MAX9272GTV+ [MAXIM]

28-Bit GMSL Deserializer for Coax or STP Cable; 28位GMSL解串器用于同轴或STP电缆
MAX9272GTV+
型号: MAX9272GTV+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

28-Bit GMSL Deserializer for Coax or STP Cable
28位GMSL解串器用于同轴或STP电缆

文件: 总47页 (文件大小:2948K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-6383; Rev 0; 6/12  
E V A L U A T I O N K I T A V A I L A B L E  
General Description  
Benefits and Features  
S Ideal for Camera Applications  
The MAX9272 compact deserializer is designed to  
interface with a GMSL serializer over 50I coax or 100I  
shielded twisted-pair (STP) cable. The device pairs with  
the MAX9271 or MAX9273 serializers.  
Works with Low-Cost 50I Coax Cable and  
FAKRA Connectors or 100I STP  
Error Detection/Correction  
9.6kbps to 1Mbps Control Channel in I2C-to-I2C  
Mode with Clock Stretch Capability  
Best-in-Class Supply Current: 90mA (max)  
Double-Rate Clock for Megapixel Cameras  
Cable Equalization Allows 15m Cable at Full  
Speed  
The parallel output is programmable for single or double  
output. Double output strobes out half of a parallel word  
on each pixel clock cycle. Double output can be used  
with GMSL serializers that have the double-input feature.  
The device features an embedded control channel that  
operates at 9.6kbps to 1Mbps in UART and mixed UART/  
I2C modes, and up to 400kbps in I2C mode. Using the  
control channel, a microcontroller (FC) is capable of pro-  
gramming serializer/deserializer and peripheral device  
registers at any time, independent of video timing. Two  
GPIO ports are included, allowing power-up and switch-  
ing of the backlight in display applications and similar  
uses. A continuously sampled GPI input supports touch-  
screen controller interrupt requests.  
48-Pin (7mm x 7mm) TQFN-EP Package with  
0.5mm Lead Pitch  
S High-Speed Data Deserialization for Megapixel  
Cameras  
Up to 1.5Gbps Serial-Bit Rate with Single or  
Double Output: 6.25MHz to 100MHz Clock  
S Multiple Control-Channel Modes for System  
Flexibility  
9.6kbps to 1Mbps Control Channel in UART-to-  
UART or UART-to-I2C Modes  
For use with longer cables, the device has a program-  
mable equalizer. Programmable spread spectrum is  
available on the parallel output. The serial input meets  
ISO 10605 and IEC 61000-4-2 ESD standards. The core  
supply range is 1.7V to 1.9V and the I/O supply range is  
1.7V to 3.6V. The device is available in a 48-pin (7mm  
x 7mm) TQFN-EP package with 0.5mm lead pitch and  
operates over the -40NC to +105NC temperature range.  
S Reduces EMI and Shielding Requirements  
Input Programmable for 100mV to 500mV  
Single-Ended or 50mV to 400mV Differential  
Programmable Spread Spectrum on the Parallel  
Output Reduces EMI  
Tracks Spread Spectrum on Serial Input  
S Peripheral Features for Camera Power-Up and  
Verification  
Applications  
Built-In PRBS Checker for BER Testing of the  
Serial Link  
Automotive Camera Systems  
Two GPIO Ports  
Dedicated “Up/Down” GPI for Camera Frame  
Sync Trigger and Other Uses  
Remote/Local Wake-Up from Sleep Mode  
S Meets Rigorous Automotive and Industrial  
Requirements  
Ordering Information appears at end of data sheet.  
-40NC to +105NC Operating Temperature  
ꢀ Q10kV Contact and Q15kV Air IEC 61000-4-2  
ESD Protection  
Typical Application Circuit appears at end of data sheet.  
For related parts and recommended products to use with this part,  
refer to www.maxim-ic.com/MAX9272.related.  
Q10kV Contact and Q30kV Air ISO 10605 ESD  
Protection  
For pricing, delivery, and ordering information, please contact Maxim Direct  
at 1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
1
MAX9272  
28-Bit GMSL Deserializer for Coax or STP Cable  
TABLE OF CONTENTS  
General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Benefits and Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Absolute Maximum Ratings* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Package Thermal Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
AC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Typical Operating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Functional Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Detailed Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Register Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Bit Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Serial Link Signaling and Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Reverse Control Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Data-Rate Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Control Channel and Register Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
UART Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
Interfacing Command-Byte-Only I2C Devices with UART. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
UART Bypass Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
I2C Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
START and STOP Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
Bit Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
Acknowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
Slave Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
Bus Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
Format for Writing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
Format for Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
I2C Communication with Remote-Side Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
I2C Address Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
Control-Channel Broadcast Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
GPO/GPI Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
PRBS Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
2
MAX9272  
28-Bit GMSL Deserializer for Coax or STP Cable  
TABLE OF CONTENTS (continued)  
Line Equalizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Spread Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Manual Programming of the Spread-Spectrum Divider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Additional Error Detection and Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
Cyclic Redundancy Check (CRC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
Hamming Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
HV/VS Encoding and/or Tracking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
Serial Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
Coax-Mode Splitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
Cable Type Configuration Input (CX/TP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
Sleep Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
Power-Down Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
Configuration Link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
Link Startup Procedure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Applications Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Error Checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
ERR Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
Autoerror Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
Dual µC Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
Changing the Clock Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
Fast Detection of Loss-of-Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
Providing a Frame Sync (Camera Applications) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37  
Software Programming of the Device Addresses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37  
Three-Level Configuration Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37  
Configuration Blocking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37  
Compatibility with other GMSL Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37  
GPIOs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37  
Staggered Parallel Outputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37  
Local Control-Channel Enable (LCCEN). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38  
Internal Input Pulldowns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38  
Choosing I2C/UART Pullup Resistors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
AC-Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38  
Selection of AC-Coupling Capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38  
Power-Supply Circuits and Bypassing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
3
MAX9272  
28-Bit GMSL Deserializer for Coax or STP Cable  
TABLE OF CONTENTS (continued)  
Power-Supply Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
Cables and Connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
Board Layout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
ESD Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
Typical Application Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Chip Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Package Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
LIST OF FIGURES  
Figure 1. Reverse Control-Channel Output Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Figure 2. Test Circuit for Differential Input Measurement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Figure 4. Parallel Clock Output High and Low Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Figure 5. I2C Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Figure 3. Worst-Case Pattern Output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Figure 6. Output Rise-and-Fall Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Figure 7. Deserializer Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Figure 8. GPI-to-GPO Delay. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Figure 9. Lock Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Figure 10. Power-Up Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Figure 11. Single-Output Waveform (Serializer Using Single Input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Figure 12. Single-Output Waveform (Serializer Using Double Input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Figure 13. Double-Output Waveform (Serializer Using Single Input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 14. Double-Output Waveform (Serializer Using Double Input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 15. Serial-Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Figure 16. GMSL UART Protocol for Base Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Figure 17. GMSL UART Data Format for Base Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Figure 18. SYNC Byte (0x79) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Figure 19. ACK Byte (0xC3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Figure 20. Format Conversion Between GMSL UART and I2C with Register Address (I2CMETHOD = 0) . . . . . . . . 27  
Figure 21. Format Conversion Between GMSL UART and I2C with Register Address (I2CMETHOD = 1). . . . . . . . . 27  
4
MAX9272  
28-Bit GMSL Deserializer for Coax or STP Cable  
LIST OF FIGURES (continued)  
Figure 22. START and STOP Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Figure 23. Bit Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Figure 24. Acknowledge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Figure 25. Slave Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Figure 26. Format for I2C Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Figure 27. Format for Write to Multiple Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Figure 28. Format for I2C Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Figure 29. 2:1 Coax-Mode Splitter Connection Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Figure 30. Coax-Mode Connection Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Figure 31. State Diagram, Remote Microcontroller Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Figure 32. Human Body Model ESD Test Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Figure 33. IEC 61000-4-2 Contact Discharge ESD Test Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Figure 34. ISO 10605 Contact Discharge ESD Test Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
LIST OF TABLES  
Table 1. Power-Up Default Register Map (see Table 16) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Table 2. Output Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Table 3. Data-Rate Selection Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
2
Table 4. I C Bit-Rate Ranges. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Table 5. MAX9262 Cable Equalizer Boost Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Table 6. Parallel Output Spread . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Table 7. Modulation Coefficients and Maximum SDIV Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Table 8. Configuration Input Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Table 9. Startup Procedure for Video-Display Applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Table 10. Startup Procedure for Image-Sensing Applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Table 11. MAX9272 Feature Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Table 12. Staggered Output Delay. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Table 13. Double-Function Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Table 14. Typical Power-Supply Currents (Using Worst-Case Input Pattern). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Table 15. Suggested Connectors and Cables for GMSL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Table 16. Register Table (see Table 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
5
MAX9272  
28-Bit GMSL Deserializer for Coax or STP Cable  
ABSOLUTE MAXIMUM RATINGS*  
AVDD to EP ..........................................................-0.5V to +1.9V  
DVDD to EP..........................................................-0.5V to +1.9V  
IOVDD to EP.........................................................-0.5V to +3.9V  
IN+, IN- to EP.......................................................-0.5V to +1.9V  
Junction Temperature .....................................................+150°C  
Operating Temperature Range........................ -40°C to +105°C  
Storage Temperature Range............................ -65°C to +150°C  
Lead Temperature (soldering, 10s) ................................+300°C  
Soldering Temperature (reflow) ......................................+260°C  
All other pins to EP.............................-0.5V to (V  
+ 0.5V)  
IN+, IN- short circuit to ground or supply ................Continuous  
IOVDD  
Continuous Power Dissipation (T = +70°C)  
TQFN (derate 40mW/°C above +70°C)......................3200mW  
A
*EP is connected to PCB ground.  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional opera-  
tion of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
PACKAGE THERMAL CHARACTERISTICS (Note 1)  
TQFN  
Junction-to-Ambient Thermal Resistance (B )............25°C/W  
Junction-to-Case Thermal Resistance (B ).....................1°C/W  
JC  
JA  
Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-  
layer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.  
DC ELECTRICAL CHARACTERISTICS  
(V  
= V  
= 1.7V to 1.9V, V  
= 1.7V to 3.6V, R = 100I Q1% (differential), EP connected to PCB ground, T = -40°C to  
AVDD  
DVDD  
IOVDD  
L
A
+105°C, unless otherwise noted. Typical values are at V  
= V  
= V = 1.8V, T = +25°C.)  
AVDD  
DVDD  
IOVDD A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
SINGLE-ENDED INPUTS (I2CSEL, LCCEN, GPI, PWDN, MS/HVEN)  
0.65 x  
High-Level Input Voltage  
V
V
IH1  
V
IOVDD  
0.35 x  
Low-Level Input Voltage  
Input Current  
V
V
IL1  
V
IOVDD  
I
V
= 0V to V  
IOVDD  
-10  
+20  
FA  
IN1  
IN  
