MAX9280GTN/V+ [MAXIM]

3.12Gbps GMSL Deserializers for Coax or STP Input and Parallel Output;
MAX9280GTN/V+
型号: MAX9280GTN/V+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

3.12Gbps GMSL Deserializers for Coax or STP Input and Parallel Output

文件: 总70页 (文件大小:2183K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MAX9276/MAX9280  
3.12Gbps GMSL Deserializers  
for Coax or STP Input and Parallel Output  
General Description  
Benefits and Features  
● Ideal for High-Definition Video Applications  
Works with Low-Cost 50Ω Coax Cable and FAKRA  
Connectors or 100Ω STP  
The MAX9276/MAX9280 gigabit multimedia serial link  
(GMSL) deserializers receive data from a GMSL serializer  
over 50Ω coax or 100Ω shielded twisted pair (STP) cable  
and output deserialized data on the LVCMOS outputs.  
104MHz High-Bandwidth Mode Supports  
1920x720p/60Hz Display With 24-Bit Color  
Equalization Allows 15m Cable at Full Speed  
Up to 192kHz Sample Rate And 32-Bit Sample  
Depth For 7.1 Channel HD Audio  
Audio Clock from Audio Source or Audio Sink  
Color Lookup-Table for Gamma Correction  
CNTL[3:0] Control Outputs  
The MAX9280 has HDCP content protection but other-  
wise is the same as the MAX9276. The deserializers pair  
with any GMSL serializer capable of coax output including  
the MAX9293 HDMI/MHL serializer. When programmed  
for STP input they are backward compatible with any  
GMSL serializer.  
2
The audio channel supports L-PCM I S stereo and up to  
● Multiple Data Rates for System Flexibility  
Up to 3.12Gbps Serial-Bit Rate  
eight channels of L-PCM in TDM mode. Sample rates of  
32kHz to 192kHz are supported with sample depth up to  
32 bits.  
6.25MHz to 104MHz Pixel Clock  
9.6kbps to 1Mbps Control Channel in UART, Mixed  
The embedded control channel operates at 9.6kbps to  
2
2
UART/I C, or I C Mode with Clock Stretch  
Capability  
2
1Mbps in UART-UART and UART-I C modes, and up to  
2
2
1Mbps in I C-I C mode. Using the control channel, a µC  
can program serializer, deserializer, and peripheral device  
registers at any time, independent of video timing, and  
manage HDCP operation (MAX9280). Two GPIO ports  
are included, allowing display power-up and switching of  
the backlight among other uses. A continuously-sampled  
GPI input supports touch-screen controller interrupt  
requests in display applications.  
● Reduces EMI and Shielding Requirements  
Programmable Spread Spectrum Reduces EMI  
Tracks Spread Spectrum on Input  
High-Immunity Mode for Maximum Control-  
Channel Noise Rejection  
● Peripheral Features for System Power-Up and  
Verification  
Built-In PRBS Tester for BER Testing of the Serial  
Link  
Programmable Choice of 8 Default Device  
Addresses  
Two Dedicated GPIO Ports  
Dedicated “Up/Down” GPI for Touch-Screen  
Interrupt and Other Uses  
For use with longer cables, the deserializers have a pro-  
grammable cable equalizer. Programmable spread spec-  
trum is available on the parallel output. The serial input  
meets ISO 10605 and IEC 61000-4-2 ESD standards.  
The core supply is 3.0V to 3.6V and the I/O supply is  
1.7V to 3.6V.  
The devices are in lead-free, 56-lead, 8mm x 8mm TQFN  
and QFND packages with exposed pad and 0.5mm lead  
pitch.  
Remote/Local Wake-Up from Sleep Mode  
● Meets Rigorous Automotive and Industrial  
Requirements  
-40°C to +105°C Operating Temperature  
±8kV Contact and 15kV Air ISO 10605 and  
IEC 61000-4-2 ESD Protection  
Applications  
● High-Resolution Automotive Navigation  
● Rear-Seat Infotainment  
● Megapixel Camera Systems  
Ordering Information appears at end of data sheet.  
VIDEO/AUDIO  
VIDEO/AUDIO  
GMSL  
SERIALIZER  
720p  
DISPLAY  
MAX9276  
MAX9280  
µC  
2
2
I C  
I C  
19-6623; Rev 1; 11/15  
MAX9276/MAX9280  
3.12Gbps GMSL Deserializers  
for Coax or STP Input and Parallel Output  
TABLE OF CONTENTS  
General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Benefits and Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Package Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
AC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
Typical Operating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Pin Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Functional Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Detailed Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Register Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
Output Bit Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
Serial Link Signaling and Data Format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
High-Bandwidth Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
Audio Channel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
Audio Channel Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
Audio Channel Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Additional MCLK Output for Audio Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Audio Output Timing Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
Reverse Control Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
Control Channel and Register Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
UART Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
2
Interfacing Command-Byte-Only I C Devices with UART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
UART Bypass Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
2
I C Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
START and STOP Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
Bit Transfer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
Acknowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Slave Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Bus Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Format for Writing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38  
Format for Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
2
I C Communication with Remote Side Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
2
I C Address Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
GPO/GPI Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40  
Line Equalizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40  
Maxim Integrated  
2  
www.maximintegrated.com  
MAX9276/MAX9280  
3.12Gbps GMSL Deserializers  
for Coax or STP Input and Parallel Output  
TABLE OF CONTENTS (continued)  
Spread Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40  
Manual Programming of the Spread-Spectrum Divider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40  
HS/VS/DE Tracking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Serial Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Coax Splitter Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Cable Type Configuration Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Color Lookup Tables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Programming and Verifying LUT Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
LUT Color Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
LUT Bit Width. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Recommended LUT Program Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43  
High-Immunity Reverse Control Channel Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44  
Sleep Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44  
Power-Down Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44  
Configuration Link. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44  
Link Startup Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
High-Bandwidth Digital Content Protection (HDCP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Encryption Enable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Synchronization of Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Repeater Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
HDCP Authentication Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
HDCP Protocol Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48  
Example Repeater Network—Two µCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Detection and Action Upon New Device Connection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55  
Notification of Start of Authentication and Enable of Encryption to Downstream Links . . . . . . . . . . . . . . . . . . . . . 55  
Applications Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Self PRBS Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56  
Error Checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56  
ERR Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56  
Auto Error Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56  
Dual µC Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56  
Changing the Clock Frequency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56  
Fast Detection of Loss of Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56  
Providing a Frame Sync (Camera Applications). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Software Programming of the Device Addresses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
3-Level Configuration Inputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57  
Configuration Blocking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57  
Maxim Integrated  
3  
www.maximintegrated.com  
MAX9276/MAX9280  
3.12Gbps GMSL Deserializers  
for Coax or STP Input and Parallel Output  
TABLE OF CONTENTS (continued)  
Compatibility with Other GMSL Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Key Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57  
HS/VS/DE Inversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57  
WS/SCK Inversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57  
GPIOs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58  
Staggered Parallel Outputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58  
Internal Input Pulldowns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58  
2
Choosing I C/UART Pullup Resistors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58  
AC-Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58  
Selection of AC-Coupling Capacitors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58  
Power-Supply Circuits and Bypassing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58  
Power-Supply Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59  
Cables and Connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59  
Board Layout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60  
ESD Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60  
Typical Application Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Chip Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Maxim Integrated  
4  
www.maximintegrated.com  
MAX9276/MAX9280  
3.12Gbps GMSL Deserializers  
for Coax or STP Input and Parallel Output  
LIST OF FIGURES  
Figure 1. Reverse Control Channel Output Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 2a. Test Circuit for Single-Ended Input Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 2. Test Circuit for Differential Input Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 3. Worst-Case Pattern Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 4. I2C Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 5. Parallel Clock Output Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 6. Output Rise-and-Fall Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Figure 7. Deserializer Delay. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Figure 8. GPI-to-GPO Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Figure 9. Lock Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Figure 10. Power-Up Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Figure 11. Output I2S Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Figure 12. 24-Bit Mode Serial Data Format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Figure 13. 32-Bit Mode Serial Data Format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Figure 14. High-Bandwidth Mode Serial Data Format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Figure 15. Audio Channel Input Format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Figure 16. 8-Channel TDM (24-Bit Samples, Padded With Zeros) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Figure 17. 6-Channel TDM (24-Bit Samples, No Padding) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Figure 18. Stereo I2S (24-Bit Samples, Padded With Zeros) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Figure 19. Stereo I2S (16-Bit Samples, No Padding). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Figure 20. Audio Channel Output Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Figure 21. GMSL UART Protocol for Base Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Figure 22. GMSL UART Data Format for Base Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Figure 23. Sync Byte (0x79). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Figure 24. ACK Byte (0xC3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Figure 25. Format Conversion Between GMSL UART and I2C with Register Address (I2CMETHOD = 0) . . . . . . . . 34  
2
Figure 26. Format Conversion Between GMSL UART and I C with Register Address (I2CMETHOD = 1). . . . . . . . 35  
Figure 27. START and STOP Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Figure 28. Bit Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Figure 29. Acknowledge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Figure 30. Slave Address. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Figure 31. Format for I2C Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Figure 32. Format for Write to Multiple Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Figure 33. Format for I2C Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Figure 34. 2:1 Coax Splitter Connection Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41  
Figure 35. Coax Connection Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41  
Figure 36. LUT Dataflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Figure 37. State Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Maxim Integrated  
5  
www.maximintegrated.com  
MAX9276/MAX9280  
3.12Gbps GMSL Deserializers  
for Coax or STP Input and Parallel Output  
LIST OF FIGURES (continued)  
Figure 38. Example Network with One Repeater and Two µCs (Tx = GMSL Serializer’s, Rx = Deserializer’s). . . . . 52  
Figure 39. Human Body Model ESD Test Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Figure 40. IEC 61000-4-2 Contact Discharge ESD Test Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Figure 41. ISO 10605 Contact Discharge ESD Test Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
LIST OF TABLES  
Table 1. Device Address Defaults (Register 0x00, 0x01) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Table 2. Output Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Table 3. Data-Rate Selection Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Table 4. Maximum Audio WS Frequency (kHz) for Various PCLKOUT Frequencies . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Table 5. f  
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
SRC  
2
Table 6. I C Bit Rate Ranges. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Table 7. Cable Equalizer Boost Levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Table 8. Output Spread . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Table 9. Modulation Coefficients and Maximum SDIV Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Table 10. Configuration Input Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41  
Table 11. Pixel Data Format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Table 12. Reverse Control Channel Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Table 13. Fast High-Immunity Mode Requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Table 14. Startup Procedure for Video-Display Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Table 15. Startup Procedure for Image-Sensing Applications (CDS = High) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Table 16. Startup, HDCP Authentication, and Normal Operation (Deserializer is Not a Repeater)—First Part of the  
HDCP Authentication Protocol. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Table 17. Link Integrity Check (Normal)—Performed Every 128 Frames After Encryption is Enabled . . . . . . . . . . . 50  
Table 18. Optional Enhanced Link Integrity Check—Performed Every 16 Frames After Encryption is Enabled . . . . 51  
Table 19. HDCP Authentication and Normal Operation (One Repeater, Two µCs)—First and Second Parts of the  
HDCP Authentication Protocol. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Table 20. MAX9276/MAX9280 Feature Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Table 21. Staggered Output Delay. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Table 22. IOVDD Current Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Table 23. Additional Supply Current from HDCP (MAX9280 Only). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Table 24. Suggested Connectors and Cables for GMSL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Table 25. Register Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Table 26. HDCP Register Table (MAX9280 Only). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Maxim Integrated  
6  
www.maximintegrated.com  
MAX9276/MAX9280  
3.12Gbps GMSL Deserializers  
for Coax or STP Input and Parallel Output  
(Note 1)  
Absolute Maximum Ratings  
AVDD to EP..........................................................-0.5V to +3.9V  
DVDD to EP .........................................................-0.5V to +3.9V  
IOVDD to EP........................................................-0.5V to +3.9V  
IN+, IN- to EP.......................................................-0.5V to +1.9V  
Continuous Power Dissipation (T = +70°C)  
A
TQFN (derate 47.6mW/°C above +70°C)...............3809.5mW  
QFND (derate 42.7mW/°C above +70°C) .................3418mW  
Junction Temperature......................................................+150°C  
Storage Temperature........................................ -65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
Soldering Temperature (reflow).......................................+260°C  
All Other Pins to EP ............................-0.5V to (V  
+ 0.5V)  
IOVDD  
IN+, IN- Short Circuit to Ground or Supply ...............Continuous  
Note 1: EP connected to PCB ground.  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these  
or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect  
device reliability.  
