Line Receiver, CMOS, PQFP48,

文件: 总20页 (文件大小:186K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-3943; Rev 3; 4/09  
27-Bit, 2.5MHz to 42MHz  
DC-Balanced LVDS Deserializers  
48/MAX9250  
General Description  
Features  
The MAX9248/MAX9250 digital video serial-to-parallel  
converters deserialize a total of 27 bits during data and  
control phases. In the data phase, the LVDS serial input is  
converted to 18 bits of parallel video data and in the con-  
trol phase, the input is converted to 9 bits of parallel con-  
trol data. The separate video and control phases take  
advantage of video timing to reduce the serial-data rate.  
The MAX9248/MAX9250 pair with the MAX9247 serializer  
to form a complete digital video transmission system. For  
operating frequencies less than 35MHz, the MAX9248/  
MAX9250 can also pair with the MAX9217 serializer.  
o Programmable ±±4 or ±ꢀ4 %ꢁreaꢂꢃ%ꢁepꢄrtm  
Otꢄꢁtꢄ for Reꢂtpeꢂ EMI (MAX9ꢀ±8)  
o Proꢁrieꢄary Daꢄa Depoꢂing for DC Balanpe anꢂ  
Reꢂtpeꢂ EMI  
o Conꢄrol Daꢄa Deserializeꢂ Dtring Viꢂeo Blanking  
o Five Conꢄrol Daꢄa Inꢁtꢄs are %ingleꢃBiꢄꢃError  
Toleranꢄ  
o Otꢄꢁtꢄ Transiꢄion Time is %paleꢂ ꢄo Oꢁeraꢄing  
Freqtenpy for Reꢂtpeꢂ EMI  
o %ꢄaggereꢂ Otꢄꢁtꢄ %wiꢄphing Reꢂtpes EMI  
The MAX9248 features spread-spectrum capability,  
allowing output data and clock to spread over a speci-  
fied frequency range to reduce EMI. The data and  
clock outputs are programmable for a spectrum spread  
of 4ꢀ or 2ꢀ. The MAX9250 features output enable  
input control to allow data busing.  
o Otꢄꢁtꢄ Enable Allows Btsing of Otꢄꢁtꢄs  
(MAX9ꢀ50)  
o Clopk Ptlse %ꢄreꢄph on Lopk  
o Wiꢂe ±ꢀ4 Referenpe Clopk Toleranpe  
o %ynphronizes ꢄo MAX9ꢀ±7 %erializer Wiꢄhotꢄ  
Proprietary data decoding reduces EMI and provides  
DC balance. The DC balance allows AC-coupling, pro-  
viding isolation between the transmitting and receiving  
ends of the interface. The MAX9248/MAX9250 feature a  
selectable rising or falling output latch edge.  
Exꢄernal Conꢄrol  
o I%O 10605 anꢂ IEC 61000ꢃ±ꢃꢀ Level ±  
E%D Proꢄepꢄion  
o %eꢁaraꢄe Otꢄꢁtꢄ %tꢁꢁly Allows Inꢄerfape ꢄo 1.8V  
ꢄo 3.3V Logip  
ESD tolerance is specified for ISO 10605 with 10kV  
Contact Discharge and 30kV Air-ꢁap Discharge.  
o +3.3V Core Power %tꢁꢁly  
The MAX9248/MAX9250 operate from a +3.3V 10ꢀ  
core supply and feature a separate output supply for  
interfacing to 1.8V to 3.3V logic-level inputs. These  
devices are available in a 48-lead LQFP package and  
are specified from -40°C to +85°C or -40°C to +105°C.  
o %ꢁapeꢃ%aving LQFP Papkage  
o ꢃ±0°C ꢄo +85°C anꢂ ꢃ±0°C ꢄo +105°C Oꢁeraꢄing  
Temꢁeraꢄtre Ranges  
Applications  
Ordering Information  
Navigation System Displays  
In-Vehicle Entertainment Systems  
Video Cameras  
PART  
TEMP RANGE  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +105°C  
PINꢃPACKAGE  
48 LQFP  
48 LQFP  
48 LQFP  
48 LQFP  
48 LQFP  
48 LQFP  
48 LQFP  
48 LQFP  
MAX9ꢀ±8ECM+  
MAX9248ECM/V+  
MAX9248ꢁCM+  
LCD Displays  
MAX9248ꢁCM/V+ -40°C to +105°C  
MAX9ꢀ50ECM+  
MAX9250ECM/V+  
MAX9250ꢁCM+  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +105°C  
MAX9250ꢁCM/V+ -40°C to +105°C  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
/V denotes an automotive qualified part.  
Pin Configtraꢄion aꢁꢁears aꢄ enꢂ of ꢂaꢄa sheeꢄ.  
________________________________________________________________ Maxim Inꢄegraꢄeꢂ Proꢂtpꢄs  
1
For ꢁriping, ꢂelivery, anꢂ orꢂering informaꢄion, ꢁlease ponꢄapꢄ Maxim Direpꢄ aꢄ 1ꢃ888ꢃ6ꢀ9ꢃ±6±ꢀ,  
or visiꢄ Maxim’s websiꢄe aꢄ www.maximꢃip.pom.  
27-Bit, 2.5MHz to 42MHz  
DC-Balanced LVDS Deserializers  
AB%OLUTE MAXIMUM RATING%  
CC_  
Any ꢁround to Any ꢁround...................................-0.5V to +0.5V  
V
to _ꢁND........................................................-0.5V to +4.0V  
ESD Protection  
Machine Model (R = 0Ω, C = 200pF)  
D
S
IN+, IN- to LVDSꢁND............................................-0.5V to +4.0V  
All Pins to ꢁND............................................................ 200V  
IN+, IN- Short Circuit to LVDSꢁND or V  
........Continuous  
Human Body Model (R = 1.5kΩ, C = 100pF)  
D
S
CCLVDS  
(R/F, OUTEN, RNꢁ_, REFCLK, SS  
PWRDWN) to ꢁND................................. -0.5V to (V  
All Pins to ꢁND.............................................................. 2kV  
+ 0.5V)  
ISO 10605 (R = 2kΩ, C = 330pF)  
CC  
D
S
(RꢁB_OUT[17:0], CNTL_OUT[8:0], DE_OUT, PCLK_OUT,  
LOCK) to V .............................-0.5V to (V + 0.5V)  
Contact Discharge (IN+, IN-) to ꢁND ............................ 10kV  
Air-ꢁap Discharge (IN+, IN-) to ꢁND ............................ 30kV  
IEC 61000-4-2 (R = 330Ω, C = 150pF)  
D S  
CCOꢁND  
CCO  
Continuous Power Dissipation (T = +70°C)  
A
48-Lead LQFP (derate 21.7mW/°C above +70°C).....1739mW  
Contact Discharge (IN+, IN-) to ꢁND ............................ 10kV  
Air-ꢁap Discharge (IN+, IN-) to ꢁND ............................ 15kV  
Storage Temperature Range.............................-65°C to +150°C  
Junction Temperature......................................................+150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
48/MAX9250  
DC ELECTRICAL CHARACTERI%TIC%  
CC_  
(V  
= +3.0V to +3.6V, PWRDWN = high, differential input voltage V = 0.05V to 1.2V, input common-mode voltage V  
= V / 2⏐  
CM ID  
ID  
to V  
- V / 2, T = -40°C to +105°C, unless otherwise noted. Typical values are at V  
= +3.3V, V = 0.2V, V  
= 1.2V,  
CC  
ID  
A
CC_  
ID  
CM  
T
A
= +25°C.) (Notes 1, 2)  
PARAMETER  
%YMBOL  
CONDITION%  
MIN  
TYP  
MAX  
UNIT%  