THREE-LEVEL LOGIC INPUTS (CX/TP)  
0.7 x  
High-Level Input Voltage  
Low-Level Input Voltage  
V
V
V
IH  
V
IOVDD  
0.3 x  
V
IL  
V
IOVDD  
Mid-Level Input Current  
Input Current  
I
(Note 2)  
-10  
+10  
FA  
FA  
INM  
I
-150  
+150  
IN  
SINGLE-ENDED OUTPUTS (DOUT_, PCLKOUT)  
V
V
IOVDD  
- 0.3  
DCS = 0  
DCS = 1  
High-Level Output Voltage  
Low-Level Output Voltage  
V
I
= -2mA  
= 2mA  
V
V
OH1  
OUT  
OUT  
IOVDD  
- 0.2  
DCS = 0  
DCS = 1  
0.3  
0.2  
V
I
OL1  
6
MAX9272  
28-Bit GMSL Deserializer for Coax or STP Cable  
DC ELECTRICAL CHARACTERISTICS (continued)  
(V  
= V  
= 1.7V to 1.9V, V  
= 1.7V to 3.6V, R = 100I Q1% (differential), EP connected to PCB ground, T = -40°C to  
AVDD  
DVDD  
IOVDD  
L
A
+105°C, unless otherwise noted. Typical values are at V  
= V  
= V = 1.8V, T = +25°C.)  
AVDD  
DVDD  
IOVDD A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
25  
7
MAX  
39  
UNITS  
V
V
V
V
V
V
V
V
= 3.0V to 3.6V  
= 1.7V to 1.9V  
= 3.0V to 3.6V  
= 1.7V to 1.9V  
= 3.0V to 3.6V  
= 1.7V to 1.9V  
= 3.0V to 3.6V  
= 1.7V to 1.9V  
15  
3
V
= 0V,  
DCS = 0  
IOVDD  
IOVDD  
IOVDD  
IOVDD  
IOVDD  
IOVDD  
IOVDD  
IOVDD  
O
13  
DOUT_  
20  
5
35  
10  
33  
10  
54  
16  
63  
V
= 0V,  
DCS = 1  
O
21  
Output Short-Circuit Current  
I
mA  
OS  
15  
5
50  
V
= 0V,  
DCS = 0  
O
17  
PCLKOUT  
30  
9
97  
V
= 0V,  
DCS = 1  
O
32  
OPEN-DRAIN INPUTS/OUTPUTS (GPIO0/DBL, GPIO1/BWS, RX/SDA/EDC, TX/SCL/ES, ERR, LOCK)  
0.7 x  
High-Level Input Voltage  
Low-Level Input Voltage  
V
V
V
IH2  
V
IOVDD  
0.3 x  
V
IL2  
V
IOVDD  
+1  
RX/SDA, TX/SCL  
-110  
-80  
Input Current  
I
(Note 3)  
+1  
+20  
0.4  
0.3  
FA  
LOCK, ERR, GPIO_  
IN2  
DBL, BWS, EDC, ES  
-10  
V
V
= 1.7V to 1.9V  
= 3.0V to 3.6V  
IOVDD  
Low-Level Output Voltage  
V
I
= 3mA  
V
OL2  
OUT  
IOVDD  
OUTPUT FOR REVERSE CONTROL CHANNEL (IN+, IN-)  
Differential High Output Peak  
V
No high-speed data transmission (Figure 1)  
No high-speed data transmission (Figure 1)  
30  
60  
mV  
mV  
ROH  
Voltage, (V +) - (V -)  
IN  
IN  
Differential Low Output Peak  
Voltage, (V +) - (V -)  
V
-60  
-30  
ROL  
IN  
IN  
DIFFERENTIAL INPUTS (IN+, IN-)  
Activity detector, medium  
threshold (0x22 D[6:5] = 01)  
60  
45  
Differential High Input Threshold  
V
(Figure 2)  
mV  
mV  
IDH(P)  
(Peak) Voltage, (V +) - (V -)  
IN  
IN  
Activity detector,  
low threshold (0x22 D[6:5] = 00)  
Activity detector, medium  
-60  
threshold (0x22 D[6:5] = 01)  
(Figure 2)  
Differential Low Input Threshold  
(Peak) Voltage, (V +) - (V -)  
V
IDL(P)  
IN  
IN  
Activity detector, medium  
threshold (0x22 D[6:5] = 00)  
-45  
1
Input Common-Mode Voltage  
((V +) + (V -))/2  
V
1.3  
1.6  
V
CMR  
IN  
IN  
Differential Input Resistance  
(Internal)  
R
80  
105  
130  
I
I
7
MAX9272  
28-Bit GMSL Deserializer for Coax or STP Cable  
DC ELECTRICAL CHARACTERISTICS (continued)  
(V  
= V  
= 1.7V to 1.9V, V  
= 1.7V to 3.6V, R = 100I Q1% (differential), EP connected to PCB ground, T = -40°C to  
AVDD  
DVDD  
IOVDD  
L
A
+105°C, unless otherwise noted. Typical values are at V  
= V  
= V = 1.8V, T = +25°C.)  
AVDD  
DVDD  
IOVDD A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
SINGLE-ENDED INPUTS (IN+, IN-)  
Activity detector, medium threshold  
(0x22 D[6:5] = 01)  
43  
33  
Single-Ended High Input  
Threshold (Peak) Voltage,  
(V +) - (V -)  
V
mV  
IDH(P)  
Activity detector, low threshold  
(0x22 D[6:5] = 00)  
IN  
IN  
Activity detector, medium threshold  
(0x22 D[6:5] = 01)  
-43  
Single-Ended Low Input  
Threshold (Peak) Voltage,  
(V +) - (V -)  
V
mV  
IDL(P)  
Activity detector, medium threshold  
(0x22 D[6:5] = 00)  
-33  
40  
IN  
IN  
Input Resistance (Internal)  
R
52.5  
65  
I
I
POWER SUPPLY  
f
f
f
= 25MHz  
= 50MHz  
= 50MHz  
= 100MHz  
42  
61  
42  
62  
40  
5
65  
90  
BWS = 0, single output,  
EQ off  
PCLKOUT  
PCLKOUT  
PCLKOUT  
Worst-Case Supply Current  
(Figure 3)  
I
mA  
WCS  
70  
BWS = 0, double output,  
EQ off  
f
90  
PCLKOUT  
Sleep Mode Supply Current  
Power-Down Current  
ESD PROTECTION  
I
100  
70  
FA  
FA  
CCS  
CCZ  
I
PWDN = EP  
Human Body Model, R = 1.5kI, C = 100pF  
8
D
S
IEC 61000-4-2,  
Contact discharge  
Air discharge  
10  
15  
10  
30  
4
R
= 330I,  
D
IN+, IN- (Note 4)  
V
V
kV  
kV  
C
= 150pF  
ESD  
S
ISO 10605,  
Contact discharge  
Air discharge  
R
= 2kI,  
D
C
= 330pF  
S
All Other Pins (Note 5)  
Human Body Model, R = 1.5kI, C = 100pF  
D S  
ESD  
AC ELECTRICAL CHARACTERISTICS  
(V  
= V  
= 1.7V to 1.9V, V  
= 1.7V to 3.6V, R = 100I Q1% (differential), EP connected to PCB ground, T = -40°C to  
AVDD  
DVDD  
IOVDD  
L
A
+105°C, unless otherwise noted. Typical values are at V  
= V  
= V = 1.8V, T = +25°C.)  
AVDD  
DVDD  
IOVDD A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
PARALLEL CLOCK OUTPUT (PCLKOUT)  
BWS = 0, DRS = 1  
BWS = 0, DRS = 0  
BWS = 1, DRS = 1  
BWS = 1, DRS = 0  
8.33  
16.66  
6.25  
16.66  
50  
12.5  
37.5  
75  
Clock Frequency  
f
MHz  
PCLKOUT  
DC  
12.5  
BWS = 1, DRS = 0, 15-bit double input  
BWS = 0, DRS = 0, 11-bit double input  
25  
33.33  
40  
100  
60  
Clock Duty Cycle  
Clock Jitter  
t
/t or t  
/t (Figure 4, Note 6)  
50  
%
HIGH T  
LOW T  
Period jitter, RMS, spread off, 1.5Gbps,  
PRBS pattern, UI = 1/f (Note 6)  
t
0.05  
UI  
J
PCLKOUT  
8
MAX9272  
28-Bit GMSL Deserializer for Coax or STP Cable  
AC ELECTRICAL CHARACTERISTICS (continued)  
(V  
= V  
= 1.7V to 1.9V, V  
= 1.7V to 3.6V, R = 100I Q1% (differential), EP connected to PCB ground, T = -40°C to  
AVDD  
DVDD  
IOVDD  
L
A
+105°C, unless otherwise noted. Typical values are at V  
= V  
= V = 1.8V, T = +25°C.)  
AVDD  
DVDD  
IOVDD A  
PARAMETER  
I2C/UART PORT TIMING  
I2C/UART Bit Rate  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
9.6  
1000  
120  
kbps  
ns  
30% to 70%, C = 10pF to 100pF,  
L
Output Rise Time  
Output Fall Time  
t
20  
20  
R
1kI pullup to V  
IOVDD  
70% to 30%, C = 10pF to 100pF,  
L
t
120  
ns  
F
1kI pullup to V  
IOVDD  
Input Setup Time  
t
I2C only (Figure 5, Note 6)  
I2C only (Figure 5, Note 6)  
100  
0
ns  
ns  
SET  
Input Hold Time  
t
HOLD  
SWITCHING CHARACTERISTICS  
20% to 80%,  
= 1.7V to  
1.9V (Note 6)  
DCS = 1, C = 10pf  
0.4  
0.5  
0.25  
0.3  
0.5  
0.6  
0.3  
0.4  
2.2  
2.8  
1.7  
2.0  
3.1  
3.8  
2.2  
2.4  
L
V
IOVDD  
DCS = 0, C = 5pF  
L
PCLKOUT Rise-and-Fall Time  
t , t  
ns  
R
F
20% to 80%,  
DCS = 1, C = 10pF  
L
V
= 3.0V to  
IOVDD  
DCS = 0, C = 5pF  
3.6V (Note 6)  
L
20% to 80%,  
DCS = 1, C = 10pf  
L
V
= 1.7V to  
IOVDD  
DCS = 0, C = 5pF  
1.9V (Note 6)  
L
Parallel Data Rise-and-Fall Time  
(Figure 6)  
t , t  
ns  
R
F
20% to 80%,  
DCS = 1, C = 10pF  
L
V
= 3.0V to  
IOVDD  
DCS = 0, C = 5pF  
L
3.6V (Note 6)  
Spread spectrum  
enabled  
6960  
2160  
400  
(Figure 7,  
Notes 6, 7)  
Deserializer Delay  
t
Bits  
SD  
Spread spectrum  
disabled  
Reverse Control-Channel Output  
Rise Time  
No forward-channel data transmission  
(Figure 1, Note 6)  
t
180  
180  
ns  
ns  
Fs  
R
Reverse Control-Channel Output  
Fall Time  
No forward-channel data transmission  
(Figure 1, Note 6)  
t
400  
350  
F
Deserializer GPI to serializer GPO (cable  
delay not included) (Figure 8)  
GPI-to-GPO Delay  
t
GPIO  
Spread spectrum enabled  
Spread spectrum disabled  
1.5  
1
(Figure 9,  
Note 6)  
Lock Time  
t
ms  
ms  
LOCK  
Power-Up Time  
t
(Figure 10)  
6
PU  
Note 2: To provide a midlevel, leave the input open, or, if driven, put driver in high impedance. High-impedance leakage current  
must be less than Q10FA.  
Note 3: I min due to voltage drop across the internal pullup resistor.  
IN  
Note 4: Specified pin to ground.  
Note 5: Specified pin to all supply/ground.  
Note 6: Guaranteed by design and not production tested.  
Note 7: Measured in serial link bit times. Bit time = 1/(30 x f  
) for BWS = GND. Bit time = 1/(40 x f  
) for BWS = 1.  
PCLKOUT  
PCLKOUT  
9
MAX9272  
28-Bit GMSL Deserializer for Coax or STP Cable  
Typical Operating Characteristics  
(V  
= V  
= V = 1.8V, DBL = low, T = +25°C, unless otherwise noted.)  
IOVDD A  
AVDD  
DVDD  
SUPPLY CURRENT  
vs. PCLKOUT FREQUENCY (BWS = 0)  
SUPPLY CURRENT  
vs. PCLKOUT FREQUENCY (BWS = 1)  
75  
75  
70  
65  
60  
55  
50  
45  
40  
35  
PRBS ON, SS OFF,  
COAX MODE  
PRBS ON, SS OFF,  
COAX MODE  
70  
65  
60  
55  
50  
45  
40  
35  
EQ ON  
EQ ON  
EQ OFF  
EQ OFF  
5
10 15 20 25 30 35 40 45 50  
PCLKOUT FREQUENCY (MHz)  
5
10  
15  
20  
25  
30  
35  
40  
PCLKOUT FREQUENCY (MHz)  
SUPPLY CURRENT  
vs. PCLKOUT FREQUENCY (BWS = 0)  
SUPPLY CURRENT  
vs. PCLKOUT FREQUENCY (BWS = 1)  
65  
60  
55  
50  
45  
40  
35  
60  
55  
50  
45  
40  
35  
PRBS ON, EQ OFF,  
COAX MODE  
PRBS ON, EQ OFF,  
COAX MODE  
SS ON  
SS ON  
SS OFF  
SS OFF  
5
10 15 20 25 30 35 40 45 50  
PCLKOUT FREQUENCY (MHz)  
5
10  
15  
20  
25  
30  
35  
40  
PCLKOUT FREQUENCY (MHz)  
OUTPUT POWER SPECTRUM vs. PCLKOUT  
FREQUENCY (VARIOUS SPREAD)  
OUTPUT POWER SPECTRUM vs. PCLKOUT  
FREQUENCY (VARIOUS SPREAD)  
0
-10  
-20  
-30  
-40  
-60  
-60  
-70  
-80  
-90  
0
-10  
-20  
-30  
-40  
-60  
-60  
-70  
-80  
-90  
-100  
f
= 20MHz  
f
= 50MHz  
PCLKOUT  
PCLKOUT  
0% SPREAD  
0% SPREAD  
1% SPREAD  
4% SPREAD  
2% SPREAD  
4% SPREAD  
2% SPREAD  
18.5 19.0 19.5 20.0 20.5 21.0 21.5  
PCLKOUT FREQUENCY (MHz)  
47  
48  
49  
50  
51  
52  
53  
PCLKOUT FREQUENCY (MHz)  
10  
MAX9272  
28-Bit GMSL Deserializer for Coax or STP Cable  
Typical Operating Characteristics (continued)  
(V  
= V  
= V  
= 1.8V, DBL = low, T = +25°C, unless otherwise noted.)  
A
AVDD  
DVDD  
IOVDD  
SERIAL LINK SWITCHING PATTERN  
WITH 6dB PREEMPHASIS (PARALELL  
SERIAL LINK SWITCHING PATTERN  
WITH 6dB PREEMPHASIS (PARALELL  
BIT RATE = 50MHz, 10m STP CABLE)  
BIT RATE = 50MHz, 20m COAX CABLE)  
MAX9272 toc07  
MAX9272 toc08  
50mv/div  
200ps/div  
1.5Gbps  
50mv/div  
200ps/div  
1.5Gbps  
MAXIMUM PCLKOUT FREQUENCY  
vs. STP CABLE LENGTH (BER P 10-  
MAXIMUM PCLKOUT FREQUENCY  
vs. COAX CABLE LENGTH (BER P 10-  
10  
10  
)
)
60  
60  
40  
20  
0
OPTIMUM PE/EQ  
SETTINGS  
6dB PE, EQ OFF  
40  
20  
0
6dB PE, EQ OFF  
NO PE, 10.7dB EQ  
NO PE, 10.7dB EQ  
NO PE, EQ OFF  
NO PE, EQ OFF  
-12  
BER CAN BE AS LOW AS 10 FOR  
CABLE LENGTHS LESS THAN 10m  
-12  
BER CAN BE AS LOW AS 10 FOR  
CABLE LENGTHS LESS THAN 10m  
0
5
10  
15  
20  
0
5
10  
15  
20  
25  
STP CABLE LENGTH (m)  
COAX CABLE LENGTH (m)  
MAXIMUM PCLKOUT FREQUENCY  
vs. ADDITIONAL DIFFERENTIAL C (BER P 10-  
10  
)
L
60  
OPTIMUM PE/EQ  
SETTINGS  
10m STP CABLE  
50  
40  
30  
20  
10  
0
6dB PE, EQ OFF  
NO PE, 10.7dB EQ  
NO PE, EQ OFF  
-12  
BER CAN BE AS LOW AS 10 FOR  
C
L
< 4pF FOR OPTIMUM PE/EQ SETTINGS  
0
2
4
6
8
10  
ADDITIONAL DIFFERENTIAL LOAD CAPACITANCE (pF)  
11  
MAX9272  
28-Bit GMSL Deserializer for Coax or STP Cable  
Pin Configuration  
TOP VIEW  
35 34 33 32 31 30 29 28 27  
36  
26  
25  
DOUT20  
DOUT21  
DOUT22  
DOUT7  
DOUT6  
DOUT5  
24  
23  
22  
37  
38  
39  
21 DOUT23  
20 IOVDD  
DOUT4 40  
IOVDD 41  
DOUT3  
DOUT2  
42  
43  
19 DOUT24/HSO  
MAX9272  
18  
DOUT25/ VSO  
17 DOUT27/HS1  
16 DOUT27/ VS1  
15 LOCK  
DOUT1 44  
DOUT0 45  
PCLKOUT  
46  
47  
48  
EP*  
+
ERR  
MS/HVEN  
AVDD  
14  
13  
PWDN  
2
3
4
5
6
7
8
9
10  
1
11  
12  
TQFN  
(7mm x 7mm X 0.75mm)  
CONNECT EP TO GROUND PLANE  
Pin Description  
PIN  
NAME  
FUNCTION  
GPIO/Bus Width Select Input. Function is determined by the state of LCCEN (Table 13).  
GPIO1 (LCCEN = high): Open-drain, general-purpose input/output with internal 60kIpullup to IOVDD.  
BWS (LCCEN = low): Input with internal pulldown to EP. Set BWS = low for 22-bit input latch. Set  
BWS = high for 30-bit input latch.  
1
GPIO1/BWS  
GPIO/Double-Mode Input. Function is determined by the state of LCCEN (Table 13).  
GPIO0 (LCCEN = high): Open-drain, general-purpose input/output with internal 60kIpullup to IOVDD.  
DBL (LCCEN = low): Input with internal pulldown to EP. Set DBL = high to use double-input mode.  
Set DBL = low to use single-input mode.  
2
GPIO0/DBL  
3
4
CX/TP  
Coax/Twisted-Pair Three-Level Configuration Input (Table 8)  
I2C Select. Control-channel interface protocol select input with internal pulldown to EP.  
Set I2CSEL = high to select I2C slave interface. Set I2CSEL = low to select UART interface.  
I2CSEL  
12  
MAX9272  
28-Bit GMSL Deserializer for Coax or STP Cable  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
Local Control-Channel Enable Input with Internal Pulldown to EP. LCCEN = high enables the control-  
channel interface pins. LCCEN = low disables the control-channel interface pins and selects an  
alternate function on the indicated pins (Table 13).  
5
LCCEN  
1.8V Analog Power Supply. Bypass AVDD to EP with 0.1FF and 0.001FF capacitors as close as  
possible to the device with the smaller capacitor closest to AVDD.  
6, 48  
AVDD  
7
8
9
IN+  
IN-  
Noninverting Coax/Twisted-Pair Serial Input  
Inverting Coax/Twisted-Pair Serial Input  
GPI  
General-Purpose Input. The GMSL deserializer GPI (or INT) input follows GPI.  
Receive/Serial Data/Error Detection Correction. Function is determined by the state of LCCEN (Table 13).  
RX/SDA (LCCEN = high): Input/output with internal 30kI pullup to IOVDD. In UART mode, RX/SDA  
is the Rx input of the MAX9272’s UART. In the I2C mode, RX/SDA is the SDA input/output of the  
MAX9272’s I2C master/slave. RX/SDA has an open-drain driver and requires a pullup resistor.  
EDC (LCCEN = low): Input with internal pulldown to EP. Set EDC = high to enable error detection  
correction. Set EDC = low to disable error detection correction.  
10  
RX/SDA/EDC  
TX/SCL/ES  
Transmit/Serial Clock/Edge Select. Function is determined by the state of LCCEN (Table 13).  
TX/SCL (LCCEN = high). Input/output with internal 30kI pullup to IOVDD. In UART mode, TX/SCL  
is the Tx output of the MAX9272’s UART. In the I2C mode, TX/SCL is the SCL input/output of the  
MAX9272’s I2C master/slave. TX/SCL has an open-drain driver and requires a pullup resistor.  
ES (LCCEN = low): Input with internal pulldown to EP. When ES is high, PCLKOUT indicates valid  
data on the falling edge of PCLKOUT. When ES is low, PCLKOUT indicates valid data on the rising  
edge of PCLKOUT. Do not change the ES input while the pixel clock is running.  
11  
1.8V Digital Power Supply. Bypass DVDD to EP with 0.1FF and 0.001FF capacitors as close as  
possible to the device with the smaller value capacitor closest to DVDD.  
12  
13  
14  
DVDD  
PWDN  
ERR  
Active-Low Power-Down Input with Internal Pulldown to EP. Set PWDN low to enter power-down mode  
to reduce power consumption.  
Error Output. Open-drain data error detection and/or correction indication output with internal 60kI  
pullup to IOVDD. ERR is an open-drain driver and requires a pullup resistor.  
Open-Drain Lock Output with Internal 60kI Pullup to IOVDD. LOCK = high indicates that PLLs are  
locked with correct serial-word-boundary alignment. LOCK = low indicates that PLLs are not locked or  
an incorrect serial-word-boundary alignment. LOCK remains low when the configuration link is active  
or during PRBS test. LOCK is high impedance when PWDN = low. LOCK is an open-drain driver and  
requires a pullup resistor.  
15  
LOCK  
Parallel Data/Vertical Sync 1 Output. Defaults to parallel data input on power-up.  
Parallel data output when VS/HS encoding is disabled.  
Decoded vertical sync for upper half of single output when VS/HS encoding is enabled (Table 2).  
16  
17  
18  
DOUT27/VS1  
DOUT26/HS1  
DOUT25/VS0  
Parallel Data/Horizontal Sync 1 Output. Defaults to parallel data input on power-up.  
Parallel data output when VS/HS encoding is disabled.  
