MAX9258AGCM/V+TGB [MAXIM]

Line Receiver;
MAX9258AGCM/V+TGB
型号: MAX9258AGCM/V+TGB
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Line Receiver

接口集成电路
文件: 总53页 (文件大小:2966K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-5891; Rev 1; 9/11  
E V A L U A T I O N K I T A V A I L A B L E  
General Description  
Features  
The MAX9257A serializer pairs with the MAX9258A  
deserializer to form a complete digital video serial link.  
The devices feature programmable parallel data width,  
parallel clock frequency range, spread spectrum, and  
preemphasis. An integrated control channel transfers  
data bidirectionally at power-up during video blank-  
ing over the same differential pair used for video data.  
This feature eliminates the need for external CAN or LIN  
interface for diagnostics or programming. The clock is  
recovered from input serial data at MAX9258A, hence  
eliminating the need for an external reference clock.  
S 10/12/14/16/18-Bit Programmable Parallel Data  
Width  
S MAX9258A Does Not Require Reference Clock  
S Parity Protection for Video and Control Channels  
S Programmable Spread Spectrum  
S Programmable Rising or Falling Edge for HSYNC,  
VSYNC, and Clock  
S Up to 10 Remotely Programmable GPIO on  
MAX9257A  
S Automatic Resynchronization in Case of Loss of  
The MAX9257A serializes 10, 12, 14, 16, and 18 bits  
with the addition of two encoding bits for AC-coupling.  
The MAX9258A deserializer links with the MAX9257A to  
deserialize a maximum of 20 (data + encoding) bits per  
pixel/parallel clock period for a maximum serial-data rate  
of 840Mbps. The word length can be adjusted to accom-  
modate a higher pixel/parallel clock frequency. The pixel  
clock can vary from 5MHz to 70MHz, depending on the  
serial-word length. Enabling parity adds two parity bits to  
the serial word. The encoding bits reduce ISI and allow  
AC-coupling.  
Lock  
S MAX9257A Parallel Clock Jitter Filter PLL with  
Bypass  
S DC-Balanced Coding Allows AC-Coupling  
S Levels of Preemphasis for Up to 20m STP Cable  
Drive  
S Integrity Test Using On-Chip Programmable PRBS  
Generator and Checker  
S LVDS I/O Meet ISO 10605 ESD Protection (±10kV  
Contact and ±±0kV Air Discharge)  
The MAX9258A receives programming instructions from  
the electronic control unit (ECU) during the control  
channel and transmits to the MAX9257A over the serial  
video link. The instructions can program or update the  
MAX9257A, MAX9258A, or an external peripheral device,  
such as a camera. The MAX9257A communicates with  
S LVDS I/O Meet IEC 61000-4-2 ESD Protection  
(±8kV Contact and ±20kV Air Discharge)  
S LVDS I/O Meet ±200V Machine Model ESD  
Protection  
S -40NC to +105NC Operating Temperature Range  
2
the peripheral device with I C or UART.  
S Space-Saving, 40-Pin TQFN (5mm x 5mm) with  
The devices operate from a +3.3V core supply and fea-  
ture separate supplies for interfacing to +1.8V to +3.3V  
logic levels. These devices are available in 40-lead TQFN  
or 48-pin LQFP packages. These devices are specified  
over the -40NC to +105NC temperature range.  
Exposed Pad or 48-Pin LQFP Packages  
S ±.±V Core Supply and 1.8V to ±.±V I/O Supply  
Applications  
Ordering Information appears at end of data sheet.  
Automotive Cameras  
Typical Operating Circuit and Pin Configurations appear at  
end of data sheet.  
Industrial Cameras  
Navigation Systems Display  
In-Vehicle Entertainment Systems  
For related parts and recommended products to use with this part,  
refer to www.maxim-ic.com/MAX9257A.related.  
����������������������������������������������������������������� Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,  
or visit Maxim’s website at www.maxim-ic.com.  
MAX9257A/MAX9258A  
Fully Programmable Serializer/Deserializer  
2
with UART/I C Control Channel  
ABSOLUTE MAXIMUM RATINGS  
CC_  
Any Ground to Any Ground .................................-0.5V to +0.5V  
SDI+, SDI-, SDO+, SDO- to GND........................-0.5V to +4.0V  
V
to GND........................................................-0.5V to +4.0V  
IEC 61000-4-2 (RD = 330I, CS = 150pF)  
Contact Discharge  
(SDI+, SDI-, SDO+, SDO-) to GND..............................Q8kV  
Air Discharge  
SDO+, SDO- Short Circuit to GND or V  
.......Continuous  
CCLVDS  
DIN[0:15], GPIO[0:9], PCLK_IN, HSYNC_IN, VSYNC_IN,  
(SDI+, SDI-, SDO+, SDO-) to GND............................Q20kV  
ISO 10605 (RD = 2kI, CS = 330pF)  
Contact Discharge  
(SDI+, SDI-, SDO+, SDO-) to GND............................Q10kV  
Air Discharge  
(SDI+, SDI-, SDO+, SDO-) to GND............................Q30kV  
Machine Model (RD = 0I, CS = 200pF)  
SCL/TX, SDA/RX, REM to GND......... -0.5V to (V  
DOUT[0:15], PCLK_OUT, CCEN, HSYNC_OUT,  
VSYNC_OUT, RX, LOCK, TX, PD,  
+ 0.5V)  
+ 0.5V)  
CCIO  
ERROR to GND ..............................-0.5V to (V  
Continuous Power Dissipation (TA = +70NC)  
40-Lead TQFN  
CCOUT  
Multilayer PCB (derate 35.7mW/NC above +70NC) ...2857mW  
48-Lead LQFP  
Multilayer PCB (derate 21.7mW/NC above +70NC) ...1739mW  
ESD Protection  
Human Body Model (RD = 1.5kI, CS = 100pF)  
All Pins to GND ............................................................Q3kV  
All Pins to GND ......................................................... Q200V  
Storage Temperature Range............................ -65NC to +150NC  
Junction Temperature .....................................................+150NC  
Lead Temperature (soldering, 10s) ................................+300NC  
Soldering Temperature (reflow) ......................................+260NC  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional opera-  
tion of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
PACKAGE THERMAL CHARACTERISTICS (Note 1)  
Junction-to-Ambient Thermal Resistance (q  
)
Junction-to-Case Thermal Resistance (q  
)
JA  
JC  
40-Pin TQFN................................................................28NC/W  
40-Pin TQFN...............................................................1.7NC/W  
48-Pin LQFP ................................................................46NC/W  
48-Pin LQFP ................................................................10NC/W  
Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-  
layer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.  
MAX9257A DC ELECTRICAL CHARACTERISTICS  
(V  
= +3.0V to +3.6V, V  
= +1.71V to +3.6V, R = 50IQ1%, T = -40NC to +105NC, unless otherwise noted. Typical values are  
CC_  
CCIO  
L
A
at V  
= +3.3V, T = +25NC.) (Notes 2, 3)  
CC_  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
SINGLE-ENDED INPUTS  
0.65 x  
V
V
+
CCIO  
0.3  
V
V
= +1.71V to +3V  
CCIO  
V
CCIO  
+
+
CCIO  
0.3  
High-Level Input Voltage  
V
= +3V to +3.6V  
2
V
IH  
CCIO  
V
CC  
0.3  
REM input  
2
0
0.3 x  
V
V
= +1.71V to +3V  
= +3V to +3.6V  
CCIO  
V
CCIO  
0.8  
Low-Level Input Voltage  
V
V
IL  
0
0
CCIO  
REM input  
0.8  
����������������������������������������������������������������� Maxim Integrated Products  
2
MAX9257A/MAX9258A  
Fully Programmable Serializer/Deserializer  
2
with UART/I C Control Channel  
MAX9257A DC ELECTRICAL CHARACTERISTICS (continued)  
(V  
= +3.0V to +3.6V, V  
= +1.71V to +3.6V, R = 50IQ1%, T = -40NC to +105NC, unless otherwise noted. Typical values are  
CC_  
CCIO  
L
A
at V  
= +3.3V, T = +25NC.) (Notes 2, 3)  
CC_  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
-20  
-20  
TYP  
MAX UNITS  
V
V
= 0 to V  
+20  
FA  
IN  
CCIO  
Input Current  
I
IN  
= 0 to V  
CC,  
REM input  
+20  
IN  
Input Clamp Voltage  
V
I
= -18mA  
-1.5  
V
CL  
CL  
SINGLE-ENDED OUTPUTS  
V
V
-
-
CCIO  
0.1  
I
I
= -100FA  
OH  
High-Level Output Voltage  
Low-Level Output Voltage  
V
V
V
OH  
CCIO  
0.35  
= -2mA  
OH  
I
I
= 100FA  
0.1  
0.3  
-4  
OL  
V
OL  
= 2mA  
OL  
V
V
V
V
= +1.71V to +3V  
= +3V to +3.6V  
= +1.71V to +3V  
= +3V to +3.6V  
-40  
-50  
4
CCIO  
CCIO  
CCIO  
CCIO  
Shorted to GND  
-10  
40  
Output Short-Circuit Current  
I
mA  
OS  
Shorted to V  
CCIO  
10  
50  
2
I C/UART I/O  
Input Leakage Current  
I
V = V  
CCIO  
-1  
+1  
FA  
ILKG  
I
0.7 x  
High-Level Input Voltage SDA/RX  
V
V
IH2  
V
CCIO  
0.3 x  
Low-Level Input Voltage SDA/RX  
V
V
V
IL2  
V
CCIO  
Low-Level Output Voltage  
SCL, SDA  
V
R
= 1.6kI to V  
0.4  
OL2  
PULLUP CCIO  
LVDS OUTPUTS (SDO+, SDO-)  
Differential Output Voltage  
V
250  
1.050  
-15  
350  
460  
25  
mV  
mV  
V
OD  
Change in V  
OD  
Between  
Complementary Output States  
DV  
OD  
Preemphasis off  
(Figure 1)  
Common-Mode Voltage  
V
1.25  
1.375  
30  
OS  
Change in V  
OS  
Between  
Complementary Output States  
DV  
mV  
mA  
mA  
OS  
Output Short-Circuit Current  
I
V
V
or V = 0 or 3.6V  
SDO-  
+15  
15  
OS  
SDO+  
Magnitude of Differential Output  
Short-Circuit Current  
I
= 0V  
OD  
OSD  
CONTROL CHANNEL TRANSCEIVER  
Differential Output Voltage  
V
250  
25  
350  
90  
460  
165  
-165  
mV  
mV  
OD  
Differential low-to-high threshold  
Differential high-to-low threshold  
Input Hysteresis  
(Figure 2)  
VHYST+  
V
-25  
-90  
HYST-  
����������������������������������������������������������������� Maxim Integrated Products  
±
MAX9257A/MAX9258A  
Fully Programmable Serializer/Deserializer  
2
with UART/I C Control Channel  
MAX9257A DC ELECTRICAL CHARACTERISTICS (continued)  
(V  
= +3.0V to +3.6V, V  
= +1.71V to +3.6V, R = 50IQ1%, T = -40NC to +105NC, unless otherwise noted. Typical values are  
CC_  
CCIO  
L
A
at V  
= +3.3V, T = +25NC.) (Notes 2, 3)  
CC_  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
POWER SUPPLY  
Q2% spread, preemphasis off,  
PRATE = 60MHz, SRATE = 840Mbps  
102  
101  
102  
111  
113  
80  
138  
130  
135  
137  
139  
104  
100  
111  
No spread, preemphasis off,  
PRATE = 60MHz, SRATE = 840Mbps  
No spread, preemphasis = 20%,  
PRATE = 60MHz, SRATE = 840Mbps  
No spread, preemphasis = 60%,  
PRATE = 60MHz, SRATE = 840Mbps  
No spread, preemphasis = 100%,  
PRATE = 60MHz, SRATE = 840Mbps  
Q2% spread, preemphasis off,  
PRATE = 28.57MHz, SRATE = 400Mbps  
No spread, preemphasis off,  
PRATE = 28.57MHz, SRATE = 400Mbps  
79  
No spread, preemphasis = 100%,  
PRATE = 28.57MHz, SRATE = 400Mbps  
88  
Worst-Case Supply Current  
(Figure 3)  
Q2% spread, preemphasis off,  
PRATE = 14.29MHz, SRATE = 200Mbps  
I
56  
74  
72  
78  
59  
57  
61  
45  
44  
mA  
CCW  
C = 8pF, 12 bits  
L
No spread, preemphasis off,  
PRATE = 14.29MHz, SRATE = 200Mbps  
55  
No spread, preemphasis = 100%,  
PRATE = 14.29MHz, SRATE = 200Mbps  
61  
Q2% spread, preemphasis off,  
PRATE = 7.14MHz, SRATE = 100Mbps  
45  
No spread, preemphasis off,  
PRATE = 7.14MHz, SRATE = 100Mbps  
44  
No spread, preemphasis = 100%,  
PRATE = 7.14MHz, SRATE = 100Mbps  
47  
Q2% spread, preemphasis off,  
PRATE = 5MHz, SRATE = 70Mbps  
34  
No spread, preemphasis off,  
PRATE = 5MHz, SRATE = 70Mbps  
34  
No spread, preemphasis = 100%,  
PRATE = 5MHz, SRATE = 70Mbps  
36  
47  
92  
Sleep Mode Supply Current  
I
Sleep mode  
FA  
CCS  
����������������������������������������������������������������� Maxim Integrated Products  
4
MAX9257A/MAX9258A  
Fully Programmable Serializer/Deserializer  
2
with UART/I C Control Channel  
MAX9257A AC ELECTRICAL CHARACTERISTICS  
(V  
= +3.0V to +3.6V, V  
= +1.71V to +3.6V, R = 50IQ1%, T = -40NC to +105NC, unless otherwise noted. Typical values are  
CC_  
CCIO  
L
A
at V  
= +3.3V, T = +25NC.) (Notes 5, 9)  
CC_  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
PCLK�IN TIMING REQUIREMENTS  
Clock Period  
t
14.28  
5
200.00  
ns  
MHz  
%
T
Clock Frequency  
f
1/t  
70  
65  
4
CLK  
DC  
T
Clock Duty Cycle  
t
/t or t  
/t  
35  
50  
HIGH T  
LOW T  
Clock Transition Time  
SWITCHING CHARACTERISTICS  
LVDS Output Rise Time  
LVDS Output Fall Time  
t , t  
(Figure 7)  
ns  
R
F
t
20% to 80% (Figure 4)  
20% to 80% (Figure 4)  
315  
315  
970  
1140  
386  
370  
370  
ps  
ps  
R
t
F
t
, t  
642  
810  
290  
0
1390  
1420  
490  
R1A F1A  
Control Transceiver Transition  
t
, t  
20% to 80% (Figure 16)  
ps  
R2 F2  
Time  
t
, t  
R1B F1B  
Input Setup Time  
Input Hold Time  
t
(Figure 5)  
(Figure 5)  
ns  
ns  
S
t
3
H
(4.55 x t  
+ 11  
T)  
t
t
Spread off (Figure 6)  
PSD1  
PSD2  
Parallel-to-Serial Delay  
ns  
ns  
(36.55 x t  
+ 11  
T)  
Q4% spread  
32,768  
x t  
PLL Lock Time  
Random Jitter  
t
Combined FPLL and SPLL; PCLK_IN stable  
LOCK  
T
420MHz LVDS output, spread off,  
FPLL = bypassed  
ps  
(RMS)  
t
12  
RJ  
18  
2
- 1 PRBS, SRATE = 840Mbps, 18 bits,  
Deterministic Jitter  
SCL/TX, SDA/RX  
Rise Time  
t
142  
ps (P-P)  
DJ  
no spread  
R
R
= 10kI  
= 1.6kI  
400  
60  
0.3 x V  
to 0.7 x  
, C = 30pF  
PULLUP  
CCIO  
t
ns  
ns  
RS  
V
CCIO  
L
PULLUP  
Fall Time  
t
0.7 x V  
to 0.3 x V  
CCIO,  
C = 30pF  
40  
FS  
CCIO  
L
95kbps to 400kbps  
100  
50  
400kbps to 1000kbps  
Pulse Width of Spike Suppressed  
in SDA  
t
ns  
SPK  
1000kbps to 4250kbps  
10  
DC to 10Mbps (bypass mode)  
400kbps  
10  
100  
60  
Data Setup Time  
Data Hold Time  
t
ns  
ns  
SETUP  
4.25Mbps, C = 10pF  
L
400kbps  
100  
0
t
HOLD  
4.25Mbps, C = 10pF  
L
����������������������������������������������������������������� Maxim Integrated Products  
5
MAX9257A/MAX9258A  
Fully Programmable Serializer/Deserializer  
2
with UART/I C Control Channel  
MAX9257A AC ELECTRICAL CHARACTERISTICS (continued)  
(V  
= +3.0V to +3.6V, V  
= +1.71V to +3.6V, R = 50IQ1%, T = -40NC to +105NC, unless otherwise noted. Typical values are  
CC_  
CCIO  
L
A
at V  
= +3.3V, T = +25NC.) (Notes 5, 9)  
CC_  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
I2C TIMING (Note 8)  
Maximum SCL Clock Frequency  
Minimum SCL Clock Frequency  
Start Condition Hold Time  
Low Period of SCL Clock  
High Period of SCL Clock  
f
f
4.25  
95  
MHz  
kHz  
Fs  
SCL  
SCL  
t
t
(Figure 30)  
(Figure 30)  
(Figure 30)  
0.6  
1.1  
0.6  
HD:STA  
t
Fs  
LOW  
t
Fs  
HIGH  
Repeated START Condition  
Setup Time  
(Figure 30)  
0.5  
Fs  
SU:STA  
Data Hold Time  
t
(Figure 30)  
(Figure 30)  
(Figure 30)  
(Figure 30)  
0
0.9  
Fs  
ns  
Fs  
Fs  
HD:DAT  
Data Setup Time  
t
t
100  
0.5  
1.1  
SU:DAT  
Setup Time for STOP Condition  
Bus Free Time  
SU:STO  
t
BUF  
MAX9258A DC ELECTRICAL CHARACTERISTICS  
(V  
= +3.0V to +3.6V, V  
= +1.71V to +3.6V, R = 50I Q1%, differential input voltage |V | = 0.05V to 1.2V, input common-  
CC_  
CCIO L ID  
mode voltage V  
= |V /2| to V  
- |V /2|, T = -40NC to +105NC, unless otherwise noted. Typical values are at V  
= +3.3V, |V  
|
CM  
ID  
CC  
ID  
A
CC_  
ID  
= 0.2V, V  
= 1.2V, T = +25NC) (Notes 2, 3)  
CM  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
SINGLE-ENDED INPUTS  
0.65 x  
V
V
CCOUT  
+ 0.3  
V
V
= +1.71V to +3V  
CCOUT  
V
CCOUT  
High-Level Input Voltage  
V
V
V
IH  
CCOUT  
+ 0.3  
= +3V to +3.6V  
2.0  
CCOUT  
0.3 x  
V
V
V
= +1.71V to +3V  
= +3V to +3.6V  
0
CCOUT  
V
Low-Level Input Voltage  
V
CCOUT  
0.8  
IL  
0
CCOUT  
TXIN  
-60  
-20  
+60  
+20  
-1.5  
Input Current  
I
= 0 to V  
FA  
IN  
IN  
CCOUT  
PD  
Input Clamp Voltage  
V
I
= -18mA  
V
CL  
CL  
����������������������������������������������������������������� Maxim Integrated Products  
6
MAX9257A/MAX9258A  
Fully Programmable Serializer/Deserializer  
2
with UART/I C Control Channel  
MAX9258A DC ELECTRICAL CHARACTERISTICS (continued)  
(V  
= +3.0V to +3.6V, V  
= +1.71V to +3.6V, R = 50I Q1%, differential input voltage |V | = 0.05V to 1.2V, input common-  