(Note 2)  
Package Thermal Characteristics  
TQFN  
QFND  
Junction-to-Case Thermal Resistance (θ )...............1.6°C/W  
Junction-to-Case Thermal Resistance (θ ).................1°C/W  
JC  
JC  
Junction-to-Ambient Thermal Resistance (θ ) ..........21°C/W  
Junction-to-Ambient Thermal Resistance (θ ) .......23.4°C/W  
JA  
JA  
Note 2: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer  
board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.  
DC Electrical Characteristics  
(V  
= V  
= 3.0V to 3.6V, V  
= 1.7V to 3.6V, R = 100Ω ±1% (differential), EP connected to PCB ground (GND), T = -40°C  
AVDD  
DVDD  
IOVDD L A  
to +105°C, unless otherwise noted. Typical values are at V  
= V  
= V  
= 3.3V, T = +25°C.)(Note 3)  
AVDD  
DVDD  
IOVDD A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
SINGLE-ENDED INPUTS (ADD_, HIM, I2CSEL, GPI, PWDN, MS)  
0.65 x  
High-Level Input Voltage  
V
V
IH1  
V
IOVDD  
0.35 x  
Low-Level Input Voltage  
Input Current  
V
V
IL1  
V
IOVDD  
+20  
I
V
= 0V to V  
IOVDD  
-10  
µA  
IN1  
IN  
THREE-LEVEL LOGIC INPUTS (BWS, CX/TP)  
0.7 x  
High-Level Input Voltage  
Low-Level Input Voltage  
V
V
V
IH  
V
IOVDD  
0.3 x  
IOVDD  
10  
V
IL  
V
Mid-Level Input Current  
Input Current  
I
(Note 4)  
-10  
µA  
µA  
INM  
I
-150  
150  
IN  
SINGLE-ENDED OUTPUTS (WS, SCK, SD, DOUT_, CNTL_, INTOUT, PCLKOUT)  
V
V
IOVDD  
- 0.3  
DCS = ‘0’  
High-Level Output Voltage  
Low-Level Output Voltage  
V
I
= -2mA  
= 2mA  
V
V
OH1  
OUT  
OUT  
IOVDD  
- 0.2  
DCS = ‘1’  
DCS = ‘0’  
DCS = ‘1’  
0.3  
0.2  
V
I
OL1  
Maxim Integrated  
7  
www.maximintegrated.com  
MAX9276/MAX9280  
3.12Gbps GMSL Deserializers  
for Coax or STP Input and Parallel Output  
DC Electrical Characteristics (continued)  
(V  
= V  
= 3.0V to 3.6V, V  
= 1.7V to 3.6V, R = 100Ω ±1% (differential), EP connected to PCB ground (GND), T = -40°C  
AVDD  
DVDD  
IOVDD L A  
to +105°C, unless otherwise noted. Typical values are at V  
= V  
= V  
= 3.3V, T = +25°C.) (Note 3)  
AVDD  
DVDD  
IOVDD A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
=
IOVDD  
15  
25  
39  
3.0V to 3.6V  
V
= 0V,  
O
DCS = ‘0’  
V
=
IOVDD  
3
20  
5
7
13  
63  
21  
50  
17  
97  
32  
1.7V to 1.9V  
DOUT_  
V
=
IOVDD  
35  
10  
33  
10  
54  
16  
3.0V to 3.6V  
V
= 0V,  
O
DCS = ‘1’  
V
=
IOVDD  
1.7V to 1.9V  
OUTPUT Short-Circuit Current  
I
mA  
OS  
V
=
IOVDD  
15  
5
3.0V to 3.6V  
V
= 0V,  
O
DCS = ‘0’  
V
=
IOVDD  
1.7V to 1.9V  
PCLKOUT  
V
=
IOVDD  
30  
9
3.0V to 3.6V  
V
= 0V,  
O
DCS = ‘1’  
V
=
IOVDD  
1.7V to 1.9V  
OPEN-DRAIN INPUT/OUTPUT (GPIO0, GPIO1, RX/SDA, TX/SCL, ERR, LOCK)  
0.7 x  
High-Level Input Voltage  
Low-Level Input Voltage  
V
V
V
IH2  
V
IOVDD  
0.3 x  
V
IL2  
V
IOVDD  
+5  
RX/SDA, TX/SCL  
-100  
Input Current  
I
(Note 5)  
µA  
IN2  
LOCK, ERR, GPIO_  
-80  
+5  
0.4  
0.3  
10  
V
= 1.7V to 1.9V  
= 3.0V to 3.6V  
IOVDD  
IOVDD  
Low-Level Output Voltage  
Input Capacitance  
V
I
= 3mA  
V
OL2  
OUT  
V
C
Each pin (Note 6)  
pF  
IN  
OUTPUT FOR REVERSE CONTROL CHANNEL (IN+, IN-)  
Legacy reverse control  
Forward channel  
disabled,  
Figure 1  
30  
50  
60  
Differential High Output Peak  
Voltage (V +) - (V -)  
channel mo  
V
mV  
mV  
de  
RODH  
IN  
IN  
High immunity mode  
100  
Legacy reverse control  
channel mode  
Forward channel  
disabled,  
Figure 1  
-60  
-30  
Differential Low Output Peak  
Voltage (V +) - (V -)  
V
RODL  
ROSH  
IN  
IN  
High immunity mode  
-100  
30  
-50  
60  
Legacy reverse control  
channel mode  
Single-Ended High Output Peak  
Voltage  
Forward channel  
disabled  
V
mV  
mV  
High immunity mode  
50  
100  
-30  
-50  
Legacy reverse control  
channel mode  
-60  
-100  
Single-Ended Low Output Peak  
Voltage  
Forward channel  
disabled  
V
ROSL  
High immunity mode  
Maxim Integrated  
8  
www.maximintegrated.com  
MAX9276/MAX9280  
3.12Gbps GMSL Deserializers  
for Coax or STP Input and Parallel Output  
DC Electrical Characteristics (continued)  
(V  
= V  
= 3.0V to 3.6V, V  
= 1.7V to 3.6V, R = 100Ω ±1% (differential), EP connected to PCB ground (GND), T = -40°C  
AVDD  
DVDD  
IOVDD L A  
to +105°C, unless otherwise noted. Typical values are at V  
= V  
= V  
= 3.3V, T = +25°C.) (Note 3)  
AVDD  
DVDD  
IOVDD A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DIFFERENTIAL INPUTS (IN+, IN-)  
Activity detector medium  
Threshold, (0x0B D[6:5] = 01)  
60  
Differential High Input Threshold  
V
Figure 2  
Figure 2  
mV  
mV  
IDH(P)  
(Peak) Voltage (V +) - (V -)  
IN  
IN  
Activity detector low  
Threshold, (0x0B D[6:5] = 00)  
47.5  
Activity detector medium  
Threshold, (0x0B D[6:5] = 01)  
-60  
-47.5  
1
Differential Low Input Threshold  
(Peak) Voltage (V +) - (V -)  
V
IDL(P)  
IN  
IN  
Activity detector medium  
Threshold, (0x0B D[6:5] = 00)  
Input Common-Mode Voltage  
((V +) + (V -))/2  
V
1.3  
1.6  
V
CMR  
IN  
IN  
Differential Input Resistance  
(Internal)  
R
80  
100  
130  
Ω
IN  
SINGLE-ENDED INPUTS (IN+, IN-)  
Activity detector medium  
threshold, (0x0B D[6:5] = 01)  
43  
Single-Ended High Input  
Threshold (Peak) Voltage  
V
Figure 2a  
Figure 2a  
mV  
ISH(P)  
Activity detector low threshold,  
(0x0B D[6:5] = 00)  
33  
Activity detector medium  
threshold, (0x0B D[6:5] = 01)  
-43  
Single-Ended Low Input  
Threshold (Peak) Voltage  
V
mV  
Ω
ISL(P)  
Activity detector medium  
threshold, (0x0B D[6:5] = 00)  
-33  
Input Resistance (Internal)  
R
40  
50  
65  
I
POWER SUPPLY  
C = 5pF  
131  
136  
164  
169  
2% spread  
active  
L
C = 10pF  
BWS = low,  
L
f
=
PCLKOUT  
Spread  
C = 5pF  
122  
127  
153  
158  
L
16.6MHz  
spectrum  
disabled  
C = 10pF  
L
C = 5pF  
144  
153  
179  
189  
2% spread  
active  
L
Total Supply Current (AVDD  
+ DVDD + IOVDD) (Note 7)  
(Worst-Case-Pattern, Figure 3)  
BWS = low,  
C = 10pF  
L
I
mA  
f
=
WCS  
PCLKOUT  
Spread  
C = 5pF  
133  
142  
167  
177  
L
33.3MHz  
spectrum  
disabled  
C = 10pF  
L
C = 5pF  
175  
190  
159  
216  
233  
197  
2% spread  
active  
L
BWS = low,  
C = 10pF  
L
f
=
PCLKOUT  
Spread  
C = 5pF  
L
66.6MHz  
spectrum  
disabled  
C = 10pF  
174  
214  
L
Maxim Integrated  
9  
www.maximintegrated.com  
MAX9276/MAX9280  
3.12Gbps GMSL Deserializers  
for Coax or STP Input and Parallel Output  
DC Electrical Characteristics (continued)  
(V  
= V  
= 3.0V to 3.6V, V  
= 1.7V to 3.6V, R = 100Ω ±1% (differential), EP connected to PCB ground (GND), T = -40°C  
AVDD  
DVDD  
IOVDD L A  
to +105°C, unless otherwise noted. Typical values are at V  
= V  
= V  
= 3.3V, T = +25°C.) (Note 3)  
AVDD  
DVDD  
IOVDD A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
C = 5pF  
212  
255  
2% spread  
L
active  
BWS = low,  
C = 10pF  
234  
190  
278  
228  
L
f
=
PCLKOUT  
Spread  
C = 5pF  
104MHz  
L
spectrum  
disabled  
C = 10pF  
212  
251  
L
C = 5pF  
154  
164  
191  
2% spread  
active  
L
Total Supply Current (AVDD  
+ DVDD + IOVDD) (Note 7)  
(Worst-Case-Pattern, Figure 3)  
BWS = mid,  
C = 10pF  
203  
L
I
mA  
f
=
WCS  
PCLKOUT  
Spread  
C = 5pF  
143  
154  
177  
189  
L
36.6MHz  
spectrum  
disabled  
C = 10pF  
L
C = 5pF  
231  
277  
305  
2% spread  
active  
L
C = 10pF  
257  
L
BWS = mid,  
f
=
PCLKOUT  
Spread  
C = 5pF  
209  
249  
L
104MHz  
spectrum  
disabled  
C = 10pF  
234  
277  
L
Sleep Mode Supply Current  
Power-Down Current  
ESD PROTECTION  
I
70  
20  
265  
µA  
µA  
CCS  
I
PWDN = GND  
Human body model, R = 1.5kΩ,  
195  
CCZ  
D
±8  
C
= 100pF  
S
Contact discharge  
Air discharge  
±10  
±12  
±10  
±20  
IEC 61000-4-2, R  
=
D
IN+, IN- (Note 8)  
V
V
kV  
kV  
ESD  
330Ω, C = 150pF  
S
Contact discharge  
Air discharge  
ISO 10605, R = 2kΩ,  
D
C
S