%INGLEꢃENDED INPUT% (R/F, OUTEN, RNG0, RNG1, REFCLK, PWRDWN, %%)  
High-Level Input Voltage  
Low-Level Input Voltage  
V
2.0  
V
+ 0.3  
CC  
V
V
IH  
V
-0.3  
+0.8  
IL  
V
= -0.3V to 0 (MAX9248/  
IN  
MAX9250ECM),  
-100  
-20  
+20  
PWRDWN =  
high or low  
V
= -0.15V to 0 (MAX9248/  
IN  
Input Current  
I
µA  
V
IN  
MAX9250ꢁCM),  
V
= 0 to (V + 0.3V)  
+20  
-1.5  
IN  
CC  
Input Clamp Voltage  
V
I
CL  
= -18mA  
CL  
%INGLEꢃENDED OUTPUT% (RGB_OUT[17:0], CNTL_OUT[8:0], DE_OUT, PCLK_OUT, LOCK)  
I
I
I
I
I
I
= -100µA  
V
V
V
- 0.1  
- 0.35  
- 0.4  
OH  
OH  
OH  
OL  
OL  
OL  
CCO  
CCO  
CCO  
High-Level Output Voltage  
Low-Level Output Voltage  
V
= -2mA, RNꢁ1 = high  
= -2mA, RNꢁ1 = low  
= 100µA  
V
V
OH  
0.1  
0.3  
V
= 2mA, RNꢁ1 = high  
= 2mA, RNꢁ1 = low  
OL  
0.35  
PWRDWN = low or OUTEN = low,  
= -0.3V to (V + 0.3V)  
High-Impedance Output Current  
Output Short-Circuit Current  
I
I
-10  
+10  
µA  
OZ  
OS  
V
O
CCO  
RNꢁ1 = high, V = 0  
-10  
-7  
-50  
-40  
O
mA  
RNꢁ1 = low, V = 0  
O
_______________________________________________________________________________________  
27-Bit, 2.5MHz to 42MHz  
DC-Balanced LVDS Deserializers  
48/MAX9250  
DC ELECTRICAL CHARACTERI%TIC% (ponꢄinteꢂ)  
(V  
= +3.0V to +3.6V, PWRDWN = high, differential input voltage V = 0.05V to 1.2V, input common-mode voltage V  
= V / 2⏐  
CM ID  
CC_  
ID  
to V  
- V / 2, T = -40°C to +105°C, unless otherwise noted. Typical values are at V  
= +3.3V, V = 0.2V, V  
= 1.2V,  
CC  
ID  
A
CC_  
ID  
CM  
T
A
= +25°C.) (Notes 1, 2)  
PARAMETER  
%YMBOL  
CONDITION%  
MIN  
TYP  
MAX  
UNIT%  
LVD% INPUT (IN+, INꢃ)  
Differential Input High Threshold  
Differential Input Low Threshold  
Input Current  
V
(Note 3)  
(Note 3)  
50  
mV  
mV  
µA  
TH  
V
-50  
-40  
42  
TL  
I
I
PWRDWN = high or low (Note 3)  
+40  
78  
IN+, IN-  
MAX9248/MAX9250ECM  
60  
60  
PWRDWN =  
high or low  
MAX9248/MAX9250ꢁCM  
42  
88  
V
=
CC_  
MAX9248/MAX9250ECM  
42  
60  
60  
78  
Input Bias Resistor (Note 3)  
R
kΩ  
IB  
0 or open,  
PWRDWN =  
0 or open,  
Figure 1  
MAX9248/MAX9250ꢁCM  
42  
88  
V
= 0 or open,  
CC_  
Power-Off Input Current  
I
I
-60  
+60  
µA  
INO+, INO-  
PWRDWN = 0 or open (Note 3)  
POWER %UPPLY  
2.5MHz  
5MHz  
19  
33  
28  
49  
33  
59  
45  
89  
31  
48  
40  
70  
49  
87  
68  
100  
120  
50  
RNꢁ1 = low  
RNꢁ0 = low  
MAX9250  
C = 8pF,  
L
worst-case  
pattern,  
Figure 2  
5MHz  
RNꢁ1 = low  
RNꢁ0 = high  
10MHz  
10MHz  
20MHz  
20MHz  
42MHz  
2.5MHz  
5MHz  
RNꢁ1 = high  
RNꢁ0 = low  
RNꢁ1 = high  
RNꢁ0 = high  
Worst-Case Supply Current  
mA  
RNꢁ1 = low  
RNꢁ0 = low  
5MHz  
RNꢁ1 = low  
RNꢁ0 = high  
MAX9248  
C = 8pF,  
L
worst-case  
pattern,  
Figure 2  
10MHz  
10MHz  
20MHz  
20MHz  
35MHz  
42MHz  
RNꢁ1 = high  
RNꢁ0 = low  
RNꢁ1 = high  
RNꢁ0 = high  
Power-Down Supply Current  
I
(Note 4)  
µA  
CCZ  
_______________________________________________________________________________________  
3
27-Bit, 2.5MHz to 42MHz  
DC-Balanced LVDS Deserializers  
AC ELECTRICAL CHARACTERI%TIC%  
(V  
= +3.0V to +3.6V, C = 8pF, PWRDWN = high, differential input voltage V = 0.1V to 1.2V, input common-mode voltage  
L ID  
CC_  
V
CM  
V
CM  
= V / 2to V  
- V / 2, T = -40°C to +105°C, unless otherwise noted. Typical values are at V  
= +3.3V, V = 0.2V,  
CC_ ID  
ID  
CC  
ID  
A
= 1.2V, T = +25°C.) (Notes 3, 5)  
A
PARAMETER  
%YMBOL  
CONDITION%  
MIN  
TYP  
MAX  
UNIT%  
REFCLK TIMING REQUIREMENT%  
MAX9248/MAX9250ECM  
MAX9248/MAX9250ꢁCM  
MAX9248/MAX9250ECM  
MAX9248/MAX9250ꢁCM  
REFCLK to serializer PCLK_IN  
23.8  
28.6  
2.5  
400.0  
400.0  
42.0  
35.0  
+2.0  
60  
Period  
t
ns  
T
Frequency  
f
MHz  
CLK  
2.5  
Frequency Variation  
Duty Cycle  
Δf  
CLK  
-2.0  
40  
ns  
DC  
50  
Transition Time  
t
20ꢀ to 80ꢀ  
6
TRAN  
%WITCHING CHARACTERI%TIC%  
MAX9248/  
MAX9250ECM  
2.2  
2.2  
2.8  
2.8  
1.9  
2.3  
4.6  
4.9  
5.2  
6.1  
4.0  
4.3  
48/MAX9250  
RNꢁ1 = high  
MAX9248/  
MAX9250ꢁCM  
Output Rise Time  
t
Figure 3  
ns  
R
MAX9248/  
MAX9250ECM  
RNꢁ1 = low  
RNꢁ1 = high  
RNꢁ1 = low  
MAX9248/  
MAX9250ꢁCM  
MAX9248/  
MAX9250ECM  
MAX9248/  
MAX9250ECM  
Output Fall Time  
t
Figure 3  
ns  
R
MAX9248/  
MAX9250ꢁCM  
2.3  
5.2  
0.4 x  
0.45 x  
0.6 x  
t
T
PCLK_OUT High Time  
PCLK_OUT Low Time  
t
Figure 4  
Figure 4  
ns  
ns  
HIꢁH  
t
T
t
T
0.4 x  
0.45 x  
0.6 x  
t
T
t
LOW  
t
T
t
T
Data Valid Before PCLK_OUT  
Data Valid After PCLK_OUT  
t
Figure 5  
Figure 5  
0.35 x t  
0.35 x t  
0.4 x t  
0.4 x t  
ns  
ns  
DVB  
DVA  
T
T
T
T
t
MAX9248, Figure 8  
MAX9250, Figure 7  
33,600 x t  
16,928 x t  
T
PLL Lock to REFCLK  
t
ns  
PLLREF  
T
Maximum output  
f
f
f
REFCLK REFCLK REFCLK  
frequency  
+ 3.6ꢀ + 4.0ꢀ + 4.4ꢀ  
SS = high,  
Figure 11  
Minimum output  
frequency  
f
f
f
REFCLK REFCLK REFCLK  
- 4.4ꢀ  
- 4.0ꢀ  
- 3.6ꢀ  
Spread-Spectrum Output  
Frequency (MAX9248)  
f
MHz  
PCLK_OUT  
Maximum output  
frequency  
f
f
f
REFCLK REFCLK REFCLK  
+ 1.8ꢀ + 2.0ꢀ + 2.2ꢀ  
SS = low,  
Figure 11  
Minimum output  
frequency  
f
f
f
REFCLK REFCLK REFCLK  
- 2.2ꢀ  
- 2.0ꢀ  
- 1.8ꢀ  
±
_______________________________________________________________________________________  
27-Bit, 2.5MHz to 42MHz  
DC-Balanced LVDS Deserializers  
48/MAX9250  
AC ELECTRICAL CHARACTERI%TIC% (ponꢄinteꢂ)  
(V  
= +3.0V to +3.6V, C = 8pF, PWRDWN = high, differential input voltage V = 0.1V to 1.2V, input common-mode voltage  
L ID  
CC_  
V
CM  
V
CM  
= V / 2to V  
- V / 2, T = -40°C to +105°C, unless otherwise noted. Typical values are at V  