CC_  
CCIO L ID  
mode voltage V  
= |V /2| to V  
- |V /2|, T = -40NC to +105NC, unless otherwise noted. Typical values are at V  
= +3.3V, |V  
|
CM  
ID  
CC  
ID  
A
CC_  
ID  
= 0.2V, V  
= 1.2V, T = +25NC) (Notes 2, 3)  
CM  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
SINGLE-ENDED OUTPUTS  
V
V
CCOUT  
- 0.1  
I
I
= -100FA  
OH  
High-Level Output Voltage  
V
V
OH  
CCOUT  
-0.35  
= -2mA  
OH  
I
I
= 100FA  
0.1  
0.3  
OL  
Low-Level Output Voltage  
V
I
V
OL  
= 2mA  
OL  
High-Impedance Output Current  
-1  
-4  
+1  
FA  
PD = low, V = 0 to V  
OZ  
O
CCOUT  
V
V
V
V
= +1.71V to +3V  
-44  
-65  
-55.1  
-80  
V
= 0V  
CCOUT  
CCOUT  
CCOUT  
CCOUT  
O
(Note 4)  
= +3V to +3.6V  
= +1.71V to +3.6V  
= +3V to +3.6V  
-16  
-5  
Output Short-Circuit Current  
I
mA  
OS  
PCLK_OUT,  
V
= 0V  
-22  
O
OPEN-DRAIN OUTPUTS  
V
V
V
= +3V, I = 6.4mA  
0.55  
0.3  
1
CCOUT  
OL  
Output Low Voltage  
V
V
OL  
= +1.71V, I = 1.95mA  
OL  
CCOUT  
Leakage Current  
I
= 0V or V  
FA  
LEAK  
O
CCOUT  
LVDS INPUTS (SDI+, SDI-)  
Differential Input High Threshold  
Differential Input Low Threshold  
Input Current  
V
50  
mV  
mV  
FA  
FA  
TH  
V
-50  
-60  
-70  
TL  
I
I
+60  
+70  
IN+, IN-  
Power-Off Input Current  
I
I
V
= 0 or open  
INO+, INO- CC_  
ACTOFFSET = 00  
ACTOFFSET = 01  
ACTOFFSET = 10  
ACTOFFSET = 11  
23  
11  
59  
75  
Activity-Detector Input Offset  
V
mV  
OFFSET  
CONTROL CHANNEL TRANSCEIVER  
Differential Output Voltage  
V
250  
25  
460  
165  
-165  
mV  
mV  
OD  
V
Differential low-to-high threshold  
Differential high-to-low threshold  
90  
Input Hysteresis  
(Figure 2)  
HYST+  
V
-25  
-90  
HYST-  
����������������������������������������������������������������� Maxim Integrated Products  
7
MAX9257A/MAX9258A  
Fully Programmable Serializer/Deserializer  
2
with UART/I C Control Channel  
MAX9258A DC ELECTRICAL CHARACTERISTICS (continued)  
(V  
= +3.0V to +3.6V, V  
= +1.71V to +3.6V, R = 50I Q1%, differential input voltage |V | = 0.05V to 1.2V, input common-  
CC_  
CCIO L ID  
mode voltage V  
= |V /2| to V  
- |V /2|, T = -40NC to +105NC, unless otherwise noted. Typical values are at V  
= +3.3V, |V |  
CC_ ID  
CM  
ID  
CC  
ID  
A
= 0.2V, V  
= 1.2V, T = +25NC) (Notes 2, 3)  
CM  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
POWER SUPPLY  
Q4% spread, PRATE = 60MHz,  
SRATE = 840Mbps  
95  
80  
67  
57  
55  
46  
42  
135  
120  
102  
84  
Spread off, PRATE = 60MHz,  
SRATE = 840Mbps  
Q4% spread, PRATE = 28.57MHz,  
SRATE = 400Mbps  
Spread off, PRATE = 28.57MHz,  
SRATE = 400Mbps  
Worst-Case Supply Current  
C = 8pF, 12 bits  
I
mA  
L
CCW  
Q4% spread, PRATE = 14.29MHz,  
SRATE = 200Mbps  
(Figure 8)  
82  
Spread off, PRATE = 14.29MHz,  
SRATE = 200Mbps  
67  
Q4% spread, PRATE = 5MHz,  
SRATE = 70Mbps  
57  
Spread off, PRATE = 5MHz,  
SRATE = 70Mbps  
34  
10  
49  
50  
Power-Down Supply Current  
I
FA  
PD = low  
CCZ  
MAX9258A AC ELECTRICAL CHARACTERISTICS  
(V  
= +3.0V to +3.6V, V  
= +1.71V to +3.6V, R = 50I Q1%, C = 8pF, differential input voltage |V | = 0.1V to 1.2V, input  
CC_  
CCIO L L ID  
common-mode voltage V  
= |V /2| to V  
- |VID/2|, T = -40NC to +105NC, unless otherwise noted. Typical values are at V  
=
CM  
ID  
CC  
A
CC_  
+3.3V, |V | = 0.2V, V  
= 1.2V, T = +25NC) (Notes 5, 6 and 7)  
ID  
CM  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
SWITCHING CHARACTERISTICS  
Output Transition Time  
t
t
t
t
t
(Figure 9)  
(Figure 9)  
0.7  
0.5  
1.0  
0.7  
2.2  
1.5  
2.8  
2.2  
ns  
ns  
ns  
ns  
R, F  
Output Transition Time,  
PCLK_OUT  
t
R, F  
Output Transition Time  
t
V
= 1.71V (Figure 9)  
= 1.71V (Figure 9)  
R, F  
CCOUT  
CCOUT  
Output Transition Time,  
PCLK_OUT  
t
V
R, F  
t
t
t
R1A, F1A,  
Control Channel Transition Time  
(Figure 16)  
0.5  
1.2  
ns  
t
R1B, F1B  
Control Channel Transition Time  
PCLK_OUT High Time  
t
t
(Figure 16)  
(Figure 10)  
(Figure 10)  
0.6  
1.3  
ns  
ns  
ns  
R2, F2  
t
0.4 x t  
0.6 x t  
HIGH  
T
T
T
PCLK_OUT Low Time  
t
0.4 x t  
0.6 x t  
LOW  
T
����������������������������������������������������������������� Maxim Integrated Products  
8
MAX9257A/MAX9258A  
Fully Programmable Serializer/Deserializer  
2
with UART/I C Control Channel  
MAX9258A AC ELECTRICAL CHARACTERISTICS (continued)  
(V  
= +3.0V to +3.6V, V  
= +1.71V to +3.6V, R = 50I Q1%, C = 8pF, differential input voltage |V | = 0.1V to 1.2V, input  
CC_  
CCIO L L ID  
common-mode voltage V  
= |V /2| to V  
- |VID/2|, T = -40NC to +105NC, unless otherwise noted. Typical values are at V  
=
CC_  
CM  
ID  
CC  
A
+3.3V, |V | = 0.2V, V  
= 1.2V, T = +25NC) (Notes 5, 6 and 7)  
ID  
CM  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
ns  
Data Valid Before PCLK_ OUT  
Data Valid After PCLK_OUT  
t
t
(Figure 11)  
(Figure 11)  
0.35 x t  
0.35 x t  
DVB  
DVA  
T
ns  
T
t
Spread off (Figure 14)  
Q4% spread  
8t  
T
SPD1  
SPD2  
Serial-to-Parallel Delay  
ns  
t
40t  
T
Power-Up Delay  
t
(Figure 12)  
100  
100  
ns  
ns  
PUD  
PDD  
Power-Down to High Impedance  
t
(Figure 13)  
Each half of the UI, 12 bit,  
SRATE = 840Mbps, PRBS No spread  
pattern (Figure 15)  
Jitter Tolerance  
t
0.25  
0.30  
UI  
JT  
Note 2: Current into a pin is defined as positive. Current out of a pin is defined as negative. All voltages are referenced to ground  
except V and V  
.
TL  
TH  
Note ±: Maximum and minimum limits over temperature are guaranteed by design and characterization. Devices are production  
tested at T = +105NC.  
A
Note 4: One output at a time.  
Note 5: AC parameters are guaranteed by design and characterization, and are not production tested.  
Note 6: C includes probe and test jig capacitance.  
L
Note 7: t is the period of the PCLK_OUT.  
T
Note 8: For high-speed mode timing, see the Detailed Description section.  
2
2
Note 9: I C timing parameters are specified for fast-mode I C. Max data rate = 400kbps.  
Typical Operating Characteristics  
(V  
= +3.3V, R = 50O, C = 8pF, T = +25NC, unless otherwise noted.)  
L L A  
CC_  
MAX9257A SUPPLY CURRENT  
vs. FREQUENCY  
MAX9257A SUPPLY CURRENT  
vs. FREQUENCY  
MAX9258A SUPPLY CURRENT  
vs. FREQUENCY  
120  
100  
80  
60  
40  
20  
0
140  
120  
100  
80  
120  
100  
80  
60  
40  
20  
0
PRBS PATTERN  
18-BIT  
PRBS PATTERN  
10-BIT  
PRBS PATTERN  
18-BIT  
100% PREEMPHASIS  
4% SPREAD  
100% PREEMPHASIS  
60  
NO SPREAD  
NO PREEMPHASIS  
NO PREEMPHASIS  
40  
20  
0
5
10 15 20 25 30 35 40 45  
PCLK FREQUENCY (MHz)  
5
15  
25  
35  
45  
55  
65  
75  
5
10 15 20 25 30 35 40 45  
PCLK FREQUENCY (MHz)  
PCLK FREQUENCY (MHz)  
����������������������������������������������������������������� Maxim Integrated Products  
9
MAX9257A/MAX9258A  
Fully Programmable Serializer/Deserializer  
2
with UART/I C Control Channel  
Typical Operating Characteristics (continued)  
(V  
= +3.3V, R = 50O, C = 8pF, T = +25NC, unless otherwise noted.)  
L L A  
CC_  
SERIAL LINK SWITCHING PATTERN WITH  
PREEMPHASIS (BIT RATE = 840MHz, 2m STP CABLE)  
(PREEMPHASIS = 100%)  
SERIAL LINK SWITCHING PATTERN WITHOUT  
PREEMPHASIS (BIT RATE = 840MHz, 2m STP CABLE)  
MAX9258A SUPPLY CURRENT  
vs. FREQUENCY  
120  
100  
80  
60  
40  
20  
0
PRBS PATTERN  
10-BIT  
4% SPREAD  
NO SPREAD  
5
10 15 20 25 30 35 40 45  
PCLK FREQUENCY (MHz)  
MAX9257A OUTPUT POWER  
SPECTRUM vs. PCLK FREQUENCY  
MAX9257A OUTPUT POWER  
SPECTRUM vs. PCLK FREQUENCY  
MAX9258A OUTPUT POWER  
SPECTRUM vs. PCLK FREQUENCY  
20  
10  
20  
20  
10kHz BW  
NO SPREAD  
10kHz BW  
NO SPREAD  
10kHz BW  
4% SPREAD  
NO SPREAD  
2% SPREAD  
0
4% SPREAD  
0
0
2% SPREAD  
2% SPREAD  
-10  
-20  
-30  
1.5% SPREAD  
-20  
-20  
-40  
-50  
-60  
-70  
-80  
-40  
-60  
-80  
-40  
-60  
-80  
18  
19  
20  
21  
22  
38  
40  
42  
44  
46  
38  
40  
42  
44  
46  
PCLK FREQUENCY (MHz)  
PCLK FREQUENCY (MHz)  
PCLK FREQUENCY (MHz)  
BIT ERROR RATE (< 10-9) vs.  
CABLE LENGTH  
BIT ERROR RATE (< 10-9) vs.  
CABLE LENGTH  
900  
800  
700  
900  
800  
700  
NO SPREAD  
STP CABLE  
2% SPREAD ON  
MAX9257, STP CABLE  
100% PREEMPHASIS  
NO PREEMPHASIS  
100% PREEMPHASIS  
NO PREEMPHASIS  
600  
500  
400  
600  
500  
400  
-12  
-12  
BER CAN BE AS LOW AS 10 FOR  
CABLE LENGTHS LESS THAN 10m.  
BER CAN BE AS LOW AS 10 FOR  
CABLE LENGTHS LESS THAN 10m.  
0
2
4
6
8
10 12 14 16 18 20  
0
2
4
6
8
10 12 14 16 18 20  
CABLE LENGTH (m)  
CABLE LENGTH (m)  
���������������������������������������������������������������� Maxim Integrated Products 10  
MAX9257A/MAX9258A  
Fully Programmable Serializer/Deserializer  
2
with UART/I C Control Channel  
Pin Configuration  
TOP VIEW  
30 29 28 27 26 25 24 23 22 21  
N.C. 37  
DIN1 38  
DIN2 39  
24 N.C.  
23  
22 GND  
21  
20 SDA/RX  
DIN1  
DIN2  
20  
19  
18  
17  
16  
15  
V
CC  
31  
32  
33  
34  
V
CC  
GND  
V
V
CC  
CCIO  
V
40  
V
CC  
CCIO  
GND  
SDA/RX  
SCL/TX  
PCLK_IN  
GND 41  
DIN3 42  
SCL/TX  
19  
18  
17  
16  
15  
14  
13  
DIN3 35  
DIN4 36  
MAX9257A  
MAX9257A  
DIN4  
DIN5  
PCLK_IN  
VSYNC_IN  
HSYNC_IN  
DIN15/GPIO7  
GND  
43  
44  
45  
46  
47  
48  
37  
38  
39  
40  
14 VSYNC_IN  
DIN5  
DIN6  
DIN6  
HSYNC_IN  
13  
DIN7  
DIN15/GPIO7  
12  
DIN7  
DIN8/GPIO0  
N.C.  
+
GND  
11  
DIN8/GPIO0  
N.C.  
+
1
2
3
4
5
6
7
8
9
10  
TQFN-EP  
CONNECT EP TO GND  
LQFP  
N.C. 37  
24 N.C.  
23 GNDOUT  
22  
GNDOUT 38  
V
39  
V
CCOUT  
CCOUT  
DOUT6 40  
DOUT5 41  
DOUT4 42  
21 DOUT15  
20 HSYNC_OUT  
19 VSYNC_OUT  
MAX9258A  
DOUT3  
DOUT2  
DOUT1  
DOUT0  
CCEN  
PCLK_OUT  
LOCK  
TX  
43  
44  
45  
46  
47  
48  
18  
17  
16  
15  
14  
13  
RX  
GND  
GNDOUT  
N.C.  
+
LQFP  
���������������������������������������������������������������� Maxim Integrated Products 11  
MAX9257A/MAX9258A  
Fully Programmable Serializer/Deserializer  
2
with UART/I C Control Channel  
MAX9257A Pin Description  
PIN  
NAME  
FUNCTION  
TQFN  
LQFP  
Single-Ended Input/Output Buffer Supply Voltage. Bypass V  
CCIO  
to GND with 0.1FF and  
0.001FF capacitors in parallel as close as possible to the device with the smallest value  
capacitor closest to V  
1, 18  
2, 21  
V
CCIO  
.
CCIO  
2, 11,  
19, 34  
3, 14,  
22, 41  
GND  
Digital Supply Ground  
Data Input/General Purpose Input/Output. When a serial-data word is less than 18 bits word  
length, DIN_ not programmed as data inputs becomes GPIO (Table 22). DIN[9:14] are inter-  
nally pulled down to ground.  
DIN[9:14]/  
GPIO[1:6]  
3–8  
9
4–9  
10  
GNDFPLL Filter PLL Ground  
Filter PLL Supply Voltage. Bypass V  
to GNDFPLL with 0.1FF and 0.001FF capacitors  
CCFPLL  
10  
11  
V
in parallel as close as possible to the device with the smallest value capacitor closest to  
CCFPLL  
V
.
CCFPLL  
Data Input/General Purpose Input/Output. When a serial-data word is less than 18 bits word  
12  
15  
DIN15/GPIO7 length, DIN_ not programmed as data input becomes GPIO (Table 22). DIN15 is internally  
pulled down to ground.  
13  
14  
16  
17  
HSYNC_IN Horizontal SYNC Input. HSYNC_IN is internally pulled down to ground.  
VSYNC_IN Vertical SYNC Input. VSYNC_IN is internally pulled down to ground.  
Parallel Clock Input. PCLK_IN latches data and sync inputs and provides the PLL reference  
clock. PCLK_IN is internally pulled down to ground.  
15  
16  
18  
19  
PCLK_IN  
2
Open-Drain Control Channel Output. SCL/TX becomes SCL output when UART-to-I C is active.  
SCL/TX  
2
SCL/TX becomes TX output when UART-to-I C is bypassed. Externally pull up to V  
.
CC  
Open-Drain Control Channel Input/Output. SDA/RX becomes bidirectional SDA when UART-  
2
2
17  
20  
SDA/RX  
to-I C is active. SDA/RX becomes RX input when UART-to-I C is bypassed. SDA output  
requires a pullup to V  
.
CC  
Digital Supply Voltage. Bypass V  
CC  
to ground with 0.1FF and 0.001FF capacitors in parallel  
20, 33  
23, 40  
V
CC  
as close as possible to the device with the smallest value capacitor closest to V  
.
CC  
21  
22  
26  
27  
GPIO8  
GPIO9  
General Purpose Input/Output  
General Purpose Input/Output  
Spread PLL Supply Voltage. Bypass V  
to GNDSPLL with 0.1FF and 0.001FF capaci-  
CCSPLL  
23  
28  
V
tors in parallel as close as possible to the device with the smallest value capacitor closest to  
CCSPLL  
V
.
CCSPLL  
24  
25  
26  
27  
29  
30  
31  
32  
GNDSPLL SPLL Ground  
GNDLVDS LVDS Ground  
SDO-  
Serial LVDS Inverting Output  
Serial LVDS Noninverting Output  
LVDS Supply Voltage. Bypass V  
SDO+  
to GNDLVDS with 0.1FF and 0.001FF capacitors  
CCLVDS  
28  
33  
V
in parallel as close as possible to the device with the smallest value capacitor closest to  
CCLVDS  
V
.
CCLVDS  
���������������������������������������������������������������� Maxim Integrated Products 12  
MAX9257A/MAX9258A  
Fully Programmable Serializer/Deserializer  
2
with UART/I C Control Channel  
MAX9257A Pin Description (continued)  
PIN  
NAME  
REM  
FUNCTION  
TQFN  
LQFP  
Remote Power-Up/Power-Down Select Input. Connect REM to ground for power-up to follow  
29  
34  
V
. Connect REM high to V  
through 10kI resistor for remote power-up. REM is internally  
CC  
CC  
pulled down to GND.  
30, 31, 32, 35, 38, 39,  
DIN[0:7]  
Data Inputs. DIN[0:7] are internally pulled down to ground.  
35–39  
42–46  
Data Input/General Purpose Input/Output. When a serial-data word is less than 18 bits word  
40  
47  
DIN8/GPIO0 length, DIN_ not programmed as data input becomes GPIO (Table 22). DIN8 is internally  
pulled down to ground.  
1, 12, 13  
24, 25, 36,  
37, 48  
N.C.  
EP  
No Connection. Not internally connected.  
Exposed Pad for TQFN Package Only. Connect EP to ground.  
MAX9258A Pin Description  
PIN  
NAME  
FUNCTION  
1, 12, 13, 24,  
25, 36, 37  
N.C.  
No Connection. Not internally connected.  
Digital Supply Voltage. Bypass V to GND with 0.1FF and 0.001FF capacitors in parallel as close  
CC  
2
V
CC  
as possible to the device with the smallest value capacitor closest to V  
.
CC  
3, 14  
GND  
Digital Supply Ground  
LVCMOS/LVTTL Power-Down Input. Drive PD high to power up the device and enable all outputs.  
Drive PD low to put all outputs in high impedance and reduce supply current. PD is internally  
pulled down to ground.  
4
PD  
LVDS Supply Voltage. Bypass V  
as close as possible to the device with the smallest value capacitor closest to V  
to GNDLVDS with 0.1FF and 0.001FF capacitors in parallel  
CCLVDS  
5
V
CCLVDS  
.
CCLVDS  
6
7
8
9
SDI-  
Serial LVDS Inverting Input  
SDI+  
Serial LVDS Noninverting Input  
GNDLVDS LVDS Supply Ground  
GNDPLL  
PLL Supply Ground  
PLL Supply Voltage. Bypass V  
close to the device as possible with the smallest value capacitor closest to V  
to GNDPLL with 0.1FF and 0.001FF capacitors in parallel as  
CCPLL  
10  
V
CCPLL  
.
CCPLL  
Active-Low, Open-Drain Error Output. ERROR asserts low to indicate a data transfer error was  
detected (parity, PRBS, or UART control channel error). ERROR is high to indicate no error detect-  
ed. ERROR resets when the error registers are read for parity, control channel errors, and when  
11  
15  
ERROR  
RX  
PRBS enable bit is reset for PRBS errors. Pull up to V  
with a 1kI resistor.  
CCOUT  
LVCMOS/LVTTL Control Channel UART Output  
���������������������������������������������������������������� Maxim Integrated Products 1±  
MAX9257A/MAX9258A  
Fully Programmable Serializer/Deserializer  
2
with UART/I C Control Channel  
MAX9258A Pin Description (continued)  
PIN  
NAME  
FUNCTION  
16  
TX  