= 330pF  
Human body model, R = 1.5kΩ,  
D
All Other Pins (Note 9)  
±4  
ESD  
C
= 100pF  
S
Maxim Integrated  
10  
www.maximintegrated.com  
MAX9276/MAX9280  
3.12Gbps GMSL Deserializers  
for Coax or STP Input and Parallel Output  
AC Electrical Characteristics  
(V  
= V  
= 3.0V to 3.6V, V  
= 1.7V to 3.6V, R = 100Ω ±1% (differential), EP connected to PCB ground (GND), T = -40°C  
AVDD  
DVDD  
IOVDD L A  
to +105°C, unless otherwise noted. Typical values are at V  
= V  
= V  
= 3.3V, T = +25°C.) (Note 10)  
AVDD  
DVDD  
IOVDD A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
PARALLEL CLOCK OUTPUT (PCLKOUT)  
BWS = low, DRS = ‘1’  
BWS = low, DRS = ‘0’  
BWS = mid, DRS = ‘1’  
BWS = mid, DRS = ‘0’  
BWS = high, DRS = ‘1’  
BWS = high, DRS = ‘0’  
8.33  
16.66  
18.33  
36.66  
6.25  
12.5  
40  
16.66  
104  
36.66  
104  
12.5  
78  
Clock Frequency  
f
MHz  
PCLKOUT  
Clock Duty Cycle  
Clock Jitter  
DC  
t
/t or t  
/t (Note 6)  
50  
60  
%
HIGH T  
LOW T  
Period jitter, peak-to-peak, spread off,  
3.12Gbps, PRBS pattern, UI = 1/f  
(Note 6)  
t
0.05  
UI  
J
PCLKOUT  
2
I C/UART PORT TIMING  
2
I C/UART Bit Rate  
9.6  
1000  
150  
kbps  
30% to 70%, C = 10pF to 100pF, 1kΩ  
L
Output Rise Time  
Output Fall Time  
t
20  
ns  
R
pullup to V  
IOVDD  
70% to 30%, C = 10pF to 100pF, 1kΩ  
L
t
20  
150  
ns  
F
pullup to V  
IOVDD  
2
I C TIMING (Figure 4)  
Low f  
range:  
SCL  
9.6  
100  
400  
(I2CMSTBT = 010, I2CSLVSH = 10)  
Mid f range:  
SCL  
SCL Clock Frequency  
f
> 100  
> 400  
kHz  
µs  
SCL  
(I2CMSTBT 101, I2CSLVSH = 01)  
High f range:  
(I2CMSTBT = 111, I2CSLVSH = 00)  
SCL  
1000  
Low  
4.0  
0.6  
START Condition Hold Time  
Low Period of SCL Clock  
High Period of SCL Clock  
t
f
f
range  
range  
Mid  
HD:STA  
SCL  
High  
Low  
Mid  
0.26  
4.7  
1.3  
V
= 1.7V to  
IOVDD  
t
0.6  
0.5  
µs  
LOW  
SCL  
< 3V (Note 11)  
High  
V
= 3.0V to  
IOVDD  
3.6V  
Low  
Mid  
4.0  
0.6  
t
f
f
range  
range  
µs  
µs  
HIGH  
SCL  
High  
Low  
Mid  
0.26  
4.7  
Repeated START Condition  
Setup Time  
t
0.6  
SU:STA  
SCL  
High  
0.26  
Maxim Integrated  
11  
www.maximintegrated.com  
MAX9276/MAX9280  
3.12Gbps GMSL Deserializers  
for Coax or STP Input and Parallel Output  
AC Electrical Characteristics (continued)  
(V  
= V  
= 3.0V to 3.6V, V  
= 1.7V to 3.6V, R = 100Ω ±1% (differential), EP connected to PCB ground (GND), T = -40°C  
AVDD  
DVDD  
IOVDD L A  
to +105°C, unless otherwise noted. Typical values are at V  
= V  
= V  
= 3.3V, T = +25°C.) (Note 10)  
AVDD  
DVDD  
IOVDD A  
PARAMETER  
Data Hold Time  
SYMBOL  
CONDITIONS  
Low  
MIN  
0
TYP  
MAX  
UNITS  
t
f
f
f
f
range  
Mid  
0
µs  
µs  
µs  
µs  
HD:DAT  
SCL  
SCL  
SCL  
SCL  
High  
Low  
0
250  
100  
50  
Data Setup Time  
t
range  
range  
range  
Mid  
SU:DAT  
SU:STO  
High  
Low  
4.0  
0.6  
0.26  
4.7  
1.3  
0.5  
Setup Time for STOP Condition  
Bus Free Time  
t
Mid  
High  
Low  
t
Mid  
BUF  
High  
Low  
3.45  
0.9  
Mid  
V
= 1.7V to  
IOVDD  
Data Valid Time  
t
f
range  
0.55  
0.45  
µs  
µs  
VD:DAT  
SCL  
< 3V (Note 12)  
High  
V
= 3.0V to  
IOVDD  
3.6V  
Low  
3.45  
0.9  
Mid  
V
= 1.7V to  
IOVDD  
Data Valid Acknowledge Time  
t
f
f
range  
range  
0.55  
0.45  
VD:ACK  
SCL  
< 3V (Note 13)  
High  
V
= 3.0V to  
IOVDD  
3.6V  
Low  
Mid  
50  
50  
Pulse Width of Spikes  
Suppressed  
t
ns  
SP  
SCL  
High  
50  
Capacitive Load Each Bus Line  
C
100  
pF  
b
SWITCHING CHARACTERISTICS  
20% to 80%,  
= 1.7V to  
1.9V (Note 6)  
DCS = ‘1’, C = 10pF  
0.4  
0.5  
0.25  
0.3  
0.5  
0.6  
0.3  
0.4  
2.2  
2.8  
1.8  
2.0  
3.1  
3.8  
2.2  
2.4  
L
V
IOVDD  
DCS = ‘0’, C = 5pF  
L
PCLKOUT Rise-and-Fall Time,  
Figure 5  
t , t  
ns  
ns  
R
F
20% to 80%,  
DCS = ‘1’, C = 10pF  
L
V
= 3.0V to  
IOVDD  
DCS = ‘0’, C = 5pF  
3.6V (Note 1)  
L
20% to 80%,  
DCS = ‘1’, C = 10pF  
L
V
= 1.7V to  
IOVDD  
DCS = ‘0’, C = 5pF  
1.9V (Note 1)  
L
Parallel Data Rise-and-Fall Time,  
Figure 6  
t , t  
R
F
20% to 80%,  
DCS = ‘1’, C = 10pF  
L
V
= 3.0V to  
IOVDD  
DCS = ‘0’, C = 5pF  
3.6V (Note 6)  
L
Maxim Integrated  
12  
www.maximintegrated.com  
MAX9276/MAX9280  
3.12Gbps GMSL Deserializers  
for Coax or STP Input and Parallel Output  
AC Electrical Characteristics (continued)  
(V  
= V  
= 3.0V to 3.6V, V  
= 1.7V to 3.6V, R = 100Ω ±1% (differential), EP connected to PCB ground (GND), T = -40°C  
AVDD  
DVDD  
IOVDD L A  
to +105°C, unless otherwise noted. Typical values are at V  
= V  
= V  
= 3.3V, T = +25°C.) (Note 10)  
AVDD  
DVDD  
IOVDD A  
PARAMETER  
SYMBOL  
CONDITIONS  
Spread spectrum  
MIN  
TYP  
MAX  
UNITS  
6960  
enabled  
Deserializer Delay  
t
(Note 14) Figure 7  
Bits  
SD  
Spread spectrum  
2160  
400  
400  
350  
3
disabled  
Reverse Control Channel Output  
Rise Time  
No forward channel data transmission,  
Figure 1  
t
180  
180  
ns  
ns  
µs  
R
Reverse Control Channel Output  
Fall Time  
No forward channel data transmission,  
Figure 1  
t
F
Deserializer GPI to serializer GPO (cable  
delay not included), Figure 8  
GPI to GPO Delay  
t
GPIO  
Spread spectrum  
enabled  
Figure 9  
Lock Time  
t
ms  
ms  
LOCK  
Spread spectrum  
disabled  
2
8
Power-Up Time  
t
Figure 10  
PU  
2
I S/TDM OUTPUT TIMING (Note 6)  
f
= 48kHz or  
1.2e-3 1.5e-3  
x t x t  
WS  
t
= 1/f  
,
44.1kHz  
WS  
WS  
WS  
WS  
(cycle-to-cycle),  
rising-to-falling  
edge or falling-to-  
rising edge  
1.6e-3 2e-3 x  
x t  
WS Jitter  
tj  
f
= 96kHz  
ns  
ns  
WS  
WS  
WS  
t
WS  
WS  
1.6e-3 2e-3 x  
x t  
f
= 192kHz  
t
WS  
WS  
n
f
= 16 bits,  
SCK  
13e-3 x 16e-3 x  
= 48kHz or  
SCK  
t
t
SCK  
SCK  
t
= 1/f  
,
44.1kHz  
SCK  
SCK  
(cycle-to-cycle),  
rising-to-rising  
edge  
2
SCK Jitter (2-Channel I S)  
tj  
SCK1  
n
= 24 bits,  
39e-3 x 48e-3 x  
SCK  
f
= 96kHz  
t
t
SCK  
WS  
SCK  
n
= 32 bits,  
0.1 x  
0.13 x  
SCK  
f
= 192kHz  
t
t
SCK  
WS  
SCK  
n
= 16 bits,  
= 48kHz or  
SCK  
52e-3 x 64e-3 x  
f
WS  
t
t
SCK  
SCK  
44.1kHz  
t
= 1/f  
,
SCK  
SCK  
(cycle-to-cycle),  
rising-to-rising  
edge  
n
= 24 bits,  
= 96kHz  
156e-3 192e-3  
x t x t  
SCK Jitter (8-Channel TDM)  
tj  
ns  
SCK  
SCK2  
f
WS  
SCK  
SCK  
n
= 32 bits,  
0.4 x  
0.52 x  
SCK  
f
= 192kHz  
t
t
SCK  
WS  
SCK  
Audio Skew Relative to Video  
t
Video and audio synchronized  
C = 10pF, DCS = 1  
3 x t  
4 x t  
WS  
µs  
ASK  
WS  
0.3  
0.4  
3.1  
3.8  
L
SCK, SD, WS Rise-and-Fall Time  
t , t  
20% to 80%  
ns  
R
F
C = 5pF, DCS = 0  
L
Maxim Integrated  
13  
www.maximintegrated.com  
MAX9276/MAX9280  
3.12Gbps GMSL Deserializers  
for Coax or STP Input and Parallel Output  
AC Electrical Characteristics (continued)  
(V  
= V  
= 3.0V to 3.6V, V  
= 1.7V to 3.6V, R = 100Ω ±1% (differential), EP connected to PCB ground (GND), T = -40°C  
AVDD  
DVDD  
IOVDD L A  
to +105°C, unless otherwise noted. Typical values are at V  
= V  
= V  
= 3.3V, T = +25°C.) (Note 10)  
AVDD  
DVDD  
IOVDD A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
SD, WS Valid Time Before SCK  
(2-Channel I S)  
0.20 x  
0.5 x  
t
SCK  
t
t
t
t
t
= 1/f  
= 1/f  
= 1/f  
= 1/f  
, Figure 11  
, Figure 11  
, Figure 11  
, Figure 11  
ns  
ns  
ns  
ns  
DVB1  
SCK  
SCK  
SCK  
SCK  
SCK  
SCK  
SCK  
SCK  
2
t
SCK  
SD, WS Valid Time After SCK  
0.20 x  
0.5 x  
t
SCK  
t
DVA1  
DVB2  
2
(2-Channel I S)  
t
SCK  
SD, WS Valid Time Before SCK  
(8-Channel TDM)  
0.20 x  
0.5 x  
t
SCK  
t
t
SCK  
SD, WS Valid Time After SCK  
(8-Channel TDM)  
0.20 x  
0.5 x  
t
SCK  
t
DVA2  
t
SCK  
Note 3: Limits are 100% production tested at T = +25°C. Limits over the operating temperature range are guaranteed by design  
A
and characterization, unless otherwise noted.  