= +3.3V, V = 0.2V,  
CC_ ID  
ID  
CC  
ID  
A
= 1.2V, T = +25°C.) (Notes 3, 5)  
A
PARAMETER  
%YMBOL  
CONDITION%  
MIN  
TYP  
MAX  
UNIT%  
Spread-Spectrum Modulation  
Frequency  
f
/
REFCLK  
1024  
f
t
Figure 11  
kHz  
SSM  
PDD  
Power-Down Delay  
SS Change Delay  
Figures 7, 8  
100  
ns  
ns  
32,800  
t
MAX9248, Figure 17  
ΔSSPLL  
x t  
T
Output Enable Time  
Output Disable Time  
t
t
MAX9250, Figure 8  
MAX9250, Figure 9  
10  
10  
30  
30  
ns  
ns  
OE  
OZ  
Noꢄe 1: Current into a pin is defined as positive. Current out of a pin is defined as negative. All voltages are referenced to ground  
except V and V  
.
TL  
TH  
Noꢄe ꢀ: Maximum and minimum limits over temperature are guaranteed by design and characterization. Devices are production  
tested at T = +25°C.  
A
Noꢄe 3: Parameters are guaranteed by design and characterization, and are not production tested. Limits are set at 6 sigma.  
Noꢄe ±: All LVTTL/LVCMOS inputs, except PWRDWN at 0.3V or V  
- 0.3V. PWRDWN is 0.3V, REFCLK is static.  
CC  
Noꢄe 5: C includes probe and test jig capacitance.  
L
_______________________________________________________________________________________  
5
27-Bit, 2.5MHz to 42MHz  
DC-Balanced LVDS Deserializers  
Typical Operating Characteristics  
(V _ = +3.3V, C = 8pF, T = +25°C, unless otherwise noted.)  
CC  
L
A
WORST-CASE PATTERN SUPPLY CURRENT  
vs. FREQUENCY  
OUTPUT TRANSITION TIME  
vs. OUTPUT SUPPLY VOLTAGE (V  
OUTPUT TRANSITION TIME  
vs. OUTPUT SUPPLY VOLTAGE (V  
)
)
CCO  
CCO  
6
10  
9
70  
60  
50  
40  
30  
20  
10  
5
4
3
2
t
t
R
8
R
MAX9248  
7
6
5
4
t
F
t
F
3
2
1
MAX9250  
1
0
RNG1 = HIGH  
RNG1 = LOW  
0
0
0
5
10 15 20 25 30 35 40 45  
FREQUENCY (MHz)  
1.8  
2.1  
2.4  
2.7  
3.0  
3.3  
1.8  
2.1  
2.4  
2.7  
3.0  
3.3  
48/MAX9250  
OUTPUT SUPPLY VOLTAGE (V)  
OUTPUT SUPPLY VOLTAGE (V)  
OUTPUT POWER SPECTRUM vs. FREQUENCY  
(REFCLK = 42MHz, NO SPREAD,  
4%, AND 2% SPREAD)  
CABLE LENGTH vs. FREQUENCY  
BIT-ERROR RATE < 10-9  
BIT-ERROR RATE vs. CABLE LENGTH  
45  
40  
35  
30  
25  
20  
15  
1.00E-14  
1.00E-13  
1.00E-12  
1.00E-11  
1.00E-10  
0
CAT5 CABLE  
RESOLUTION BW = 30kHz  
VIDEO BW = 100kHz  
NO SPREAD  
2% SPREAD  
4% SPREAD  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
REFCLK = 42MHz  
840Mbps DATA RATE  
FOR CABLE LENGTH < 10m  
10  
5
-12  
BER < 10  
0
2
4
6
8
10 12 14 16 18 20  
0
2
4
6
8
10  
12  
39  
40  
41  
42  
43  
44  
45  
CABLE LENGTH (m)  
CAT5 CABLE LENGTH (m)  
FREQUENCY (MHz)  
6
_______________________________________________________________________________________  
27-Bit, 2.5MHz to 42MHz  
DC-Balanced LVDS Deserializers  
48/MAX9250  
Pin Description  
PIN  
NAME  
R/F  
FUNCTION  
MAX9ꢀ±8 MAX9ꢀ50  
Rising or Falling Latch Edge Select. LVTTL/LVCMOS input. Selects the edge of PCLK_OUT  
for latching data into the next chip. Set R/F = high for a rising latch edge. Set R/F = low for a  
falling latch edge. Internally pulled down to ꢁND.  
1
1
LVTTL/LVCMOS Range Select Input. Set to the range that includes the serializer parallel  
clock input frequency. Internally pulled down to ꢁND.  
2
3
2
3
RNꢁ1  
LVDS Supply Voltage. Bypass to LVDSꢁND with 0.1µF and 0.001µF capacitors in parallel as  
close to the device as possible, with the smallest value capacitor closest to the supply pin.  
V
CCLVDS  
4
5
6
7
4
5
6
7
IN+  
IN-  
Noninverting LVDS Serial-Data Input  
Inverting LVDS Serial-Data Input  
LVDS Supply ꢁround  
LVDSꢁND  
PLLꢁND  
PLL Supply ꢁround  
PLL Supply Voltage. Bypass to PLLꢁND with 0.1µF and 0.001µF capacitors in parallel as  
close to the device as possible with the smallest value capacitor closest to the supply pin.  
8
8
V
CCPLL  
LVTTL/LVCMOS Range Select Input. Set to the range that includes the serializer parallel  
clock input frequency. Internal pulldown to ꢁND.  
9
9
RNꢁ0  
ꢁND  
10  
10  
Digital Supply ꢁround  
Digital Supply Voltage. Supply for LVTTL/LVCMOS inputs and digital circuits. Bypass to  
ꢁND with 0.1µF and 0.001µF capacitors in parallel as close to the device as possible with  
the smallest value capacitor closest to the supply pin.  
11  
11  
V
CC  
LVTTL/LVCMOS Reference Clock Input. Apply a reference clock that is within 2ꢀ of the  
serializer PCLK_IN frequency. Internally pulled down to ꢁND.  
12  
13  
14  
12  
13  
REFCLK  
PWRDWN  
SS  
LVTTL/LVCMOS Power-Down Input. Internally pulled down to ꢁND.  
LVTTL/LVCMOS Spread-Spectrum Input. SS selects the frequency spread of PCLK_OUT and  
output data relative to PCLK_IN. Drive SS high for 4ꢀ spread and pull low for 2ꢀ spread.  
LVTTL/LVCMOS Control Data Outputs. CNTL_OUT[8:0] are latched into the next chip on the  
rising or falling edge of PCLK_OUT as selected by R/F when DE_OUT is low, and are held  
at the last state when DE_OUT is high.  
CNTL_OUT0–  
CNTL_OUT8  
15–23  
15–23  
LVTTL/LVCMOS Data-Enable Output. High indicates RꢁB_OUT[17:0] are active. Low  
indicates CNTL_OUT[8:0] are active.  
24  
24  
DE_OUT  
25, 37  
26, 38  
25, 37  
26, 38  
V
Output Supply ꢁround  
CCOꢁND  
Output Supply Voltage. Bypass to ꢁND with 0.1µF and 0.001µF capacitors in parallel as  
close to the device as possible with the smallest value capacitor closest to the supply pin.  
V
CCO  
_______________________________________________________________________________________  
7
27-Bit, 2.5MHz to 42MHz  
DC-Balanced LVDS Deserializers  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
MAX9ꢀ±8 MAX9ꢀ50  
27  
28  
27  
28  
LOCK  