LVCMOS/LVTTL Control Channel UART Input. TX is internally pulled up to V  
.
CCOUT  
Open-Drain Lock Output. LOCK asserts high to indicate PLLs are locked with correct serial-word  
boundary alignment. LOCK asserts low to indicate PLLs are not locked or incorrect serial-word  
17  
LOCK  
boundary alignment was detected. Pull up to V  
with a 1kI resistor.  
CCOUT  
18  
19  
20  
PCLK_OUT LVCMOS/LVTTL Recovered Clock Output  
VSYNC_OUT LVCMOS/LVTTL Vertical SYNC Output  
HSYNC_OUT LVCMOS/LVTTL Horizontal SYNC Output  
21, 28–35,  
40–46  
DOUT[15:0] LVCMOS/LVTTL Data Outputs  
Output Supply Voltage. V  
is the supply for all output buffers. Bypass V  
to GNDOUT  
CCOUT  
CCOUT  
22, 39  
23, 38, 48  
26  
V
with 0.1FF and 0.001FF capacitors in parallel as close as possible to the device with the smallest  
CCOUT  
value capacitor closest to V  
.
CCOUT  
GNDOUT  
Output Supply Ground  
Spread-Spectrum PLL Supply Voltage. Bypass V  
to GNDSPLL with 0.1FF and 0.001FF  
CCSPLL  
V
capacitors in parallel as close as possible to the device with the smallest value capacitor closest to  
CCSPLL  
V
.
CCSPLL  
27  
47  
GNDSPLL  
CCEN  
SPLL Ground  
LVCMOS/LVTTL Control Channel Enabled Output. CCEN asserts high to indicate that control chan-  
nel is enabled.  
���������������������������������������������������������������� Maxim Integrated Products 14  
MAX9257A/MAX9258A  
Fully Programmable Serializer/Deserializer  
2
with UART/I C Control Channel  
R /2  
L
SDO+  
V
OD  
SDO-  
V
OS  
R /2  
L
GND  
((SDO+) + (SDO-))/2  
SDO-  
SDO+  
V
(-)  
OS  
V
(+)  
V
(-)  
OS  
OS  
V
V
= |V (+) - V (-)|  
OS OS  
OS  
V
(+)  
OD  
V
OD  
= 0V  
V
OD  
(-)  
V
(-)  
OD  
= |V (+) - V (-)|  
OD  
OD  
OD  
(SDO+) - (SDO-)  
Figure 1. MAX9257A LVDS DC Output Parameters  
V
OUT  
PCLK_IN  
DIN  
V
V
HYST+  
NOTE: PCLK_IN PROGRAMMED FOR RISING LATCH EDGE.  
HYST-  
-V  
ID  
+V  
ID  
V
= 0V  
ID  
Figure 2. Input Hysteresis  
Figure 3. MAX9257A Worst-Case Pattern Input  
���������������������������������������������������������������� Maxim Integrated Products 15  
MAX9257A/MAX9258A  
Fully Programmable Serializer/Deserializer  
2
with UART/I C Control Channel  
SDO+  
R
L
SDO-  
C
L
C
L
80%  
80%  
20%  
20%  
(SDO+) - (SDO-)  
t
t
FALL  
RISE  
Figure 4. MAX9257A LVDS Control Channel Output Load and Output Rise/Fall Times  
V
IHMIN  
PCLK_IN  
V
ILMAX  
t
t
HOLD  
SET  
V
V
V
V
IHMIN  
IHMIN  
DIN, VSYNC_IN, HSYNC_IN  
ILMAX  
ILMAX  
NOTE: PCLK_IN PROGRAMMED FOR RISING LATCHING EDGE.  
Figure 5. MAX9257A Input Setup and Hold Times  
���������������������������������������������������������������� Maxim Integrated Products 16  
MAX9257A/MAX9258A  
Fully Programmable Serializer/Deserializer  
2
with UART/I C Control Channel  
EXPANDED TIME SCALE  
DIN, HSYNC_IN,  
VSYNC_IN  
N
N+2  
N+3  
N+4  
N+1  
PCLK_IN  
N-1  
N
SDO  
t
PSD1  
FIRST BIT  
LAST BIT  
Figure 6. MAX9257A Parallel-to-Serial Delay  
t
T
V
V
IHMIN  
t
HIGH  
PCLK_IN  
ILMAX  
t
R
t
F
t
LOW  
Figure 7. MAX9257A Parallel Input Clock Requirements  
C
L
PCLK_OUT  
MAX9258A  
SINGLE-ENDED OUTPUT LOAD  
0.9 x V  
CCOUT  
DOUT  
NOTE: PCLK_OUT PROGRAMMED FOR RISING LATCH EDGE.  
0.1 x V  
CCOUT  
t
R
t
F
Figure 8. MAX9258A Worst-Case Pattern Output  
Figure 9. MAX9258A Output Rise and Fall Times  
���������������������������������������������������������������� Maxim Integrated Products 17  
MAX9257A/MAX9258A  
Fully Programmable Serializer/Deserializer  
2
with UART/I C Control Channel  
t
T
V
OHMIN  
t
HIGH  
PCLK_OUT  
V
OLMAX  
t
LOW  
Figure 10. MAX9258A Clock Output High and Low Time  
V
OHMIN  
PCLK_OUT  
V
OLMAX  
t
t
DVB  
DVA  
V
V
OHMIN  
DOUT, VSYNC_OUT,  
HSYNC_OUT, LOCK  
OLMAX  
NOTE: PCLK_OUT PROGRAMMED FOR RISING LATCHING EDGE.  
Figure 11. MAX9258A Output Data Valid Times  
V
IHMIN  
PD  
PD  
V
ILMAX  
t
PUD  
t
PDD  
DOUT,  
VSYNC,  
HSYNC  
HIGH IMPEDANCE  
POWERED DOWN  
POWERED UP  
(OUTPUTS ACTIVE)  
POWERED UP  
POWERED DOWN  
Figure 12. MAX9258A Power-Up Delay  
Figure 13. MAX9258A Power-Down Delay  
���������������������������������������������������������������� Maxim Integrated Products 18  
MAX9257A/MAX9258A  
Fully Programmable Serializer/Deserializer  
2
with UART/I C Control Channel  
SERIAL-WORD LENGTH  
SERIAL WORD N  
SERIAL WORD N+1  
SERIAL WORD N+2  
SDI  
FIRST BIT  
LAST BIT  
DOUT,  
HSYNC_OUT,  
VSYNC_OUT  
PARALLEL WORD N-1  
PARALLEL WORD N  
PARALLEL WORD N-2  
PCLK_OUT  
t
SPD1  
NOTE: PCLK_OUT PROGRAMMED FOR RISING LATCHING EDGE.  
Figure 14. MAX9258A Serial-to-Parallel Delay  
INPUT TEMPLATE FOR LVDS SERIAL  
V
- V  
SDI-  
SDI+  
+100mV  
0V  
-100mV  
+25mV  
-25mV  
t
JT  
t
S
t
S
t
JT  
0.0UI  
0.25UI  
0.50UI  
0.75UI  
1.0UI  
- V ).  
NOTE: UI IS ONE SERIAL BIT. TIME INPUT IS MEASURED DIFFERENTIALLY (V  
SDI+  
SDI-  
Figure 15. MAX9258A Jitter Tolerance  
1
0
0.8V  
0.8V  
OD(+)  
OD(+)  
0.8 x | V  
+ V  
OD(-)  
|
0.8 x | V  
+ V  
OD(-)  
|
OD(+)  
OD(+)  
0.2V  
0.2V  
OD(+)  
OD(+)  
(SDO+) - (SDO-)  
0.2V  
0.8V  
0.2V  
0.8V  
OD(-)  
OD(-)  
t
t
F1B  
R1A  
0.2 x | V  
+ V  
OD(-)  
|
0.2 x | V + V  
OD(+)  
|
OD(+)  
OD(-)  
OD(-)  
OD(-)  
t
F2  
t
R2  
t
t
F1A  
R1B  
Figure 16. Control Channel Transition Time  
���������������������������������������������������������������� Maxim Integrated Products 19  
MAX9257A/MAX9258A  
Fully Programmable Serializer/Deserializer  
2
with UART/I C Control Channel  
ECU  
CAMERA  
MAX9257A  
MAX9258A  
VIDEO DATA  
VIDEO DATA  
PIXEL CLOCK  
HSYNC_OUT  
VSYNC_OUT  
PIXEL CLOCK  
HSYNC_IN  
DESERIALIZER  
SERIALIZER  
100  
100  
VSYNC_IN  
GPIO  
PD  
CCEN  
ERROR  
LOCK  
RX  
TX  
SDA  
SCL  
UART-  
TO-I C  
2
UART  
UART  
I C  
2
2
Figure 17. Serial Link with I C Camera Programming Interface (Base Mode)  
ECU  
CAMERA  
MAX9257A  
MAX9258A  
VIDEO DATA  
VIDEO DATA  
PIXEL CLOCK  
HSYNC_OUT  
VSYNC_OUT  
PIXEL CLOCK  
HSYNC_IN  
DESERIALIZER  
SERIALIZER  
100  
100  
VSYNC_IN  
GPIO  
PD  
CCEN  
ERROR  
LOCK  
RX  
TX  
RX  
TX  
UART  
UART  
UART  
UART  
Figure 18. Serial Link with UART Camera Programming Interface (Bypass Mode)  
���������������������������������������������������������������� Maxim Integrated Products 20  
MAX9257A/MAX9258A  
Fully Programmable Serializer/Deserializer  
2
with UART/I C Control Channel  
The MAX9257A/MAX9258A DC-balanced serializer and  
Detailed Description  
deserializer operate from a 5MHz-to-70MHz parallel  
clock frequency, and are capable of serializing and  
deserializing programmable 10, 12, 14, 16, and 18  
bits parallel data during the video phase. The devices  
have two phases of operation: video and control chan-  
nel (Figure 19 and 20). During the video phase, the  
MAX9257A accepts parallel video data and transmits  
serial encoded data over the LVDS link. The MAX9258A  
accepts the encoded serial LVDS data and converts  
it back to parallel output data. The MAX9257A has  
dedicated inputs for HSYNC and VSYNC. The selected  
VSYNC edge causes the MAX9257A/MAX9258A to enter  
the control channel phase. Nonactive VSYNC edge can  
be asserted after eight pixel clock cycles.  
The MAX9257A serializer pairs with the MAX9258A  
deserializer to form a complete digital video serial link.  
The electronic control unit (ECU) programs the registers  
in the MAX9257A, MAX9258A, and peripheral devices,  
such as a camera, during the control channel phase that  
occurs at startup or during the vertical blanking time.  
All control channel communication is half-duplex. The  
UART communication between the MAX9258A and the  
MAX9257A is encoded to allow transmission through  
AC-coupling capacitors. The MAX9257A communicates  
2
to the peripheral device through UART or I C.  
8t  
T
VSYNC_IN  
SDI/O  
VIDEO  
HSK  
CONTROL  
VIDEO  
SDI/O  
CCEN  
HSK = HANDSHAKING  
Figure 19. Video and Control Channel Phases (Spread Off)  
0.5/f  
SSM  
(max)  
VSYNC_IN  
SDI/O  
VIDEO  
HSK  
VIDEO  
CONTROL  
SPREAD  
PROFILE  
SDI/O  
CCEN  
HSK = HANDSHAKING  
Figure 20. Video and Control Channel Phases (MAX9257A Spread is Enabled)  
���������������������������������������������������������������� Maxim Integrated Products 21  
MAX9257A/MAX9258A  
Fully Programmable Serializer/Deserializer  
2
with UART/I C Control Channel  
The video data are coded using two overhead bits (EN0  
that the control channel is open. Programmable timers  
and ECU signal activity determine how long the control  
channel stays open. The timers are reset by ECU signal  
activity. ECU programming must not exceed the vertical  
blanking time to avoid loss of video data.  
and EN1) resulting in a serial-word length of N+2 bits.  
The devices feature programmable parity encoding that  
adds two parity bits to the serial word. Bit 0 (EN0) is the  
LSB that is serialized first without parity enabled. The par-  
ity bits are serialized first when parity is enabled.  
After the control channel phase closes, the MAX9257A  
sends a 546 or 1090 word pattern as handshaking (HSK)  
to synchronize the MAX9258A’s internal clock recovery  
circuit to the MAX9257A’s transmitted data. Following  
the handshaking, the control channel is closed and the  
video phase begins. The serial LVDS data is recovered  
and parallel data is valid on the programmed edge of the  
recovered pixel clock.  
The ECU programs the MAX9258A, MAX9257A, and  
peripheral devices at startup and during the control  
channel phase. In a digital video system, the control  
channel phase occurs during the vertical blanking time  
and synchronizes to the VSYNC signal. The programma-  
ble active edge of VSYNC initiates the control channel  
phase. Nonactive edge of VSYNC can transition at any  
time after 8 x t if MAX9257A spread is not enabled and  
T
Table 1 and 2 show the default power-up values for the  
MAX9257A/MAX9258A registers. Tables 3 and 4 show  
the input and output supply references.  
0.5/f  
when enabled. At the end of video phase, the  
SSM  
MAX9258A drives CCEN high to indicate to the ECU  
Table 1. MAX9257A Power-Up Default Register Map (see the MAX9257A Register Table)  
REGISTER  
ADDRESS (hex)  
POWER-UP VALUE  
(hex)  
REGISTER NAME  
POWER-UP DEFAULT SETTINGS  
PRATE = 10, 20MHz to 40MHz  
SRATE = 11, 400Mbps to 840Mbps  
PAREN = 0, parity disabled  
REG0  
0x00  
0xB5  
PWIDTH = 101, parallel data width = 18  
SPREAD = 000, spread = off  
Reserved = 11111  
REG1  
REG2  
REG3  
0x01  
0x02  
0x03  
0x1F  
0xA0  
0xA0  
STODIV = 1010, STO clock is pixel clock divided by 1024  
STOCNT = 0000, STO counter counts to 1  
ETODIV = 1010, ETO clock is pixel clock divided by 1024  
ETOCNT = 0000, ETO counter counts to 1  
VEDGE = 0, VSYNC active edge is falling  
Reserved = 0  
CKEDGE = 1, pixel clock active edge is rising  
PD: 1) If REM = 0, PD = 0  
1) REM = 0, 0x28  
2) REM = 1, 0x30 SEREN: 1) If REM = 0, SEREN = 1  
2) If REM = 1, SEREN = 0  
2) If REM = 1, PD = 1  
REG4  
0x04  
BYPFPLL = 0, filter PLL is active  
Reserved = 0  
PRBSEN = 0, PRBS test disabled  
���������������������������������������������������������������� Maxim Integrated Products 22  
MAX9257A/MAX9258A  
Fully Programmable Serializer/Deserializer  
2
with UART/I C Control Channel  
Table 1. MAX9257A Power-Up Default Register Map (continued)  
REGISTER  
ADDRESS (hex)  
POWER-UP VALUE  
REGISTER NAME  
POWER-UP DEFAULT SETTINGS  
(hex)  
0xFA  
0xFF  
0xF8  
REG5  
REG6  
REG7  
0x05  
0x06  
0x07  
MAX9257A address = 1111 1010  
End frame = 1111 1111  
MAX9258A address = 1111 1000  
INTMODE = 0, interface with peripheral is UART  
INTEN = 0, interface with peripheral is disabled  
FAST = 0, UART bit rate = DC to 4.25Mbps  
CTO = 000, never come back  
REG8  
REG9  
0x08  
0x09  
0x00  
0x00  
BITRATE = 00, base mode bit rate = 95kbps to 400kbps  
PRBSLEN = 0000, PRBS word length = 221  
GPIO9DIR = 0, GPIO9 = input  
GPIO8DIR = 0, GPIO8 = input  
GPIO9 = 0  
GPIO8 = 0  
GPIO7DIR = 0, GPIO7 = input  
GPIO6DIR = 0, GPIO6 = input  
GPIO5DIR = 0, GPIO5 = input  
GPIO4DIR = 0, GPIO4 = input  
GPIO3DIR = 0, GPIO3 = input  
GPIO2DIR = 0, GPIO2 = input  
GPIO1DIR = 0, GPIO1 = input  
GPIO0DIR = 0, GPIO0 = input  
REG10  
0x0A  
0x00  
GPIO7 = 0  
GPIO6 = 0  
GPIO5 = 0  
GPIO4 = 0  
GPIO3 = 0  
GPIO2 = 0  
GPIO1 = 0  
GPIO0 = 0  
REG11  
0x0B  
0x00  
PREEMP = 111, preemphasis = 0%  
Reserved = 00000  
REG12  
REG13  
REG14  
0x0C  
0x0D  
0x0E  
0xE0  
0x00  
0x00  
Reserved = 000000  
I2CFILT = 00, I2C glitch filter settings:  
1) 95kbps to 400kbps = 100ns  
2) 400kbps to 1000kbps = 50ns  
3) 1000kbps to 4250kbps = 10ns  
Reserved = 0000 000  
LOCKED = read only  
���������������������������������������������������������������� Maxim Integrated Products 2±  
MAX9257A/MAX9258A  
Fully Programmable Serializer/Deserializer  
2
with UART/I C Control Channel  
Table 2. MAX9258A Power-Up Default Register Map (see the MAX9258A Register Table)  
REGISTER  
ADDRESS (hex)  
POWER-UP VALUE  
(hex)  
REGISTER NAME  
POWER-UP DEFAULT SETTINGS  
PRATE = 10, 20MHz to 40MHz  
SRATE = 11, 400Mbps to 840Mbps  
PAREN = 0, parity disabled  
PWIDTH = 101, parallel data width = 18  
REG0  
0x00  
0x01  
0xB5  
0x00  
SPREAD = 00, spread spectrum = off  
AER = 0, error count is reset by reading error registers  
ACTOFFSET = 00, 23mV offset  
REG1  
Reserved = 000  
STODIV = 1010, STO clock is pixel clock divided by 1024  
STOCNT = 0000, STO counter counts to 1  
REG2  
REG3  
0x02  
0x03  
0xA0  
0xA0  
ETODIV = 1010, ETO clock is pixel clock divided by 1024  
ETOCNT = 0000, ETO counter counts to 1  
VEDGE = 0, VSYNC active edge is falling  
HEDGE = 0, HSYNC active edge is falling  
CKEDGE = 1, pixel clock active edge is rising  
Reserved = 0  
REG4  
0x04  
0x20  
ACTLP = 0, short stretcher output pulse  
Reserved = 00  
PRBSEN = 0, PRBS test disabled  
REG5  
REG6  
0x05  
0x06  
0xF8  
0xFF  
MAX9258 address = 1111 1000  
End frame = 1111 1111  
INTMODE = 0, interface with peripheral is UART  
INTEN = 0, interface with peripheral is disabled  
FAST = 0, UART bit rate = DC to 4.25Mbps  
CTO = 000, never come back  
REG7  
0x07  
0x00  
BITRATE = 00, base mode bit rate = 95kbps to 400kbps  
PATHRLO = 0001 0000  
parity threshold = 16  
REG8  
REG9  
0x08  
0x09  
0x10  
0x00  
PATHRHI = 0000 0000,  
parity threshold = 16  
REG10  
REG11  
REG12  
0x0A  
0x0B  
0x0C  
0x00  
0x00  
0x00  
Parity errors video (8 LSBs) = read only  
Parity errors video (8 MSBs) = read only  
PRBS bit errors = read only  
Reserved = 000  
Parity error, communication with MAX9258A = read only  
Frame error, communication with MAX9258A = read only  
Parity error, communication with MAX9257A = read only  
Frame error, communication with MAX9257A = read only  
I2C error, communication with peripheral = read only  
REG13  
0x0D  
0x00  
���������������������������������������������������������������� Maxim Integrated Products 24  
MAX9257A/MAX9258A  
Fully Programmable Serializer/Deserializer  
2
with UART/I C Control Channel  
serial-data rate, and parity. Table 16 shows the parallel-  
word width.  
Parallel-Word Width  
The parallel-word width is made up of the video data  
bits, HSYNC, and VSYNC. The video data bits are pro-  
grammable from 8 to 16 depending on the pixel clock,  
Serial-Word Length  
The serial-word length is made up of the parallel-word  
width, encoding bits, and parity bits. Tables 59 show the  
serial video format and serial-word lengths without parity.  
Tables 1013 show with parity bits included.  
Table ±. MAX9257A I/O Supply  
INPUTS/OUTPUTS  
SUPPLY  
PCLK_IN, HSYNC_IN, VSYNC_IN,  