Note 4: To provide a mid level, leave the input open, or, if driven, put driver in high impedance. High-impedance leakage current  
must be less than ±10µA.  
Note 5:  
I
MIN due to voltage drop across the internal pullup resistor.  
IN  
Note 6: Not production tested. Guaranteed by design.  
Note 7: HDCP not enabled (MAX9280 only). IOVDD current is not production tested. See Table 23 for additional supply current  
when HDCP is enabled  
Note 8: Specified pin to ground.  
Note 9: Specified pin to all supply/ground.  
Note 10: Not production tested, guaranteed by bench characterization.  
2
2
2
Note 11: The I C bus standard t  
(min) = 0.5µs.  
LOW  
Note 12: The I C bus standard t  
(max) = 0.45µs.  
(max) = 0.45µs.  
VD:DAT  
VD:ACK  
Note 13:.The I C bus standard t  
Note 14: Measured in serial link bit times. Bit time = 1/(30 x f  
) for BWS = ‘0’ or open. Bit time = 1/(40 x f  
)
PCLKIN  
PCLKIN  
for BWS = ‘1’.  
Maxim Integrated  
14  
www.maximintegrated.com  
MAX9276/MAX9280  
3.12Gbps GMSL Deserializers  
for Coax or STP Input and Parallel Output  
Typical Operating Characteristics  
(V  
= V  
= V  
= 3.3V, T = +25°C, unless otherwise noted.)  
AVDD  
DVDD  
IOVDD  
A
SUPPLY CURRENT  
SUPPLY CURRENT  
vs. PCLKOUT FREQUENCY (BWS = 1)  
vs. PCLKOUT FREQUENCY (BWS = 0)  
190  
180  
170  
160  
150  
140  
200  
PRBS ON, SS OFF,  
COAX MODE  
PRBS ON, SS OFF,  
COAX MODE  
190  
180  
170  
EQ ON  
EQ ON  
160  
150  
140  
EQ OFF  
130  
120  
130  
120  
EQ OFF  
5
20  
35  
50  
65  
80  
5
15 25 35 45 55 65 75 85 95 105  
PCLKOUT FREQUENCY (MHz)  
PCLKOUT FREQUENCY (MHz)  
SUPPLY CURRENT  
SUPPLY CURRENT  
vs. PCLKOUT FREQUENCY (BWS = OPEN)  
vs. PCLKOUT FREQUENCY (BWS = 0)  
210  
200  
190  
180  
170  
160  
150  
140  
130  
220  
210  
200  
PRBS ON, SS OFF,  
COAX MODE  
PRBS ON, EQ ON,  
COAX MODE  
190  
180  
170  
EQ ON  
SS ON  
160  
150  
140  
130  
120  
EQ OFF  
SS OFF  
15  
30  
45  
60  
75  
95  
105  
5
15 25 35 45 55 65 75 85 95 105  
PCLKOUT FREQUENCY (MHz)  
PCLKOUT FREQUENCY (MHz)  
SUPPLY CURRENT  
SUPPLY CURRENT  
vs. PCLKOUT FREQUENCY (BWS = 1)  
vs. PCLKOUT FREQUENCY (BWS = OPEN)  
210  
200  
190  
180  
170  
160  
150  
140  
130  
240  
230  
220  
PRBS ON, EQ ON,  
COAX MODE  
PRBS ON, EQ ON,  
COAX MODE  
210  
200  
190  
SS ON  
SS ON  
180  
170  
160  
150  
140  
SS OFF  
SS OFF  
5
20  
35  
50  
65  
80  
15  
30  
45  
60  
75  
90  
105  
PCLKOUT FREQUENCY (MHz)  
PCLKOUT FREQUENCY (MHz)  
Maxim Integrated  
15  
www.maximintegrated.com  
MAX9276/MAX9280  
3.12Gbps GMSL Deserializers  
for Coax or STP Input and Parallel Output  
Typical Operating Characteristics (continued)  
(V  
= V  
= V  
= 3.3V, T = +25°C, unless otherwise noted.)  
AVDD  
DVDD  
IOVDD  
A
OUTPUT POWER SPECTRUM  
OUTPUT POWER SPECTRUM  
vs. PCLKOUT FREQUENCY (VARIOUS SPREAD)  
vs. PCLKOUT FREQUENCY (VARIOUS SPREAD)  
10  
10  
f
= 33.3MHz  
f
= 66.7MHz  
PCLKOUT  
PCLKOUT  
0
0
0% SPREAD  
-10  
-10  
0% SPREAD  
-20  
-30  
-40  
-20  
-30  
-40  
-50  
-60  
-50  
-60  
-70  
-80  
-90  
-70  
-80  
-90  
2% SPREAD 4% SPREAD  
2% SPREAD  
4% SPREAD  
31.0 31.5 32.0 32.5 33.0 33.5 34.0 34.5 35.0 35.5  
PCLKOUT FREQUENCY (MHz)  
62 63 64 65 66 67 68 69 70 71  
PCLKOUT FREQUENCY (MHz)  
MAXIMUM PCLKOUT FREQUENCY  
vs. COAX CABLE LENGTH (BER 10-10  
)
10  
-10  
-20  
OPTIMUM PE/EQ  
NO PE, 10.7dB EQ  
-40  
-60  
-70  
-90  
BER CAN BE AS LOW AS 10-12 FOR  
CABLE LENGTHS LESS THAN 15m  
0
5
10  
15  
20  
25  
CABLE LENGTH (m)  
Maxim Integrated  
16  
www.maximintegrated.com  
MAX9276/MAX9280  
3.12Gbps GMSL Deserializers  
for Coax or STP Input and Parallel Output  
Pin Configuration  
TOP VIEW  
42 41 40 39 38 37 36 35 34 33 32 31 30 29  
DOUT10  
28 DOUT24  
43  
44  
45  
27  
26  
IOVDD  
DOUT9  
IOVDD  
DOUT25  
25 DOUT26  
DOUT8 46  
DOUT7 47  
DOUT6 48  
24 DOUT27/CNTL1  
23  
22  
21  
20  
DOUT28/CNTL2  
SD/HIM  
SCK  
49  
DOUT5  
MAX9276  
MAX9280  
DOUT4 50  
DOUT3 51  
WS  
DOUT2  
19 LOCK  
18  
52  
DOUT1 53  
54  
ERR  
17 PWDN  
DOUT0  
AVDD 55  
56  
EP  
+
16 TX/SCL  
RX/SDA  
15  
CX/TP  
2
3
4
5
6
7
8
9
10  
1
11  
12 13 14  
TQFN/QFND  
*CONNECT EP TO GROUND PLANE  
Pin Description  
PIN  
NAME  
FUNCTION  
Active-Low Parallel Output-Enable Input With Internal Pulldown to EP. Set ENABLE = low to enable  
PCLKOUT DOUT_ and CNTL_ outputs. Set ENABLE = high to put PCLKOUT, DOUT_ and CNTL_ into  
high impedance.  
1
ENABLE  
A/V Status Register Interrupt Output/Address Selection Input With Internal Pulldown to EP. Functions  
as ADD2 input at power-up or when resuming from power-down mode (PWDN = low), and switches to  
INTOUT output automatically after power-up.  
2
INTOUT/ADD2 ADD2: Bit value is latched at power-up or when resuming from power-down mode (PWDN = low). See  
Table 1. Connect INTOUT/ADD2 to IOVDD with a 30kΩ resistor to set high or leave open to set low.  
INTOUT: Indicates new data in the A/V status registers. INTOUT is reset when the A/V status registers  
are read.  
3
4
5
GPI  
General-Purpose Input With Internal Pulldown to EP. The serializer GPO (or INT) output follows GPI.  
2
I C Select. Control channel interface protocol select input with internal pulldown to EP. Set I2CSEL =  
I2CSEL  
GPIO0  
2
high to select I C interface. Set I2CSEL = low to select UART interface.  
Open-Drain, General-Purpose Input/Output with Internal 60kΩ Pullup to IOVDD  
Maxim Integrated  
17  
www.maximintegrated.com  
MAX9276/MAX9280  
3.12Gbps GMSL Deserializers  
for Coax or STP Input and Parallel Output  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
Three-Level Bus Width Select Input. Set BWS to the same level on both sides of the serial link. Set  
BWS = low for 24 bit mode. Set BWS = high for 32-bit mode. Set BWS = open for high-bandwidth  
mode.  
6
BWS  
3.3V Analog Power Supply. Bypass AVDD to EP with 0.1µF and 0.001µF capacitors as close as  
possible to the device with the smaller capacitor closest to AVDD.  
7, 55  
AVDD  
8
9
IN+  
IN-  
Noninverting Coax/Twisted-Pair Serial Input  
Inverting Coax/Twisted-Pair Serial Input  
Mode Select with Internal Pulldown to EP. Set MS = low, to select base mode. Set MS = high to select  
the bypass mode.  
10  
11  
MS  
Auxiliary Control Signal Output/Address Selection Input With Internal Pulldown to EP. Functions as  
ADD1 input at power-up or when resuming from power-down mode (PWDN = low), and switches to  
CNTL3 output automatically after power-up.  
CNTL3/ADD1 ADD1: Bit value is latched at power-up or when resuming from power-down mode (PWDN = low). See  
Table 1. Connect CNTL3/ADD1 to IOVDD with a 30kΩ resistor to set high or leave open to set low.  
CNTL3: Used only in high-bandwidth mode (BWS = open). CNTL3 not encrypted when HDCP is  
enabled (MAX9280 only).  
12  
13  
GPIO1  
DVDD  
Open-Drain, General-Purpose Input/Output With Internal 60kΩ Pullup to IOVDD  
3.3V Digital Power Supply. Bypass DVDD to EP with 0.1µF and 0.001µF capacitors as close as  
possible to the device with the smaller value capacitor closest to DVDD.  
Auxiliary Control Signal Output/Address Selection Input With Internal Pulldown to EP. Functions as  
ADD0 input at power-up or when resuming from power-down mode (PWDN = low), and switches to  
CNTL0 output automatically after power-up.  
14  
CNTL0/ADD0 ADD0: Bit value is latched at power-up or when resuming from power-down mode (PWDN = low). See  
Table 1. Connect CNTL0/ADD0 to IOVDD with a 30kΩ resistor to set high or leave open to set low.  
CNTL0: Used only in high-bandwidth mode (BWS = open). CNTL0 not encrypted when HDCP is  
enabled (MAX9280 only  
).  
2
UART Receive/I C Serial Data Input/Output with Internal 30kΩ Pullup to IOVDD. Function is  
determined by the state of I2CSEL at power-up. RX/SDA has an open-drain driver and requires a  
15  
16  
RX/SDA  
TX/SCL  
pullup resistor.  
RX: Input of the serializer’s UART.  
SDA: Data input/output of the serializer’s I C Master/Slave.  