LVTTL/LVCMOS Lock Indicator Output. Outputs are valid when LOCK is low.  
PCLK_OUT LVTTL/LVCMOS Parallel Clock Output. Latches data into the next chip on the edge selected by R/F.  
RꢁB_OUT0–  
RBꢁ_OUT7,  
RꢁB_OUT8–  
RꢁB_OUT17  
LVTTL/LVCMOS Red, ꢁreen, and Blue Digital Video Data Outputs. RꢁB_OUT[17:0] are  
latched into the next chip on the edge of PCLK_OUT selected by R/F when DE_OUT is high,  
and are held at the last state when DE_OUT is low.  
29–36,  
39–48  
29–36,  
39–48  
LVTTL/LVCMOS Output Enable Input. High activates the single-ended outputs. Driving  
14  
OUTEN  
low places the single-ended outputs in high impedance except LOCK. Internally pulled  
down to ꢁND.  
48/MAX9250  
Functional Diagram  
R/F  
R/F  
OUTEN  
IN+  
IN-  
1
0
IN+  
IN-  
1
0
RGB_OUT  
RGB_OUT  
CNTL_OUT  
DE_OUT  
CNTL_OUT  
DE_OUT  
PCLK_OUT  
PCLK_OUT  
REF_IN  
REFCLK  
PLL  
REFCLK  
PLL  
SSPLL  
SS  
PWRDWN  
LOCK  
PWRDWN  
LOCK  
TIMING AND  
CONTROL  
TIMING AND  
CONTROL  
MAX9248  
MAX9250  
RNG[0:1]  
RNG[0:1]  
8
_______________________________________________________________________________________  
27-Bit, 2.5MHz to 42MHz  
DC-Balanced LVDS Deserializers  
48/MAX9250  
PCLK_OUT  
IN+  
R
IB  
ODD  
RGB_OUT  
CNTL_OUT  
LVDS  
RECEIVER  
1.2V  
EVEN  
RGB_OUT  
CNTL_OUT  
R
IB  
IN-  
RISING LATCH EDGE SHOWN (R/F = HIGH).  
Figure 1. LVDS Input Bias  
Figure 2. Worst-Case Output Pattern  
0.9 x V  
0.1 x V  
CCO  
PCLK_OUT  
DE_OUT  
2.0V  
0.8V  
t
HIGH  
LOCK  
PCLK_OUT  
CCO  
RGB_OUT[17:0]  
CNTL_OUT[8:0]  
t
R
t
F
t
LOW  
Figure 3. Output Rise and Fall Times  
Figure 4. High and Low Times  
2.0V  
PCLK_OUT  
0.8V  
PCLK_OUT SHOWN FOR R/F = HIGH (RISING LATCH EDGE)  
DE_OUT  
t
t
DVB  
DVA  
2.0V  
0.8V  
2.0V  
0.8V  
LOCK  
RGB_OUT[17:0]  
CNTL_OUT[8:0]  
Figure 5. Synchronous Output Timing  
20 SERIAL BITS  
PCLK_OUT SHOWN FOR R/F = HIGH  
SERIAL-WORD N  
SERIAL-WORD N + 1  
IN+, IN-  
t
DELAY  
PCLK_OUT  
CNTL_OUT  
RGB_OUT  
PARALLEL-WORD N - 1  
PARALLEL-WORD N  
Figure 6. Deserializer Delay  
_______________________________________________________________________________________  
9
27-Bit, 2.5MHz to 42MHz  
DC-Balanced LVDS Deserializers  
2.0V  
0.8V  
PWRDWN  
REFCLK  
TRANSITION  
WORD  
FOUND  
t
PLLREF  
t
PDD  
RECOVERED CLOCK  
HIGH IMPEDANCE  
HIGH IMPEDANCE  
PCLK_OUT  
CLOCK STRETCH  
VALID DATA  
RGB_OUT  
CNTL_OUT  
DE_OUT  
HIGH IMPEDANCE  
HIGH IMPEDANCE  
HIGH IMPEDANCE  
HIGH IMPEDANCE  
48/MAX9250  
LOCK  
NOTE: R/F = HIGH  
Figure 7. PLL Lock to REFCLK and Power-Down Delay for MAX9250  
2.0V  
0.8V  
PWRDWN  
REFCLK  
TRANSITION  
WORD  
FOUND  
t
PLLREF  
t
288 CLOCK CYCLES  
PDD  
OUTPUT CLOCK SPREAD  
HIGH IMPEDANCE  
HIGH IMPEDANCE  
PCLK_OUT  
OUTPUT DATA SPREAD  
VALID DATA  
CLOCK STRETCH  
RGB_OUT  
CNTL_OUT  
DE_OUT  
HIGH IMPEDANCE  
HIGH IMPEDANCE  
HIGH IMPEDANCE  
HIGH IMPEDANCE  
LOCK  
NOTE: R/F = HIGH  
Figure 8. PLL Lock to REFCLK and Power-Down Delay for MAX9248  
10 ______________________________________________________________________________________  
27-Bit, 2.5MHz to 42MHz  
DC-Balanced LVDS Deserializers  
48/MAX9250  
2.0V  
OUTEN  
OUTEN  
0.8V  
MAX9250  
MAX9250  
t
OE  
t
OZ  
DE_OUT  
DE_OUT  
RGB_OUT[17:0]  
CNTL_OUT[8:0]  
RGB_OUT[17:0]  
CNTL_OUT[8:0]  
HIGH IMPEDANCE  
ACTIVE  
ACTIVE  
HIGH IMPEDANCE  
Figure 9. Output Enable Time  
Figure 10. Output Disable Time  
FREQUENCY  
1 / f  
SSM  
f
(MAX)  
RxCLKOUT  
f
TIME  
RxCLKIN  
f
(MIN)  
RxCLKOUT  
Figure 11. Simplified Modulation Profile  
______________________________________________________________________________________ 11  
27-Bit, 2.5MHz to 42MHz  
DC-Balanced LVDS Deserializers  
The MAX9247 serializer can also be DC-coupled to the  
Detailed Description  
MAX9248/MAX9250 deserializers. Figures 12 and 14  
show the AC-coupled serializer and deserializer with  
two capacitors per link, and Figures 13 and 15 show  
the AC-coupled serializer and deserializer with four  
capacitors per link.  
The MAX9248/MAX9250 DC-balanced deserializers  
operate at a 2.5MHz-to-42MHz parallel clock frequen-  
cy, deserializing video data to the RꢁB_OUT[17:0] out-  
puts when the data-enable output DE_OUT is high, or  
control data to the CNTL_OUT[8:0] outputs when  
DE_OUT is low. The outputs on the MAX9248 are pro-  
grammable for 2ꢀ or 4ꢀ spread relative to the  
LVDS input clock frequency, while the MAX9250 has no  
spread, but has an output-enable input that allows out-  
put busing. The video phase words are decoded using  
two overhead bits, EN0 and EN1. Control phase words  
are decoded with one overhead bit, EN0. Encoding,  
performed by the MAX9247 serializer, reduces EMI and  
maintains DC balance across the serial cable. The seri-  
al-input word formats are shown in Tables 1 and 2.  
Applications Information  
Selection of AC-Coupling Capacitors  
See Figure 16 for calculating the capacitor values for  
AC-coupling depending on the parallel clock frequen-  
cy. The plot shows capacitor values for two- and four-  
capacitor-per-link systems. For applications using less  
than 18MHz clock frequency, use 0.1µF capacitors.  
Termination and Input Bias  
The IN+ and IN- LVDS inputs are internally connected  
to +1.2V through 42kΩ (min) to provide biasing for AC-  
coupling (Figure 1). Assuming 100Ω interconnect, the  
LVDS input can be terminated with a 100Ω resistor.  
Match the termination to the differential impedance of  
the interconnect.  
Control data inputs C0 to C4, each repeated over three  
serial bit times by the serializer, are decoded using  