DIN[0:7], DIN[8:15]/GPIO[0:7],  
GPIO8, GPIO9, SCL/TX, SDA/RX  
Table 4. MAX9258A I/O Supply  
V
CCIO  
INPUTS/OUTPUTS  
All inputs and outputs  
SDI+, SDI-  
SUPPLY  
SDO+, SDO-  
REM  
V
V
CCOUT  
CCLVDS  
V
V
CCLVDS  
CC  
Table 5. Serial Video Data Format for 20-Bit Serial-Word Length (Parallel-Word Width = 18)  
BIT  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20  
NAME EN0 EN1 HSYNC VSYNC D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15  
Table 6. Serial Video Data Format for 18-Bit Serial-Word Length (Parallel-Word Width = 16)  
BIT  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
NAME EN0 EN1 HSYNC VSYNC D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9 D10 D11 D12 D13  
Table 7. Serial Video Data Format for 16-Bit Serial-Word Length (Parallel-Word Width = 14)  
BIT  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
NAME EN0 EN1 HSYNC VSYNC  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
D10  
D11  
Table 8. Serial Video Data Format for 14-Bit Serial-Word Length (Parallel-Word Width = 12)  
BIT  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
NAME EN0 EN1 HSYNC VSYNC  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
Table 9. Serial Video Data Format for 12-Bit Serial-Word Length (Parallel-Word Width = 10)  
BIT  
1
2
3
4
5
6
7
8
9
10  
11  
12  
NAME EN0 EN1 HSYNC VSYNC  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
Table 10. Format for 20-Bit Serial-Word Length with Parity (Parallel-Word Width = 16)  
BIT  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
17  
18  
19  
20  
NAME PR PRB EN0 EN1 HSYNC VSYNC D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13  
���������������������������������������������������������������� Maxim Integrated Products 25  
MAX9257A/MAX9258A  
Fully Programmable Serializer/Deserializer  
2
with UART/I C Control Channel  
Table 11. Format for 18-Bit Serial-Word Length with Parity (Parallel-Word Width = 14)  
BIT  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
NAME PR PRB EN0 EN1 HSYNC VSYNC D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11  
Table 12. Format for 16-Bit Serial-Word Length with Parity (Parallel-Word Width = 12)  
BIT  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
NAME PR PRB EN0 EN1 HSYNC VSYNC  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
Table 1±. Format for 14-Bit Serial-Word Length with Parity (Parallel-Word Width = 10)  
BIT  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
NAME PR PRB EN0 EN1 HSYNC VSYNC  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
LVDS Serial Data  
Serial LVDS data is transmitted least significant bit (LSB)  
to most significant bit (MSB) as shown in Tables 5 through  
13. The ECU at startup can program the parallel word  
width, serial frequency range, parity, spread-spectrum,  
and pixel clock frequency range (see the MAX9257A  
Register Table and the MAX9258A Register Table).  
Table 14. MAX9257A Pixel Clock Range  
(PCLK�IN)  
FREQUENCY (MHz)  
PRATE (REG0[7:6])  
5–10  
10–20  
20–40  
40–70  
00  
01  
10  
11  
Pixel Clock Frequency Range  
The devices each have registers that can be configured  
at startup. Depending on the word length, the MAX9257A  
multiplies PCLK_IN (pixel clock) by 12, 14, 16, 18, or  
20 using an internal PLL to generate the serial clock.  
Use Table 20 for proper selection of available PCLK fre-  
quency and serial-data ranges. Parallel data is serialized  
using the serial-clock and serialized bits are transmitted  
at the MAX9257A LVDS outputs. The devices support  
a wide range for PCLK_IN (Table 14). If the pixel clock  
frequency needs to change to a frequency outside the  
programmed range, the ECU must program both the  
MAX9257A and the MAX9258A in the same control chan-  
nel session.  
Table 15. Serial-Data Rate Range  
SERIAL-DATA RATE (Mbps)  
SRATE (REG0[5:4])  
60–100  
100–200  
200–400  
400–840  
00  
01  
10  
11  
the serial-word length is 20 bits, the maximum PCLK_IN  
frequency is 42MHz. The serial-data rate can vary from  
60Mbps to 840Mbps and can be programmed at power-  
up (Table 15). Use Table 20 for proper selection of avail-  
able PCLK frequency and serial data ranges. Operating  
in the incorrect range for either the serial-data rate or  
PCLK_IN can result in excessive current dissipation and  
failure of the MAX9258A to lock to the MAX9257A.  
Serial-Data Rate Range  
The word length and pixel clock is limited by the maxi-  
mum serial-data rate of 840Mbps. The following formula  
shows the relation between word length, pixel clock, and  
serial clock:  
Serial-word length x pixel clock = serial-data rate =  
840Mbps  
LVDS Common-Mode Bias  
The output common-mode bias is 1.2V at the LVDS  
inputs on the MAX9258A and LVDS outputs on the  
MAX9257A. No external resistors are required to provide  
bias for AC-coupling the LVDS inputs and outputs.  
For example, if PCLK_IN is 70MHz, the serial-word length  
has to be 12 bits including DC balance bits if parity is not  
enabled to keep the serial-data rate under 840Mbps. If  
���������������������������������������������������������������� Maxim Integrated Products 26  
MAX9257A/MAX9258A  
Fully Programmable Serializer/Deserializer  
2
with UART/I C Control Channel  
Table 16. Parallel-Word Width  
FREQUENCY  
PARALLEL-WORD WIDTH  
PWIDTH (REG0[2:0])  
1/f  
SSM  
10  
12  
14  
16  
18  
000  
001  
010  
011  
1XX  
f
(MAX)  
SPREAD  
f
TIME  
PCLK_IN  
Table 17. MAX9258A Spread  
f
(MIN)  
SPREAD  
PRATE (REG1[7:6])  
SPREAD (%)  
00  
01  
10  
11  
Off  
Q2  
Off  
Q4  
Figure 21. Simplified Modulation Profile for the MAX9257A/  
MAX9258A  
LVDS Termination  
Terminate the LVDS link at both ends with the charac-  
teristic impedance of the transmission line (typically  
100O differential). The LVDS inputs and outputs are high  
impedance to GND and differentially.  
Table 18. MAX9258A Modulation Rate  
PRATE  
(REG1[7:6])  
Spread-Spectrum Selection  
The devices each have spread-spectrum options. Both  
should not be turned on at the same time. When the  
MAX9257A is programmed for spread spectrum, the  
MAX9258A tracks and passes the spread to its clock and  
data outputs. The MAX9257A/MAX9258A are both center  
spread (Figure 21). The control channel does not use  
spread spectrum, but has slower transition times.  
MODULATION RATE  
f
RANGE (kHz)  
SSM  
00  
01  
10  
11  
PCLK/312  
PCLK/520  
PCLK/1040  
PCLK/1248  
16 to 32  
19.2 to 38.5  
19.2 to 38.5  
32 to 56  
Table 19. MAX9257A LVDS Output Spread  
MAX9258A Spread Spectrum  
The MAX9258A features a programmable spread-spectrum  
clock and data outputs for reduced EMI. The single-ended  
data outputs are programmable for no spread, Q2%, or  
Q4% (see the Typical Operating Characteristics) around the  
recovered pixel clock frequency. The output spread is pro-  
grammed in register REG1[7:6]. Table 17 shows the spread  
options, and Table 18 shows the various modulation rates.  
REG1[7:5]  
000  
SPREAD (%)  
Off  
Q1.5  
Q1.75  
Q2  
001  
010  
011  
100  
Off  
MAX9257A Spread Spectrum  
The MAX9257A features programmable spread spec-  
trum for the LVDS outputs. Table 19 shows various  
spread options, and Table 20 shows the various modu-  
lation rates. Only one device (the MAX9257A or the  
MAX9258A) should be programmed for spread spectrum  
at a time. If the MAX9257A is programmed for spread,  
the MAX9258A tracks and passes the spread to the data  
and clock outputs. The PRATE range of 00 and 01 (5MHz  
PCLK 20MHz) supports all the spread options. The  
PRATE range of 10 and 11 (20MHz PCLK 70MHz)  
requires that the spread be 2% or less.  
101  
Q3  
110  
Q3.5  
Q4  
111  
Pixel Clock Jitter Filter  
The MAX9257A has a PLL to filter high-frequency pixel  
clock jitter on PCLK_IN. The FPLL can be bypassed by  
writing 1 to REG4[2]. The FPLL improves the MAX9258A’s  
data recovery by filtering out the high-frequency compo-  
nents from the pixel clock that the MAX9258A cannot  
track. The 3dB bandwidth of the FPLL is 100kHz (typ).  
���������������������������������������������������������������� Maxim Integrated Products 27  
MAX9257A/MAX9258A  
Fully Programmable Serializer/Deserializer  
2
with UART/I C Control Channel  
Table 20. MAX9257A Modulation Rate  
SERIAL-WORD LENGTH  
SRATE  
11  
11  
10  
10  
01  
01  
00  
11  
11  
10  
10  
01  
01  
00  
11  
11  
10  
10  
01  
01  
00  
11  
11  
10  
10  
01  
01  
00  
11  
11  
10  
01  
PRATE  
11  
10  
10  
01  
01  
00  
00  
11  
10  
10  
01  
01  
00  
00  
11  
10  
10  
01  
01  
00  
00  
11  
10  
10  
01  
01  
00  
00  
11  
10  
01  
00  
PCLK RANGE (MHz)  
40–70  
MODULATION RATE  
PCLK/2728  
PCLK/1736  
PCLK/1612  
PCLK/992  
f
RANGE (kHz)  
SSM  
14.7 to 25.7  
19.2 to 23.0  
12.4 to 20.7  
16.7 to 20.2  
9.0 to 14.9  
11.2 to 13.4  
5.8 to 9.6  
33.3–40  
20–33.3  
16.6–20  
10–16.6  
8.3–10  
12  
PCLK/1116  
PCLK/744  
5–8.3  
PCLK/868  
40–60  
PCLK/2304  
PCLK/1728  
PCLK/1440  
PCLK/1008  
PCLK/1008  
PCLK/720  
17.4 to 26.0  
16.6 to 23.1  
13.9 to 19.9  
14.2 to 19.8  
9.9 to 14.2  
9.9 to 13.9  
6.9 to 9.9  
28.6–40  
20–28.6  
14.3–20  
10–14.3  
7.1–10  
14  
5–7.1  
PCLK/720  
40–52.5  
25–40  
PCLK/1968  
PCLK/1640  
PCLK/1312  
PCLK/984  
20.3 to 26.7  
15.2 to 24.4  
15.2 to 19.1  
12.7 to 20.3  
12.2 to 15.2  
9.5 to 15.2  
7.6 to 9.5  
20–25  
16  
12.5–20  
10–12.5  
6.25–10  
5–6.25  
PCLK/820  
PCLK/656  
PCLK/656  
40–46.6  
22.2–40  
20–22.2  
11.1–20  
10–11.1  
5.6–10  
PCLK/1840  
PCLK/1472  
PCLK/1104  
PCLK/920  
21.7 to 25.3  
15.1 to 27.2  
18.1 to 20.1  
12.1 to 21.7  
13.6 to 15.1  
7.6 to 13.6  
9.1 to 10.1  
24.5 to 25.7  
12.3 to 24.5  
9.8 to 19.6  
6.1 to 12.3  
18  
20  
PCLK/736  
PCLK/736  
5–5.6  
PCLK/552  
40–42  
PCLK/1632  
PCLK/1632  
PCLK/1020  
PCLK/816  
20–40  
10–20  
5–10  
���������������������������������������������������������������� Maxim Integrated Products 28  
MAX9257A/MAX9258A  
Fully Programmable Serializer/Deserializer  
2
with UART/I C Control Channel  
LVDS Output Preemphasis (SDO )  
Table 21. Preemphasis  
The MAX9257A features programmable preemphasis  
where extra current is added when the LVDS outputs  
transition on the serial link. Preemphasis provides addi-  
tional current to the normal drive current. For example,  
20% preemphasis provides 20% greater current than  
the normal drive current. Current is boosted only on the  
transitions and returns to the normal drive current after  
switching. Select the preemphasis level to optimize the  
eye diagram. Preemphasis boosts the high-frequency  
content of the LVDS outputs to enable driving greater  
cable lengths. The amount of preemphasis is pro-  
grammed in REG12[7:5] (Table 21).  
REG12[7:5]  
000,101,110  
001  
PREEMPHASIS (%)  
20  
40  
60  
80  
100  
0
010  
011  
100  
111  
Table 22. GPIOs vs. Parallel-Word Width  
VSYNC, HSYNC, and Pixel Clock Polarity  
PCLK: The MAX9257A is programmable to latch data  
on either rising or falling edge of PCLK. The polarity of  
PCLKOUT at the MAX9258A can be independent of the  
MAX9257A PCLK active edge. The polarity of PCLK can  
be programmed using REG4[5] of the MAX9257A and  
PARALLEL-WORD WIDTH (N)  
GPIOs AVAILABLE  
GPIO[8:9]  
18  
16  
14  
12  
10  
GPIO[6:9]  
GPIO[4:9]  
GPIO[2:9]  
the MAX9258A.  
GPIO[0:9]  
VSYNC: The MAX9257A and the MAX9258A enter con-  
trol channel on the falling edge of VSYNC. The default  
register settings are VSYNC active falling edge for both  
the MAX9257A and the MAX9258A. If the VSYNC active  
edge is programmed for rising edge at the MAX9257A,  
the MAX9258A VSYNC active edge must also be pro-  
grammed for rising edge to reproduce VSYNC rising  
edge at the MAX9258A output. However, matching  
the polarity of the VSYNC active edge between the  
MAX9257A and the MAX9258A is not a requirement for  
proper operation.  
Open-Drain Outputs (LOCK, ERROR)  
LOCK and ERROR are open-drain outputs that require a  
pullup resistor to an external supply. ERROR asserts low  
when an error occurs and LOCK is high impedance when  
the MAX9258A is locked to the MAX9257A and remains  
high under the locked condition. When the devices are  
in shutdown, the channel is not locked and LOCK goes  
high impedance, is pulled high, and should be ignored.  
ERROR is high impedance at shutdown and remains  
high. In choosing pullup resistors, there is a tradeoff  
between power dissipation and speed; 10kI pullup  
should be sufficient.  
HSYNC: HSYNC active-edge polarity is programmable  
for the MAX9258A.  
General-Purpose I/Os (GPIOs)  
The MAX9257A has up to 10 GPIOs available. GPIO8 and  
GPIO9 are always available while GPIO[0:7] are avail-  
able depending on the parallel-word width (Table 22).  
If GPIOs are not available, the corresponding GPIO bits  
are not used.  
The LOCK and ERROR outputs can be wired in an AND  
configuration if you have multiple serializers and deserial-  
izers, or a single serializer fanned out to multiple deseri-  
alizers through a repeater. For such situations, wire the  
multiple LOCK outputs together and use a single pullup  
resistor to pull up all the lines high. LOCK is high if all  
the devices are locked. Do the same thing for ERROR;  
ERROR is low if any MAX9258A reports errors.  
A GPIO can be programmed to drive an LVCMOS logic level  
or to read a logic input. The register bit that sets the output  
level when the GPIO is programmed as an output stores the  
input level when the GPIO is programmed as an input.  
���������������������������������������������������������������� Maxim Integrated Products 29  
MAX9257A/MAX9258A  
Fully Programmable Serializer/Deserializer  
2
with UART/I C Control Channel  
STO Timer  
The STO (start timeout) timer closes the control chan-  
nel if the ECU does not start using the control channel  
within the STO timeout period. The STO timer is config-  
ured by register REG2 for both the MAX9257A and the  
MAX9258A. The four bits of REG2[7:4] select the divide  
ratio (STODIV) for the STO clock as a function of the pixel  
clock (Table 24). The timeout period is determined by  
counter bits REG2[3:0] that increment once every STO  
clock period. Write to REG2[3:0] to determine the counter  
end time. The STO counter counts to the programmed  
STOCNT + 1. The ECU must begin communicating  
before STO times out, otherwise, the control channel  
closes (Figure 22). The STO timeout period is given by:  
Base Mode and Bypass Mode (Basics)  
In the control channel phase, there are two modes: base  
and bypass. In base mode, ECU always communicates  
using the MAX9257A/MAX9258A UART protocol and  
communication with a peripheral device is performed  
2
in I C by the MAX9257A. Packets not addressed to  
2
the MAX9257A or the MAX9258A get converted to I C  
2
and passed to the peripheral device. Similarly, I C  
packets from the peripheral device get converted to  
UART packets in the reverse direction. ECU can disable  
communication to the peripheral device by writing a 0 to  
INTEN (REG8[6] in the MAX9257A and REG7[6] in the  
MAX9258A). Base mode is the default mode. Bypass  
mode is entered by writing a 0 to INTMODE and 1 to  
INTEN (Table 23). Bypass mode is exited if there is no  
activity from ECU in the control channel for the duration of  
CTO. When CTO times out, INTEN reverts back to 0 and  
the devices revert back to base mode. To permanently  
stay in bypass mode, ECU can lock the CTO timer or  
program CTO to be longer than ETO and STO.  