2
2
UART Transmit/I C Serial Clock Input/Output with Internal 30kΩ Pullup to IOVDD. Function is  
determined by the state of I2CSEL at power-up. TX/SCL has an open-drain driver and requires a pullup  
resistor.  
TX: Output of the serializer’s UART.  
SCL: Clock input/output of the serializer’s I C Master/Slave.  
2
Active-Low, Power-Down Input with Internal Pulldown to EP. Set PWDN low to enter power-down mode  
to reduce power consumption.  
17  
18  
PWDN  
ERR  
Error Output. Open-drain data error detection and/or correction indication output with internal 30kΩ  
pullup to IOVDD. ERR is high when PWDN is low  
Open-Drain Lock Output with Internal 30kΩ Pullup to IOVDD. LOCK = high indicates that PLLs are  
locked with correct serial-word-boundary alignment. LOCK = low indicates that PLLs are not locked or  
an incorrect serial-word-boundary alignment. LOCK is high when PWDN = low.  
19  
LOCK  
Maxim Integrated  
18  
www.maximintegrated.com  
MAX9276/MAX9280  
3.12Gbps GMSL Deserializers  
for Coax or STP Input and Parallel Output  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
2
2
I S/TDM Word-Select Input/Output. Powers up as an I S output (deserializer provided clock). Set  
AUDIOMODE bit = ‘1’ to change WS to an input with internal pulldown to GND and supply WS  
externally (system provided clock).  
20  
WS  
2
2
I S/TDM Serial-Clock Input/Output. Powers up as an I S output (deserializer provided clock). Set  
AUDIOMODE bit = ‘1’ to change SCK to an input with internal pulldown to GND and supply WS  
externally (system provided clock).  
21  
SCK  
2
I S/TDM Serial-Data Output/High-Immunity Mode Input.  
Functions as HIM input with internal pulldown to EP at power-up or when resuming from power-down  
mode (PWDN = low), and switches to SD output automatically after power-up.  
HIM: Default HIGHIMM bit value is latched at power-up or when resuming from power-down mode  
(PWDN = low) and is active-high. Connect SD/HIM to IOVDD with a 30kΩ resistor to set high or leave  
open to set low. HIGHIMM can be programmed to a different value after power-up. HIGHIMM in the  
serializer must be set to the same value.  
22  
SD/HIM  
2
SD: Disable I S/TDM encoding to serial data to use SD as an additional control/data output valid on the  
selected edge of PCLKOUT. Encrypted when HDCP is enabled (MAX9280 only).  
Parallel Data/Auxiliary Control Signal Output Valid on the Selected Edge of PCLKOUT.  
DOUT28/CNTL2 remains high impedance in 24-bit mode (BWS = low)  
DOUT28 used only in 32-bit mode (BWS = high). DOUT28 not encrypted when HDCP is enabled  
(MAX9280 only).  
CNTL2 used only in high-bandwidth mode (BWS = open). CNTL2 not encrypted when HDCP is  
enabled (MAX9280 only).  
23  
DOUT28/CNTL2  
DOUT27/CNTL1  
Parallel Data/Auxiliary Control Signal Output Valid on the Selected Edge of PCLKOUT.  
DOUT27/CNTL1 remains high impedance in 24-bit mode (BWS = low)  
DOUT27 used only in 32-bit mode (BWS = high). DOUT27 not encrypted when HDCP is enabled  
(MAX9280 only).  
24  
CNTL1 used only in high-bandwidth mode (BWS = open). CNTL1 not encrypted when HDCP is  
enabled (MAX9280 only)  
Parallel Data Outputs Valid on the Selected Edge of PCLKOUT. Encrypted when HDCP is enabled  
(MAX9280 only). DOUT[26:21] used only in 32-bit and high-bandwidth modes (BWS = high or open).  
DOUT[26:21] remains high-impedance in 24-bit mode.  
25, 26,  
28–31  
DOUT[26:21]  
IOVDD  
I/O Supply Voltage. 1.8V to 3.3V logic I/O power supply. Bypass IOVDD to EP with 0.1µF and 0.001µF  
capacitors as close as possible to the device with the smallest value capacitor closest to IOVDD.  
27, 44  
Parallel Data/Device Enable Output Valid on the Selected Edge of PCLKOUT. Defaults to parallel data  
output on power-up.  
32  
DOUT20/DE  
DOUT19/VS  
DOUT18/HS  
Device enable output when HDCP is enabled (MAX9280 only) or when in high-bandwidth mode (BWS  
= open).  
Parallel Data/Vertical Sync Output Valid on the Selected Edge of PCLKOUT. Defaults to parallel data  
output on power-up.  
Vertical sync output when HDCP is enabled (MAX9280 only) or when in high-bandwidth mode (BWS =  
open).  
33  
Parallel Data/Horizontal Sync Output Valid on the Selected Edge of PCLKOUT. Defaults to parallel data  
output on power-up.  
Horizontal sync output when HDCP is enabled (MAX9280 only) or when in high-bandwidth mode (BWS  
= open).  
34  
Maxim Integrated  
19  
www.maximintegrated.com  
MAX9276/MAX9280  
3.12Gbps GMSL Deserializers  
for Coax or STP Input and Parallel Output  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
35, 36,  
38–43,  
45–54  
Parallel Data Outputs Valid on the Selected Edge of PCLKOUT. Encrypted when HDCP is enabled  
(MAX9280 only)  
DOUT[17:0]  
37  
56  
PCLKOUT  
CX/TP  
Parallel Clock Output Used for DOUT[28:0]. Latches parallel data into the input of another device.  
Three-Level Coax/Twisted Pair Select Input. See Table 10 for function.  
Exposed Pad. EP is internally connected to device ground. MUST connect EP to the PCB ground plane  
through an array of vias for proper thermal and electrical performance.  
EP  
Functional Diagram  
PCLKOUT  
SSPLL  
RGB  
CLKDIV  
CDRPLL  
MAX9276  
MAX9280  
ENABLE  
(MAX9280  
ONLY)  
DOUT[17:0]  
RGB[17:0]  
CX/  
TP  
HDCP  
DECRYPT  
RGB[23:18]  
(30-BIT OR 9b10b)  
DOUT[26:21]  
VIDEO  
SYNC  
IN+  
IN-  
DOUT18/HS  
DOUT19/VS  
DOUT20/DE  
HS  
VS  
DE  
HS  
VS  
DE  
SERIAL  
TO  
PARALLEL  
CML RX  
AND EQ  
8b/10b OR  
9b10b  
DOUT[28:27]  
(30-BIT)  
HDCP  
KEYS CONTROL  
HDCP  
DOUT[28:27]  
(30-BIT)  
DOUT27/CNTL1  
DOUT28/CNTL2  
FIFO  
DECODE  
DESCRAMBLE  
CNTL[2:1]  
(9b10b)  
CNTL[3:0]  
(9b10b)  
CNTL0/ADD0  
CNTL3/ADD1  
CONTROL  
(9b10b)  
TX  
CNTL0, CNTL3  
(9b10b)  
ACB  
FCC  
REVERSE  
CONTROL  
CHANNEL  
HDCP  
DECRYPT  
2
I S/TDM  
ADD[2:0]  
DATA  
DESCRIPTION  
REGISTERS  
ADD[2:0]  
CONTROL  
2
UART/I C  
INTOUT/  
ADD2  
SD/HIM SCK  
WS  
GPI  
GPIO_ TX/  
RX/  
I2CSEL  
PWDN MS BWS  
SCL SDA  
Maxim Integrated  
20  
www.maximintegrated.com  
MAX9276/MAX9280  
3.12Gbps GMSL Deserializers  
for Coax or STP Input and Parallel Output  
R /2  
L
IN+  
IN-  
MAX9276  
MAX9280  
V
OD  
REVERSE  
CONTROL-CHANNEL  
TRANSMITTER  
V
CMR  
R /2  
L
IN+  
IN-  
V
CMR  
IN-  
IN+  
V
ROH  
0.9 x V  
ROH  
0.1 x V  
ROH  
(IN+) - (IN-)  
0.1 x V  
ROL  
ROL  
t
R
0.9 x V  
V
ROL  
t
F
Figure 1. Reverse Control Channel Output Parameters  
R /2  
L
IN+  
IN-  
V
IS(P)  
0.22µF  
49.9  
V
ID(P)  
IN_  
R /2  
L
_
V
IN+  
+
_
+
C
C
IN  
IN  
V
IN_  
-
C
IN  
+
_
V
IN-  
V | V - V  
ID(P) = IN+ IN-  
|
V
(V + V )/2  
CMR = IN+ IN-  
Figure 2. Test Circuit for Differential Input Measurement  
Figure 2a. Test Circuit for Single-Ended Input Measurement  
Maxim Integrated  
21  
www.maximintegrated.com  
MAX9276/MAX9280  
3.12Gbps GMSL Deserializers  
for Coax or STP Input and Parallel Output  
PCLKOUT  
DOUT_  
NOTE: PCLKOUT PROGRAMMED FOR RISING LATCH EDGE.  
Figure 3. Worst-Case Pattern Output  
START  
CONDITION  
BIT 7  
MSB  
(A7)  
STOP  
CONDITION  
(P)  
BIT 6  
(A6)  
BIT 0  
(R/W)  
ACKNOWLEDGE  
(A)  
PROTOCOL  
(S)  
t
t
t
HIGH  
SU;STA  
LOW  
1/f  
SCL  
V
V
x 0.7  
x 0.3  
IOVDD  
IOVDD  
SCL  
t
SP  
t
t
f
BUF  
t
r
V
x 0.7  
x 0.3  
IOVDD  
SDA  
V
IOVDD  
t
t
t
t
t
SU;STO  
HD;STA  
t
HD;DAT  
VD;DAT  
VD;ACK  
SU;DAT  
2
Figure 4. I C Timing Parameters  
t
T
V
OH MIN  
t
HIGH  
PCLKOUT  
V
OL MAX  
t
LOW  
Figure 5. Parallel Clock Output Requirements  
Maxim Integrated  
22  
www.maximintegrated.com  
MAX9276/MAX9280  
3.12Gbps GMSL Deserializers  
for Coax or STP Input and Parallel Output  
C
L
SINGLE-ENDED OUTPUT LOAD  
0.8 x V  
I0VDD  
0.2 x V  
I0VDD  
t
t
R
F
Figure 6. Output Rise-and-Fall Times  
SERIAL-WORD LENGTH  
SERIAL WORD N  
SERIAL WORD N+1  
SERIAL WORD N+2  
IN+/-  
FIRST BIT  
LAST BIT  
DOUT_  
PARALLEL WORD N-1  
PARALLEL WORD N  
PARALLEL WORD N-2  
PCLKOUT  
t
SD  
NOTE: PCLKOUT PROGRAMMED FOR RISING LATCHING EDGE.  
Figure 7. Deserializer Delay  
V
IH_MIN  
DESERIALIZER  
GPI  
V
IL_MAX  
t
GPIO  
t
GPIO  
V
OH_MIN  
SERIALIZER  
GPO  
V
OL_MAX  
Figure 8. GPI-to-GPO Delay  
Maxim Integrated  
23  
www.maximintegrated.com  
MAX9276/MAX9280  
3.12Gbps GMSL Deserializers  
for Coax or STP Input and Parallel Output  
Detailed Description  
The MAX9276/MAX9280 deserializers, when paired with  
the MAX9275/MAX9277/MAX9279/MAX9281 serializers,  
provides the full set of operating features, but is back-  
ward-compatible with the MAX9249–MAX9270 family of  
gigabit multimedia serial link (GMSL) devices, and have  
basic functionality when paired with any GMSL device.  
The MAX9280 has high-bandwidth digital content protec-  
tion (HDCP) while the MAX9276 does not.  