Decoded horizontal sync for upper half of single-output when VS/HS encoding is enabled (Table 2).  
Parallel Data/Vertical Sync 0 Output. Defaults to parallel data input on power-up.  
Parallel data output when VS/HS encoding is disabled.  
Decoded vertical sync for lower half of single-output when VS/HS encoding is enabled (Table 2).  
13  
MAX9272  
28-Bit GMSL Deserializer for Coax or STP Cable  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
Parallel Data/Horizontal Sync 0 Output. Defaults to parallel data input on power-up.  
Parallel data output when VS/HS encoding is disabled.  
19  
DOUT24/HS0  
Decoded horizontal sync for lower half of single-output when VS/HS encoding is enabled (Table 2).  
I/O Supply Voltage. 1.8V to 3.3V logic I/O power supply. Bypass IOVDD to EP with 0.1FF and 0.001FF  
capacitors as close as possible to the device with the smallest value capacitor closest to IOVDD.  
20, 41  
IOVDD  
21–40,  
42–45  
DOUT23–  
DOUT0  
Parallel Data Outputs  
46  
PCLKOUT  
Parallel Clock Output. Latches parallel data into the input of another device.  
Mode Select/HS and VS Encoding Enable with Internal Pulldown to EP. Function is determined by the  
state of LCCEN (Table 13).  
47  
MS/HVEN  
MS (LCCEN = high). Set MS = low to select base mode. Set MS = high to select the bypass mode.  
HVEN (LCCEN = low): Set HVEN = high to enable HS/VS encoding on DOUT_/HS_ and DOUT_/VS_.  
Set HVEN = low to use DOUT_/HS_ and DOUT_/VS_ as parallel data outputs.  
Exposed Pad. EP is internally connected to device ground. MUST connect EP to the PCB ground  
plane through an array of vias for proper thermal and electrical performance.  
EP  
Functional Diagram  
PCLKOUT  
SSPLL  
CLKDIV  
CDRPLL  
DOUT [23:0]  
IN+  
IN-  
SERIAL  
TO  
PARALLEL  
DOUT24/HS0  
DOUT25/ VS0  
DOUT26/HS1  
DOUT27/ VS1  
CML Rx  
AND EQ  
FIFO  
SCRAMBLE/  
CRC/  
HAMMING/  
8b/10b  
1x[27:0]  
OR  
2x[10:0]  
OR  
Tx  
DECODE  
2x[14:0]  
REVERSE  
CONTROL  
CHANNEL  
VS /HS  
GPIO  
GPIO0/DBL  
GPIO1/BWS  
GPI  
FCC  
MAX9272  
2
UART/I C  
TX/SCL/ES  
RX/SDA/EDC  
14  
MAX9272  
28-Bit GMSL Deserializer for Coax or STP Cable  
R /2  
L
IN+  
IN-  
REVERSE  
CONTROL-CHANNEL  
TRANSMITTER  
V
OD  
V
CMR  
R /2  
L
IN+  
IN-  
IN-  
V
CMR  
IN+  
V
ROH  
0.9 x V  
ROH  
0.1 x V  
ROH  
(IN+) - (IN-)  
0.1 x V  
0.9 x V  
ROL  
t
R
ROL  
V
ROL  
t
F
Figure 1. Reverse Control-Channel Output Parameters  
15  
MAX9272  
28-Bit GMSL Deserializer for Coax or STP Cable  
R /2  
L
IN+  
IN-  
PCLKOUT  
V
ID(P)  
R /2  
L
_
V
IN+  
+
_
C
C
IN  
IN  
+
DOUT_  
V
IN-  
_
NOTE: PCLKOUT PROGRAMMED FOR RISING LATCH EDGE.  
V
| V - V  
ID(P) = IN+ IN-  
|
V
(V + V )/2  
CMR = IN+  
IN-  
Figure 2. Test Circuit for Differential Input Measurement  
Figure 3. Worst-Case Pattern Output  
t
T
V
OH MIN  
t
HIGH  
PCLKOUT  
V
OL MAX  
t
LOW  
Figure 4. Parallel Clock Output High and Low Times  
START  
CONDITION  
(S)  
BIT 7  
MSB  
(A7)  
STOP  
CONDITION  
(P)  
BIT 6  
(A6)  
BIT 0  
(R/W)  
ACKNOWLEDGE  
(A)  
PROTOCOL  
t
t
t
SU;STA  
LOW  
HIGH  
1/f  
SCL  
SCL  
t
SP  
t
BUF  
t
r
t
f
SDA  
t
t
t
t
t
SU;STO  
HD;STA  
t
HD;DAT  
VD;DAT  
VD;ACK  
SU;DAT  
2
Figure 5. I C Timing Parameters  
16  
MAX9272  
28-Bit GMSL Deserializer for Coax or STP Cable  
C
L
SINGLE-ENDED OUTPUT LOAD  
0.8 x V  
I0VDD  
0.2 x V  
I0VDD  
t
t
F
R
Figure 6. Output Rise-and-Fall Times  
SERIAL-WORD LENGTH  
SERIAL WORD N  
SERIAL WORD N+1  
SERIAL WORD N+2  
IN+/-  
FIRST BIT  
LAST BIT  
DOUT_  
PARALLEL WORD N-1  
PARALLEL WORD N  
PARALLEL WORD N-2  
PCLKOUT  
t
SD  
NOTE: PCLKOUT PROGRAMMED FOR RISING LATCHING EDGE.  
Figure 7. Deserializer Delay  
V
IH_MIN  
DESERIALIZER  
GPI  
V
IL_MAX  
t
GPIO  
t
GPIO  
V
OH_MIN  
SERIALIZER  
GPO  
V
OL_MAX  
Figure 8. GPI-to-GPO Delay  
17  
MAX9272  
28-Bit GMSL Deserializer for Coax or STP Cable  
IN+/-  
IN+ - IN-  
V
PWDN  
IH1  
t
LOCK  
t
PU  
LOCK  
V
OH  
LOCK  
V
OH  
PWDN MUST BE HIGH  
Figure 9. Lock Time  
Figure 10. Power-Up Delay  
Register Mapping  
Detailed Description  
Registers set the operating conditions of the deserializer  
and are programmed using the control channel in base  
mode. The deserializer holds its device address and the  
device address of the serializer it is paired with. Similarly,  
the serializer holds its device address and the address of  
the deserializer. Whenever a device address is changed,  
the new address should be written to both devices. The  
default device address of the deserializer is set by the  
CX/TP input and the default device address of any GMSL  
serializer is 0x80 (see Table 1 and Table 8). Registers  
0x00 and 0x01 in both devices hold the device addresses.  
The MAX9272 deserializer, when paired with the  
MAX9271 or MAX9273 serializer, provides the full set of  
operating features, but offers basic functionality when  
paired with any GMSL serializer.  
The deserializer has a maximum serial-bit rate of 1.5Gbps  
for 15m or more of cable and operates up to a maximum  
output clock of 50MHz in 28-bit, single-output mode, or  
75MHz to 100MHz in 15-bit /11-bit, double-output mode,  
respectively. This bit rate and output flexibility support  
a wide range of displays, from QVGA (320 x 240) to  
WVGA (800 x 480) and higher with 18-bit color, as well as  
megapixel image sensors. Input equalization, combined  
with GMSL serializer pre/deemphasis, extends the cable  
length and enhances link reliability  
Bit Map  
The parallel output functioning and width depend on  
settings of the double-/single-output mode (DBL), HS/VS  
encoding (HVEN), error correction used (EDC), and bus  
width (BWS) pins. Table 2 lists the bit map for the control  
pin settings. Unused output bits are pulled low.  
The control channel enables a FC to program the serial-  
izer and deserializer registers and program registers on  
peripherals. The control channel is also used to configure  
and access the GPIO. The FC can be located at either  
end of the link, or when using two FCs, at both ends.  
Two modes of control-channel operation are available.  
Base mode uses either I2C or GMSL UART protocol,  
while bypass mode uses a user-defined UART protocol.  
UART protocol allows full-duplex communication, while  
I2C allows half-duplex communication.  
The parallel output has two output modes: single and  
double output. In single-output mode, the deserialized  
parallel data is clocked out every PCLKOUT cycle. The  
device accepts pixel clocks from 6.25MHz to 50MHz  
(Figures 11 and 12).  
In double-output mode, the device splits deserialized  
data into two half-sized words that are output at twice the  
serial-word rate (Figures 13 and 14). The serializer/dese-  
rializer use pixel clock rates from 33.3MHz to 100MHz  
for 11-bit, double-output mode and 25MHz to 75MHz for  
15-bit, double-output mode.  
Spread spectrum is available to reduce EMI on the paral-  
lel output. The serial input complies with ISO 10605 and  
IEC 61000-4-2 ESD protection standards.  
18  
MAX9272  
28-Bit GMSL Deserializer for Coax or STP Cable  
PCLKOUT  
DOUT[27:0] OR  
DOUT[21:0]  
FIRST WORD  
SECOND WORD  
THIRD WORD  
FOURTH WORD  
VS0, VS1  
HS0, HS1  
VS (FROM FIRST WORD)  
VS (FROM SECOND WORD)  
VS (FROM THIRD WORD)  
VS (FROM FOURTH WORD)  
HS (FROM FOURTH WORD)  
HS (FROM FIRST WORD)  
HS (FROM SECOND WORD)  
HS (FROM THIRD WORD)  
NOTE: DIAGRAM SHOWS POSSIBLE LOCATIONS FOR TRANSITIONS ON VS_/HS_. VS_/HS_ HAVE MINIMUM LENGTH REQUIREMENTS.  
NOTE: HS_, VS_ ACTIVE ONLY WHEN HVEN = 1.  
Figure 11. Single-Output Waveform (Serializer Using Single Input)  
PCLKOUT  
DOUT[14:0] OR  
DOUT[10:0]  
FIRST WORD (FROM LATCH A)  
FIRST WORD (FROM LATCH B)  
FIRST WORD (FROM LATCH A)  
FIRST WORD (FROM LATCH B)  
SECOND WORD (FROM LATCH A)  
SECOND WORD (FROM LATCH B)  
SECOND WORD (FROM LATCH A)  
SECOND WORD (FROM LATCH B)  
THIRD WORD (FROM LATCH A)  
THIRD WORD (FROM LATCH B)  
THIRD WORD (FROM LATCH A)  
THIRD WORD (FROM LATCH B)  
FOURTH WORD (FROM LATCH A)  
FOURTH WORD (FROM LATCH B)  
FOURTH WORD (FROM LATCH A)  
FOURTH WORD (FROM LATCH B)  
DOUT[27:15] OR  
DOUT[21:11]  
VS0, HS0  
VS1, HS1  
NOTE: DIAGRAM SHOWS POSSIBLE LOCATIONS FOR TRANSITIONS ON VS_ /HS_. VS_ /HS_ HAVE MINIMUM LENGTH REQUIREMENTS.  
NOTE: HS_, VS_ ACTIVE ONLY WHEN HVEN = 1.  
Figure 12. Single-Output Waveform (Serializer Using Double Input)  
19  
MAX9272  
28-Bit GMSL Deserializer for Coax or STP Cable  
PCLKOUT  
DOUT[14:0] OR  
DOUT[10:0]  
DOUTA FIRST WORD  
DOUTB FIRST WORD  
DOUTA SECOND WORD  
DOUTB SECOND WORD  
VS0, HS0  
(SERIALIZER  
DBL = 0)  
FIRST WORD  
SECOND WORD  
NOTE: DIAGRAM SHOWS POSSIBLE LOCATIONS FOR TRANSITIONS ON VS0/HS0. VS0/HS0 HAVE MINIMUM LENGTH REQUIREMENTS.  
NOTE: HS0, VS0 ACTIVE ONLY WHEN HVEN = 1.  
Figure 13. Double-Output Waveform (Serializer Using Single Input)  
PCLKOUT  
DOUT[14:0] OR  
DOUT[10:0]  
DOUTA FIRST WORD  
DOUTA FIRST WORD  
DOUTB FIRST WORD  
DOUTB FIRST WORD  
DOUTA SECOND WORD  
DOUTA SECOND WORD  
DOUTB SECOND WORD  
DOUTB SECOND WORD  
VS0, HS0  
(SERIALIZER  
DBL = 1)  
NOTE: DIAGRAM SHOWS POSSIBLE LOCATIONS FOR TRANSITIONS ON VS0/HS0. VS0/HS0 HAVE MINIMUM LENGTH REQUIREMENTS.  
NOTE: HS0, VS0 ACTIVE ONLY WHEN HVEN = 1.  
Figure 14. Double-Output Waveform (Serializer Using Double Input)  
20  
MAX9272  
28-Bit GMSL Deserializer for Coax or STP Cable  
Table 1. Power-Up Default Register Map (see Table 16)  
REGISTER POWER-UP  
POWER-UP DEFAULT SETTINGS  
ADDRESS  
(hex)  
DEFAULT  
(hex)  
(MSB FIRST)  
SERID = 1000000, serializer device address  
RESERVED = 0  
0x00  
0x01  
0x80  
DESID = 1001000 (CX/TP = high or low), DESID = 1001001 (CX/TP = midlevel), deserializer  
device address is determined by the state of the CX/TP input at power-up  
CFGBLOCK = 0, registers 0x00 to 0x1F are read/write  
0x90 or  
0x92  
SS = 00, spread spectrum disabled  
RESERVED = 01  
PRNG = 11, automatically detect the pixel clock range  
SRNG = 11, automatically detect serial-data rate  
0x02  
0x03  
0x1F  
0x00  
AUTOFM = 00, calibrate spread-modulation rate only once after locking  
RESERVED = 0  
SDIV = 00000, autocalibrate sawtooth divider  
LOCKED = 0, LOCK output is low (read only)  
OUTENB = 0, output enabled  
PRBSEN = 0, PRBS test disabled  
0x04  
0x07  
SLEEP = 0, sleep mode deactivated (see the Link Startup Procedure section)  
INTTYPE = 01, base mode uses UART  
REVCCEN = 1, reverse control channel active (sending)  
FWDCCEN = 1, forward control channel active (receiving)  
I2CMETHOD = 0, I2C master sends the register address  
DCS = 0, normal parallel output driver current  
HVTRMODE = 1, full periodic HS/VS tracking  
ENEQ = 0, equalizer disabled  
0x05  
0x06  
0x24  
EQTUNE = 1001, 10.7dB equalization  
0x02 or 0x22 RESERVED = 00X00010  
DBL = 0 or 1, single-/double-input mode setting determined by the state of LCCEN and  
GPIO0/DBL at startup  
DRS = 0, high data-rate mode  
BWS = 0 or 1, bit width setting determined by the state of LCCEN and GPIO1/BWS at startup  
ES = 0 or 1, edge-select input setting determined by the state of LCCEN and TX/SCL/ES at startup  
HVTRACK = 0 or 1, HS/VS tracking setting determined by the state of LCCEN and MS/HVEN at  
startup  
0x07  
0xXX  
HVEN = 0 or 1, HS/VS tracking encoding setting determined by the state of LCCEN and MS/HVEN  
at startup  
EDC = 00 or 10, error-detection/correction setting determined by the state of LCCEN and  
RX/SDA/EDC at startup  
21  
MAX9272  
28-Bit GMSL Deserializer for Coax or STP Cable  
Table 1. Power-Up Default Register Map (see Table 16) (continued)  
REGISTER POWER-UP  
POWER-UP DEFAULT SETTINGS  
ADDRESS  
(hex)  
DEFAULT  
(hex)  
(MSB FIRST)  
INVVS = 0, deserializer does not invert VSYNC  
INVHS = 0, deserializer does not invert HSYNC  
RESERVED = 0  
0x08  
0x00  
UNEQDBL = 0, serializer DBL is not the same as deserializer  
DISSTAG = 0, outputs are staggered  
AUTORST = 0, error registers/output autoreset disabled  
ERRSEL = 00, detected errors trigger ERR  
I2CSCRA = 0000000, I2C address translator source A is 0x00  
RESERVED = 0  
0x09  
0x0A  
0x0B  
0x0C  
0x00  
0x00  
0x00  
0x00  
I2CDSTA = 0000000, I2C address translator destination A is 0x00  
RESERVED = 0  
I2CSCRB = 0000000, I2C address translator source B is 0x00  
RESERVED = 0  
I2CDSTB = 0000000, I2C address translator destination B is 0x00  
RESERVED = 0  
I2CLOCACK = 0, acknowledge not generated when forward channel is not available  
I2CSLVSH = 01, 469ns/234ns I2C setup/hold time  
I2CMSTBT = 101, 339kbps (typ) I2C-to-I2C master bit-rate setting  
I2CSLVTO = 10, 1024Fs (typ) I2C-to-I2C slave remote timeout  
0x0D  
0x36  
RESERVED = 01  
GPIEN = 1, enable GPI-to-GPO signal transmission to serializer  
GPIIN = 0, GPI input is low (read only)  
GPIO1OUT = 1, set GPIO1 to high  
GPIO1IN = 0, GPIO1 input is low (read only)  
GPIO0OUT = 1, set GPIO0 to high  
0x0E  
0x6A  
0x00  
GPIO0IN = 0, GPIO0 input is low (read only)  
0x0F  
0x10  
0x11  
0x12  
DETTHR = 00000000, error threshold set to zero for detected errors  
DETERR = 00000000, zero errors detected  
0x00  
(read only)  
0x00  
CORRTHR = 00000000, error threshold set to zero for corrected errors  
CORRERR = 00000000, zero errors corrected  
0x00  
(read only)  
0x00  
(read only)  
0x13  
0x14  
PRBSERR = 00000000, zero PRBS errors detected  
0x00  
(read only)  
PRBSOK = 0, PRBS test not completed  
RESERVED = 0000000  
0x15  
0x16  
0x17  
0x18  
0x2X  
0x30  
0x54  
0x30  
RESERVED = 00100XXX  
RESERVED = 00110000  
RESERVED = 01010100  
RESERVED = 00110000  
22  
MAX9272  
28-Bit GMSL Deserializer for Coax or STP Cable  
Table 1. Power-Up Default Register Map (see Table 16) (continued)  
REGISTER POWER-UP  
POWER-UP DEFAULT SETTINGS  
ADDRESS  
(hex)  
DEFAULT  
(hex)  
(MSB FIRST)  
0x19  
0x1A  
0xC8  
RESERVED = 11001000  
RESERVED = XXXXXXXX  
0xXX  
(read only)  
0xXX  
(read only)  
0x1B  
0x1C  
RESERVED = XXXXXXXX  
RESERVED = XXXXXXXX  
0xXX  
(read only)  
CXTP = 0, twisted-pair input  
CXSEL = 0, noninverting input  
I2CSEL = 0, UART input  
LCCEN = 0, local control channel disabled  
RESERVED = XXXX  
0x0X  
(read only)  
0x1D  
0x0A  
(read only)  
0x1E  
0x1F  
ID = 00001010, device ID is 0x0A  
RESERVED = 000  
CAPS = 0, not HDCP capable  
REVISION = XXXX  
0x0X  
(read only)  
X = Indeterminate.  
Table 2. Output Map  
EDC  
0
BWS  
0
DBL  
0
HVEN  
DOUTA  
0:21  
DOUTB*  
SERIAL LINK WORD BITS  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0:21  
0:17, 20:21  
0:21  
0
0
0
0:17, 20:21, HS, VS  
0:10  
0
0
1
0:10  
0
0
1
0:10, HS, VS  
0:21  
0:10, HS, VS  
0:21  
0
1
0
0:21  
0
1
0
0:17, 20:21, HS, VS  
0:14  
0:17, 20:21  
0:29  
0
1
1
0:14  
0
1
1
0:14, HS, VS  
0:15  
0:14, HS, VS  
0:29  
1
0
0
0:15  
1
0
0
0:15, HS, VS  
0:7  
0:7  
0:15  
1
0
1
0:15  
1
0
1
0:7, HS, VS  
0:21  
0:7, HS, VS  
0:15  
1
1
0
0:21  
1
1
0
0:17, 20:21, HS, VS  
0:11  
0:17, 20:21  
0:23  
1
1
1
0:11, HS, VS  
0:11, HS, VS  
1
1
1
0:11, HS, VS  
0:23  
*In double-output mode (DBL = 1), DOUTA output on the first cycle of PCLKOUT and DOUTB output on the second cycle of  
PCLKOUT.  
23  
MAX9272  
28-Bit GMSL Deserializer for Coax or STP Cable  
opposite direction of the video stream. The reverse  
control channel and forward video data coexist on the  
same serial cable, forming a bidirectional link. The  
reverse control channel operates independently from the  
forward control channel. The reverse control channel is  
available 2ms after power-up. The serializer temporarily  
disables the reverse control channel for 350Fs after start-  
ing/stopping the forward serial link.  
Serial Link Signaling and Data Format  
The serializer uses differential CML signaling to drive  
twisted-pair cable and single-ended CML to drive  