majority voting. Two or three bits at the same state  
determine the state of the recovered bit, providing sin-  
gle bit-error tolerance for C0 to C4. The state of C5 to  
C8 is determined by the level of the bit itself (no voting  
is used).  
48/MAX9250  
Use a Thevenin termination, providing 1.2V bias, on an  
AC-coupled link in noisy environments. For intercon-  
nect with 100Ω differential impedance, pull each LVDS  
AC-Coupling Benefits  
AC-coupling increases the input voltage of the LVDS  
receiver to the voltage rating of the capacitor. Two  
capacitors are sufficient for isolation, but four capaci-  
tors—two at the serializer output and two at the deseri-  
alizer input—provide protection if either end of the  
cable is shorted to a high voltage. AC-coupling blocks  
low-frequency ground shifts and common-mode noise.  
line up to V  
with 130Ω and down to ground with 82Ω  
CC  
at the deserializer input (Figures 12 and 15). This termi-  
nation provides both differential and common-mode  
termination. The impedance of the Thevenin termination  
should be half the differential impedance of the inter-  
connect and provide a bias voltage of 1.2V.  
Table 1. %erial Viꢂeo Phase Worꢂ Formaꢄ  
0
1
2
3
4
5
6
7
8
9
10  
S8  
11  
S9  
12  
13  
14  
15  
16  
17  
18  
19  
EN0 EN1 S0  
S1  
S2  
S3  
S4  
S5  
S6  
S7  
S10 S11 S12 S13 S14 S15 S16 S17  
Bit 0 is the LSB and is deserialized first. EN[1:0] are encoding bits. S[17:0] are encoded symbols.  
Table ꢀ. %erial Conꢄrol Phase Worꢂ Formaꢄ  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
EN0 C0  
C0  
C0  
C1  
C1  
C1  
C2  
C2  
C2  
C3  
C3  
C3  
C4  
C4  
C4  
C5  
C6  
C7  
C8  
Bit 0 is the LSB and is deserialized first. C[8:0] are the mapped control inputs.  
1ꢀ ______________________________________________________________________________________  
27-Bit, 2.5MHz to 42MHz  
DC-Balanced LVDS Deserializers  
48/MAX9250  
V
CC  
130Ω  
130Ω  
82Ω  
PRE  
R/F  
OUTEN  
RGB_OUT  
*
RGB_IN  
1
0
1
0
OUT  
IN  
*
CNTL_OUT  
DE_OUT  
CNTL_IN  
82Ω  
CMF  
DE_IN  
PCLK_OUT  
REF_IN  
RNG0  
RNG1  
PLL  
PCLK_IN  
RNG0  
RNG1  
TIMING AND  
CONTROL  
PLL  
PWRDWN  
LOCK  
TIMING AND  
CONTROL  
PWRDWN  
MAX9247  
MAX9250  
CERAMIC RF SURFACE-MOUNT CAPACITOR  
100Ω DIFFERENTIAL STP CABLE  
*CAPACITORS CAN BE AT EITHER END.  
Figure 12. AC-Coupled MAX9247 Serializer and MAX9250 Deserializer with Two Capacitors per Link  
V
CC  
130Ω  
82Ω  
130Ω  
82Ω  
PRE  
R/F  
OUTEN  
RGB_OUT  
RGB_IN  
1
0
1
0
IN  
OUT  
CNTL_OUT  
DE_OUT  
CNTL_IN  
CMF  
DE_IN  
PCLK_OUT  
REF_IN  
RNG0  
RNG1  
PLL  
PCLK_IN  
RNG0  
RNG1  
TIMING AND  
CONTROL  
PLL  
PWRDWN  
LOCK  
TIMING AND  
CONTROL  
PWRDWN  
MAX9247  
MAX9250  
CERAMIC RF SURFACE-MOUNT CAPACITOR  
100Ω DIFFERENTIAL STP CABLE  
Figure 13. AC-Coupled MAX9247 Serializer and MAX9250 Deserializer with Four Capacitors per Link  
______________________________________________________________________________________ 13  
27-Bit, 2.5MHz to 42MHz  
DC-Balanced LVDS Deserializers  
V
CC  
130Ω  
130Ω  
R/F  
PRE  
*
IN+  
RGB_IN  
1
0
RGB_OUT  
1
0
OUT  
*
IN-  
CNTL_OUT  
DE_OUT  
CNTL_IN  
82Ω  
82Ω  
CMF  
DE_IN  
PCLK_OUT  
REFCLK  
PLL  
PCLK_IN  
RNG0  
RNG1  
SSPLL  
SS  
TIMING AND  
CONTROL  
PLL  
PWRDWN  
LOCK  
TIMING AND  
CONTROL  
PWRDWN  
MAX9247  
MAX9248  
48/MAX9250  
RNG[0:1]  
CERAMIC RF SURFACE-MOUNT CAPACITOR  
*CAPACITORS CAN BE AT EITHER END.  
100Ω DIFFERENTIAL STP CABLE  
Figure 14. AC-Coupled MAX9247 Serializer and MAX9248 Deserializer with Two Capacitors per Link  
V
CC  
130Ω  
82Ω  
130Ω  
R/F  
PRE  
IN+  
RGB_IN  
1
0
RGB_OUT  
1
0
OUT  
IN-  
CNTL_OUT  
DE_OUT  
CNTL_IN  
82Ω  
CMF  
DE_IN  
PCLK_OUT  
REFCLK  
PLL  
PCLK_IN  
RNG0  
RNG1  
SSPLL  
SS  
TIMING AND  
CONTROL  
PLL  
PWRDWN  
LOCK  
TIMING AND  
CONTROL  
PWRDWN  
MAX9247  
MAX9248  
RNG[0:1]  
CERAMIC RF SURFACE-MOUNT CAPACITOR  
100Ω DIFFERENTIAL STP CABLE  
Figure 15. AC-Coupled MAX9247 Serializer and MAX9248 Deserializer with Four Capacitors per Link  
1± ______________________________________________________________________________________  
27-Bit, 2.5MHz to 42MHz  
DC-Balanced LVDS Deserializers  
48/MAX9250  
Input Frequency Detection  
A frequency-detection circuit detects when the LVDS  
input is not switching. When not switching, all outputs  
except LOCK are low, LOCK is high, and PCLK_OUT  
follows REFCLK. This condition occurs, for example, if  
the serializer is not driving the interconnect or if the  
interconnect is open.  
140  
120  
100  
80  
FOUR CAPACITORS PER LINK  
Frequency Range Setting (RNG[1:0])  
The RNꢁ[1:0] inputs select the operating frequency  
range of the MAX9248/MAX9250 and the transition time  
of the outputs. Select the frequency range that includes  
the MAX9247 serializer PCLK_IN frequency. Table 3  
shows the selectable frequency ranges and the corre-  
sponding data rates and output transition times.  
60  
40  
20  
TWO CAPACITORS PER LINK  
0
18 21 24 27 30 33 36 39 42  
PARALLEL CLOCK FREQUENCY (MHz)  
Table 3. Freqtenpy Range Programming  
PARALLEL  
CLOCK  
(MHz)  
%ERIALꢃ  
DATA RATE TRAN%ITION  
OUTPUT  
Figure 16. AC-Coupling Capacitor Values vs. Clock Frequency  
of 18MHz to 42MHz  
RNG1 RNG0  
(Mbꢁs)  
TIME  
When the MAX9248/MAX9250 complete their lock to  
REFCLK, the serial input is monitored for a transition  
word. When a transition word is found, LOCK output is  
driven low, indicating valid output data and the parallel  
rate clock recovered from the serial input is output on  