IN+ - IN-  
t
LOCK  
LOCK  
V
OH  
The deserializer has a maximum serial-bit rate of 3.12Gbps  
for up to 15m of cable and operates up to a maximum out-  
put clock of 104MHz in 24-bit mode and 27-bit high-band-  
width mode, or 78MHz in 32-bit mode. This bit rate and  
output flexibility support a wide range of displays, from  
QVGA (320 x 240) to 1920 x 720 and higher with 24-bit  
color, as well as megapixel image sensors. An encoded  
PWDN MUST BE HIGH  
Figure 9. Lock Time  
2
audio channel supports L-PCM I S stereo and up to eight  
IN+/-  
channels of L-PCM in TDM mode. Sample rates of 32kHz  
to 192kHz are supported with sample depth from 8 to 32  
bits. Input equalization, combined with GMSL serializer  
pre/deemphasis, extends the cable length and enhances  
link reliability  
V
IH1  
PWDN  
The control channel enables a µC to program the serial-  
izer and deserializer registers and program registers on  
peripherals. The control channel is also used to perform  
HDCP functions (MAX9280 only). The µC can be located  
at either end of the link, or when using two µCs, at both  
ends. Two modes of control-channel operation are avail-  
t
PU  
LOCK  
V
OH  
2
able. Base mode uses either I C or GMSL UART protocol,  
Figure 10. Power-Up Delay  
while bypass mode uses a user-defined UART protocol.  
UART protocol allows full-duplex communication, while  
2
I C allows half-duplex communication.  
WS  
Spread spectrum is available to reduce EMI on the paral-  
lel output. The serial input complies with ISO 10605 and  
IEC 61000-4-2 ESD protection standards.  
t
t
DVB  
DVA  
t
R
Register Mapping  
SCK  
SD  
Registers set the operating conditions of the deserializers  
and are programmed using the control channel in base  
mode. The MAX9276/MAX9280 holds its own device  
address and the device address of the serializer it is  
paired with. Similarly, the serializer holds its own device  
address and the address of the MAX9276/MAX9280.  
Whenever a device address is changed be sure to write  
the new address to both devices. The default device  
address of the deserializer is set by the ADD[2:0] and  
CX/TP inputs (see Table 1). Registers 0x00 and 0x01 in  
both devices hold the device addresses.  
t
t
DVA  
DVB  
t
F
2
Figure 11. Output I S Timing Parameters  
Maxim Integrated  
24  
www.maximintegrated.com  
MAX9276/MAX9280  
3.12Gbps GMSL Deserializers  
for Coax or STP Input and Parallel Output  
Table 1. Device Address Defaults (Register 0x00, 0x01)  
SERIALIZER  
DEVICE  
DESERIALIZER  
DEVICE  
DEVICE ADDRESS  
PIN  
(BIN)  
ADDRESS  
(hex)  
ADDRESS  
(hex)  
CX/TP**  
ADD2  
ADD1  
ADD0  
D7 D6 D5 D4 D3 D2 D1  
D0  
High/Low  
High/Low  
High/Low  
High/Low  
High/Low  
High/Low  
High/Low  
High/Low  
Open  
Low  
Low  
Low  
Low  
High  
High  
High  
High  
Low  
Low  
Low  
Low  
High  
High  
High  
High  
Low  
Low  
High  
High  
Low  
Low  
High  
High  
Low  
Low  
High  
High  
Low  
Low  
High  
High  
Low  
High  
Low  
High  
Low  
High  
Low  
High  
Low  
High  
Low  
High  
Low  
High  
Low  
High  
1
1
1
0
1
1
1
0
1
1
1
0
1
1
1
0
0
0
0
1
1
1
1
1
0
0
0
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
X*  
X*  
X*  
X*  
X*  
X*  
X*  
X*  
X*  
X*  
X*  
X*  
X*  
X*  
X*  
X*  
0
0
1
0
0
0
1
1
0
0
1
0
0
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
0
1
0
0
0
0
RW  
80  
84  
88  
44  
C0  
C4  
C8  
48  
80  
84  
88  
44  
C0  
C4  
C8  
48  
90  
94  
98  
54  
D0  
D4  
D8  
58  
92  
96  
9A  
56  
D2  
D6  
DA  
5A  
R//W  
R//W  
R//W  
R//W  
R//W  
R//W  
R//W  
R//W  
R//W  
R//W  
R//W  
R//W  
R//W  
R//W  
R//W  
0
0
0
0
0
0
X*  
X*  
X*  
X*  
X*  
X*  
X*  
X*  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
*X = 0 for the serializer address, X = 1 for the deserializer address  
**CX/TP determine the serial cable type CX/TP = open addresses only for coax mode.  
Input data is scrambled and then 8b/10b coded (9b10b  
in high-bandwidth mode). The deserializer recovers the  
embedded serial clock, then samples, decodes, and  
descrambles the data. In 24-bit mode, the first 21 bits  
contain video data. In 32-bit mode, the first 29 bits contain  
video data. In high-bandwidth mode, the first 24 bits con-  
tain video data, or special control signal packets. The last  
3 bits contain the embedded audio channel, the embed-  
ded forward control channel, the parity bit of the serial  
word (Figure 12, Figure 13).  
Output Bit Map  
The output bit width depends on settings of the bus width  
(BWS) pin. Table 2 lists the bit map. Unused output bits  
are pulled low.  
Serial Link Signaling and Data Format  
The serializer uses differential CMLsignaling to drive twist-  
ed-pair cable and single-ended CML to drive coaxial cable  
with programmable pre/deemphasis and AC-coupling.  
The deserializer uses AC-coupling and programmable  
channel equalization.  
Maxim Integrated  
25  
www.maximintegrated.com  
MAX9276/MAX9280  
3.12Gbps GMSL Deserializers  
for Coax or STP Input and Parallel Output  
Table 2. Output Map  
MODE  
SIGNAL  
OUTPUT PIN  
24-BIT MODE  
(BWS = LOW)  
HIGH-BANDWIDTH  
MODE (BWS = MID  
32-BIT MODE  
(BWS = HIGH)  
R[5:0]  
G[5:0]  
B[5:0]  
DOUT[5:0]  
DOUT [11:6]  
DOUT [17:12]  
Used  
Used  
Used  
Used  
Used  
Used  
Used  
Used  
Used  
DOUT18/HS, DOUT19/VS,  
DOUT20/DE  
HS, VS, DE  
Used**  
Used**  
Used**  
R[7:6]  
G[7:6]  
DOUT [22:21]  
DOUT [24:23]  
Used+  
Used+  
Used+  
Not used  
Not used  
Used  
Used  
Used  
Used  
Used  
B[7:6]  
DOUT [26:25]  
Used  
Used  
CNTL[2:1]  
CNTL3, CNTL0  
DOUT [28:27]/CNTL[2:1]  
CNTL3/ADD1, CNTL0/ADD0  
Used*,**  
Used*,**  
Used  
Used**  
Not used  
Used  
2
I S/TDM  
WS, SCK, SD/HIM  
AUX SIGNAL  
Used  
Used  
Used  
*See the High-Bandwidth Mode section for details on timing requirements.  
+Outputs used only when the respective color lookup tables are enabled.  
**Not encrypted when HDCP is enabled (MAX9280 only).  
24 BITS  
SERIAL DATA  
D0  
D1  
D17  
D18  
D19  
D20  
ACB  
FCC  
AUDIO DECODE  
SCK  
PCB  
FORWARD  
CONTROL  
PACKET  
PARITY  
CHANNEL BIT  
CHECK BIT  
DOUT  
0
DOUT  
1
DOUT  
17  
DOUT  
18/HS  
DOUT  
19/VS  
DOUT  
20/DE  
RX/  
TX/  
OUTPUT PIN  
WS  
SD  
SDA  
SCL  
OUTPUT  
SIGNAL  
R0  
R1  
B5  
HS  
VS  
DE  
RGB DATA  
CONTROL BITS  
2
2
UART/I C  
I S/TDM  
AUDIO  
MAX9280 NOTE: VS/HS MUST BE SET AT DOUT[19:18] FOR HDCP  
FUNCTIONALITY.  
ONLY DOUT[17:0] AND ACB HAVE HDCP DECRYPTION.  
Figure 12. 24-Bit Mode Serial Data Format  
Maxim Integrated  
26  
www.maximintegrated.com  
MAX9276/MAX9280  
3.12Gbps GMSL Deserializers  
for Coax or STP Input and Parallel Output  
32 BITS  
D22  
SERIAL DATA  
D0  
D1  
D17  
D18  
D19  
D20  
D21  
D23  
D24  
D25  
D26  
D27  
D28  
ACB  
FCC  
AUDIO DECODE  
SCK  
PCB  
FORWARD  
CONTROL  
PACKET  
PARITY  
CHANNEL BIT  
CHECK BIT  
DOUT  
0
DOUT  
1
DOUT  
17  
DOUT  
18/HS  
DOUT  
19/VS  
DOUT  
20/DE  
DOUT  
21  
DOUT DOUT  
22  
DOUT DOUT  
24  
DOUT DOUT27/ DOUT28/  
26  
RX/  
TX/  
OUTPUT PIN  
WS  
SD  
23  
25  
CNTL1 CNTL2  
SDA  
SCL  
OUTPUT  
SIGNAL  
R0  
R1  
B5  
HS  
VS  
DE  
R6  
R7  
G6  
G7  
B6  
B7  
2
2
UART/I C  
AUX  
CONTROL  
BITS  
I S/TDM  
RGB DATA  
CONTROL BITS  
RGB DATA  
AUDIO  
MAX9280 NOTE: VS/HS MUST BE SET AT DOUT[19:18] FOR HDCP  
FUNCTIONALITY.  
ONLY DOUT[17:0], DOUT[26:21] AND ACB HAVE HDCP ENCRYPTION.  
Figure 13. 32-Bit Mode Serial Data Format  
27 BITS  
27 BITS  
SERIAL DATA  
D0  
D1  
D17  
D18  
D19  
D20  
D21  
D22  
D23  
ACB  
FCC  
PCB  
SPECIAL SERIAL DATA PACKET  
CONTROL SIGNAL DECODING  
FORWARD  
CONTROL  
PACKET  
PARITY  
AUDIO DECODE  
CHANNEL BIT  
CHECK BIT  
DOUT  
0
DOUT  
1
DOUT  
17  
DOUT  
21  
DOUT  
22  
DOUT  
23  
DOUT  
24  
DOUT  
25  
DOUT  
26  
RX/  
SDA  
TX/  
SCL  
CNTL0/ DOUT27/ DOUT28/ CNTL3  
DOUT  
18/HS  
DOUT  
19/VS  
DOUT  
20/DE  
INPUT PIN  
WS  
SCK  
SD  
ADD0  
CNTL1 CNTL2  
ADD1  
INPUT  
SIGNAL  
R0  
R1  
B5  
R6  
R7  
G6  
G7  
B6  
B7  
HS  
VS  
DE  
2
2
I S/TDM  
UART/I C  
AUX  
CONTROL  
BITS  
CONTROL BITS  
RGB DATA  
RGB DATA  
AUDIO  
MAX9280 NOTE: VS/HS MUST BE SET AT DOUT[20:18].  
ONLY DOUT[17:0], DOUT[26:21] AND ACB HAVE HDCP ENCRYPTION.  