1
t
=
× STODIV × (STOCNT + 1)  
STO  
f
CLK  
For example:  
If the pixel clock frequency is set to 16MHz, STODIV is  
set to 1010 (STODIV = 1024), and STOCNT is set to 1001  
(STOCNT = 9), the STO timer counts with 15.625kHz STO  
clock (16MHz/1024) internally until it reaches 10 and  
Timers  
The devices feature three different timers. The start time-  
out (STO) and end timeout (ETO) control the duration of  
the control channel. The come-back timeout (CTO) con-  
trols the duration of bypass mode.  
timer expires. The t  
is equal to t x 1024 x 10 = 640Fs.  
STO  
T
The default value for STODIV is 1024 while the default  
value for STOCNT is 0. That means the STO timeout  
period is equal 1024 pixel clock cycles. Activity from the  
ECU on the control channel shuts off the STO timer and  
starts the ETO timer.  
Table 2±. Selection of Base Mode or  
Bypass Mode  
INTEN  
INTMODE  
Table 24. STO Clock Divide Ratio  
MAX9257A REG8[6], MAX9257A REG8[7],  
MAX9258A REG7[6] MAX9258A REG7[7]  
MODE  
REG2[7:4]  
00XX  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
STODIV  
16  
Base mode, com-  
munication  
with peripheral is  
not enabled  
16  
0
1
X
1
32  
64  
Base mode,  
128  
communication  
with peripheral is  
256  
2
enabled (I C)  
512  
Bypass mode,  
communication  
with MAX9257A/  
MAX9258A is not  
enabled, commu-  
nication  
1024  
2048  
4096  
8192  
16,384  
32,768  
1
0
with peripheral is  
enabled (UART)  
���������������������������������������������������������������� Maxim Integrated Products ±0  
MAX9257A/MAX9258A  
Fully Programmable Serializer/Deserializer  
2
with UART/I C Control Channel  
VSYNC_IN  
T3  
T1  
T2  
SDI/O  
CCEN  
VIDEO  
HSK  
VIDEO  
TX  
RX  
FROZEN  
DOUT_  
T1 = TIME TO ENTER CONTROL CHANNEL  
T2 = STO TIMEOUT PERIOD  
T3 = CONTROL CHANNEL EXIT TIME DUE TO STO  
HSK = HANDSHAKING BETWEEN THE MAX9257 AND THE MAX9258  
Figure 22. Control Channel Closing Due to STO Timeout  
ETO Timer  
Table 25. ETO Clock Divide Ratio  
The ETO (end timeout) timer closes the control channel if  
the ECU stops communicating for the ETO timeout period.  
Configure register REG3[7:4] for both the MAX9257A and  
the MAX9258A to select the divide ratio (ETODIV) for the  
ETO clock as a function of the pixel clock (Table 25). The  
timeout period is determined by counter bits REG3[3:0]  
that increment once every ETO clock period. Write to  
REG3[3:0] to determine the counter end time. The ETO  
counter counts to the programmed ETOCNT + 1. Any  
ECU activity resets the ETO timer. When the ECU stops  
transmitting data for the ETO timeout period, the control  
channel closes (Figure 23).  
REG±[7:4]  
00XX  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
ETODIV  
16  
16  
32  
64  
128  
256  
512  
1024  
2048  
4096  
8192  
16,384  
32,768  
1
t
=
×ETODIV × (ETOCNT +1)  
ETO  
f
CLK  
For example:  
If the pixel clock frequency is set to 16MHz, ETODIV is  
set to 1010 (ETODIV = 1024), and ETOCNT is set to 1001  
(ETOCNT = 9), the ETO timer counts with the 15.625kHz  
ETO clock (16MHz/1024) internally until it reaches 10 and  
The default value for ETODIV is 1024 while the default  
value for ETOCNT is 0. That means the ETO timeout  
period is equal to 1,024 pixel clock cycles.  
timer expires. The t  
is equal to t x 1024 x 10 = 640Fs.  
ETO  
T
���������������������������������������������������������������� Maxim Integrated Products ±1  
MAX9257A/MAX9258A  
Fully Programmable Serializer/Deserializer  
2
with UART/I C Control Channel  
VSYNC_IN  
T1  
T5  
ECU  
ACTIVITY  
VIDEO  
SDI/O  
CCEN  
HSK  
VIDEO  
T4 (BASE MODE)  
T4 (BYPASS MODE)  
TX  
RX  
FROZEN  
DOUT_  
T1 = TIME TO ENTER CONTROL CHANNEL  
T4 = ETO TIMEOUT PERIOD  
T5 = CONTROL CHANNEL EXIT TIME DUE TO ETO  
HSK = HANDSHAKING BETWEEN MAX9257 AND MAX9258  
Figure 23. Control Channel Closing Due to ETO Timeout  
Closing the Control Channel  
After the MAX9257A detects the active VSYNC edge, it  
sends three synchronization words. Once the MAX9258A  
sees the active VSYNC transition and detects three syn-  
chronization words, it enters the control channel phase  
and CCEN goes high. There is a brief delay of T1 between  
the VSYNC transition and CCEN transitioning high. The  
ECU is allowed to communicate when CCEN is high.  
Another way to close the control channel in base mode  
is for the ECU to send an end frame (EF) to close the  
control channel without waiting for ETO to time out.  
Whenever EF is received by both the devices, control  
channel closes immediately and CCEN goes low. A syn-  
chronization frame must precede EF. End frame cannot  
be used in bypass mode. The control channel must close  
by EF to report errors back to the ECU.  
If the ECU does not communicate while CCEN is high  
(Figure 22), the link remains silent and STO starts counting  
towards its preset timeout counter value. If STO times out  
(T2), CCEN transitions low and the control channel closes.  
After the control channel closes, there is a brief handshake  
period (T3 in Figure 22 and T5 in Figure 23) between the  
MAX9257A and the MAX9258A. The MAX9258A sends a  
special lock frame to the MAX9257A to indicate if PLL is  
still locked. The MAX9258A sends the lock frame if the  
number of decoding errors didn’t exceed a threshold in  
the last LVDS video phase session. The MAX9258A fea-  
tures a proprietary VCO lock that prevents frequency drift  
while in the control channel for extended periods of time.  
If MAX9257A receives the lock frame, it understands that  
the MAX9258A is in a locked state and sends a short  
training sequence. If the lock frame is not received by the  
MAX9257A, it assumes that the MAX9258A is not locked  
and sends a long training sequence. After the short  
or long training sequence is complete, the MAX9257A  
If the ECU communicates while CCEN is high and before  
STO expires (Figure 23), the STO timer is turned off and  
ETO timer is enabled. The ETO counter (ETOCNT+1) is  
reset to 0 whenever activity from ECU (base mode) or  
ECU and Camera (bypass mode) is detected. As long  
as there is activity from ECU (base mode) or ECU and  
Camera (bypass mode) on the link, the channel does not  
close and the ETO counter resets. After the ECU (base  
mode) or ECU and Camera (bypass mode) ceases link  
activity, ETO times out (T4), CCEN transitions low, and  
the control channel closes.  
���������������������������������������������������������������� Maxim Integrated Products ±2  
MAX9257A/MAX9258A  
Fully Programmable Serializer/Deserializer  
2
with UART/I C Control Channel  
sends three special synchronization words before enter-  
ing the video phase. Training sequence is used to resyn-  
chronize the devices before the video phase starts.  
Table 26. CTO Counter Timeout Period  
MAX9257A REG2[7:4]  
MAX9258A REG±[7:4]  
COUNTER USING UART BIT  
TIMES  
The MAX9257A/MAX9258A control channel duration is  
independent of VSYNC. The control channel does not  
close when VSYNC deasserts, which allows the use  
of a VSYNC interrupt signal on VSYNC_IN. The control  
channel must be closed by STO, ETO, or EF. If the con-  
trol channel does not close before video data becomes  
available, video data can be lost.  
Never come back  
(lockout)  
000  
001  
010  
011  
100  
101  
110  
111  
16  
32  
48  
64  
STO/ETO Timer Programming  
STO and ETO can be programmed given the values of  
T2, T4, and maximum values of T1, T3, and T5 (Figures  
28, 23):  
80  
96  
112  
t = pixel clock period, t  
= UART period  
T
UCLK  
When spread spectrum is not enabled in MAX9257A:  
max(T1) = 2.5Fs + (3 x t ) + (4 x t  
CTO uses the UART bit times. The UART period t  
synchronizes with the UART bit times, which synchronize  
every time the SYNC frame is sent.  
UCLK  
)
UCLK  
T
When spread spectrum is enabled in MAX9257A:  
When the CTO timer times out, INTEN bit in both devices  
is set to 0 and the devices revert back to base mode.  
If communication with the MAX9257A/MAX9258A is not  
needed after initial programming is complete, CTO may  
be set to 000 (never come back). In this case, CTO never  
expires and the devices stay in bypass mode until they  
are powered down. This prevents accidental program-  
ming of the devices while ECU communicates with the  
peripheral using a different UART protocol from the  
MAX9257A/MAX9258A UART protocol.  
max(T1) = 2.5Fs + (1400 x t ) + (4 x t  
)
T
UCLK  
T2 = t  
STO  
T4 = t  
ETO  
When pixel clock frequency range (PRATE) is 00 or 01:  
t
t
STO  
8
max(T3) =  
max(T5) =  
+ 546 × t + (20× t  
)
)
T
UCLK  
UCLK  
ETO  
8
+ 546 × t + (20× t  
T
The overall CTO timeout is calculated as follows:  
t
= t  
x CTO  
CTO  
UCLK  
Assuming a UART bit rate of 2Mbps, REG2[7:4],  
REG3[7:4] = 100 (Table 26), CTO = 64, CTO timeout  
calculated as:  
When pixel clock frequency range (PRATE) is 10 or 11:  
t
STO  
8
t
= (0.5Fs) O 64 = 32Fs  
max(T3) =  
max(T5) =  
+1090 × t + (20× t  
)
CTO  
T
UCLK  
UCLK  
Link Power-Up  
t
ETO  
8
The MAX9258A powers up when the power-down input  
PD goes high. After approximately 130Fs, CCEN goes  
high, indicating the control channel is available. This delay  
is required because the analog circuitry has to fully wake  
up. There are two ways to power up the MAX9257A. The  
MAX9257A powers up according to the state of REM. ECU  
powers up MAX9257A remotely (ECU sends command to  
+1090 × t + (20× t  
)
T
CTO Timer  
The CTO (come-back timeout) timer temporarily or  
permanently blocks programming to the MAX9257A/  
MAX9258A registers. CTO keeps the devices in bypass  
mode for the CTO timeout period (Table 26). Bypass  
mode can only be exited when the CTO timer expires.  
The CTO timer uses the UART bit times for its counter.  
Note that STO and ETO timers use the pixel clock while  
power up) when REM is pulled to V . The MAX9257A  
CC  
powers up according to the supply voltage when REM is  
grounded.  
���������������������������������������������������������������� Maxim Integrated Products ±±  
MAX9257A/MAX9258A  
Fully Programmable Serializer/Deserializer  
2
with UART/I C Control Channel  
Powering the MAX9257A with Serialization Enabled  
MAX9258A Error Checking and Reporting  
The MAX9258A has an open-drain ERROR output. This  
output indicates various error conditions encountered  
during the operation of the system. When an error con-  
dition is detected and needs to be reported, ERROR  
asserts low. ERROR indicates three error conditions:  
UART, video parity, and PRBS errors.  
(REM = Ground at Power-Up)  
When REM is grounded, the MAX9257A fully pow-  
ers up when power is applied. The power-down bit  
PD (REG4[4]) is disabled and serialization bit SEREN  
(REG4[3]) is enabled. If PCLK_IN is not running, the  
MAX9257A stays in the control channel. After PCLK_IN  
is applied, the control channel times out due to STO,  
ETO, or EF. The MAX9257A starts the handshaking after  
the MAX9257A locks to PCLK after 32,768 clock cycles.  
If PCLK_IN is running, serialization starts automatically  
after PLL of the MAX9257A locks to PCLK_IN with default  
values in the registers.  
UART Errors  
During control channel communication in base mode, the  
devices record UART frame, parity, and packet errors.  
2
2
I C errors are also recorded by MAX9257A when I C  
interface is enabled. If ECU closes the control channel  
by using end frame (EF), the MAX9257A sends a special  
internal UART frame back to the MAX9258A called error  
Remote Power-Up of the MAX9257A  
(REM = Pulled Up to V  
)
CC  
2
frame. The MAX9257A UART and I C errors are reset at  
When REM is pulled up to V , the MAX9257A wakes  
CC  
the next control channel. The MAX9258A receives the  
error frame and records the error status in its UART error  
register (REG13). ECU must use end frame to the close  
control channel for the MAX9257A to report back UART  
up in a low power state, drawing less than 100FA supply  
current. To wake-up the MAX9257A, the ECU first trans-  
mits a dummy frame 0xDB and then waits at least 100Fs  
to allow the MAX9257A’s internal analog circuitry to fully  
power up. Then the ECU configures the MAX9257A reg-  
isters, including a write to disable the PD bit (REG4[4])  
so that the MAX9257A does not return back to the low  
power state. Every packet needs to start with a synchro-  
nization frame (see the UART section). If the PD bit is not  
disabled within 70ms after transmitting the dummy frame,  
the MAX9257A returns to the low power state and the  
whole power-up sequence needs to be repeated. After  
configuration is complete, the ECU also needs to enable  
the SEREN bit to start the video phase.  
2
and I C errors to the MAX9258A. Whenever one of the  
bits in the UART error register is 1, ERROR asserts low.  
The UART error register is reset when ECU reads it, and  
ERROR deasserts high immediately if UART errors were  
the only reason that ERROR was asserted low. If the  
MAX9258A is not locked (LOCK = low), UART error is not  
reported.  
Video Parity Errors  
When video parity check is enabled (REG0[3] in both  
devices), the MAX9258A counts the number of video  
parity errors by checking recovered video words. Value  
of this counter is reflected in PAERRHI (8 MSB bits,  
REG11) and PAERRLO (8 LSB bits, REG10). If the num-  
ber of detected parity errors is greater than or equal  
to the parity error threshold PATHRHI (REG9) and  
PATHRLO (REG8), then ERROR asserts low. In this case,  
ERROR deasserts high after next video phase starts if  
video parity errors were the only reason that ERROR was  
asserted low. To report parity errors in bypass mode,  
program autoerror reset (AER) to 1 (REG1[5] = 1).  
At initial power-up with REM pulled to V , default value  
CC  
of SEREN bit is 0, so STO and ETO timers are not active.  
Control channel is enabled as long as SEREN is 0. This  
allows the control channel to be used for extensive pro-  
gramming at initial power-up without the channel timing  
out. UART, parity, framing and packet errors in the con-  
trol channel communications are reported if end frame is  
used to close control channel (see the MAX9258A Error  
Checking and Reporting section). For faster identification  
of errors, verify every write command by reading back  
the registers before enabling serialization.  
Autoerror Reset  
The default method to reset errors is to read the respec-  
tive error registers in the MAX9258A (registers 10, 11,  
and 13). If errors were present before the next control  
channel, the error count gets incremented to the previ-  
ous number. By setting the autoerror reset (AER) bit to 1,  
the error registers reset when the control channel ends.  
Setting AER to 1 does not reset PRBS errors.  
Link Power-Down  
When the control channel is open, the ECU writes to the  
PD bit to power down the MAX9257A. In this case, to  
power up the MAX9257A again, the power-up sequence  
explained in the Remote Power-Up of the MAX9257A  
(REM = Pulled Up to VCC) section needs to be repeated.  
The MAX9258A has a PD input that powers down the device.  
���������������������������������������������������������������� Maxim Integrated Products ±4  
MAX9257A/MAX9258A  
Fully Programmable Serializer/Deserializer  
2
with UART/I C Control Channel  
PRBS Errors  
Table 27. Link Status  
During the PRBS test, the MAX9258A checks received  
PRBS data words by comparing them to internally gener-  