PCLK_OUT. The MAX9248 SSPLL waits an additional  
288 clock cycles after the transition word is found  
before LOCK is driven low and sequence takes effect.  
PCLK_OUT is stretched on the change from REFCLK to  
recovered clock (or vice versa) at the time when the  
transition word is found.  
If a transition word is not detected within 222 cycles of  
PCLK_OUT, LOCK is driven high, the other outputs  
except PCLK_OUT are driven low. REFCLK is output on  
PCLK_OUT and the deserializer continues monitoring  
the serial input for a transition word. See Figure 7 for  
the MAX9250 and Figure 8 for the MAX9248 regarding  
the synchronization timing diagram.  
0
0
1
1
0
1
0
1
2.5 to 5.0  
5 to 10  
50 to 100  
100 to 200  
200 to 400  
400 to 840  
Slow  
10 to 20  
20 to 42  
Fast  
Power Down  
Driving PWRDWN low puts the outputs in high imped-  
ance and stops the PLL. With PWRDWN 0.3V and all  
LVTTL/LVCMOS inputs 0.3V or V  
ply current is reduced to less than 50µA. Driving  
PWRDWN high initiates lock to the local reference clock  
(REFCLK) and afterwards to the serial input.  
- 0.3V, the sup-  
CC  
Lock and Loss-of-Lock (LOCK)  
When PWRDWN is driven high, the PLL begins locking  
to REFCLK, drives LOCK from high impedance to high  
and the other outputs from high impedance to low,  
except PCLK_OUT. PCLK_OUT outputs REFCLK while  
the PLL is locking to REFCLK. Lock to REFCLK takes a  
maximum of 16,928 REFCLK cycles for the MAX9250.  
The MAX9248 has an additional spread-spectrum PLL  
(SSPLL) that also begins locking to REFCLK. Locking  
both PLLs to REFCLK takes a maximum of 33,600 REFCLK  
cycles for the MAX9248.  
The MAX9248 input-to-output delay can be as low as  
(4.5t + 8.0)ns or as high as (36t + 16)ns due to  
T
T
spread-spectrum variations (see Figure 6).  
The MAX9250 input-to-output delay can be as low as  
(3.575t + 8)ns or as high as (3.725t + 16)ns.  
T
T
______________________________________________________________________________________ 15  
27-Bit, 2.5MHz to 42MHz  
DC-Balanced LVDS Deserializers  
Any spread change causes a delay time of 32,000 x t  
Spread-Spectrum Selection  
The MAX9248 single-ended data and clock outputs are  
programmable for a variation of 2ꢀ or 4ꢀ around  
the LVDS input clock frequency. The modulation rate of  
the frequency variation is 32kHz for a 33MHz LVDS  
clock input and scales linearly with the clock frequency  
(see Table 4). The output spread is controlled through  
the SS input (see Table 5). Driving SS high spreads all  
data and clock outputs by 4ꢀ, while pulling low  
spreads 2ꢀ.  
T
before output data is valid. When the spread amount is  
changed from 2ꢀ to 4ꢀ or vice versa, the data out-  
puts go low for one t  
delay (see Figure 17). The  
ΔSSPLL  
data outputs stay low, but are not valid when the  
spread amount is changed.  
Output Enable (OUTEN) and  
Busing Outputs  
The outputs of two MAX9250s can be bused to form a  
2:1 mux with the outputs controlled by the output  
enable. Wait 30ns between disabling one deserializer  
(driving OUTEN low) and enabling the second one (dri-  
ving OUTEN high) to avoid contention of the bused out-  
puts. OUTEN controls all outputs except LOCK.  
Table ±. Moꢂtlaꢄion Raꢄe  
f
f (kHz) = f  
M
/ 10ꢀ±  
PCLK_IN  
PCLK_IN  
7.81  
8
Rising or Falling Output Latch Edge (R/F)  
The MAX9248/MAX9250 have a selectable rising or  
falling output latch edge through a logic setting on R/F.  
Driving R/F high selects the rising output latch edge,  
which latches the parallel output data into the next chip  
on the rising edge of PCLK_OUT. Driving R/F low  
selects the falling output latch edge, which latches the  
parallel output data into the next chip on the falling  
edge of PCLK_OUT. The MAX9248/MAX9250 output-  
latch-edge polarity does not need to match the  
MAX9247 serializer input-latch-edge polarity. Select the  
latch-edge polarity required by the chip being driven  
by the MAX9248/MAX9250.  
10  
16  
32  
40  
42  
9.77  
15.63  
31.25  
39.06  
41.01  
48/MAX9250  
Table 5. %% Ftnpꢄion  
%% INPUT LEVEL  
OUTPUT %PREAD  
Data and clock output spread 4ꢀ  
relative to REFCLK  
High  
Low  
Data and clock output spread 2ꢀ  
relative to REFCLK  
SS  
4% OR 2% SPREAD  
4% OR 2% SPREAD  
t
(32,800 x t )  
T
ΔSSPLL  
PCLK_OUT  
RGB_OUT[17:0]  
CNTL_OUT8:0]  
LOW  
LOCK  
Figure 17. Output Waveforms when Spread Amount is Changed  
16 ______________________________________________________________________________________  
27-Bit, 2.5MHz to 42MHz  
DC-Balanced LVDS Deserializers  
48/MAX9250  
CONTROL DATA  
VIDEO DATA  
CONTROL DATA  
PCLK_OUT  
CNTL_OUT  
DE_OUT  
RGB_OUT  
PCLK_OUT TIMING SHOWN FOR R/F = HIGH (RISING OUTPUT LATCH EDGE)  
= OUTPUT DATA HELD  
Figure 18. Output Timing  
Power up the MAX9247 first  
Wait for at least t of MAX9247 (or 17100 x t )  
Staggered and Transition Time  
Adjusted Outputs  
RꢁB_OUT[17:0] are grouped into three groups of six, with  
each group switching about 1ns apart in the video phase  
to reduce EMI and ground bounce. CNTL_OUT[8:0]  
switch during the control phase. Output transition times  
are slower in the 2.5MHz to 5MHz and 5MHz to 10MHz  
ranges and faster in the 10MHz to 20MHz and 20MHz to  
42MHz ranges.  
LOCK  
T
to get activity on the link  
Power up the MAX9248  
Power-Supply Circuits and Bypassing  
There are separate on-chip power domains for digital  
circuits and LVTTL/LVCMOS inputs (V  
ꢁND), outputs (V  
supply and  
CCOꢁND  
CC  
supply and V  
), PLL  
CCO  
(V  
(V  