coax cable with programmable pre/deemphasis and  
AC-coupling. The deserializer uses AC-coupling and  
programmable channel equalization.  
Input data is scrambled and then 8b/10b coded. The  
deserializer recovers the embedded serial clock, then  
samples, decodes, and descrambles the data. In 24-bit  
or 32-bit mode, 22 or 30 bits contain the video data  
and/or error-correction bits, if used. The 23rd or 31st bit  
carries the forward control-channel data. The last bit is  
the parity bit of the previous 23 or 31 bits (Figure 15).  
Data-Rate Selection  
The serializer/deserializer use DRS, DBL, and BWS to set  
the PCLKOUT frequency range (Table 3). Set DRS = 1  
for a PCLKOUT frequency range of 6.25MHz to 12.5MHz  
(32-bit, single-output mode) or 8.33MHz to 16.66MHz  
(24-bit, single-output mode). Set DRS = 0 for normal  
operation. It is not recommended to use double-output  
mode when DRS = 1.  
Reverse Control Channel  
The serializer uses the reverse control channel to receive  
I2C/UART and GPO signals from the deserializer in the  
Table 3. Data-Rate Selection Table  
DRS SETTING  
DBL SETTING  
BWS SETTING  
PCLKOUT RANGE (MHz)  
16.66 to 50  
0
0
0
0
1
1
1
1
0 (single input)  
0 (24-bit mode)  
0
1 (32-bit mode)  
12.5 to 35  
1 (double input)  
0
1
0
1
0
1
33.3 to 100  
1
0
0
1
1
25 to 75  
8.33 to 16.66  
6.25 to 12.5  
Do Not Use  
Do Not Use  
24 BITS  
32 BITS  
D0  
D1  
D21  
FCC  
PCB  
D0  
D1  
D29  
FCC  
PCB  
FORWARD  
CONTROL-  
CHANNEL BIT  
FORWARD  
CONTROL-  
CHANNEL BIT  
VIDEO AND ERROR  
CORRECTION DATA  
VIDEO AND ERROR  
CORRECTION DATA  
PACKET  
PARITY  
PACKET  
PARITY  
CHECK BIT  
CHECK BIT  
NOTE: SERIAL DATA SHOWN BEFORE SCRAMBLING AND 8b/10b ENCODING  
Figure 15. Serial-Data Format  
24  
MAX9272  
28-Bit GMSL Deserializer for Coax or STP Cable  
The deserializer uses differential line coding to send  
signals over the reverse channel to the serializer. The  
bit rate of the control channel is 9.6kbps to 1Mbps in  
both directions. The serializer/deserializer automatically  
detect the control-channel bit rate in base mode. Packet  
bit-rate changes can be made in steps of up to 3.5  
times higher or lower than the previous bit rate. See the  
Changing the Clock Frequency section for more informa-  
tion on changing the control-channel bit rate.  
Control Channel and  
Register Programming  
The control channel is available for the FC to send and  
receive control data over the serial link simultaneously  
with the high-speed data. The FC controls the link from  
either the serializer or the deserializer side to support  
video-display or image-sensing applications. The control  
channel between the FC and serializer or deserializer  
runs in base mode or bypass mode, according to the  
mode selection (MS/HVEN) input of the device connect-  
ed to the FC. Base mode is a half-duplex control channel  
and bypass mode is a full-duplex control channel.  
Figure 16 shows the UART protocol for writing and read-  
ing in base mode between the FC and the serializer/  
deserializer.  
Figure 17 shows the UART data format. Figure 18 and  
Figure 19 detail the formats of the SYNC byte (0x79)  
and the ACK byte (0xC3). The FC and the connected  
slave chip generate the SYNC byte and ACK byte,  
respectively. Events such as device wake-up and GPI  
generate transitions on the control channel that can be  
ignored by the FC. Data written to the serializer/deserial-  
izer registers do not take effect until after the ACK byte  
is sent. This allows the FC to verify that write commands  
are received without error, even if the result of the write  
command directly affects the serial link. The slave uses  
the SYNC byte to synchronize with the host UART’s data  
rate. If the GPI or MS/HVEN inputs of the deserializer  
toggle while there is control-channel communication, or if  
a line fault occurs, the control-channel communication is  
corrupted. In the event of a missed or delayed acknowl-  
edge (~1ms due to control-channel timeout), the FC  
should assume there was an error in the packet when the  
slave device received it, or that an error occurred during  
the response from the slave device. In base mode, the  
FC must keep the UART Tx/Rx lines high for 16 bit times  
before starting to send a new packet.  
UART Interface  
In base mode, the FC is the host and can access the  
registers of both the serializer and deserializer from  
either side of the link using the GMSL UART protocol.  
The FC can also program the peripherals on the remote  
side by sending the UART packets to the serializer or  
deserializer, with the UART packets converted to I2C  
by the device on the remote side of the link. The FC  
communicates with a UART peripheral in base mode  
(through INTTYPE register settings), using the half-  
duplex default GMSL UART protocol of the serial-  
izer/deserializer. The device addresses of the serializer/  
deserializer in base mode are programmable. The  
default value is 0x80 for the serializer and is determined  
by the CX/TP input for the deserializer (Table 8).  
When the peripheral interface is I2C, the serializer/  
deserializer convert UART packets to I2C that have  
device addresses different from those of the serializer or  
deserializer. The converted I2C bit rate is the same as the  
original UART bit rate.  
WRITE DATA FORMAT  
NUMBER OF BYTES BYTE 1  
SYNC  
DEV ADDR + R/W  
REG ADDR  
BYTE N  
ACK  
MASTER READS FROM SLAVE  
MASTER WRITES TO SLAVE  
READ DATA FORMAT  
SYNC  
DEV ADDR + R/W  
REG ADDR NUMBER OF BYTES  
MASTER WRITES TO SLAVE  
ACK  
BYTE 1  
BYTE N  
MASTER READS FROM SLAVE  
Figure 16. GMSL UART Protocol for Base Mode  
25  
MAX9272  
28-Bit GMSL Deserializer for Coax or STP Cable  
1 UART FRAME  
START  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
PARITY  
STOP  
FRAME 1  
FRAME 2  
FRAME 3  
STOP  
START  
STOP  
START  
Figure 17. GMSL UART Data Format for Base Mode  
D0  
1
D1  
0
D2  
0
D3  
1
D4  
1
D5  
1
D6  
1
D7  
0
D0  
1
D1  
D2  
0
D3  
0
D4  
0
D5  
0
D6  
1
D7  
1
START  
PARITY STOP  
START  
1
PARITY STOP  
Figure 18. SYNC Byte (0x79)  
Figure 19. ACK Byte (0xC3)  
As shown in Figure 20, the remote-side device converts  
packets going to or coming from the peripherals from  
UART format to I2C format and vice versa. The remote  
device removes the byte number count and adds or  
receives the ACK between the data bytes of I2C. The I2C  
bit rate is the same as the UART bit rate.  
connected to the deserializer, there is a 1ms wait time  
between setting MS/HVEN high and the bypass con-  
trol channel being active. There is no delay time when  
switching to bypass mode when the FC is connected to  
the serializer. Do not send a logic-low value longer than  
100Fs to ensure proper GPO functionality. Bypass mode  
accepts bit rates down to 10kbps in either direction. See  
the GPO/GPI Control section for GPI functionality limita-  
tions. The control-channel data pattern should not be  
held low longer than 100Fs if GPI control is used.  
Interfacing Command-Byte-Only  
I2C Devices with UART  
The serializer/deserializer UART-to-I2C conversion can  
interface with devices that do not require register address-  
es, such as the MAX7324 GPIO expander. In this mode,  
the I2C master ignores the register address byte and  
directly reads/writes the subsequent data bytes (Figure  
21). Change the communication method of the I2C mas-  
ter using the I2CMETHOD bit. I2CMETHOD = 1 sets  
command-byte-only mode, while I2CMETHOD = 0 sets  
normal mode where the first byte in the data stream is  
the register address.  
I2C Interface  
In I2C-to-I2C mode, the deserializer’s control-channel inter-  
face sends and receives data through an I2C-compatible  
2-wire interface. The interface uses a serial-data line  
(SDA) and a serial-clock line (SCL) to achieve bidirec-  
tional communication between master and slave(s). A FC  
master initiates all data transfers to and from the device  
and generates the SCL clock that synchronizes the data  
transfer. When an I2C transaction starts on the local-side  
device’s control-channel port, the remote-side device’s  
control-channel port becomes an I2C master that inter-  
faces with remote-side I2C perhipherals. The I2C master  
must accept clock stretching, which is imposed by the  
deserializer (holding SCL low). The SDA and SCL lines  
operate as both an input and an open-drain output. Pullup  
resistors are required on SDA and SCL. Each transmission  
consists of a START condition (Figure 5) sent by a master,  
followed by the device’s 7-bit slave address plus a R/W  
bit, a register address byte, one or more data bytes, and  
finally a STOP condition.  
UART Bypass Mode  
In bypass mode, the serializer/deserializer ignore UART  
commands from the FC and the FC communicates with  
the peripherals directly using its own defined UART pro-  
tocol. The FC cannot access the serializer/deserializer  
registers in this mode. Peripherals accessed through the  
forward control channel using the UART interface need  
to handle at least one PCLKOUT period Q 10ns of jitter  
due to the asynchronous sampling of the UART signal  
by PCLKOUT. Set MS/HVEN = high to put the control  
channel into bypass mode. For applications with the FC  
26  
MAX9272  
28-Bit GMSL Deserializer for Coax or STP Cable  
2
UART-TO-I C CONVERSION OF WRITE PACKET (I2CMETHOD = 0)  
SERIALIZER/DESERIALIZER  
11  
FC  
11  
11  
11  
11  
11  
11  
SYNC FRAME  
DEVICE ID + WR  
REGISTER ADDRESS  
NUMBER OF BYTES  
DATA 0  
DATA N  
ACK FRAME  
SERIALIZER/DESERIALIZER  
PERIPHERAL  
1
7
1
1
8
1
8
1
8
1
1
S
DEV ID  
W
A
REG ADDR  
A
DATA 0  
A
DATA N  
A
P
2
UART-TO-I C CONVERSION OF READ PACKET (I2CMETHOD = 0)  
SERIALIZER/DESERIALIZER  
11  
FC  
11  
11  
REGISTER ADDRESS  
11  
NUMBER OF BYTES  
11  
ACK FRAME  
11  
DATA 0  
11  
DATA N  
SYNC FRAME  
DEVICE ID + RD  
SERIALIZER/DESERIALIZER  
PERIPHERAL  
1
7
1
1
8
1
1
7
1
1
8
1
8
1
1
S
DEV ID  
W
A
REG ADDR  
A
S
DEV ID  
R
A
DATA 0  
A
DATA N  
A
P
S: START  
P: STOP  
A: ACKNOWLEDGE  
: MASTER TO SLAVE  
: SLAVE TO MASTER  
2
Figure 20. Format Conversion Between GMSL UART and I C with Register Address (I2CMETHOD = 0)  
2
UART-TO-I C CONVERSION OF WRITE PACKET (I2CMETHOD = 1)  
FC  
SERIALIZER/DESERIALIZER  
11  
11  
11  
11  
11  
DATA 0  
11  
DATA N  
11  
ACK FRAME  
SYNC FRAME  
DEVICE ID + WR  
REGISTER ADDRESS  
NUMBER OF BYTES  
SERIALIZER/DESERIALIZER  
PERIPHERAL  
1
7
1
1
8
1
8
1
1
S
DEV ID  
W
A
DATA 0  
A
DATA N  
A
P
2
UART-TO-I C CONVERSION OF READ PACKET (I2CMETHOD = 1)  
FC  
SERIALIZER/DESERIALIZER  
11  
11  
11  
11  
11  
11  
DATA 0  
11  
DATA N  
SYNC FRAME  
DEVICE ID + RD  
REGISTER ADDRESS  
NUMBER OF BYTES  
ACK FRAME  
SERIALIZER/DESERIALIZER  
PERIPHERAL  
1
7
1
1
8
1
8
1
1
S
DEV ID  
R
A
DATA 0  
A
DATA N  
A
P
: MASTER TO SLAVE  
: SLAVE TO MASTER  
S: START  
P: STOP  
A: ACKNOWLEDGE  
2
Figure 21. Format Conversion Between GMSL UART and I C with Register Address (I2CMETHOD = 1)  
27  
MAX9272  
28-Bit GMSL Deserializer for Coax or STP Cable  
START and STOP Conditions  
Both SCL and SDA remain high when the interface is not  
busy. A master signals the beginning of a transmission  
with a START (S) condition by transitioning SDA from high  
to low while SCL is high (Figure 22). When the master has  
finished communicating with the slave, it issues a STOP  
(P) condition by transitioning SDA from low to high while  
SCL is high. The bus is then free for another transmission.  
Acknowledge  
The acknowledge bit is a clocked 9th bit that the recipient  
uses to handshake receipt of each byte of data (Figure  
24). Thus, each byte transferred effectively requires 9 bits.  
The master generates the 9th clock pulse, and the recipi-  
ent pulls down SDA during the acknowledge clock pulse.  
The SDA line is stable low during the high period of the  
clock pulse. When the master is transmitting to the slave  
device, the slave device generates the acknowledge bit  
because the slave device is the recipient. When the slave  
device is transmitting to the master, the master generates  
the acknowledge bit because the master is the recipient.  
The device generates an acknowledge even when the for-  
ward control channel is not active (not locked). To prevent  
acknowledge generation when the forward control chan-  
nel is not active, set the I2CLOCACK bit low.  
Bit Transfer  
One data bit is transferred during each clock pulse  
(Figure 23). The data on SDA must remain stable while  
SCL is high.  
SDA  
SCL  
P
S
STOP  
CONDITION  
START  
CONDITION  
Figure 22. START and STOP Conditions  
SDA  
SCL  
DATA LINE STABLE;  
DATA VALID  
CHANGE OF DATA  
ALLOWED  
Figure 23. Bit Transfer  
START  
CONDITION  
CLOCK PULSE FOR  
ACKNOWLEDGE  
1
2
8
9
SCL  
SDA  
BY  
TRANSMITTER  
SDA  
BY  
RECEIVER  
S
Figure 24. Acknowledge  
28  
MAX9272  
28-Bit GMSL Deserializer for Coax or STP Cable  
Slave Address  
The serializer/deserializer have a 7-bit-long slave address.  
The bit following a 7-bit slave address is the R/W bit, which  
is low for a write command and high for a read command.  
The slave address is 100100X1 for read commands and  
100100X0 for write commands. See Figure 25.  
beyond storing the register address (Figure 26). Any  
bytes received after the register address are data bytes.  
The first data byte goes into the register selected by the  
register address, and subsequent data bytes go into  
subsequent registers (Figure 27). If multiple data bytes  
are transmitted before a STOP condition, these bytes  
are stored in subsequent registers because the register  
addresses autoincrement.  
Bus Reset  
The device resets the bus with the I2C START condition  
for reads. When the R/W bit is set to 1, the serializer/  
deserializer transmit data to the master, thus the master  
is reading from the device.  
Format for Reading  
The serializer/deserializer are read using the internally  
stored register address as an address pointer, the same  
way the stored register address is used as an address  
pointer for a write. The pointer autoincrements after each  
data byte is read using the same rules as for a write. Thus,  
a read is initiated by first configuring the register address  
by performing a write (Figure 28). The master can now  
read consecutive bytes from the device, with the first data  
byte being read from the register address pointed by  
the previously written register address. Once the master  
sends a NACK, the device stops sending valid data.  
Format for Writing  
A write to the serializer/deserializer comprises the trans-  
mission of the slave address with the R/W bit set to zero,  
followed by at least one byte of information. The first  
byte of information is the register address or command  
byte. The register address determines which register of  
the device is to be written by the next byte, if received.  
If a STOP (P) condition is detected after the register  
address is received, the device takes no further action  
0
0
1
0
1/0  
0
R/W  
LSB  
SDA  
SCL  
1
ACK  
MSB  
Figure 25. Slave Address  
0 = WRITE  
ADDRESS = 0x80  
REGISTER ADDRESS = 0x00  
REGISTER 0x00 WRITE DATA  
S
1
0
0
0
0
0
0
0
A
0
0
0
0
0
0
0
0
A
D7 D6 D5 D4 D3 D2 D1 D0  
A
P
S = START BIT  
P = STOP BIT  
A = ACK  
D_ = DATA BIT  
2
Figure 26. Format for I C Write  
0 = WRITE  
ADDRESS = 0x80  
REGISTER ADDRESS = 0x0000  
S
1
0
0
0
0
0
0
0
A
0
0
0
0
0
0
0
0
A
S = START BIT  
P = STOP BIT  
A = ACK  
REGISTER 0x00 WRITE DATA  
REGISTER 0x02 WRITE DATA  
N = NACK  
D_ = DATA BIT  
D7 D6 D5 D4 D3 D2 D1 D0  
A
D7 D6 D5 D4 D3 D2 D1 D0  
N
P
Figure 27. Format for Write to Multiple Registers  
29  
MAX9272  