Figure 14. High-Bandwidth Mode Serial Data Format  
Maxim Integrated  
27  
www.maximintegrated.com  
MAX9276/MAX9280  
3.12Gbps GMSL Deserializers  
for Coax or STP Input and Parallel Output  
Table 3. Data-Rate Selection Table  
DRS BIT SETTING  
BWS PIN SETTING  
Low (24-bit mode)  
PCLKOUT RANGE (MHz)  
16.66 to 104  
36.66 to 104  
12.5 to 78  
0 (high data rate)  
Mid (high bandwidth mode)  
High (32-bit mode)  
Low  
Mid  
8.33 to 16.66  
18.33 to 36.66  
6.25 to 12.5  
1 (low data rate)  
High  
The deserializer uses the DRS bit and the BWS input to  
set the PCLKOUT frequency range (Table 3). Set DRS = 1  
for low data rate PCLKOUT frequency range of 6.25MHz  
to 16.66MHz. Set DRS = 0 for high data rate PCLKOUT  
frequency range of 12.5MHz to 104MHz.  
stream and stores audio words in a FIFO. Audio rate  
detection uses an internal oscillator to continuously  
determine the audio data rate and output the audio in I S  
format. The audio channel is enabled by default. When  
the audio channel is disabled, the SD/HIM is treated as  
an auxiliary control signal.  
2
High-Bandwidth Mode  
Since the audio data sent through the serial link is syn-  
chronized with PCLKOUT, low PCLKOUT frequencies  
limit the maximum audio sampling rate. Table 3 lists the  
maximum audio sampling rate for various PCLKOUT fre-  
The deserializer uses a 27-bit high-bandwidth mode to  
support 24-bit RGB at 104MHz pixel clock. Set BWS =  
open in both the serializer and deserializer to use high-  
bandwidth mode. In high-bandwidth mode, the deserial-  
izer decodes HS, VS, DE and CNTL[3:0] from special  
packets. Packets are sent by replacing a pixel before  
the rising edge and after the falling edge of the HS, VS,  
and DE signals. However, for CNTL[3:0], packets always  
replace a pixel before the transition of CNTL[3:0]. Keep  
HS, VS, and DE low pulse widths at least 2 pixel clock  
cycles. By default, CNTL[3:0] are sampled continuously  
when DE is low. CNTL[3:0] are sampled only on HS/VS  
transitions when DE is high. If DE triggering of encoded  
packets is not desired, set the serializer’s DISDETRIG  
= 0 and the CNTLTRIG bits to their desired value (reg-  
ister 0x15) to change the CNTL triggering behavior. Set  
DETREN = 0 on the deserializer when DE is not periodic.  
2
quencies. Spread-spectrum settings do not affect the I S/  
TDM data rate or WS clock frequency.  
Audio Channel Input  
The audio channel input works with 8-channel TDM and  
2
stereo I S, as well as non-standard formats. The input  
format is shown in Figure 15.  
FRAME  
WS  
SCK  
Audio Channel  
The audio channel supports 8kHz to 192kHz audio  
sampling rates and audio word lengths from 8 bits to  
32 bits (2 channel I S) or 64 to 256 bits (TDM64 to  
TDM256). The audio bit clock (SCK) does not have to be  
synchronized with PCLKOUT. The serializer automatically  
encodes audio data into a single-bit stream synchronous  
with PCLKOUT. The deserializer decodes the audio  
SD  
0
1
2
N
2
16 TO 256 BITS  
Figure 15. Audio Channel Input Format  
Maxim Integrated  
28  
www.maximintegrated.com  
MAX9276/MAX9280  
3.12Gbps GMSL Deserializers  
for Coax or STP Input and Parallel Output  
Table 4. Maximum Audio WS Frequency (kHz) for Various PCLKOUT Frequencies  
PCLKOUT FREQUENCY  
(DRS = 0*)  
(MHz)  
BITS PER  
CHANNEL  
12.5  
15.0  
16.6  
20.0  
25.0  
30.0  
35.0  
40.0  
45.0  
50.0  
100  
8
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
16  
18  
20  
24  
32  
+
+
185.5  
174.6  
152.2  
123.7  
+
+
+
2
4
6
8
+
182.7  
148.4  
+
164.3  
8
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
16  
18  
20  
24  
32  
123.7  
112.0  
104.2  
88.6  
148.4  
134.4  
125.0  
106.3  
83.8  
164.3  
148.8  
138.3  
117.7  
92.8  
+
+
179.2  
166.7  
141.8  
111.8  
+
+
+
+
177.2  
139.7  
+
69.9  
167.6  
8
152.2  
88.6  
80.2  
73.3  
62.5  
48.3  
182.7  
106.3  
93.3  
88.0  
75.0  
57.9  
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
16  
18  
20  
24  
32  
117.7  
106.6  
97.3  
83.0  
64.1  
141.8  
128.4  
117.3  
100  
177.2  
160.5  
146.6  
125  
+
+
+
+
+
+
+
+
175.9  
150  
115.9  
+
175  
135.2  
+
+
77.2  
96.5  
154.5  
173.8  
8
123.7  
69.9  
62.5  
57.1  
48.3  
37.1  
148.4  
83.8  
75.0  
68.5  
57.9  
44.5  
164.3  
92.8  
83.0  
75.8  
64.1  
49.3  
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
16  
18  
20  
24  
32  
111.8  
100.0  
91.3  
77.2  
59.4  
139.7  
125.0  
114.2  
96.5  
167.6  
150.0  
137.0  
115.9  
89.1  
+
+
175.0  
159.9  
135.2  
103.9  
+
+
+
+
182.7  
154.5  
118.8  
+
173.8  
133.6  
+
74.2  
148.4  
COLOR CODING  
< 48kHz  
48kHz to 96kHz  
96kHz to 192kHz  
> 192kHz  
+Max WS rate is greater than 192kHz.  
*DRS = 0 PCLKOUT frequency is equal to 2x the DRS = 1 PCLKOUT frequency.  
Maxim Integrated  
29  
www.maximintegrated.com  
MAX9276/MAX9280  
3.12Gbps GMSL Deserializers  
for Coax or STP Input and Parallel Output  
The period of the WS can be 8 to 256 SCK periods. The  
WS frame starts with the falling edge and can be low for  
1 to 255 SCK periods. SD is one SCK period, sampled  
on the rising edge. MSB/LSB order, zero padding or any  
other significance assigned to the serial data does not  
affect operation of the audio channel. The polarity for WS  
and SCK edges is programmable.  
Figure 16, Figure 17, Figure 18, and Figure 19 are exam-  
ples of acceptable input formats.  
256 SCK  
WS  
SCK  
SD  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
CH7  
CH8  
32 SCK  
MSB 24-BIT DATA  
LSB 8 BITS ZERO  
Figure 16. 8-Channel TDM (24-Bit Samples, Padded With Zeros)  
144 SCK  
WS  
SCK  
SD  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
24 SCK  
24-BIT DATA  
Figure 17. 6-Channel TDM (24-Bit Samples, No Padding)  
64 SCK  
WS  
SCK  
SD  
LEFT CHANNEL  
32 SCK  
RIGHT CHANNEL  
MSB 24-BIT DATA  
LSB 8 BITS ZERO  
2
Figure 18. Stereo I S (24-Bit Samples, Padded With Zeros)  
Maxim Integrated  
30  
www.maximintegrated.com  
MAX9276/MAX9280  
3.12Gbps GMSL Deserializers  
for Coax or STP Input and Parallel Output  
32 SCK  
WS  
SCK  
SD  
LEFT CHANNEL  
16 SCK  
RIGHT CHANNEL  
16-BIT DATA  
2
Figure 19. Stereo I S (16-Bit Samples, No Padding)  
WS and SCK can be driven by the audio source (clock  
master) or the audio sink (clock slave). Buffer underflow  
and overflow flags are available to the sink as clock slave  
via I C for clock frequency adjustment. Data are sampled  
on the rising edge. WS and SCK polarity is programmable.  
Audio Channel Output  
WS, SCK, and SD are output with the same timing rela-  
tionship they had at the audio input, except that WS is  
always 50% duty cycle (regardless of the duty cycle of  
WS at the input).  
2
The output format is shown in Figure 20.  
2
I S  
TDM 256  
WS  
SCK  
WS  
SCK  
SD/HIM  
SD/HIM  
8 TO 32 BITS  
256 BITS  
Figure 20. Audio Channel Output Format  
Maxim Integrated  
31  
www.maximintegrated.com  
MAX9276/MAX9280  
3.12Gbps GMSL Deserializers  
for Coax or STP Input and Parallel Output  
Additional MCLK Output for Audio Applications  
Audio Output Timing Sources  
Some audio DACs, such as the MAX9850, do not  
require a synchronous main clock (MCLK), while other  
DACs require a separate MCLK for operation. For audio  
applications that cannot use WS or PCLKOUT directly,  
the deserializer provides a divided MCLK output at  
either DOUT28/CNTL2 or CNTL0/ADD0 (determined by  
MCLKPIN bit setting) at the expense of one less control  
line. By default, MCLK is turned off. Set MCLKDIV (dese-  
rializer register 0x12, D[6:0]) to a nonzero value to enable  
the MCLK output. Set MCLKDIV to 0x00 to disable MCLK  
and set DOUT28/CNTL2 or CNTL0/ADD0 as a control  
output.  
The deserializer has multiple options for audio data output  
timing. By default, the deserializer provides the output  
timing based on the incoming data rate (through a FIFO)  
and an internal oscillator.  
To use a system sourced clock, set the AUDIOMODE bit  
to 1 (D5 of register 0x02) to set WS and SCK as inputs  
on the deserializer side. The deserializer uses a FIFO to  
smooth out the differences in input and output audio tim-  
ing. Registers 0x78 and 0x79 store the FIFO overflow/  
underflow information for use with external WS/SCK tim-  
ing. The FIFO drops data packets during FIFO overflow.  
By default, the FIFO repeats the last audio packet during  
FIFO underflow when no audio data is available. Set the  
AUDUFBEH bit (D2 of register 0x01D) to 1 to output all  
zeroes during underflow.  
The output MCLK frequency is:  
f
SRC  
f
=
MCLK  
MCLKDIV  
Reverse Control Channel  
where:  
The serializer uses the reverse control channel to receive  
I C/UART and GPO signals from the deserializer in  
f
is the MCLK source frequency (see Table 5)  
SRC  
2
MCLKDIV is the divider ratio from 1 to 127  
the opposite direction of the video stream. The reverse  
control channel and forward video data coexist on the  
same serial cable forming a bidirectional link. The reverse  
control channel operates independently from the forward  
control channel. The reverse control channel is available  
2ms after power-up. The serializer temporarily disables  
the reverse control channel for 500µs after starting/  
stopping the forward serial link.  
Choose MCLKDIV values so that f  
is not greater  
MCLK  
than 60MHz. MCLK frequencies derived from PCLKOUT  
(MCLKSRC = 0) are not affected by spread-spectrum  
settings in the deserializer. Enabling spread spectrum  
in the serializer, however, introduces spread spectrum  
into MCLK. Spread-spectrum settings of either device  
do not affect MCLK frequencies derived from the internal  
oscillator. The internal oscillator frequency ranges  
from 100MHz to 150MHz over all process corners and  
operating conditions. Alternatively, set MCLKWS = 1  
(0x15 D1) to output WS from MCLK.  
Table 5. f  
Settings  
SRC  
MCLKWS SETTING  
(REGISTER 0x15, D1)  
MCLKSRC SETTING  
(REGISTER 0x12, D7)  
DATA RATE  
SETTING  
MCLK SOURCE  
BIT-WIDTH SETTING  
FREQUENCY (f  
)
SRC  
24-bit or high-bandwidth mode  
32-bit mode  
3 x f  
High speed  
(DRS = 0)  
CLKOUT  
CLKOUT  
CLKOUT  
CLKOUT  
4 x f  
6 x f  
8 x f  
0
24-bit or high-bandwidth mode  
32-bit mode  
Low speed  
(DRS = 1)  
0
Internal oscillator  
(120MHz typ)  
1
1
WS*  
*MCLK is not divided when using WS as the MCLK source. MCLK divider must still be set to a nonzero number for MCLK to be  
enabled.  