supply and PLLꢁND), and the LVDS input  
supply and LVDSꢁND). The grounds are iso-  
CCPLL  
CCLVDS  
Data-Enable Output (DE_OUT)  
The MAX9248/MAX9250 deserialize video and control  
data at different times. Control data is deserialized during  
the video blanking time. DE_OUT high indicates that  
video data is being deserialized and output on  
RꢁB_OUT[17:0]. DE_OUT low indicates that control data  
is being deserialized and output on CNTL_OUT[8:0].  
When outputs are not being updated, the last data  
received is latched on the outputs. Figure 18 shows the  
DE_OUT timing.  
lated by diode connections. Bypass each V , V  
,
CC CCO  
pin with high-frequency, sur-  
V
, and V  
CCPLL  
CCLVDS  
face-mount ceramic 0.1µF and 0.001µF capacitors in  
parallel as close to the device as possible, with the  
smallest value capacitor closest to the supply pin. The  
outputs are powered from V  
, which accepts a  
CCO  
1.71V to 3.6V supply, allowing direct interface to inputs  
with 1.8V to 3.3V logic levels.  
Cables and Connectors  
Interconnect for LVDS typically has a differential  
impedance of 100Ω. Use cables and connectors that  
have matched differential impedance to minimize  
impedance discontinuities.  
Power-Supply Sequencing of MAX9247  
and MAX9248/MAX9250 Video Link  
The MAX9247 and MAX9248/MAX9250 video link can  
be powered up in several ways. The best approach is  
to keep both MAX9247 and MAX9248 powered down  
while supplies are ramping up and PCLK_IN of the  
MAX9247 and REFCLK of the MAX9248/MAX9250 are  
stabilizing. After all of the power supplies of the  
MAX9247 and MAX9248/MAX9250 are stable, including  
PCLK_IN and REFCLK, do the following:  
Twisted-pair and shielded twisted-pair cables offer  
superior signal quality compared to ribbon cable and  
tend to generate less EMI due to magnetic field cancel-  
ing effects. Balanced cables pick up noise as common  
mode, which is rejected by the LVDS receiver.  
______________________________________________________________________________________ 17  
27-Bit, 2.5MHz to 42MHz  
DC-Balanced LVDS Deserializers  
R
R2  
D
1MΩ  
1.5kΩ  
330Ω  
CHARGE-CURRENT-  
LIMIT RESISTOR  
DISCHARGE  
RESISTANCE  
CHARGE-CURRENT-  
LIMIT RESISTOR  
DISCHARGE  
RESISTANCE  
HIGH-  
VOLTAGE  
DC  
HIGH-  
VOLTAGE  
DC  
DEVICE  
UNDER  
TEST  
DEVICE  
UNDER  
TEST  
C
C
S
150pF  
S
STORAGE  
CAPACITOR  
STORAGE  
CAPACITOR  
100pF  
SOURCE  
SOURCE  
Figure 19. Human Body ESD Test Circuit  
Figure 20. IEC 61000-4-2 Contact Discharge ESD Test Circuit  
R
2kΩ  
D
R
D
0Ω  
CHARGE-CURRENT-  
LIMIT RESISTOR  
DISCHARGE  
RESISTANCE  
CHARGE-CURRENT-  
LIMIT RESISTOR  
DISCHARGE  
RESISTANCE  
HIGH-  
VOLTAGE  
DC  
HIGH-  
VOLTAGE  
DC  
48/MAX9250  
DEVICE  
UNDER  
TEST  
DEVICE  
UNDER  
TEST  
C
S
200pF  
C
S
330pF  
STORAGE  
CAPACITOR  
STORAGE  
CAPACITOR  
SOURCE  
SOURCE  
Figure 21. ISO 10605 Contact Discharge ESD Test Circuit  
Figure 22. Machine Model ESD Test Circuit  
Board Layout  
Pin Configuration  
Separate the LVTTL/LVCMOS outputs and LVDS inputs  
to prevent crosstalk. A four-layer PCB with separate lay-  
ers for power, ground, and signals is recommended.  
TOP VIEW  
ESD Protection  
The MAX9248/MAX9250 ESD tolerance is rated for  
Human Body Model, Machine Model, IEC 61000-4-2 and  
ISO 10605. The ISO 10605 and IEC 61000-4-2 standards  
specify ESD tolerance for electronic systems. All LVDS  
inputs on the MAX9248/MAX9250 meet ISO 10605 ESD  
protection at 30kV Air-ꢁap Discharge and 10kV  
Contact Discharge and IEC 61000-4-2 ESD protection at  
15kV Air-ꢁap Discharge and 10kV Contact  
Discharge. All other pins meet the Human Body Model  
ESD tolerance of 2kV. The Human Body Model dis-  
R/F  
1
2
36 RGB_OUT7  
35 RGB_OUT6  
34 RGB_OUT5  
33 RGB_OUT4  
32 RGB_OUT3  
31 RGB_OUT2  
RNG1  
V
3
CCLVDS  
IN+  
4
IN-  
5
LVDSGND  
PLLGND  
6
MAX9248/MAX9250  
7
30 RGB_OUT1  
29 RGB_OUT0  
28 PCLK_OUT  
V
8
CCPLL  
RNG0  
GND  
9
LOCK  
10  
11  
12  
27  
26  
25  
V
V
CC  
CCO  
charge components are C = 100pF and R = 1.5kΩ  
S
D
REFCLK  
V
CCOGND  
(Figure 19). The IEC 61000-4-2 discharge components  
are C = 150pF and R = 330Ω (see Figure 20). The ISO  
S
D
10605 discharge components are C = 330pF and R =  
S
D
2kΩ (Figure 21). The Machine Model discharge compo-  
nents are C = 200pF and R = 0Ω (Figure 22).  
S
D
LQFP  
18 ______________________________________________________________________________________  
27-Bit, 2.5MHz to 42MHz  
DC-Balanced LVDS Deserializers  
48/MAX9250  
Package Information  
Chip Information  
For the latest package outline information and land patterns, go  
PROCESS: CMOS  
to www.maximꢃip.pom/ꢁapkages.  
PACKAGE TYPE PACKAGE CODE DOCUMENT NO.  
48 LQFP  
C48+3  
ꢀ1ꢃ005±  
______________________________________________________________________________________ 19  
27-Bit, 2.5MHz to 42MHz  
DC-Balanced LVDS Deserializers  
Revision History  
REVI%ION  
NUMBER  
REVI%ION  
DATE  
PAGE%  
CHANGED  
DE%CRIPTION  
Replaced TQFP and TQFN packages with LQFP package, changed temperature  
limits for +105°C part, and added Machines Model ESD text and diagram  
2
3
5/08  
4/09  
1–5, 7, 16–19  
1, 17  
Added /V parts in the Ordering Information table and added new Power-  
Supply Sequencing of MAX9247 and MAX9248/MAX9250 Video Link section  
48/MAX9250  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
ꢀ0 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2009 Maxim Integrated Products  
Maxim is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX9250GCM/V+