28-Bit GMSL Deserializer for Coax or STP Cable  
0 = WRITE  
ADDRESS = 0x80  
REGISTER ADDRESS = 0x00  
S
1
0
0
0
0
0
0
0
0
0
0
0
A
A
0
0
0
0
0
0
0
0
A
1 = READ  
ADDRESS = 0x81  
REGISTER 0x00 READ DATA  
REPEATED START  
S
1
0
0
0
D7 D6 D5 D4 D3 D2 D1 D0  
N
P
S = START BIT  
P = STOP BIT  
A = ACK  
N = NACK  
D_ = DATA BIT  
2
Figure 28. Format for I C Read  
2
Table 4. I C Bit-Rate Ranges  
LOCAL BIT RATE  
f > 50kbps  
REMOTE BIT-RATE RANGE  
Up to 1Mbps  
I2CMSTBT SETTING  
Any  
Up to 110  
000  
20kbps > f > 50kbps  
f < 20kbps  
Up to 400kbps  
Up to 10kbps  
I2C Communication with Remote-Side Devices  
The deserializer supports I2C communication with a  
peripheral on the remote side of the communication link  
using SCL clock stretching. While multiple masters can  
reside on either side of the communication link, arbitration  
is not provided. The connected masters need to sup-  
port SCL clock stretching. The remote-side I2C bit-rate  
range must be set according to the local-side I2C bit rate.  
Supported remote-side bit rates can be found in Table 4.  
Set the I2CMSTBT (register 0x0D) to set the remote I2C bit  
rate. If using a bit rate different than 400kbps, local- and  
remote-side I2C setup and hold times should be adjusted  
by setting the SLV_SH register settings on both sides.  
Control-Channel Broadcast Mode  
The deserializer supports broadcast commands to con-  
trol multiple peripheral devices. Select an unused device  
address to use as a broadcast device address. Program  
the remote-side GMSL device to translate the broadcast  
device address (source address stored in registers 0x09,  
0x0B) to the peripheral device address (destination  
address stored in registers 0x0A, 0x0C). Any commands  
sent to the broadcast address are sent to all designated  
peripherals, while commands sent to a peripheral’s unique  
device address are sent to that particular device only.  
GPO/GPI Control  
GPO on the serializer follows GPI transitions on the  
deserializer. This GPO/GPI function can be used to  
transmit signals such as frame sync in a surround-view  
camera system. The GPI-to-GPO delay is 0.35ms (max).  
Keep the time between GPI transitions to a minimun  
0.35ms. This includes transitions from the other dese-  
rializer in coax-splitter mode. Bit D4 of register 0x0E in  
the deserializer stores the GPI input state. GPO is low  
after power-up. The FC can set GPO by writing to the  
serializer SET_GPO register bit. Do not send a logic-low  
value on the deserializer RX/SDA input (UART mode)  
longer than 100Fs in either base or bypass mode to  
ensure proper GPO/GPI functionality.  
I2C Address Translation  
The deserializer supports I2C address translation for  
up to two device addresses. Use address translation  
to assign unique device addresses to peripherals with  
limited I2C addresses. Source addresses (address to  
translate from) are stored in registers 0x09 and 0x0B.  
Destination addresses (address to translate to) are  
stored in registers 0x0A and 0x0C.  
30  
MAX9272  
28-Bit GMSL Deserializer for Coax or STP Cable  
spectrum modulation frequency within 20kHz to 40kHz.  
Additionally, manual configuration of the sawtooth divider  
(SDIV: 0x03, D[5:0]) allows the user to set a modulation  
frequency according to the PCLKOUT frequency. When  
ranges are manually selected, program the SDIV value  
for a fixed modulation frequency around 20kHz.  
PRBS Test  
The serializer includes a PRBS pattern generator that  
works with bit-error verification in the deserializer. To run  
the PRBS test, set PRBSEN = 1 (0x04, D5) in the deserial-  
izer and then in the serializer. To exit the PRBS test, set  
PRBSEN = 0 (0x04, D5) in the serializer.  
Manual Programming  
of the Spread-Spectrum Divider  
The modulation rate for the deserializer relates to the  
PCLKOUT frequency as follows:  
Line Equalizer  
The deserializer includes an adjustable line equalizer to  
further compensate cable attenuation at high frequen-  
cies. The cable equalizer has 11 selectable levels of  
compensation from 2.1dB to 13dB (Table 5). The device  
powers up with the equalizer disabled. To select other  
equalization levels, set the corresponding register bits  
in the deserializer (0x05 D[3:0]). Use equalization in the  
deserializer, together with preemphasis in the serializer,  
to create the most reliable link for a given cable.  
f
PCLKOUT  
f
= 1+ DRS  
(
)
M
MOD× SDIV  
where:  
= Modulation frequency  
f
M
DRS = DRS value (0 or 1)  
= PCLKOUT frequency  
Spread Spectrum  
To reduce the EMI generated by transitions, the dese-  
rializer output is programmable for spread spectrum. If  
the serializer driving the deserializer has programmable  
spread spectrum, do not enable spread for both at the  
same time or their interaction will cancel benefits. The  
programmable spread-spectrum amplitudes are Q2%  
and Q4% (Table 6).  
f
PCLKOUT  
MOD = Modulation coefficient given in Table 7  
SDIV = 5-bit SDIV setting, manually programmed by  
the FC  
To program the SDIV setting, first look up the modula-  
tion coefficient according to the desired bus-width and  
spread-spectrum settings. Solve the above equation for  
SDIV using the desired pixel clock and modulation fre-  
quencies. If the calculated SDIV value is larger than the  
maximum allowed SDIV value in Table 7, set SDIV to the  
maximum value.  
The deserializer includes a sawtooth divider to  
control the spread-modulation rate. Autodetection of  
the PCLKOUT operation range guarantees a spread-  
Table 5. Cable Equalizer Boost Levels  
Table 6. Parallel Output Spread  
SS  
00  
01  
10  
11  
SPREAD (%)  
No spread spectrum. Power-up default.  
Q2% spread spectrum.  
BOOST SETTING  
(0x05 D[3:0])  
TYPICAL BOOST GAIN  
(dB)  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
2.1  
2.8  
3.4  
4.2  
5.2  
6.2  
7
No spread spectrum.  
Q4% spread spectrum.  
Table 7. Modulation Coefficients and  
Maximum SDIV Settings  
SPREAD-  
SPECTRUM  
SETTING (%)  
MODULATION  
COEFFICIENT  
(dec)  
8.2  
9.4  
SDIV UPPER  
LIMIT (dec)  
10.7  
Default*  
1001  
4
2
208  
208  
15  
30  
1010  
1011  
11.7  
13  
*The equalizer is disabled at power-up.  
31  
MAX9272  
28-Bit GMSL Deserializer for Coax or STP Cable  
Hamming code adds overhead similar to CRC. See Table 2  
for details regarding the available input word size.  
Additional Error Detection and Correction  
In default mode (additional error detection and correc-  
tion disabled), data encoding/decoding is the same as  
in previous GMSL serializers/deserializers (parity only).  
At the serializer, the parallel input word is scrambled and  
a parity bit is added. The scrambled word is divided into  
3 or 4 bytes (depending on the BWS setting), 8b/10b  
encoded, and then transmitted serially. At the deserial-  
izer, the same operations are performed in reverse order.  
The parity bit is used by the deserializer to find the word  
boundary and for error detection. Errors are counted in  
an error counter register and an error pin indicates errors.  
HS/VS Encoding and/or Tracking  
HS/VS encoding by a GMSL serializer allows horizontal  
and vertical synchronization signals to be transmit-  
ted while conserving pixel data bandwidth. With HS/  
VS encoding enabled, 10-bit pixel data with a clock up  
to 100MHz can be transmitted using one video pixel of  
data per HS/VS transition versus 8-bit data with a clock  
up to 100MHz without HS/VS encoding. The deserializer  
performs HS/VS decoding, tracks the period of the HS/VS  
signals, and uses voting to filter HS/VS bit errors. When  
using HS/VS encoding, use a minimum HS/VS low-pulse  
duration of two PCLKOUT cycles when DBL = 0 on the  
deserializer. When DBL = 1, use a minimum HS/VS low-  
pulse duration of five PCLKOUT cycles and a minimum  
high-pulse duration of two PCLKOUT cycles. When using  
hamming code with HS/VS encoding, do not send more  
than two transitions every 16 PCLKOUT cycles.  
The deserializer can use one of two additional error-  
detection/correction methods (selectable by register  
setting):  
1) 6-bit cyclic redundancy check  
2) 6-bit hamming code with 16-word interleaving  
Cyclic Redundancy Check (CRC)  
When CRC is enabled, the serializer adds 6 bits of CRC  
to the input data. This reduces the available bits in the  
input data word by 6, compared to the non-CRC case  
(see Table 2 for details). For example, 16 bits are avail-  
able for input data instead of 22 bits when BWS = 0, and  
24 bits instead of 30 bits when BWS = 1.  
When the serializer uses double-input mode (DBL = 1),  
the active duration, plus the blanking duration of HS or VS  
signals, should be an even number of PCLKOUT cycles.  
When DBL = 1 in the serializer and DBL = 0 in the dese-  
rializer, two pixel clock cycles of HS/VS at the serializer  
input are output at the HS0/VS0 and HS1/VS1 output of  
the deserializer in one cycle. The first cycle of HS/VS goes  
out of HS0/VS0 and the second cycle goes out of HS1/  
VS1. HS1 and VS1 are not used when HVEN = 0.  
The CRC generator polynomial is x6 + x + 1 (as used in  
the ITU-T G704 telecommunication standard).  
The parity bit is still added when CRC is enabled, because  
it is used for word-boundary detection. When CRC is  
enabled, each data word is scrambled and then the  
6-bit CRC and 1-bit parity are added before the 8b/10b  
encoding.  
If HS/VS tracking is used without HS/VS encoding, use  
DOUT0 for HSYNC and DOUT1 for VSYNC. In this case,  
if DBL values on the serializer/deserializer are different,  
set the UNEQDBL register bit in the deserializer to 1. If  
the serializer and deserializer have unequal DBL settings  
and HVEN = 0, then HS/VS inversion should only be used  
on the side that has DBL = 1. HS/VS encoding sends  
packets when HSYNC or VSYNC is low; use HS/VS inver-  
sion register bits if input HSYNC and VSYNC signals use  
an active-low convention in order to send data packets  
during the inactive pixel clock periods.  
At the deserializer, the CRC code is recalculated. If the  
recalculated CRC code does not match the received  
CRC code, an error is flagged. This CRC error is reported  
to the error counter.  
Hamming Code  
Hamming code is a simple and effective error-correction  
code to detect and/or correct errors. The MAX9272  
deserializer (when used with the MAX9271/MAX9273  
GMSL serializers) uses a single-error correction/double-  
error detection per pixel hamming-code scheme.  
Serial Input  
The device can receive serial data from two kinds of  
cables: 100I twisted pair and 50I coax (contact the  
factory for devices compatible with 75I cables).  
The deserializer uses data interleaving for burst error  
tolerance. Burst errors up to 11 consecutive bits on the  
serial link are corrected and burst errors up to 31 con-  
secutive bits are detected.  
Coax-Mode Splitter  
In coax mode, OUT+ and OUT- of the serializer are  
active. This enables use as a 1:2 splitter (Figure 29). In  
coax mode, connect OUT+ to IN+ of the deserializer.  
32  
MAX9272  
28-Bit GMSL Deserializer for Coax or STP Cable  
GMSL  
MAX9272  
SERIALIZER  
GMSL  
MAX9272  
OUT+  
IN+  
IN-  
SERIALIZER  
OUT-  
OUT+  
IN+  
IN-  
OUT-  
AVDD  
MAX9272  
50I  
IN+  
IN-  
Figure 29. 2:1 Coax-Mode Splitter Connection Diagram  
Figure 30. Coax-Mode Connection Diagram  
Connect OUT- to IN- of the second deserializer. Control-  
channel data is broadcast from the serializer to both  
deserializers and their attached peripherals. Assign a  
unique address to send control data to one deserializer.  
Leave all unused IN_ pins unconnected, or connect them  
to ground through 50I and a capacitor for increased  
power-supply rejection. If OUT- is not used, connect  
OUT- to AVDD through a 50I resistor (Figure 30). When  
there are FCs at the serializer, and at each deserializer,  
only one FC can communicate at a time. Disable one  
splitter control-channel link to prevent contention. Use  
the DIS_REV_P or DIS_REV_N register bits to disable a  
control-channel link.  
Table 8. Configuration Input Map  
CX/TP  
High  
Mid  
FUNCTION  
Coax+ input. Device address 0x90.  
Coax- input. Device address 0x92.  
Twisted-pair input. Device address 0x90.  
Low  
remote side, enable serialization. To deserializer detects  
the activity on the serial link and then when it locks, it  
automatically sets its SLEEP register bit to 0.  
Power-Down Mode  
The deserializer has a power-down mode that further  
reduces power consumption compared to sleep mode.  
Set PWDN low to enter power-down mode. In power-  
down mode, the outputs of the device remain in high  
impedance. Entering power-down resets the device’s  
registers. Upon exiting power-down, the state of external  
pins GPIO1/BWS, GPIO0/DBL, CX/TP, I2CSEL, LCCEN,  
RX/SDA/EDC, TX /SCL /ES, and MS/HVEN are latched.  
Cable Type Configuration Input (CX/TP)  
CX/TP determines the power-up state of the serial input.  
In coax mode, CX/TP also determines which coax input  
is active, along with the default device address (Table 8).  
These functions can be changed after power-up by writing  
to the appropriate register bits.  
Sleep Mode  
The deserializer includes a sleep mode to reduce power  
consumption. The device enters or exits sleep mode by a  
command from a local FC or a remote FC using the con-  
trol channel. Set the SLEEP bit to 1 to initiate sleep mode.  
The serializer sleeps immediately after setting its SLEEP  
= 1. The deserializer sleeps after serial link inactivity or  
8ms (whichever arrives first) after setting its SLEEP = 1.  
To wake up from the local side, send an arbitrary control-  
channel command to the deserializer, wait 5ms for the  
chip to power up, and then write 0 to the SLEEP register  
bit to make the wake-up permanent. To wake up from the  
Configuration Link  
The control channel can operate in a low-speed mode  
called configuration link in the absence of a clock input.  
This allows a microprocessor to program configuration  
registers before starting the video link. An internal oscil-  
lator provides the clock for the configuration link. Set  
CLINKEN = 1 on the serializer to enable the configuration  
link. The configuration link is active until the video link is  
enabled. The video link overrides the configuration link  
and attempts to lock when SEREN = 1.  
33  
MAX9272  
28-Bit GMSL Deserializer for Coax or STP Cable  
image-sensing applications. The control channel is avail-  
able after the video link or the configuration link is estab-  
Link Startup Procedure  
lished. If the deserializer powers up after the serializer,  
the control channel becomes unavailable until 2ms after  
power-up.  
Table 9 lists the startup procedure for video-display  
applications. Table 10 lists the startup procedure for  
Table 9. Startup Procedure for Video-Display Applications  
NO.  
1
µC  
FC connected to serializer.  
Powers up.  
SERIALIZER  
DESERIALIZER  
Sets all configuration inputs. If any  
configuration inputs are available on  
one end of the link but not on the other,  
Sets all configuration inputs. If any  
configuration inputs are available on  
one end of the link but not on the other,  
always connects that configuration input always connects that configuration input  
low.  
low.  
Powers up and loads default settings.  
Powers up and loads default settings.  
Enables configuration link by  
setting CLINKEN = 1 (if not  
enabled automatically) and gets  
an acknowledge. Waits for link to  
be established (~3ms).  
2
Establishes configuration link.  
Locks to configuration link signal.  
Writes one link configuration  
bit (DRS, BWS, or EDC) in  