ated PRBS data. Detected errors are counted in the PRBS  
error register (REG12) in the MAX9258A. Whenever the  
number of detected PRBS errors is more than 0, ERROR  
asserts low. The PRBS error register is reset when ECU  
writes a 0 to PRBSEN register (REG4[0]). In this case,  
ERROR deasserts high immediately if PRBS errors were  
the only reason that ERROR was asserted low.  
LOCK  
CCEN  
INDICATION  
LVDS channel active  
Control channel active  
PLL loss of lock  
1
1
0
0
1
X
exceeds a certain threshold, the MAX9258A loses lock,  
LOCK goes low, and the lock frame is not sent. The  
MAX9258A also loses lock if handshaking is not suc-  
cessful. If the MAX9257A does not receive the lock frame,  
it transmits a long synchronization pattern before the start  
of next video phase. When REM = 1, if the lock frame  
is not received by the MAX9257A after 62 consecutive  
attempts to synchronize, SEREN is disabled so that the  
control channel opens permanently for troubleshooting.  
Short Synchronization Pattern  
The short synchronization pattern is part of the handshak-  
ing procedure between the MAX9257A and MAX9258A  
after the control channel phase. It is used to resynchro-  
nize the MAX9258A’s clock and data recovery circuit  
to the MAX9257A before the video phase begins. The  
MAX9257A transmits the short synchronization pattern  
when it receives the lock frame from the MAX9258A. The  
length of short synchronization pattern is dependant on  
the PRATE range. When PRATE is 00 or 01, the short  
synchronization pattern consists of 546 words and when  
PRATE is 10 or 11, the short synchronization pattern con-  
sists of 1090 words. Every word is one pixel clock period.  
Link Status (LOCK and CCEN)  
The LOCK output indicates whether the MAX9258A is  
locked to the MAX9257A. LOCK is an open-drain out-  
put that needs to be pulled up to V . LOCK asserts  
CC  
low to indicate that the MAX9258A is not locked to the  
MAX9257A and high when it is. In the control channel  
phase, LOCK stays high if LOCK is high in the video  
phase. While in the control channel phase, the MAX9258A  
PLL frequency is held constant, PCLK output is active  
and data outputs are frozen at their last valid value before  
entering the control channel. CCEN output indicates  
whether the devices are in the control channel phase  
or video phase. CCEN goes high when the devices are  
in the control channel phase (Table 27). Only at initial  
power-up, CCEN goes high before communication in the  
control channel is ready (see the Link Power-Up section).  
Long Synchronization Pattern  
At power-up or when the MAX9257A does not receive a  
lock frame from the MAX9258A, the MAX9257A transmits  
a long synchronization pattern. The long synchronization  
pattern consists of 17,410 words. Every word is one pixel  
clock period. When REM is high, if synchronization is not  
achieved after 62 attempts, the MAX9257A resets SEREN  
to 0 so that the control channel stays open to allow trou-  
bleshooting. When REM is low, the MAX9257A/MAX9258A  
continuously tries to reestablish the connection.  
Control Channel  
Lock Verification (Handshaking)  
At the end of every vertical blanking time, the MAX9257A  
verifies that the MAX9258A did not lose lock. The  
MAX9258A handshakes with the MAX9257A to indicate  
lock status. The handshaking occurs after the channel  
closes (Figures 28 and 23). If the number of decoding  
errors in a time window did not exceed a certain thresh-  
old during the last video phase, the MAX9258A sends  
back the lock frame that indicates lock. If the MAX9257A  
receives the lock frame, the MAX9257A transmits a short  
synchronization pattern. The MAX9258A features a pro-  
prietary VCO mechanism that prevents frequency drift  
while in the control channel. This allows for successful  
resynchronization after extended use of control chan-  
nel. If the number of decoding errors in a time window  
Overview of Control Channel Operation  
The control channel is used by the ECU to program  
registers in the MAX9257A, MAX9258A, and peripheral  
devices (such as a camera) during vertical blanking, after  
power-up, or when serialization is disabled. Control chan-  
nel communication is half-duplex UART. The peripheral  
2
interface on the MAX9257A can be programmed to be I C  
or UART. Operation of the control channel is synchronized  
with the VSYNC input after the ECU starts serialization of  
video data. Programmable timers, ECU signal activity,  
and end frame determine how long the control channel  
stays open. The control channel remains open as long  
as there is signal activity from the ECU. When the control  
channel closes, the LVDS serial link is reestablished.  
���������������������������������������������������������������� Maxim Integrated Products ±5  
MAX9257A/MAX9258A  
Fully Programmable Serializer/Deserializer  
2
with UART/I C Control Channel  
Once serialization is enabled, the programming of regis-  
MAX9258A (Figures 28 and 29). Packets not addressed  
to the MAX9257A/MAX9258A get converted to I C by  
2
ters (including the control channel overhead time) must  
be completed within the vertical blanking time to avoid  
loss of video data. VSYNC can deassert while control  
channel remains open after eight pixel clock cycles.  
the MAX9257A and pass to the peripheral device. The  
2
MAX9257A receives I C packets from the peripheral  
device and converts them to UART packets to send back  
to the ECU. To disable communication to the peripheral  
device, write a 0 to INTEN (REG8[6] in the MAX9257A  
and REG7[6] in the MAX9258A).  
The control channel phase begins on the transition of  
the programmed active edge of VSYNC_IN. In video  
applications, the VSYNC signal of the peripheral device  
is connected to VSYNC_IN on the MAX9257A. In other  
applications, a different signal can be used to trigger  
the control channel phase. When the devices detect the  
VSYNC_IN transition, the LVDS video phase disables and  
the control channel phase is enabled.  
In base mode, the STO/ETO timers and the EF command  
are used to control the duration of the control channel.  
STO and ETO count up and expire when they reach their  
programmed value. STO and ETO are not enabled at  
the same time. STO is enabled after CCEN goes high. If  
there is activity from the ECU before STO times out, STO  
is disabled and ETO is enabled. The ECU must begin  
a transaction within an STO timeout or else the channel  
closes. The ECU can close the channel by allowing ETO  
to time-out. Activity from the ECU resets the ETO timer.  
Another way to close the control channel is by send-  
ing an end frame (EF). EF closes the channel within 2  
to 3 bit times after being received by the MAX9257A/  
MAX9258A. The default value of EF is 0xFF, but can be  
programmed to any other value besides the MAX9257A  
and the MAX9258A device addresses. The control chan-  
nel must be closed with EF for control channel errors to  
be reported.  
The control channel operates in two modes: base and  
bypass. In base mode, the ECU issues UART com-  
mands in a specified format to program the MAX9257A/  
MAX9258A registers. GPIO on the MAX9257A are also  
programmed in base mode. UART commands are trans-  
2
lated to I C and output to peripheral devices connected  
to the MAX9257A when not addressed to either the  
MAX9257A or the MAX9258A.  
In bypass mode, programming of the MAX9257A/  
MAX9258A registers are temporarily or permanent-  
ly blocked depending on the programmed value of  
CTO. Blocking prevents unintentional programming of  
the MAX9257A/MAX9258A registers when the ECU  
communicates with the peripheral using a UART protocol  
different than the one specified to program the devices.  
When the control channel is open, the MAX9258A con-  
tinues outputting the pixel clock while HSYNC and video  
data are held at the last value. If spread is enabled on the  
MAX9258A, the pixel clock is spread.  
Program STO to be longer than the time the ECU takes to  
respond to opening of channel. Program ETO to be lon-  
ger than the time the ECU pauses between transactions.  
As long as the ECU performs transactions, ETO is reset  
and the channel stays open.  
The ECU must wait 14 or more bit times before address-  
ing another device during the same control channel  
session. Failure to wait 14 bit times may result in the  
packet boundary not being reset. Internal handshaking  
operations are automatically performed after the channel  
is closed and before the video phase begins.  
Control Channel Overhead  
Control channel overhead consists of lock frame, short  
synchronization sequence, and error frame. The lock  
frame is transmitted between the MAX9257A and the  
MAX9258A without action by the ECU. The error frame  
is only sent in response to end frame. When MAX9257A  
spread spectrum is enabled, the control channel is  
entered after spread reaches center frequency. The over-  
head from VSYNC falling edge to control channel enable  
accounts for a maximum of 1400 pixel clock cycles.  
UART-to-I2C Converter  
2
The UART-to-I C converter accepts UART read or write  
2
packets issued by the ECU and converts them to an I C  
master protocol when in base mode. A slave can use an  
ACK or NACK to indicate a busy or wait state, but cannot  
hold SCL low to indicate a wait state. Multiple slaves are  
Base Mode (Details)  
2
supported. The UART-to-I C conversion delay is less than  
Base mode allows the ECU to communicate with the  
22 UART bit times and needs to be taken into account  
when setting the ETO and STO timeout periods for read  
2
devices in UART and a peripheral device in I C. UART  
programming of the peripheral device is not possible in  
base mode. UART packets from the ECU need to follow  
a certain protocol to program the MAX9257A and the  
2
commands. UART-to-I C converter converts standard  
2
UART format to standard I C format (Figure 25). This  
���������������������������������������������������������������� Maxim Integrated Products ±6  
MAX9257A/MAX9258A  
Fully Programmable Serializer/Deserializer  
2
with UART/I C Control Channel  
includes data-bit ordering conversion because UART  
with the peripheral device. Once bypass mode is entered,  
the devices stay in bypass mode until CTO times out.  
2
transmits the LSB in first while I C transmits the MSB first.  
2
UART/I C read delay is a maximum 34 bit times when  
In bypass mode, the STO and ETO timers determine the  
control channel duration. CTO timer determines whether to  
revert back to base mode or not, and EF is not recognized.  
2
reading from an I C peripheral.  
The devices store their own 7-bit device addresses  
in register REG5. All packets not addressed to the  
MAX9257A/MAX9258A are forwarded to the UARTto-  
A useful setting in bypass mode is to set STO > CTO >  
ETO because this setting is an alternative to permanent  
bypass (Figure 24). Use this setting to stay in bypass  
mode to avoid the overhead of entering from base mode  
every time the control channel opens. If the ECU uses  
the channel within a CTO timeout, ETO is activated and  
then ETO times out before CTO. The channel closes  
because ETO times out, but channel stays in bypass  
mode because CTO does not time out. At the next verti-  
cal blanking time, bypass mode continues with CTO  
reset and the ECU can immediately send commands to  
the camera. If the ECU or camera does not use the chan-  
nel, CTO times out before STO. STO closes the channel  
(because ETO is not enabled) if no communication is  
sent, but since CTO timed out, bypass mode ends and  
base mode is active for the next vertical blanking period.  
2
2
I C converter. The I C interfaces (SDA and SCL) are  
open drain and actively drive a low state. When idle,  
SDA and SCL are high impedance and pulled high by a  
pullup resistor. SDA and SCL are idle when packets are  
addressed to the MAX9257A or MAX9258A. SDA and  
2
SCL are also idle when the I C interface is programmed  
to be disabled.  
Bypass Mode (Details)  
In bypass mode, ECU activity and UART communication  
from the camera reset the ETO and CTO timers. This  
allows the control channel to stay in bypass as long as  
there is camera activity. In base mode, only ECU activity  
resets the ETO and CTO timers.  
Bypass mode temporarily or permanently blocks pro-  
gramming of the devices. Bypass mode allows only UART  
programming of peripheral device by ECU. There is no  
With STO > CTO > ETO, bypass mode can be made  
continuous by having the ECU send real commands or  
dummy commands (such as a command to a nonexisting  
address) each time the control channel opens. Then the  
ECU does not have to send a command to enter bypass  
mode each time it wants to program the peripheral device.  
2
I C connection in bypass mode. Bypass mode is entered  
by writing a 0 to INTMODE and by writing a 1 to INTEN  
(Table 23). Bypass mode disables ECU programming of  
the devices to allow any UART communication protocol  
VSYNC_IN  
ECU  
ACTIVITY  
T1  
T2  
T5  
T1  
T2  
T5  
SDI/O  
CCEN  
VIDEO  
HSK  
VIDEO  
VIDEO  
HSK  
VIDEO  
T4  
T3  
TX  
RX  
DOUT_  
FROZEN  
FROZEN  
T3  
CONTROL  
CHANNEL  
BYPASS MODE  
BYPASS MODE  
BASE MODE  
T1 = TIME TO ENTER CONTROL CHANNEL  
T2 = STO TIMER  
STO > CTO > ETO  
T3 = CTO TIMER  
T4 = ETO TIMER  
T5 = CONTROL CHANNEL EXIT TIME  
HSK = HANDSHAKING BETWEEN THE MAX9257 & THE MAX9258  
= TIMER RESET  
Figure 24. CTO Timing  
���������������������������������������������������������������� Maxim Integrated Products ±7  
MAX9257A/MAX9258A  
Fully Programmable Serializer/Deserializer  
2
with UART/I C Control Channel  
synchronization frame sets the operating baud rate of the  
control channel. At power-up, UART data rate must be  
between 95kbps to 400kbps. After power-up, UART data  
rate can be programmed according to Tables 28 and 29.  
Data is serialized starting with the LSB first. The synchro-  
nization frame is 0x54 as shown in Figure 27.  
UART  
UART Frame Format  
The UART frame used to program the MAX9257A and the  
MAX9258A has a low start bit, eight data bits, an even  
parity bit and a high stop bit. The data following the start  
bit is the LSB. With even parity, when there are an odd  
number of 1s in the data bits (D0 through D7) the parity  
bit is set to 1. The stop bit is sampled and if it is not high,  
a frame error is generated (Figure 26).  
Write Packet  
The ECU writes the sync frame, 7-bit device address plus  
read/write bit (R/W = 0 for write), 8-bit register address,  
number of bytes to be written, and data bytes (Figure 28).  
The ECU must follow this UART protocol to correctly pro-  
gram the devices.  
UART Synchronization Frame  
The synchronization frame must precede any read or  
write packets (Figure 26). Transitions in the frame cali-  
brate the oscillators on the devices. The baud rate of the  
UART  
MAX9258  
ECU  
LSB  
MSB LSB  
MSB  
LSB  
MSB  
2
REG ADDR  
DATA 0  
DATA N  
I C SLAVE ADDRESS + Wr  
2
I C  
PERIPHERAL  
DATA 0  
MAX9257  
REG ADDRESS  
S
A
DATA N  
A
P
W
SLAVE ADDRESS  
A
A
MSB  
LSB  
MSB  
MSB  
LSB  
LSB  
2
Figure 25. UART-to-I C Conversion  
D1  
D3  
D5  
D6  
D7  
STOP  
START  
D0  
D2  
D4  
PARITY  
Figure 26. UART Frame Format  
SYNCHRONIZATION FRAME  
STOP  
DEV ADDR +  
R/W  
REG ADDRESS  
SYNC  
NUMBER OF BYTES  
BYTE 1  
BYTE N  
0
1
1
1
1
1
0
0
0
0
0
PARITY  
START  
4
5