27-Bit, 2.5MHz to 42MHz DC-Balanced LVDS Deserializers
MAXIM

MAX9254

21-Bit Deserializers with Programmable Spread Spectrum and DC Balance
MAXIM

MAX9254EUM

21-Bit Deserializers with Programmable Spread Spectrum and DC Balance
MAXIM

MAX9254EUM+D

Line Driver, 1 Func, CMOS, PDSO48, ROHS COMPLIANT, PLASTIC, TSSOP-48
MAXIM

MAX9254EUM+TD

Line Driver, 1 Func, CMOS, PDSO48, ROHS COMPLIANT, PLASTIC, TSSOP-48
MAXIM

MAX9254EUM/V+

Line Receiver, 1 Func, 3 Rcvr, CMOS, PDSO48, ROHS COMPLIANT, PLASTIC, TSSOP-48
MAXIM

MAX9257

Fully Programmable Serializer/Deserializer with UART/I2C Control Channel
MAXIM

MAX9257A

Fully Programmable Serializer/Deserializer with UART/I2C Control Channel
MAXIM

MAX9257AEVKIT

On-Board Emulated Camera
MAXIM

MAX9257AEVKIT+

On-Board Emulated Camera
MAXIM

MAX9257AGCM

Fully Programmable Serializer/Deserializer with UART/I2C Control Channel
MAXIM

MAX9257AGCM/V+

Line Driver, 1 Func, 1 Driver, 1 Rcvr, BICMOS, PQFP48, ROHS COMPLIANT, LQFP-48
MAXIM