the deserializer and gets an  
acknowledge.  
Configuration changed from default  
settings (loss-of-lock can occur when  
BWS or EDC changes).  
3
4
5
6
7
Writes corresponding serializer  
link configuration bit and gets an  
acknowledge.  
Configuration changed from default  
settings.  
Relocks to configuration link signal.  
Waits for link to be established  
(~3ms) and then repeats steps 3  
and 4 until all serial link bits are  
configured.  
Writes remaining configuration  
bits in the serializer/deserializer  
and gets an acknowledge.  
Configuration changed from default  
settings.  
Configuration changed from default  
settings.  
Enables video link by setting  
SEREN = 1 and gets an  
acknowledge. Waits for link to be  
established (~3ms).  
Locks to serial link signal and begins  
deserializing data.  
Begins serializing data.  
34  
MAX9272  
28-Bit GMSL Deserializer for Coax or STP Cable  
Table 10. Startup Procedure for Image-Sensing Applications  
NO.  
µC  
SERIALIZER  
DESERIALIZER  
Sets all configuration inputs. If any  
configuration inputs are available on  
Sets all configuration inputs. If any  
configuration inputs are available on  
one end of the link but not on the other, one end of the link but not on the other,  
FC connected to deserializer.  
always connects that configuration  
input low.  
always connects that configuration input  
low.  
Powers up and loads default settings.  
Establishes serial link.  
Powers up and loads default settings.  
Locks to serial link signal.  
1
3
Powers up.  
Writes deserializer configuration  
bits and gets an acknowledge.  
Configuration changed from default settings  
(loss-of-lock can occur).  
Writes serializer configuration  
bits. Cannot get an acknowledge Configuration changed from default  
(or gets a dummy acknowledge) settings.  
if loss-of-lock occurred.  
4
Relocks the serial link signal.  
Enables video link by setting  
SEREN = 1 (if not enabled  
automatically). Cannot get an  
acknowledge (or gets a dummy  
acknowledge) if loss-of-lock  
occurred. Waits for link to be  
established (~3ms).  
Locks to serial link signal and begins  
deserializing data.  
5
Begins serializing data.  
SLEEP = 1, VIDEO LINK OR CONFIG  
LINK NOT LOCKED AFTER 8ms  
CONFIG LINK  
CONFIG LINK  
OPERATING  
UNLOCKED  
WAKE-UP  
SIGNAL  
POWER-ON  
IDLE  
SERIAL PORT  
LOCKING  
SLEEP  
SIGNAL  
DETECTED  
PROGRAM  
REGISTERS  
CONFIG LINK  
LOCKED  
0
SLEEP  
VIDEO LINK  
LOCKED  
VIDEO LINK  
UNLOCKED  
SERIAL LINK ACTIVITY STOPS OR 8ms ELAPSES AFTER  
PWDN = HIGH,  
POWER-ON  
FC SETS SLEEP = 1  
GPI CHANGES FROM  
LOW TO HIGH OR  
PRBSEN = 0  
PRBSEN = 1  
SEND GPI TO  
POWER-DOWN  
OR  
POWER-OFF  
VIDEO LINK  
OPERATING  
VIDEO LINK  
PRBS TEST  
HIGH TO LOW  
PWDN = LOW OR  
POWER-OFF  
ALL STATES  
GMSL  
SERIALIZER  
0
SLEEP  
Figure 31. State Diagram, Remote Microcontroller Application  
35  
MAX9272  
28-Bit GMSL Deserializer for Coax or STP Cable  
In addition, the control channel does not provide arbitra-  
tion between I2C masters on both sides of the link. An  
Applications Information  
acknowledge frame is not generated when communica-  
tion fails due to contention. If communication across the  
serial link is not required, the FCs can disable the forward  
and reverse control channel using the FWDCCEN and  
Error Checking  
The deserializer checks the serial link for errors and  
stores the number of detected and corrected errors  
in the 8-bit registers, DETERR (0x10) and CORRERR  
REVCCEN bits (0x04, D[1:0]) in the serializer/deserial-  
(0x12). If a large number of 8b/10b errors are detected  
izer. Communication across the serial link is stopped and  
within a short duration (error rate R 1/4), the deserializer  
loses lock and stops the error counter. The deserializer  
contention between FCs cannot occur.  
then attempts to relock to the serial data. DETERR and  
CORRERR reset upon successful video link lock, suc-  
cessful readout of their respective registers (through FC),  
or whenever autoerror reset is enabled. The deserializer  
uses a separate PRBS register during the internal PRBS  
test, and DETERR and CORRERR are reset to 0x00.  
As an example of dual FC use in an image-sensing appli-  
cation, the serializer can be in sleep mode and waiting  
for wake-up by the FC on the deserializer side. After  
wake-up, the serializer-side FC assumes master control  
of the serializer’s registers.  
Changing the Clock Frequency  
It is recommended that the serial link be enabled after  
ERR Output  
The deserializer has an open-drain ERR output. This  
output asserts low whenever the number of detected/cor-  
rected errors exceeds their respective error thresholds  
during normal operation, or when at least one PRBS error  
is detected during PRBS test. ERR reasserts high when-  
ever DETERR and CORRERR reset, due to DETERR/  
CORRERR readout, video link lock, or autoerror reset.  
the video clock (f  
) and the control-channel  
PCLKOUT  
clock (f /f ) are stable. When changing the clock  
UART I2C  
frequency, stop the video clock for 5Fs, apply the clock  
at the new frequency, then restart the serial link or toggle  
SEREN. On-the-fly changes in clock frequency are pos-  
sible if the new frequency is immediately stable and  
without glitches. The reverse control channel remains  
unavailable for 350Fs after serial link start or stop. When  
using the UART interface, limit on-the-fly changes in  
Autoerror Reset  
The default method to reset errors is to read the respec-  
tive error registers in the deserializer (0x10, 0x12, and  
0x13). Autoerror reset clears the error counters DETERR/  
CORRERR and the ERR output ~1Fs after ERR goes low.  
Autoerror reset is disabled on power-up. Enable autoer-  
ror reset through AUTORST (0x08, D2). Autoerror reset  
does not run when the device is in PRBS test mode.  
f
to factors of less than 3.5 at a time to ensure that  
UART  
the device recognizes the UART sync pattern. For exam-  
ple, when lowering the UART frequency from 1Mbps to  
100kbps, first send data at 333kbps then at 100kbps for  
reduction ratios of 3 and 3.333, respectively.  
Fast Detection of  
Loss-of-Synchronization  
Dual µC Control  
Usually systems have one FC to run the control channel,  
located on the serializer side for video-display appli-  
cations or on the deserializer side for image-sensing  
applications. However, a FC can reside on each side  
simultaneously and trade off running the control channel.  
In this case, each FC can communicate with the serializer  
and deserializer and any peripheral devices.  
A measure of link quality is the recovery time from loss-  
of-synchronization. The host can be quickly notified of  
loss-of-lock by connecting the deserializer’s LOCK out-  
put to the GPI input. If other sources use the GPI input,  
such as a touch-screen controller, the FC can implement  
a routine to distinguish between interrupts from loss-  
of-sync and normal interrupts. Reverse control-channel  
communication does not require an active forward link  
to operate and accurately tracks the LOCK status of the  
GMSL link. LOCK asserts for video link only and not for  
the configuration link.  
Contention occurs if both FCs attempt to use the control  
channel at the same time. It is up to the user to prevent  
this contention by implementing a higher-level protocol.  
36  
MAX9272  
28-Bit GMSL Deserializer for Coax or STP Cable  
level, a pulldown resistor to GND to set a low level, or  
IOVDD/2 or open to set a midlevel. For digital control,  
use three-state logic to drive the three-level logic input.  
Providing a Frame Sync  
(Camera Applications)  
The GPI/GPO provides a simple solution for camera  
applications that require a frame sync signal from the  
ECU (e.g., surround-view systems). Connect the ECU  
frame sync signal to the GPI input, and connect the GPO  
output to the camera frame sync input. GPI/GPO have  
a typical delay of 275Fs. Skew between multiple GPI/  
GPO channels is 115Fs (max). If a lower skew signal is  
required, connect the camera’s frame sync input to one  
of the GMSL deserializer’s GPIOs and use an I2C broad-  
cast write command to change the GPIO output state.  
This has a maximum skew of 1.5Fs.  
Configuration Blocking  
The deserializer can block changes to registers. Set  
CFGBLOCK to make all registers read only. Once set,  
the registers remain blocked until the supplies are  
removed or until PWDN is low.  
Compatibility with other GMSL Devices  
The MAX9272/MAX9273 deserializers are designed to  
pair with the MAX9271/MAX9273 serializers, but inter-  
operate with any GMSL serializers. See the Table 11 for  
operating limitations.  
Software Programming  
of the Device Addresses  
GPIOs  
The deserializer has two open-drain GPIOs available  
when not used as configuration inputs. GPIO1OUT and  
GPIO0OUT (0x0E, D3 and D1) set the output state of the  
GPIOs. Setting the GPIO output bits to 0 pulls the output  
low, while setting the bits to 1 leaves the output undriven  
and pulled high through internal/external pullup resistors.  
The GPIO input buffers are always enabled. The input  
states are stored in GPIO1 and GPIO0 (0x0E, D2 and  
D0). Set GPIO1OUT/GPIO0OUT to 1 when using GPIO1/  
GPIO0 as an input.  
Both the serializer and the deserializer have program-  
mable device addresses. This allows multiple GMSL  
devices, along with I2C peripherals, to coexist on the  
same control channel. The serializer device address  
is in register 0x00 of each device, while the deserial-  
izer device address is in register 0x01 of each device.  
To change a device address, first write to the device  
whose address changes (register 0x00 of the serializer  
for serializer device address change, or register 0x01 of  
the deserializer for deserializer device address change).  
Then write the same address into the corresponding reg-  
ister on the other device (register 0x00 of the deserializer  
for serializer device address change, or register 0x01 of  
the serializer for deserializer device address change).  
Staggered Parallel Outputs  
The deserializer staggers the parallel data outputs to  
reduce EMI and noise. Staggering outputs also reduces  
the power-supply transient requirements. By default, the  
deserializer staggers outputs according to Table 12.  
Disable output staggering through the DISSTAG bit  
(0x08, D3).  
Three-Level Configuration Inputs  
CX/TP is a three-level input that controls the serial-  
interface configuration and power-up defaults. Connect  
CX/TP through a pullup resistor to IOVDD to set a high  
Table 11. MAX9272 Feature Compatibility  
MAX9272 FEATURE  
GMSL DESERIALIZER  
HSYNC/VSYNC encoding  
If feature not supported in the serializer, must be turned off in the deserializer.  
Hamming-code error correction If feature not supported in the serializer, must be turned off in the deserializer.  
I2C-to-I2C  
If feature not supported in the serializer, must use UART-to- I2C or UART-to-UART.  
If feature not supported in the serializer, must be turned off in the deserializer.  
CRC error detection  
If feature not supported in the serializer, the data is inputted as a single word at 1/2 the output  
frequency.  
Double output  
If feature not supported in the deserializer, must connect unused serial output through 200nF  
and 50I in series to AVDD and set the reverse control-channel amplitude to 100mV.  
Coax  
I2S encoding  
If feature is supported in the serializer, must disable I2S in the serializer.  
37  
MAX9272  
28-Bit GMSL Deserializer for Coax or STP Cable  
Table 12. Staggered Output Delay  
OUTPUT DELAY RELATIVE TO DOUT0 (ns)  
OUTPUT  
DISSTAG = 0  
DISSTAG = 1  
DOUT0–DOUT5, DOUT21, DOUT22  
DOUT6–DOUT10, DOUT23, DOUT24  
DOUT11–DOUT15, DOUT25, DOUT26  
DOUT16–DOUT20, DOUT27, DOUT28  
PCLKOUT  
0
0.5  
1
0
0
0
0
0
1.5  
0.75  
Table 13. Double-Function Configuration  
GPIO0/DBL  
FUNCTION  
GPIO1/BWS  
FUNCTION  
RX/SDA/EDC  
FUNCTION  
TX/SCL/ES  
FUNCTION  
LCCEN  
MS/HVEN FUNCTION  
MS input  
(low = base mode,  
high = bypass mode)  
UART/I2C input/  
output  
UART/I2C input/  
output  
High  
Functions as GPIO  
Functions as GPIO  
EDC input  
(low = error  
detection/correction  
disabled,  
high = error  
detection/correction  
enabled)  
ES input  
HVEN input  
(low = HS/VS  
encoding disabled,  
high = HS/VS  
(low = valid DOUT_  
on rising edge of  
PCLKOUT,  
high = valid DOUT_  
on falling edge of  
PCLKOUT)  
DBL input  
BWS input  
Low  
(low = single input,  
(low = 24-bit mode,  
high = double input) high = 32-bit mode)  
encoding enabled)  
choose the pullup resistors so that rise time t = 0.85 x  
Local Control-Channel Enable (LCCEN)  
The deserializer provides inputs for limited configura-  
tion of the device when a FC is not connected. Connect  
LCCEN = low upon power-up to disable the local control  
channel and enable the double-function configuration  
inputs (Table 13). All input configuration states are  
latched at power-up.  
R
R
x C  
< 300ns. The waveforms are not recog-  
PULLUP  
BUS  
nized if the transition time becomes too slow. The deserial-  
izer supports I2C/UART rates up to 1Mbps (UART-to-I2C  
mode) and 400kbps (I2C-to-I2C mode).  
AC-Coupling  
AC-coupling isolates the receiver from DC voltages up to  
the voltage rating of the capacitor. Capacitors at the seri-  
alizer output and at the deserializer input are needed for  
proper link operation and to provide protection if either  
end of the cable is shorted to a battery. AC-coupling  
blocks low-frequency ground shifts and low-frequency  
common-mode noise.  
Internal Input Pulldowns  
The control and configuration inputs, except three-level  
inputs, include a pulldown resistor to GND. External pull-  
down resistors are not needed.  
Choosing I2C/UART Pullup Resistors  
The I2C and UART open-drain lines require a pullup  
resistor to provide a logic-high level. There are tradeoffs  
between power dissipation and speed, and a compromise  
may be required when choosing pullup resistor values.  
Every device connected to the bus introduces some  
capacitance even when the device is not in operation. I2C  
specifies 300ns rise times (30% to 70%) for fast mode,  
which is defined for data rates up to 400kbps (see the I2C  
specifications in the AC Electrical Characteristics table  
for details). To meet the fast-mode rise-time requirement,  
Selection of AC-Coupling Capacitors  
Voltage droop and the digital sum variation (DSV) of trans-  
mitted symbols cause signal transitions to start from dif-  
ferent voltage levels. Because the transition time is fixed,  
starting the signal transition from different voltage levels  
causes timing jitter. The time constant for an AC-coupled  
link needs to be chosen to reduce droop and jitter to an  
acceptable level. The RC network for an AC-coupled link  
consists of the CML/coax receiver termination resistor  
38  
MAX9272  
28-Bit GMSL Deserializer for Coax or STP Cable  
(R ), the CML/coax driver termination resistor (R ), and  
TR TD  
The trace dimensions depend on the type of trace used  
(microstrip or stripline). Note that two 50I PCB traces  
do not have 100I differential impedance when brought  
close together—the impedance goes down when the  
traces are brought closer. Use a 50Itrace for the single-  
ended output when driving coax.  
the series AC-coupling capacitors (C). The RC time con-  
stant, for four equal-value series capacitors, is (C x (R  
TD  
+ R ))/4. R and R are required to match the trans-  
TR TD TR  
mission line impedance (usually 100I differential and  
50I single-ended). This leaves the capacitor selection  