Figure 27. UART Synchronization Frame  
Figure 28. UART Write Packet to MAX9257A/MAX9258A  
���������������������������������������������������������������� Maxim Integrated Products ±8  
MAX9257A/MAX9258A  
Fully Programmable Serializer/Deserializer  
2
with UART/I C Control Channel  
Read Packet  
The ECU writes the sync frame, 7-bit device address plus  
DEV ADDR +  
R/W  
SYNC  
REG ADDRESS  
NUMBER OF BYTES  
read/write bit (R/W = 1 for read), 8-bit register address,  
and number of bytes to be read. The addressed device  
responds with read data bytes (Figure 29). UART read  
delay is maximum 4 bit times when reading from the  
MAX9257A or the MAX9258A.  
BYTE N  
BYTE 1  
Figure 29. UART Read Packet  
Time Between Frames  
Up to two high bit times are allowed between frames.  
Table 28. Control Channel Data Rate in  
Base Mode  
Reset of Packet Boundary  
A high time ranging from 14 UART bit times or more  
resets the packet boundary. In this case, the next frame  
received is assumed to belong to a new packet by  
MAX9257A REG8[1:0]  
RANGE  
MAX9258A REG7[1:0]  
2
the MAX9257A/MAX9258A and UART-to-I C converter.  
95kbps–400kbps  
Resetting the boundary is required. Not resetting the  
boundary treats the following packets as part of the first  
packet, and they may be processed incorrectly.  
00  
(default)  
01  
10  
11  
400kbps–1Mbps  
1Mbps–4.25Mbps  
1Mbps–4.25Mbps  
Data Rate  
The control channel data rate in base mode is between  
95kbps to 4.25Mbps (Table 28). In bypass mode, the  
allowed data rate is DC to 10Mbps (Table 29). For data  
rates faster than 4.25Mbps in bypass mode, REG8[5]  
in MAX9257A and REG7[5] in MAX9258A must be set  
high. Set the control channel data rate in base mode by  
writing to REG8[1:0] in the MAX9257A and REG7[1:0] in  
the MAX9258A. These write commands take effect in the  
next control channel.  
Table 29. Control Channel Data Rate in  
Bypass Mode  
MAX9257A REG8[5]  
RANGE  
MAX9258A REG7[5]  
0
1
DC–4.25Mbps  
Programming the FAST bit takes effect in the same con-  
trol channel. Both the MAX9257A and the MAX9258A  
should have the same settings for FAST. It is recom-  
mended to first program the FAST bit in the MAX9257A.  
Programming FAST to 1 results in shorter UART pulses  
on the differential link.  
4.25Mbps–10Mbps  
Table ±0. Default Device Address  
DEFAULT  
DEVICE  
BINARY  
MAX9257A/MAX9258A  
Device Address Programming  
The MAX9257A/MAX9258A have device addresses that  
can be programmed to any 7-bit address. Table 30  
shows the default addresses.  
HEX  
0xFA  
0xF8  
MAX9257A  
MAX9258A  
1111 1010  
1111 1000  
���������������������������������������������������������������� Maxim Integrated Products ±9  
MAX9257A/MAX9258A  
Fully Programmable Serializer/Deserializer  
2
with UART/I C Control Channel  
2
2
I C Timing  
I C  
2
2
The MAX9257A acts like a master in I C communication  
with the peripheral device. The MAX9257A takes less  
than 22 UART bit times to convert UART packets into I C.  
The SCL and SDA timings are based on the UART bit  
clock. The I C data rate is determined by UART and can  
range from 95kbps to 4.25Mbps. The I C timing require-  
ments scale linearly from fast mode to higher speeds.  
Table 31 shows the I C timing information for data rates  
greater than 400kbps. The I C parameters scale with  
The MAX9257A features a UART-to-I C converter that  
converts UART packets to I C. The UART-to-I C con-  
verter works as a repeater between the ECU and external  
I C slave devices. The MAX9257A acts as the master  
and converts UART read/write packets from the ECU to  
I C read/write for external I C slave devices. For writes,  
the UART-to-I C converts the UART packets received  
directly into I C. For reads, the UART-to-I C converter  
follows the UART packet protocol. The I C SCL clock  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
t
. See Figure 30 for timing parameters.  
period is approximately the same as the UART bit clock  
period (tUCLK). The I C speed varies with UART speed.  
UCLK  
2
2
I C reads from the peripheral device do not disable the  
2
ETO timer. Choose ETO large enough so that I C read  
commands are not lost due to ETO timing out.  
2
Table ±1. Timing Information for I C Data Rates Greater than 400kbps  
PARAMETER  
SYMBOL  
MIN  
TYP  
MAX  
UNIT  
SCL Clock Frequency  
f
1
1
t
UCLK*  
SCL  
Start Condition Hold Time  
Low Period of SCL Clock  
High Period of SCL Clock  
Repeated START Condition Setup Time  
Data Hold Time  
t
1
1
t
HD:STA  
UCLK  
UCLK  
UCLK  
UCLK  
UCLK  
UCLK  
UCLK  
UCLK  
t
0.5  
0.5  
0.25  
0.25  
0.25  
0.25  
0.5  
0.5  
0.5  
0.25  
0.25  
0.25  
0.25  
0.5  
t
LOW  
t
t
t
t
t
t
t
HIGH  
t
SU:STA  
HD:DAT  
t
Data Setup Time  
t
SU:DAT  
SU:STO  
Setup Time for STOP Condition  
Bus Free Time  
t
t
BUF  
*t  
is equal to one UART period.  
UCLK  
t
F
t
R
t
t
LOW  
HD;STA  
SCL  
t
t
t
HD;DAT  
t
SU;STA  
HD;STA  
SU;STO  
t
SU;DAT  
t
HIGH  
SDA  
t
BUF  
S
P
S
P
2
Figure 30. I C Timing Parameters  
���������������������������������������������������������������� Maxim Integrated Products 40  
MAX9257A/MAX9258A  
Fully Programmable Serializer/Deserializer  
2
with UART/I C Control Channel  
Activity Detector  
Applications Information  
Most applications use the default activity-detector set-  
tings. If there is excessive noise on the link when the link  
is not driven (during control channel mode), increase  
the activity-detector offset to filter out noise amplitudes.  
Using a larger offset threshold affects the maximum data  
lists the maximum recommended  
data rate at different input offset settings for a 150mV  
peak input signal.  
PRBS Test  
The devices have built-in circuits for testing bit errors  
on the serial link. The MAX9257A has a PRBS generator  
and the MAX9258A has a PRBS checker. The length of  
the PRBS pattern is programmable from 221 to 235 word  
length or continuous by programming REG9[7:4] in the  
MAX9257A. In case of errors, errors are counted in the  
MAX9258A PRBSERR register (REG12), and the ERROR  
output on the MAX9258A goes low. To start the test, the  
ECU writes a 1 to PRBSEN bit of both the MAX9257A  
and the MAX9258A. The PRBS test can be performed  
with or without spread spectrum. If the PRBS test is  
programmed to run continuously, the MAX9257A must  
be powered down to stop the test. When programmed  
for a finite number of repetitions, the control channel is  
enabled after the PRBS test finishes and serialization  
enable (SEREN) is reset to 0. To start normal operation,  
the ECU must disable PRBSEN and enable SEREN.  
Table 32  
rate available.  
AC-Coupling Benefits  
AC-coupling increases the input voltage of the LVDS  
receiver to the voltage rating of the capacitor. Two from  
18MHz to 42MHz capacitors are sufficient for isolation,  
but four capacitors—two at the serializer output and two at  
the deserializer input—provide protection if either end of  
the cable is shorted to a high voltage. AC-coupling blocks  
low-frequency ground shifts and common-mode noise.  
Selection of AC-Coupling Capacitors  
See Figure 31 for calculating the capacitor values for  
AC-coupling depending on the parallel clock frequency.  
The plot shows minimum capacitor values for two- and  
four-capacitor-per-link systems. To block the highest  
common-mode frequency shift, choose the minimum  
capacitor value shown in Figure 31. In general, 0.1FF  
capacitors are sufficient.  
Video Data Parity  
Parity protection of video data is programmable for par-  
allel-word widths of 16 bits or less. When programmed,  
two parity bits are appended to each parallel word  
latched into the MAX9257A. In the MAX9258A, a 16-bit  
parity error counter logs parity errors. The ERROR out-  
put on the MAX9258A goes low if parity errors exceed a  
programmable threshold.  
AC-COUPLING CAPACITOR VALUE  
vs. SERIAL-DATA RATE  
Table ±2. Maximum Data Rate at Different  
Input Offset Settings  
60  
FOUR CAPACITORS PER LINK  
OFFSET BITS  
(REG1[4:±)  
TYPICAL INPUT  
OFFSET (mV)  
MAXIMUM  
FREQUENCY (Mbps)  
40  
00  
01  
10  
11  
23  
11  
59  
75  
780  
940  
520  
400  
20  
TWO CAPACITORS PER LINK  
0
360 420 480 540 600 660 720 780 840  
SERIAL-DATA RATE (Mbps)  
Figure 31. AC-Coupling Capacitor Values vs. Clock Frequency  
from 18MHz to 42MHz  
���������������������������������������������������������������� Maxim Integrated Products 41  
MAX9257A/MAX9258A  
Fully Programmable Serializer/Deserializer  
2
with UART/I C Control Channel  
Optimally Choosing AC-Coupling Capacitors  
Jitter due to droop is proportional to the droop and tran-  
sition time:  
Voltage droop and the digital sum variaton (DSV) of  
transmitted symbols cause signal transitions to start  
from different voltage levels. Because the transition time  
is finite, starting the signal transition from different volt-  
age levels causes timing jitter. The time constant for an  
AC-coupled link needs to be chosen to reduce droop  
and jitter to an acceptable level. The RC network for an  
AC-coupled link consists of the LVDS receiver termina-  
t = t x D  
J
TT  
where:  
t = jitter(s)  
J
t
= transition time(s) (0 to 100%)  
TT  
D = droop (% of signal amplitude)  
Jitter due to 2% droop and assumed 1ns transition time is:  
tion resistor (R ), the LVDS driver termination resistor  
TR  
(R ), and the series AC-coupling capacitors (C). The  
TD  
t = 1ns x 0.02  
J
RC time constant for four equal-value series capacitors is  
t = 20ps  
J
(C x (R + R ))/4. RTD and RTR are required to match  
TD  
TR  
The transition time in a real system depends on the fre-  
quency response of the cable driven by the serializer.  
the transmission line impedance (usually 100I). This  
leaves the capacitor selection to change the system time  
constant. In the following example, the capacitor value  
for a droop of 2% is calculated:  
The capacitor value decreases for a higher frequency  
parallel clock and for higher levels of droop and jitter.  
Use high-frequency, surface-mount ceramic capacitors.  
4×t ×DSV  
B
C = −  
ln(1- D)×(R +R  
)
TD  
Power-Supply Circuits and Bypassing  
All single-ended inputs and outputs on the MAX9257A  
TR  
where:  
C = AC-coupling capacitor (F)  
are powered from V  
MAX9258A are powered from V  
can be connected to a +1.71V to +3.6V supply. The input  
levels or output levels scale with these supply rails.  
. All single-ended outputs on the  
CCIO  
. V  
and V  
CCOUT CCIO CCOUT  
t = bit time(s)  
B
DSV = digital sum variation (integer)  
ln = natural log  
Board Layout  
Separate the LVCMOS/LVTTL signals and LVDS signals  
to prevent crosstalk. A four-layer PCB with separate  
layers for power, ground, LVDS, and digital signals is  
recommended. Layout PCB traces for 100I differential  
characteristic impedance. The trace dimensions depend  
on the type of trace used (microstrip or stripline). Note  
that two 50I PCB traces do not have 100I differential  
impedance when brought close together—the imped-  
ance goes down when the traces are brought closer.  
D = droop (% of signal amplitude)  
R
R
= driver termination resistor (I)  
TD  
= receiver termination resistor (I)  
TR  
The bit time (t ) is the serial-clock period or the period  
B
of the pixel clock divided by the total number of bits. The  
maximum DSV for the MAX9257A encoding equals to the  
total number of bits transmitted in one pixel clock cycle.  
This means that t x DSV = t .  
B
T
Route the PCB traces for an LVDS channel (there are  
two conductors per LVDS channel) in parallel to maintain  
the differential characteristic impedance. Place the 100I  
(typ) termination resistor at both ends of the LVDS driver  
and receiver. Avoid vias. If vias must be used, use only  
one pair per LVDS channel and place the via for each  
line at the same point along the length of the PCB traces.  
This way, any reflections occur at the same time. Do not  
make vias into test points for ATE. Make the PCB traces  
that make up a differential pair the same length to avoid  
skew within the differential pair.  
The capacitor for 2% maximum droop at 16MHz parallel  
rate clock is:  
4×t ×DSV  
B
C = -  
ln(1- D)×(R +R  
)
TD  
TR  
Total number of bits is = 10 (data) + 2 (HSYNC and  
VSYNC) + 2 (encoding) + 2 (parity) = 16  
4×3.91ns×16  
C = -  
ln(1- .02)×(100+100)  
C ≥ 0.062FF  
���������������������������������������������������������������� Maxim Integrated Products 42  
MAX9257A/MAX9258A  
Fully Programmable Serializer/Deserializer  
2
with UART/I C Control Channel  
Cables and Connectors  
Choosing I2C Pullup Resistors  
2
Interconnect for LVDS typically has a differential imped-  
ance of 100I. Use cables and connectors that have  
matched differential impedance to minimize impedance  
discontinuities. Twisted-pair and shielded twisted-pair  
cables offer superior signal quality compared to ribbon  
cable and tend to generate less EMI due to magnetic  
field canceling effects. Balanced cables pick up noise  
as common mode that is rejected by the LVDS receiver.  
I C requires pullup resistors to provide a logic-high level  
to data and clock lines. There are tradeoffs between  
power dissipation and speed, and a compromise must  
be made in choosing pullup resistor values. Every device  
connected to the bus introduces some capacitance even  
2
when device is not in operation. I C specifies 300ns  
rise times to go from low to high (30% to 70%) for fast  
mode, which is defined for a date rate up to 400kbps  
(see I C specifications for details). To meet the rise time  
2
requirement, choose the pullup resistors so the rise time  
t
= 0.85R  
x C  
< 300ns. If the transition time  
R
PULLUP  
BUS  
becomes too slow, the setup and hold times may not be  
met and waveforms will not be recognized.  
MAX9257A Register Table  
ADDRESS  
BITS  
DEFAULT  
NAME  
DESCRIPTION  
Pixel clock frequency range  
00 = 5MHz to 10MHz  
7:6  
10  
PRATE  
01 = 10MHz to 20MHz  
10 = 20MHz to 40MHz (default)  
11 = 40MHz to 70MHz  
Serial-data rate range  
00 = 60Mbps to 100Mbps  
01 = 100Mbps to 200Mbps  
10 = 200Mbps to 400Mbps  
11 = 400Mbps to 840Mbps (default)  
5:4  
3
11  
0
SRATE  
PAREN  
0
Parity enable  
0 = disabled (default), 1 = enabled  
Parallel data width  
(includes HSYNC and VSYNC, excludes DCB, INV, and parity bits)  
000 = 10  
001 = 12  
010 = 14  
011 = 16  
100 = 18  
101 = 18 (default)  
110 = 18  
2:0  
101  
PWIDTH  
111 = 18  
Spread-spectrum setting  
For PRATE ranges 00, 01: all spread options possible  
For PRATE ranges 10, 11: maximum spread is 2%  
7:5  
4:0  
000  
SPREAD  
000 = Off (default)  
001 = 1.5%  
010 = 1.75%  
011 = 2%  
100 = Off  
101 = 3%  
110 = 3.5%  
111 = 4%  
1
11111  
Reserved (set to 11111)  
���������������������������������������������������������������� Maxim Integrated Products 4±  
MAX9257A/MAX9258A  
Fully Programmable Serializer/Deserializer  
2
with UART/I C Control Channel  
MAX9257A Register Table (continued)  
ADDRESS  
BITS  
DEFAULT  
NAME  
DESCRIPTION  
Control channel start timeout: (STO) times out if ECU does not start using control channel within this amount of  
time after control channel session is enabled.  
Control channel start timeout divider  
Pixel clock is first divided by:  
0000 = 16  
0001 = 16  
0010 = 16  
0011 = 16  
0100 = 16  
0101 = 32  
0110 = 64  
0111 = 128  
1000 = 256  
1001 = 512  
1010 = 1024 (default)  
1011 = 2048  
1100 = 4096  
1101 = 8192  