to change the system time constant. Use 0.2FF or larger  
high-frequency surface-mount ceramic capacitors, with  
sufficient voltage rating to withstand a short to battery, to  
pass the lower speed reverse control-channel signal. Use  
capacitors with a case size less than 3.2mm x 1.6mm to  
have lower parasitic effects to the high-speed signal.  
Route the PCB traces for differential CML channel in par-  
allel to maintain the differential characteristic impedance.  
Avoid vias. Keep PCB traces that make up a differential  
pair equal length to avoid skew within the differential pair.  
ESD Protection  
ESD tolerance is rated for Human Body Model, IEC  
61000-4-2, and ISO 10605. The ISO 10605 and IEC  
61000-4-2 standards specify ESD tolerance for electronic  
systems. The serial link inputs are rated for ISO 10605  
ESD protection and IEC 61000-4-2 ESD protection. All  
pins are tested for the Human Body Model. The Human  
Power-Supply Circuits and Bypassing  
The deserializer uses an AVDD and DVDD of 1.7V to  
1.9V. All inputs and outputs, except for the serial input,  
derive power from an IOVDD of 1.7V to 3.6V that scales  
with IOVDD. Proper voltage-supply bypassing is essen-  
tial for high-frequency circuit stability. The GPI-to-GPO  
delay is 0.35ms (max). Keep the time between GPI trans-  
missions to a minimum 0.35ms.  
Body Model discharge components are C = 100pF and  
S
R
D
= 1.5kI (Figure 32). The IEC 61000-4-2 discharge  
components are C = 150pF and R = 330I(Figure 33).  
S
D
The ISO 10605 discharge components are C = 330pF  
S
Power-Supply Table  
Power-supply currents shown in the Electrical  
Characteristics table are the sum of the currents from  
AVDD, DVDD, and IOVDD. Typical currents from the  
individual power supplies are shown in Table 14.  
and R = 2kI (Figure 34).  
D
Table 15. Suggested Connectors and  
Cables for GMSL  
Cables and Connectors  
Interconnect for CML typically has a differential imped-  
ance of 100I. Use cables and connectors that have  
matched differential impedance to minimize impedance  
discontinuities. Coax cables typically have a characteris-  
tic impedance of 50I(contact the factory for 75Iopera-  
tion). Table 15 lists the suggested cables and connectors  
used in the GMSL link.  
SUPPLIER  
CONNECTOR  
CABLE  
RG174  
TYPE  
Coax  
STP  
Rosenberger 59S2AX-400A5-Y  
JAE  
MX38-FF  
A-BW-Lxxxxx  
F-2WME  
AWG28  
Nissei  
GT11L-2S  
STP  
STP  
Rosenberger D4S10A-40ML5-Z  
Dacar 538  
Board Layout  
Separate the LVCMOS logic signals and CML/coax high-  
speed signals to prevent crosstalk. Use a four-layer PCB  
with separate layers for power, ground, CML/coax, and  
LVCMOS logic signals. Layout PCB traces close to each  
other for a 100I differential characteristic impedance.  
R
D
1MI  
1.5kI  
CHARGE-CURRENT-  
LIMIT RESISTOR  
DISCHARGE  
RESISTANCE  
HIGH-  
VOLTAGE  
DC  
DEVICE  
UNDER  
TEST  
C
100pF  
S
STORAGE  
CAPACITOR  
Table 14. Typical Power-Supply Currents  
(Using Worst-Case Input Pattern)  
SOURCE  
PCLK  
(MHz)  
AVDD  
(mA)  
DVDD  
(mA)  
IOVDD  
(mA)  
Figure 32. Human Body Model ESD Test Circuit  
25  
50  
25.1  
33.3  
9.2  
10.3  
13.3  
13.7  
39  
MAX9272  
28-Bit GMSL Deserializer for Coax or STP Cable  
R
R
D
D
330I  
2kI  
CHARGE-CURRENT-  
LIMIT RESISTOR  
DISCHARGE  
RESISTANCE  
CHARGE-CURRENT-  
LIMIT RESISTOR  
DISCHARGE  
RESISTANCE  
HIGH-  
VOLTAGE  
DC  
HIGH-  
VOLTAGE  
DC  
DEVICE  
UNDER  
TEST  
DEVICE  
UNDER  
TEST  
C
S
C
S
330pF  
STORAGE  
CAPACITOR  
STORAGE  
CAPACITOR  
150pF  
SOURCE  
SOURCE  
Figure 33. IEC 61000-4-2 Contact Discharge ESD Test Circuit  
Figure 34. ISO 10605 Contact Discharge ESD Test Circuit  
Table 16. Register Table (see Table 1)  
REGISTER  
ADDRESS  
DEFAULT  
BITS  
NAME  
VALUE  
FUNCTION  
VALUE  
D[7:1]  
D0  
SERID  
XXXXXXX  
0
Serializer device address.  
1000000  
0
0x00  
Reserved.  
Deserializer device address. Default address is  
determined by the state of the CX/TP input (Table 8).  
1001000,  
1001001  
D[7:1]  
D0  
DESID  
XXXXXXX  
0x01  
0
Normal operation.  
CFGBLOCK  
0
1
Registers 0x00 to 0x1F are read only.  
No spread spectrum.  
00  
01  
10  
11  
01  
00  
01  
10  
11  
00  
01  
10  
11  
00  
Q2% spread spectrum.  
D[7:6]  
D[5:4]  
D[3:2]  
SS  
00  
01  
11  
No spread spectrum.  
Q4% spread spectrum.  
Reserved.  
12.5MHz to 25MHz pixel clock.  
25MHz to 50MHz pixel clock.  
Do not use.  
0x02  
PRNG  
Automatically detect the pixel clock range.  
0.5Gbps to 1Gbps serial-data rate.  
1Gps to 2Gps serial-data rate.  
Automatically detect serial-data rate.  
Automatically detect serial-data rate.  
Calibrate spread-modulation rate only once after locking.  
D[1:0]  
D[7:6]  
SRNG  
11  
00  
Calibrate spread-modulation rate every 2ms after  
locking.  
01  
10  
11  
AUTOFM  
Calibrate spread-modulation rate every 16ms after  
locking.  
0x03  
Calibrate spread-modulation rate every 256ms after  
locking.  
D5  
0
Reserved.  
0
00000  
Autocalibrate sawtooth divider.  
D[4:0]  
SDIV  
00000  
Manual SDIV setting. See the Manual Programming of  
the Spread-Spectrum Divider section.  
XXXXX  
40  
MAX9272  
28-Bit GMSL Deserializer for Coax or STP Cable  
Table 16. Register Table (see Table 1) (continued)  
REGISTER  
ADDRESS  
DEFAULT  
VALUE  
BITS  
NAME  
LOCKED  
OUTENB  
PRBSEN  
SLEEP  
VALUE  
FUNCTION  
0
LOCK output is low.  
LOCK output is high.  
Enable outputs.  
0
D7  
(read only)  
1
0
D6  
0
0
0
1
Disable outputs.  
0
Disable PRBS test.  
Enable PRBS test.  
Normal mode.  
D5  
1
0
1
D4  
Activate sleep mode.  
0x04  
00  
01  
10, 11  
0
Local control channel uses I2C when I2CSEL = 0.  
Local control channel uses UART when I2CSEL = 0.  
Local control channel disabled.  
D[3:2]  
D1  
INTTYPE  
01  
1
Disable reverse control channel to serializer (sending).  
Enable reverse control channel to serializer (sending).  
REVCCEN  
1
Disable forward control channel from serializer  
(receiving).  
0
1
0
1
D0  
D7  
FWDCCEN  
1
0
Enable forward control channel from serializer  
(receiving).  
I2C conversion sends the register address when  
converting UART to I2C.  
I2CMETHOD  
Disable sending of I2C register address when converting  
UART to I2C (command-byte-only mode).  
0
Normal parallel output driver current.  
Boosted parallel output driver current.  
Partial periodic HS/VS tracking.  
Full periodic HS/VS tracking.  
Equalizer disabled. Power-up default.  
Equalizer enabled.  
D6  
D5  
D4  
DCS  
HVTRMODE  
ENEQ  
0
1
0
1
0
1
0
1
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
11XX  
2.1dB equalizer-boost gain.  
2.8dB equalizer-boost gain.  
3.4dB equalizer-boost gain.  
4.2dB equalizer-boost gain.  
5.2dB equalizer-boost gain.  
6.2dB equalizer-boost gain.  
7dB equalizer-boost gain.  
0x05  
D[3:0]  
EQTUNE  
1001  
8.2dB equalizer-boost gain.  
9.4dB equalizer-boost gain.  
10.7dB equalizer-boost gain. Power-up default.  
11.7dB equalizer-boost gain.  
13dB equalizer-boost gain.  
Do not use.  
41  
MAX9272  
28-Bit GMSL Deserializer for Coax or STP Cable  
Table 16. Register Table (see Table 1) (continued)  
REGISTER  
ADDRESS  
DEFAULT  
VALUE  
BITS  
NAME  
VALUE  
00000010  
0
FUNCTION  
0x06  
D[7:0]  
Reserved.  
00000010  
0, 1  
Single-input mode. Power-up default when LCCEN =  
high or GPIO0/DBL = low.  
D7  
D6  
D5  
DBL  
DRS  
BWS  
Double-input mode. Power-up default when LCCEN =  
low and GPIO0/DBL = high.  
1
0
1
High data-rate mode.  
Low data-rate mode.  
0
24-bit mode. Power-up default when LCCEN = high or  
0
1
GPIO1/BWS = low.  
0, 1  
32-bit mode. Power-up default when LCCEN = low and  
GPIO1/BWS = high.  
Output data valid on rising edge of PCLKOUT.  
Power-up default when LCCEN = high or TX/SCL/ES  
= low. Do not change this value while the pixel clock is  
running.  
0
1
D4  
ES  
0, 1  
Output data valid on rising edge of PCLKOUT.  
Power-up default when LCCEN = low and TX/SCL/ES  
= high. Do not change this value while the pixel clock is  
running.  
0x07  
HS/VS tracking disabled. Power-up default when  
LCCEN = high or MS/HVEN = low.  
0
1
0
1
D3  
D2  
HVTRACK  
HVEN  
0, 1  
0, 1  
HS/VS tracking enabled. Power-up default when  
LCCEN = low and MS/HVEN = high.  
HS/VS encoding disabled. Power-up default when  
LCCEN = high or MS/HVEN = low.  
HS/VS encoding enabled. Power-up default when  
LCCEN = low and MS/HVEN = high.  
1-bit parity error detection (GMSL compatible).  
Power-up default when LCCEN = high or RX/SDA/  
EDC = low.  
00  
01  
10  
11  
6-bit CRC error detection.  
D[1:0]  
EDC  
00, 10  
6-bit hamming code (single-bit error correct, double-  
bit error detect) and 16-word interleaving. Power-up  
default when LCCEN = low and RX/SDA/EDC = high.  
Do not use.  
42  
MAX9272  
28-Bit GMSL Deserializer for Coax or STP Cable  
Table 16. Register Table (see Table 1) (continued)  
REGISTER  
ADDRESS  
DEFAULT  
VALUE  
BITS  
NAME  
VALUE  
FUNCTION  
No VS or DOUT0 inversion.  
0
Invert VS when HVEN = 1. Invert DOUT0 when  
HVEN = 0.  
Do not use if DBL = 0 in the deserializer and DBL = 1 in  
the serializer.  
D7  
INVVS  
0
1
0
1
No HS or DOUT1 inversion.  
Invert HS when HVEN = 1. Invert DOUT1 when  
HVEN = 0. Do not use if DBL = 0 in the deserializer and  
DBL = 1 in the serializer.  
D6  
INVHS  
0
D5  
D4  
0
0
Reserved.  
0
0
Serializer DBL is not the same as deserializer.  
0x08  
UNEQDBL  
Serializer DBL same as deserializer (set to 1 only when  
HVEN = 0 and HVTRACK = 1).  
1
0
1
0
Enable staggered outputs.  
D3  
D2  
DISSTAG  
AUTORST  
0
0
Disable staggered outputs.  
Do not automatically reset error registers and outputs.  
Automatically reset DETERR and CORRERR registers  
1Fs after ERR asserts.  
1
00  
01  
ERR asserts when DETERR is larger than DETTHR.  
ERR asserts when CORRERR is larger than CORRTHR.  
D[1:0]  
ERRSEL  
00  
ERR asserts when DETERR is larger than DETTHR or  
CORRERR is larger than CORRTHR.  
10, 11  
D[7:1]  
D0  
I2CSRCA  
XXXXXXX  
I2C address translator source A.  
0000000  
0x09  
0x0A  
0x0B  
0X0C  
0
Reserved.  
I2C address translator destination A.  
Reserved.  
0
D[7:1]  
D0  
I2CDSTA  
XXXXXXX  
0000000  
0
0
D[7:1]  
D0  
I2CSRCB  
XXXXXXX  
I2C address translator source B.  
0000000  
0
XXXXXXX  
0
Reserved.  
I2C address translator destination B.  
Reserved.  
0
0000000  
0
D[7:1]  
D0  
I2CDSTB  
43  
MAX9272  
28-Bit GMSL Deserializer for Coax or STP Cable  
Table 16. Register Table (see Table 1) (continued)  
REGISTER  
ADDRESS  
DEFAULT  
VALUE  
BITS  
NAME  
VALUE  
FUNCTION  
Acknowledge not generated when forward channel is not  
available.  
0
1
D7  
I2CLOCACK  
0
I2C-to-I2C slave generates local acknowledge when  
forward channel is not available.  
00  
01  
10  
11  
000  
001  
010  
011  
100  
101  
110  
111  
00  
01  
10  
11  
01  
0
352ns/117ns I2C setup/hold time.  
469ns/234ns I2C setup/hold time.  
938ns/352ns I2C setup/hold time.  
1046ns/469ns I2C setup/hold time.  
8.47kbps (typ) I2C-to-I2C master bit-rate setting.  
28.3kbps (typ) I2C-to-I2C master bit-rate setting.  
84.7kbps (typ) I2C-to-I2C master bit-rate setting.  
105kbps (typ) I2C-to-I2C master bit-rate setting.  
173kbps (typ) I2C-to-I2C master bit-rate setting.  
339kbps (typ) I2C-to-I2C master bit-rate setting.  
533kbps (typ) I2C-to-I2C master bit-rate setting.  
837kbps (typ) I2C-to-I2C master bit-rate setting.  
64Fs (typ) I2C-to-I2C slave remote timeout.  
256Fs (typ) I2C-to-I2C slave remote timeout.  
1024Fs (typ) I2C-to-I2C slave remote timeout.  
No I2C-to-I2C slave remote timeout.  
Reserved.  
D[6:5]  
D[4:2]  
D[1:0]  
I2CSLVSH  
I2CMSTBT  
I2CSLVTO  
01  
0x0D  
101  
10  
D[7:6]  
D5  
01  
1
Disable GPI-to-GPO signal transmission to serializer.  
Enable GPI-to-GPO signal transmission to serializer.  
GPI input is low.  
GPIEN  
1
0
0
D4  
D3  
D2  
D1  
GPIIN  
(read only)  
1
GPI input is high.  
0
Set GPIO1 to low.  
GPIO1OUT  
GPIO1IN  
1
0x0E  
1
Set GPIO1 to high.  
0
GPIO1 input is low.  
0
(read only)  
1
GPIO1 input is high.  
0
Set GPIO0 to low.  
GPIO0OUT  
1
1
Set GPIO0 to high.  
0
GPIO0 input is low.  
0
D0  
GPIO0IN  
DETTHR  
(read only)  
1
GPIO0 input is high.  
0x0F  
0x10  
0x11  
0x12  
D[7:0]  
D[7:0]  
D[7:0]  
D[7:0]  
XXXXXXXX Error threshold for detected errors.  
00000000  
00000000  
(read only)  
DETERR  
XXXXXXXX Detected error counter.  
CORRTHR  
CORRERR  
XXXXXXXX Error threshold for corrected errors.  
XXXXXXXX Corrected error counter.  
00000000  
00000000  
(read only)  
44  
MAX9272  
28-Bit GMSL Deserializer for Coax or STP Cable  
Table 16. Register Table (see Table 1) (continued)  
REGISTER  
ADDRESS  
DEFAULT  
VALUE  
BITS  
D[7:0]  
D7  
NAME  
PRBSERR  
PRBSOK  
VALUE  
FUNCTION  
00000000  
(read only)  
0x13  
0x14  
XXXXXXXX PRBS error counter.  
0
1
PRBS test not completed.  
0
(read only)  
PRBS test completed with success.  
0000000  
(read only)  
D[6:0]  
000000  
Reserved.  
0x15  
0x16  
0x17  
0x18  
0x19  
D[7:0]  
D[7:0]  
D[7:0]  
D[7:0]  
D[7:0]  
00100XXX  
00110000  
01010100  
00110000  
11001000  
Reserved.  
Reserved.  
Reserved.  
Reserved.  
Reserved.  
00100XXX  
00110000  
01010100  
00110000  
11001000  
00000000  
(read only)  
0x1A  
0x1B  
0x1C  
D[7:0]  
D[7:0]  
D[7:0]  
D7  
XXXXXXXX Reserved.  
XXXXXXXX Reserved.  
XXXXXXXX Reserved.  
00000000  
(read only)  
00000000  
(read only)  
0
1
0
1
0
1
0
1
CX/TP input is low.  
0
CXTP  
CXSEL  
I2CSEL  
LCCEN  
(read only)  
CX/TP input is high.  
CXSEL is 0.  
0
D6  
(read only)  
CXSEL is 1.  
Input is low.  
0
0x1D  
0x1E  
D5  
(read only)  
Input is high.  
Input is low.  
0
D4  
(read only)  
Input is high.  
0000  
(read only)  
D[3:0]  
D[7:0]  
D[7:5]  
XXXX  
00001010  
000  
Reserved.  
1010  
(read only)  
ID  
Device identifier (MAX9272 = 0x0A).  
Reserved.  
000  
(read only)  
0x1F  
0
1
Not HDCP capable.  
HDCP capable.  
Device revision.  
0
D4  
CAPS  
(read only)  
D[3:0]  
REVISION  
XXXX  
(read only)  
X = Don’t care.  
45  
MAX9272  
28-Bit GMSL Deserializer for Coax or STP Cable  
Typical Application Circuit  
CAMERA APPLICATION  
PCLK  
RGBHV  
SHDN  
PCLKIN  
DIN0–DIN15  
GPO  
PCLKOUT  
PCLK  
DOUT0–DOUT15  
RGBHV  
CONF1  
CONF0  
CAMERA  
GPU  
MAX9271  
MAX9272  
RX/SDA/EDC  
TX/SCL/ES  
TX  
RX  
UART  
TO PERIPHERALS  
GPI  
LOCK  
RX/SDA/EDC  
TX/SCL/DBL  
LCCEN  
OUT+  
OUT-  
IN+  
IN-  
CX/TP  
ECU  
NOTE: NOT ALL PULLUP/PULLDOWN RESISTORS ARE SHOWN. SEE PIN DESCRIPTION FOR DETAILS.  
Ordering Information  
Package Information  
For the latest package outline information and land patterns  
(footprints), go to www.maxim-ic.com/packages. Note that a  
“+”, “#”, or “-” in the package code indicates RoHS status only.  
Package drawings may show a different suffix character, but  
the drawing pertains to the package regardless of RoHS status.  
PART  
TEMP RANGE  
PIN-PACKAGE  
MAX9272GTM/V+  
-40NC to +105NC  
48 TQFN-EP*  
/V denotes an automotive qualified part.  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
*EP = Exposed pad.  
PACKAGE  
TYPE  
PACKAGE  
CODE  
OUTLINE  
NO.  
LAND  
PATTERN NO.  
Chip Information  
48 TQFN-EP  
T4877+4  
21-0144  
90-0130  
PROCESS: CMOS  
46  
MAX9272  
28-Bit GMSL Deserializer for Coax or STP Cable  
Revision History  
REVISION REVISION  
PAGES  
CHANGED  
DESCRIPTION  
NUMBER  
DATE  
0
6/12  
Initial release  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied.  
Maxim reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical  
Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
Maxim Integrated Products, Inc. 160 Rio Robles, San Jose, CA 95134 USA 1-408-601-1000  
47  
©
2012 Maxim Integrated Products  
Maxim is a registered trademark of Maxim Integrated Products Inc.  