1110 = 16,384  
1111 = 32,768  
2
7:4  
1010  
STODIV  
Control channel start timeout counter  
Divided pixel clock is used to count up to (STOCNT + 1)  
3:0  
0000  
STOCNT  
Control channel end timeout: (ETO) times out if ECU does not use control channel for this amount of time after it  
has already used at least once.  
Control channel end timeout divider  
Pixel clock is first divided by:  
0000 = 16  
0001 = 16  
0010 = 16  
0011 = 16  
0100 = 16  
0101 = 32  
0110 = 64  
0111 = 128  
1000 = 256  
1001 = 512  
1010 = 1024 (default)  
1011 = 2048  
1100 = 4096  
1101 = 8192  
1110 = 16,384  
1111 = 32,768  
3
7:4  
3:0  
1010  
0000  
ETODIV  
Control channel end timeout counter  
Divided pixel clock is used to count up to (ETOCNT + 1)  
ETOCNT  
���������������������������������������������������������������� Maxim Integrated Products 44  
MAX9257A/MAX9258A  
Fully Programmable Serializer/Deserializer  
2
with UART/I C Control Channel  
MAX9257A Register Table (continued)  
ADDRESS  
BITS  
DEFAULT  
NAME  
DESCRIPTION  
VSYNC active edge at camera interface  
7
6
5
0
0
1
VEDGE  
0 = falling (default), 1 = rising  
Reserved (set to 0)  
PCLK active edge at camera interface  
0 = falling, 1 = rising (default)  
CKEDGE  
PD  
Power mode  
0 = power-up, 1 = power-down  
(when REM = 1 default is 1)  
4
3
0
1
4
Serialization enable  
0 = disabled, 1 = enabled  
(when REM = 1 default is 0)  
SEREN  
Bypass filter PLL  
0 = active (default), 1 = bypass  
2
1
0
0
0
0
BYPFPLL  
Reserved (set to 0)  
PRBS test enable  
0 = disabled (default), 1 = enabled  
PRBSEN  
7:1  
0
1111101  
DEVICEID  
7-bit address of MAX9257A  
Reserved (set to 0)  
5
6
7
0
7:1  
0
1111111  
EF  
End frame to close control channel  
Reserved (set to 1)  
1
1111100  
0
7:1  
0
DESID  
7-bit address ID of MAX9258A  
Reserved (set to 0)  
Interface mode  
7
6
5
0
0
0
INTMODE  
INTEN  
0 = UART (default), 1 = I2C  
Interface enable  
0 = disabled (default), 1 = enabled  
Fast UART transceiver  
0 = bit rate = DC to 4.25Mbps (default), 1 = bit rate = 4.25Mbps to 10Mbps  
FAST  
Timer to come back from bypass mode (in bit time)  
8
000 = never come back (default)  
100 = 64  
101 = 80  
110 = 96  
111 = 112  
4:2  
1:0  
000  
00  
CTO  
001 = 16  
010 = 32  
011 = 48  
Control channel bit rate range in base mode  
00 = 95kbps to 400kbps (default)  
01 = 400kbps to 1000kbps  
BITRATE  
10 = 1000kbps to 4250kbps  
11 = 1000kbps to 4250kbps  
���������������������������������������������������������������� Maxim Integrated Products 45  
MAX9257A/MAX9258A  
Fully Programmable Serializer/Deserializer  
2
with UART/I C Control Channel  
MAX9257A Register Table (continued)  
ADDRESS  
BITS  
DEFAULT  
NAME  
DESCRIPTION  
PRBS test number of words  
1111 = continuous  
7:4  
0000  
PRBSLEN  
else = 2(PRBSLEN + 21)  
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
GPIO9DIR  
GPIO8DIR  
GPIO9*  
GPIO 9 direction  
GPIO 8 direction  
0 = input (default), 1 = output  
0 = input (default), 1 = output  
9
General purpose input output 9  
General purpose input output 8  
GPIO8*  
GPIO7DIR  
GPIO6DIR  
GPIO5DIR  
GPIO4DIR  
GPIO3DIR  
GPIO2DIR  
GPIO1DIR  
GPIO0DIR  
GPIO7*  
GPIO 7 direction  
GPIO 6 direction  
GPIO 5 direction  
GPIO 4 direction  
GPIO 3 direction  
GPIO 2 direction  
GPIO 1 direction  
GPIO 0 direction  
0 = input (default), 1 = output  
0 = input (default), 1 = output  
0 = input (default), 1 = output  
0 = input (default), 1 = output  
0 = input (default), 1 = output  
0 = input (default), 1 = output  
0 = input (default), 1 = output  
0 = input (default), 1 = output  
10  
General purpose input output 7  
General purpose input output 6  
General purpose input output 5  
General purpose input output 4  
General purpose input output 3  
General purpose input output 2  
General purpose input output 1  
General purpose input output 0  
LVDS driver preemphasis setting  
GPIO6*  
GPIO5*  
GPIO4*  
11  
GPIO3*  
GPIO2*  
GPIO1*  
GPIO0*  
000 = 20%  
001 = 40%  
010 = 60%  
011 = 80%  
100 = 100%  
111 = off (default)  
101 = 20%  
110 = 20%  
7:5  
111  
PREEMP  
12  
13  
4:0  
7:2  
00000  
Reserved (set to 00000)  
Reserved (set to 000000)  
I2C glitch filter setting  
00 = set according to programmed bit rate (default)  
100ns at (95kbps to 400kbps) bit rate  
50ns at (400kbps to 1000kbps) bit rate  
10ns at (1000kbps to 4250kbps) bit rate  
01 = 10ns, 10 = 50ns, 11 = 100ns  
000000  
1:0  
00  
I2CFILT  
7:1  
0
(RO)  
(RO)  
(RO)  
Reserved  
14  
15  
LOCKED  
PLL locked to pixel clock  
Reserved  
7:0  
���������������������������������������������������������������� Maxim Integrated Products 46  
MAX9257A/MAX9258A  
Fully Programmable Serializer/Deserializer  
2
with UART/I C Control Channel  
MAX9258A Register Table  
ADDRESS  
BITS  
DEFAULT  
NAME  
DESCRIPTION  
Pixel clock frequency range  
00 = 5MHz to 10MHz  
7:6  
10  
PRATE  
01 = 10MHz to 20MHz  
10 = 20MHz to 40MHz (default)  
11 = 40MHz to 70MHz  
Serial-data rate range  
00 = 60Mbps to 100Mbps  
01 = 100Mbps to 200Mbps  
10 = 200Mbps to 400Mbps  
11 = 400Mbps to 840Mbps (default)  
5:4  
3
11  
0
SRATE  
PAREN  
0
Parity enable  
0 = disabled (default), 1 = enabled  
Parallel data width  
(includes HSYNC and VSYNC, excludes encoding and parity bits)  
000 = 10  
001 = 12  
010 = 14  
011 = 16  
100 = 18  
101 = 18 (default)  
110 = 18  
2:0  
101  
PWIDTH  
111 = 18  
Spread-spectrum setting  
00 = Off (default)  
01 = 2%  
7:6  
5
00  
0
SPREAD  
AER  
10 = Off  
11 = 4%  
Autoerror reset  
1 = Reset error count when control channel ends.  
0 = Reset upon reading error registers 10, 11, 13 (default)  
1
Activity detector offset level  
00 = 23mV offset  
4:3  
2:0  
00  
ACTOFFSET 01 = 11mV offset  
10 = 59mV offset  
11 = 75mV offset  
000  
Reserved (set to 000)  
Control channel start timeout: (STO) times out if ECU does not start using control channel within this amount of  
time after control channel session is enabled.  
Control channel start timeout divider  
Pixel clock is first divided by :  
0000 = 16  
0001 = 16  
0010 = 16  
0011 = 16  
0100 = 16  
0101 = 32  
0110 = 64  
0111 = 128  
1000 = 256  
1001 = 512  
1010 = 1024 (default)  
1011 = 2048  
1100 = 4096  
1101 = 8192  
1110 = 16,384  
1111 = 32,768  
2
7:4  
3:0  
1010  
0000  
STODIV  
Control channel start timeout counter  
Divided pixel clock is used to count up to (STOCNT + 1)  
STOCNT  
���������������������������������������������������������������� Maxim Integrated Products 47  
MAX9257A/MAX9258A  
Fully Programmable Serializer/Deserializer  
2
with UART/I C Control Channel  
MAX9258A Register Table (continued)  
ADDRESS  
BITS  
DEFAULT  
NAME  
DESCRIPTION  
Control channel end timeout: (ETO) times out if ECU does not use control channel for this amount of time after it  
has already used at least once.  
Control channel end timeout divider  
Pixel clock is first divided by:  
0000 = 16  
0001 = 16  
0010 = 16  
0011 = 16  
0100 = 16  
0101 = 32  
0110 = 64  
0111 = 128  
1000 = 256  
1001 = 512  
1010 = 1024 (default)  
1011 = 2048  
1100 = 4096  
1101 = 8192  
1110 = 16,384  
1111 = 32,768  
3
7:4  
1010  
ETODIV  
Control channel end timeout counter  
Divided pixel clock is used to count up to (ETOCNT + 1)  
3:0  
7
0000  
ETOCNT  
VEDGE  
VSYNC active edge at ECU interface  
0 = falling (default), 1 = rising  
0
0
HSYNC active edge at ECU interface  
0 = falling (default), 1 = rising  
6
HEDGE  
CKEDGE  
PCLK active edge at ECU interface  
0 = falling, 1 = rising (default)  
5
4
1
0
4
Reserved (set to 0)  
0 = stretcher output pulse is short  
1 = stretcher output pulse is long  
3
0
ACTLP  
2:1  
0
00  
0
Reserved (set to 00)  
PRBS test enable  
0 = disabled (default), 1 = enabled  
PRBSEN  
7:1  
0
1111100  
DEVICEID  
7-bit address of MAX9258A  
Reserved (set to 0)  
5
6
0
1111111  
1
7:1  
0
EF  
End frame to close control channel  
Reserved (set to 1)  
���������������������������������������������������������������� Maxim Integrated Products 48  
MAX9257A/MAX9258A  
Fully Programmable Serializer/Deserializer  
2
with UART/I C Control Channel  
MAX9258A Register Table (continued)  
ADDRESS  
BITS  
DEFAULT  
NAME  
DESCRIPTION  
7
6
0
0
INTMODE  
INTEN  
Interface mode  
0 = UART (default), 1 = I2C  
0 = disabled (default), 1 = enabled  
Interface enable  
Fast UART transceiver  
0 = bit rate = DC to 4.25Mbps (default), 1 = bit rate = 4.25Mbps to 10 Mbps  
5
0
FAST  
Timer to come back from bypass mode (in bit time)  
000 = never come back (default)  
100 = 64  
101 = 80  
110 = 96  
111 = 112  
4:2  
000  
CTO  
001 = 16  
010 = 32  
011 = 48  
7
Control channel bit rate range in base mode  
00 = 95kbps to 400kbps (default)  
01 = 400kbps to 1000kbps  
1:0  
00  
BITRATE  
10 = 1000kbps to 4250kbps  
11 = 1000kbps to 4250kbps  
Threshold for number of video parity errors (8 LSBs)  
If the number of errors exceeds this value, ERR pin is asserted.  
8
9
7:0  
7:0  
00010000  
00000000  
PATHRLO  
PATHRHI  
Threshold for number of video parity errors (8 MSBs)  
If the number of errors exceeds this value, ERR pin is asserted.  
10  
11  
7:0  
7:0  
(RO)  
(RO)  
PAERRLO  
PAERRHI  
Number of video parity errors (8 LSBs)  
Number of video parity errors (8 MSBs)  
PRBS test number of bit errors  
12  
7:0  
(RO)  
PRBSERR  
Automatically reset when PRBS test is disabled  
0xFF indicates 255 or more errors  
7:5  
4
(RO)  
(RO)  
(RO)  
(RO)  
(RO)  
(RO)  
(RO)  
Reserved  
DESPERR  
DESFERR  
SERPERR  
SERFERR  
I2CERR  
Parity error during communication with deserializer  
Frame error during communication with deserializer  
Parity error during communication with serializer  
Frame error during communication with serializer  
Error during communication with camera in I2C mode  
Reserved  
3
13  
14  
2
1
0
7:0  
���������������������������������������������������������������� Maxim Integrated Products 49  
MAX9257A/MAX9258A  
Fully Programmable Serializer/Deserializer  
2
with UART/I C Control Channel  
Body Model and Machine Model ESD tolerances. The  
Human Body Model discharge components are C  
ESD Protection  
The MAX9257A/MAX9258A ESD tolerance is rated for  
Human Body Model, Machine Model, IEC 61000-4-2  
and ISO 10605. The ISO 10605 and IEC 61000-4-2  
standards specify ESD tolerance for electronic systems.  
LVDS outputs on the MAX9257A and LVDS inputs on  
the MAX9258A meet ISO 10605 ESD protection and IEC  
61000-4-2 ESD protection. All other pins meet the Human  
=
S
100pF and R = 1.5kI (Figure 33). The IEC 61000-4-2  
D
discharge components are C = 150pF and R = 330I  
S
D
(Figure 32). The ISO 10605 discharge components are  
= 330pF and R = 2kI (Figure 34). The Machine  
C
S
D
Model discharge components are C = 200pF and R  
0I (Figure 35).  
=
S
D
R
R
D
D
1MI  
330I  
1.5kI  
CHARGE-CURRENT-  
LIMIT RESISTOR  
DISCHARGE  
RESISTANCE  
CHARGE-CURRENT-  
LIMIT RESISTOR  
DISCHARGE  
RESISTANCE  
HIGH-  
VOLTAGE  
DC  
HIGH-  
VOLTAGE  
DC  
DEVICE  
UNDER  
TEST  
DEVICE  
UNDER  
TEST  
C
S
C
S
100pF  
STORAGE  
CAPACITOR  
STORAGE  
CAPACITOR  
150pF  
SOURCE  
SOURCE  
Figure 32. IEC 61000-4-2 Contact Discharge ESD Test Circuit  
Figure 33. Human Body ESD Test Circuit  
R
D
R
D
2kI  
0I  
CHARGE-CURRENT-  
LIMIT RESISTOR  
DISCHARGE  
RESISTANCE  
CHARGE-CURRENT-  
LIMIT RESISTOR  
DISCHARGE  
RESISTANCE  
HIGH-  
VOLTAGE  
DC  
HIGH-  
VOLTAGE  
DC  
DEVICE  
UNDER  
TEST  
DEVICE  
UNDER  
TEST  
C
S
200pF  
C
S
330pF  
STORAGE  
CAPACITOR  
STORAGE  
CAPACITOR  
SOURCE  
SOURCE  
Figure 34. ISO 10605 Contact Discharge ESD Test Circuit  
Figure 35. Machine Model ESD Test Circuit  
���������������������������������������������������������������� Maxim Integrated Products 50  
MAX9257A/MAX9258A  
Fully Programmable Serializer/Deserializer  
2
with UART/I C Control Channel  
Functional Diagram  
BYPASS  
MAX9257A SERIALIZER  
PCLK_IN  
DIN[0:15]  
1.5% TO 4%  
LVDS Tx  
FILTER PLL  
SPREAD PLL  
1x  
CLK IN  
CLK OUT  
ENCODE/  
DC BALANCE  
+
PARALLEL TO  
SERIAL  
SDO-  
FIFO  
HSYNC_IN  
VSYNC_IN  
1.2V  
BIAS  
DIN WIDTH  
100  
BLANK  
DETECT/TIMER  
SDO+  
OSC  
VSYNC  
POLARITY  
SCL(TX)  
SDA(RX)  
CONTROL  
Tx/Rx  
UART  
TO I C  
2
2
UART-TO-I C BYPASS  
TRANSMISSION LINE  
= 100  
Z
D
MAX9258A DESERIALIZER  
2% OR 4%  
FREQ  
DETECT  
PCLK_OUT  
DOUT[0:15]  
SPREAD PLL  
PLL  
LVDS Rx  
1x  
CLK OUT  
CLK IN  
DECODE/  
DC BALANCE  
+
SERIAL TO  
PARALLEL  
FIFO  
SDI+  
HSYNC_OUT  
VSYNC_OUT  
DOUT WIDTH  
ADDRESS  
1.2V  
BIAS  
100  
BLANK  
DETECT/TIMER  
SDI-  
VSYNC  
POLARITY  
CONTROL  
TX/RX  
TX  
RX  
UART  
OSC  
���������������������������������������������������������������� Maxim Integrated Products 51  
MAX9257A/MAX9258A  
Fully Programmable Serializer/Deserializer  
2
with UART/I C Control Channel  
Typical Operating Circuit  
10  
UP TO 20m  
CABLE LENGTH  
10  
DATA  
PCLK  
DATA  
PCLK  
SERIAL  
I/O  
SERIAL  
I/O  
HSYNC  
VSYNC  
LOCK  
100I  
100I  
ECU  
HSYNC  
VSYNC  
SCL  
CMOS  
IMAGE  
SENSOR  
SERIALIZED  
DIGITAL VIDEO  
MAX9258A  
MAX9257A  
TX  
RX  
C
SDA  
CONTROL  
CHANNEL  
CONTROL UNIT  
REMOTE CAMERA ASSEMBLY  
Chip Information  
Ordering Information  
PROCESS: BiCMOS  
PART  
MAX9257AGTL/V+  
TEMP RANGE  
PIN-PACKAGE  
-40NC to +105NC 40 TQFN-EP*  
MAX9257AGCM/V+ -40NC to +105NC 48 LQFP  
MAX9258AGCM/V+ -40NC to +105NC 48 LQFP  
Package Information  
For the latest package outline information and land patterns  
(footprints), go to www.maxim-ic.com/packages. Note that a  
“+”, “#”, or “-” in the package code indicates RoHS status only.  
Package drawings may show a different suffix character, but  
the drawing pertains to the package regardless of RoHS status.  
/V denotes an automotive qualified part.  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
*EP = Exposed pad.  
PACKAGE  
TYPE  
PACKAGE  
CODE  
OUTLINE  
NO.  
LAND  
PATTERN NO.  
40 TQFN  
48 LQFP  
T4055+1  
C48+3  
21-0140  
21-0054  
90-0016  
90-009±  
���������������������������������������������������������������� Maxim Integrated Products 52  
MAX9257A/MAX9258A  
Fully Programmable Serializer/Deserializer  
2
with UART/I C Control Channel  
Revision History  
REVISION  
NUMBER  
REVISION  
DATE  
PAGES  
DESCRIPTION  
CHANGED  
0
1
6/11  
9/11  
Initial release  
Changed ACTOFFSET range settings from 00 = 11mV to 23mV and 01 =  
23mV to 11mV  
7, 24, 41, 47  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied.  
Maxim reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical  
Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
5±  
©
2011 Maxim Integrated Products  
Maxim is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX9258AGCM/V+TW

Line Receiver
MAXIM

MAX9258AGCM/V+W

Line Receiver
MAXIM

MAX9258AGCV

Fully Programmable Serializer/Deserializer with UART/I2C Control Channel
MAXIM

MAX9258EVKIT+

On-Board Emulated Camera
MAXIM

MAX9258GCM+T

Line Transceiver, CMOS, PQFP48
MAXIM

MAX9258GCM/V+

Fully Programmable Serializer/Deserializer with UART/I2C Control Channel
MAXIM

MAX9258GCM/V+T

暂无描述
MAXIM

MAX9259

Gigabit Multimedia Serial Link with Spread Spectrum and Full-Duplex Control Channel
MAXIM

MAX9259GCB

Gigabit Multimedia Serial Link with Spread Spectrum and Full-Duplex Control Channel
MAXIM

MAX9259GCB/V+

Gigabit Multimedia Serial Link with Spread Spectrum and Full-Duplex Control Channel
MAXIM

MAX9259GCB/V+GB

Line Driver
MAXIM

MAX9259GCB/V+T

Gigabit Multimedia Serial Link with Spread Spectrum and Full-Duplex Control Channel
MAXIM