相关型号:

MAX9273

22-Bit GMSL Serializer with Coax or STP Cable Drive
MAXIM

MAX9273GTL+

22-Bit GMSL Serializer with Coax or STP Cable Drive
MAXIM

MAX9273GTL/V+

22-Bit GMSL Serializer with Coax or STP Cable Drive
MAXIM

MAX9273_V01

22-Bit GMSL Serializer with Coax or STP Cable Drive
MAXIM

MAX9275

3.12Gbps GMSL Serializers for Coax or STP Output Drive and Parallel Input
MAXIM

MAX9276A

3.12Gbps GMSL Deserializers for Coax or STP Input and Parallel Output
MAXIM

MAX9276AGTN+

3.12Gbps GMSL Deserializers for Coax or STP Input and Parallel Output
MAXIM

MAX9276AGTN/V+

3.12Gbps GMSL Deserializers for Coax or STP Input and Parallel Output
MAXIM

MAX9276AGTN/VY+

3.12Gbps GMSL Deserializers for Coax or STP Input and Parallel Output
MAXIM

MAX9276GGN/VY+

3.12Gbps GMSL Deserializers for Coax or STP Input and Parallel Output
MAXIM

MAX9276GTN+

3.12Gbps GMSL Deserializers for Coax or STP Input and Parallel Output
MAXIM

MAX9276GTN/V+

3.12Gbps GMSL Deserializers for Coax or STP Input and Parallel Output
MAXIM