Maxim Integrated  
32  
www.maximintegrated.com  
MAX9276/MAX9280  
3.12Gbps GMSL Deserializers  
for Coax or STP Input and Parallel Output  
The deserializer uses differential line coding to send sig-  
nals over the reverse channel to the serializer. The bit rate  
of the control channel is 9.6kbps to 1Mbps in both direc-  
tions. The serializer and deserializer automatically detect  
the control-channel bit rate in base mode. Packet bit rate  
changes can be made in steps of up to 3.5 times higher  
or lower than the previous bit rate. See the Changing the  
Clock Frequency section for more information.  
Control Channel and Register Programming  
The control channel is available for the µC to send and  
receive control data over the serial link simultaneously  
with the high-speed data. The µC controls the link from  
either the serializer or the deserializer side to support  
video-display or image-sensing applications. The control  
channel between the µC and serializer or deserializer  
runs in base mode or bypass mode according to the  
mode selection (MS) input of the device connected to the  
µC. Base mode is a half-duplex control channel and the  
bypass mode is a full-duplex control channel. The total  
maximum forward or reverse control channel delay is 2µs  
Figure 21 shows the UART protocol for writing and read-  
ing in base mode between the µC and the serializer/  
deserializer.  
Figure 22 shows the UART data format. Even parity is  
used. Figure 23 and Figure 24 detail the formats of the  
SYNC byte (0x79) and the ACK byte (0xC3). The µC and  
the connected slave chip generate the SYNC byte and  
ACK byte, respectively. Events such as device wake-up  
and GPI generate transitions on the control channel that  
can be ignored by the µC. Data written to the deserial-  
izer registers do not take effect until after the acknowl-  
edge byte is sent. This allows the µC to verify that write  
commands are received without error, even if the result  
of the write command directly affects the serial link. The  
slave uses the SYNC byte to synchronize with the host  
UART’s data rate. If the GPI or MS inputs of the deserial-  
izer toggle while there is control-channel communication,  
or if a line fault occurs, the control-channel communica-  
tion will be corrupted. In the event of a missed or delayed  
acknowledge (~1ms due to control channel timeout), the  
µC should assume there was an error in the packet. In  
base mode, the µC must keep the UART Tx/Rx lines high  
no more than 4 bit times between bytes in a packet. Keep  
the UART Rx/Tx lines high for at least 16 bit times before  
starting to send a new packet.  
2
(UART) or 2-bit times (I C) from the input of one device  
2
to the output of the other. I C delay is measured from a  
START condition to START condition.  
UART Interface  
In base mode, the µC is the host and can access the  
registers of both the serializer and deserializer from either  
side of the link using the GMSL UART protocol. The µC  
can also program the peripherals on the remote side by  
sending the UART packets to the serializer or deserializer,  
2
with the UART packets converted to I C by the device  
on the remote side of the link. The µC communicates  
with a UART peripheral in base mode (through INTTYPE  
register settings), using the half-duplex default GMSL  
UART protocol of the serializer/deserializer. The device  
addresses of the serializer and deserializer in base mode  
are programmable.  
2
When the peripheral interface is I C, the serializer/  
2
deserializer converts UART packets to I C that have  
device addresses different from those of the serializer or  
2
deserializer. The converted I C bit rate is the same as the  
original UART bit rate.  
WRITE DATA FORMAT  
DEV ADDR + R/W REG ADDR NUMBER OF BYTES BYTE 1  
SYNC  
BYTE N  
ACK  
MASTER READS FROM SLAVE  
MASTER WRITES TO SLAVE  
READ DATA FORMAT  
SYNC  
DEV ADDR + R/W REG ADDR NUMBER OF BYTES  
MASTER WRITES TO SLAVE  
ACK  
BYTE 1  
BYTE N  
MASTER READS FROM SLAVE  
Figure 21. GMSL UART Protocol for Base Mode  
Maxim Integrated  
33  
www.maximintegrated.com  
MAX9276/MAX9280  
3.12Gbps GMSL Deserializers  
for Coax or STP Input and Parallel Output  
1 UART FRAME  
START  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
PARITY  
STOP  
FRAME 1  
FRAME 2  
FRAME 3  
BASE MODE USES EVEN PARITY  
STOP  
START  
STOP  
START  
Figure 22. GMSL UART Data Format for Base Mode  
D0  
1
D1  
0
D2  
0
D3  
1
D4  
1
D5  
1
D6  
1
D7  
0
D0  
1
D1  
1
D2  
0
D3  
0
D4  
0
D5  
0
D6  
1
D7  
1
START  
PARITYSTOP  
START  
PARITY STOP  
Figure 23. Sync Byte (0x79)  
Figure 24. ACK Byte (0xC3)  
2
UART-TO-I C CONVERSION OF WRITE PACKET (I2CMETHOD = 0)  
SERIALIZER/DESERIALIZER  
11  
µC  
11  
11  
11  
11  
11  
11  
ACK FRAME  
SYNC FRAME  
DEVICE ID + WR  
REGISTER ADDRESS NUMBER OF BYTES  
DATA 0  
DATA N  
SERIALIZER/DESERIALIZER  
PERIPHERAL  
1
7
1
1
8
1
8
1
8
1
1
S
DEV ID W A REG ADDR  
A
DATA 0  
A
DATA N  
A
P
2
UART-TO-I C CONVERSION OF READ PACKET (I2CMETHOD = 0)  
SERIALIZER/DESERIALIZER  
11  
µC  
11  
11  
11  
11  
ACK FRAME  
11  
DATA 0  
11  
DATA N  
SYNC FRAME  
DEVICE ID + RD  
REGISTER ADDRESS NUMBER OF BYTES  
SERIALIZER/DESERIALIZER  
PERIPHERAL  
1
7
1
1
8
1
1
7
1
1
8
1
8
1
1
S
DEV ID W A REG ADDR  
A
S
DEV ID  
R
A
DATA 0  
A
DATA N  
A
P
S: START  
P: STOP  
A: ACKNOWLEDGE  
: MASTER TO SLAVE  
: SLAVE TO MASTER  
2
Figure 25. Format Conversion Between GMSL UART and I C with Register Address (I2CMETHOD = 0)  
As shown in Figure 25, the remote-side device converts  
device removes the byte number count and adds or  
receives the ACK between the data bytes of I C. The I C  
bit rate is the same as the UART bit rate.  
2
2
packets going to or coming from the peripherals from  
2
UART format to I C format and vice versa. The remote  
Maxim Integrated  
34  
www.maximintegrated.com  
MAX9276/MAX9280  
3.12Gbps GMSL Deserializers  
for Coax or STP Input and Parallel Output  
2
The µC cannot access the serializer/deserializer’s reg-  
isters in this mode. Peripherals accessed through the  
forward control channel using the UART interface need  
to handle at least one PCLKOUT period 10ns of jitter  
due to the asynchronous sampling of the UART signal  
by PCLKOUT. Set MS/HVEN = high to put the control  
channel into bypass mode. For applications with the µC  
connected to the deserializer, there is a 1ms wait time  
between setting MS high and the bypass control channel  
being active. There is no delay time when switching to  
bypass mode when the µC is connected to the serial-  
izer. Do not send a logic-low value longer than 100µs to  
ensure proper GPO functionality. Bypass mode accepts  
bit rates down to 10kbps in either direction. See the  
GPO/GPI Control section for GPI functionality limitations.  
The control-channel data pattern should not be held low  
longer than 100µs if GPI control is used.  
Interfacing Command-Byte-Only I C Devices with  
UART  
2
The deserializers’ UART-to-I C conversion can interface  
with devices that do not require register addresses, such  
as the MAX7324 GPIO expander. In this mode, the I C  
master ignores the register address byte and directly reads/  
writes the subsequent data bytes (Figure 26). Change  
the communication method of the I C master using the  
I2CMETHOD bit. I2CMETHOD = 1 sets command-byte-  
only mode, while I2CMETHOD = 0 sets normal mode  
where the first byte in the data stream is the register  
address.  
2
2
UART Bypass Mode  
In bypass mode, the deserializers ignore UART com-  
mands from the µC and the µC communicates with the  
peripherals directly using its own defined UART protocol.  
2
UART-TO-I C CONVERSION OF WRITE PACKET (I2CMETHOD = 1)  
µC  
SERIALIZER/DESERIALIZER  
11  
SYNC FRAME  
11  
11  
11  
11  
DATA 0  
11  
DATA N  
11  
DEVICE ID + WR  
REGISTER ADDRESS NUMBER OF BYTES  
ACK FRAME  
SERIALIZER/DESERIALIZER  
PERIPHERAL  
1
7
1
1
8
1
8
1
1
S
DEV ID  
W
A
DATA 0  
A
DATA N  
A
P
2
UART-TO-I C CONVERSION OF READ PACKET (I2CMETHOD = 1)  
µC  
SERIALIZER/DESERIALIZER  
11  
11  
11  
11  
11  
11  
DATA 0  
11  
DATA N  
SYNC FRAME  
DEVICE ID + RD  
REGISTER ADDRESS NUMBER OF BYTES  
ACK FRAME  
SERIALIZER/DESERIALIZER  
PERIPHERAL  
1
7
1
1
8
1
8
1
1
S
DEV ID  
R
A
DATA 0  
A
DATA N  
A
P
: MASTER TO SLAVE  
: SLAVE TO MASTER S: START  
P: STOP A: ACKNOWLEDGE  
2
Figure 26. Format Conversion Between GMSL UART and I C with Register Address (I2CMETHOD = 1)  
Maxim Integrated  
35  
www.maximintegrated.com  
MAX9276/MAX9280  
3.12Gbps GMSL Deserializers  
for Coax or STP Input and Parallel Output  
2
sent by a master, followed by the device’s 7-bit slave  
address plus a R/W bit, a register address byte, one or  
more data bytes, and finally a STOP condition.  
I C Interface  
2
2
In I C to I C mode, the deserializer’s control channel  
interface sends and receives data through an I C-  
2
compatible 2-wire interface. The interface uses a serial-  
data line (SDA) and a serial-clock line (SCL) to achieve  
bidirectional communication between master and slave(s).  
A µC master initiates all data transfers to and from the  
device and generates the SCL clock that synchronizes  
START and STOP Conditions  
Both SCL and SDA remain high when the interface is not  
busy. A master signals the beginning of a transmission  
with a START (S) condition by transitioning SDA from high  
to low while SCL is high (see Figure 27). When the mas-  
ter has finished communicating with the slave, it issues  
a STOP (P) condition by transitioning SDA from low to  
high while SCL is high. The bus is then free for another  
transmission.  
2
the data transfer. When an I C transaction starts on the  
local side device’s control channel port, the remote side  
2
device’s control channel port becomes an I C master  
2
2
that interfaces with remote side I C peripherals. The I C  
master must accept clock-stretching which is imposed by  
the deserializer (holding SCL LOW) The SDA and SCL  
lines operate as both an input and an open-drain output.  
Pullup resistors are required on SDA and SCL. Each  
transmission consists of a START condition (Figure 4)  
Bit Transfer  
One data bit is transferred during each clock pulse  
(Figure 28). The data on SDA must remain stable while  
SCL is high.  
SDA  
SCL  
P
S
STOP  
CONDITION  
START  
CONDITION  
Figure 27. START and STOP Conditions  
SDA  
SCL  
DATA LINE STABLE;  
DATA VALID  
CHANGE OF DATA  
ALLOWED  
Figure 28. Bit Transfer  
Maxim Integrated  
36  
www.maximintegrated.com  
MAX9276/MAX9280  
3.12Gbps GMSL Deserializers  
for Coax or STP Input and Parallel Output  
Acknowledge  
Slave Address  
The acknowledge bit is a clocked 9th bit that the recipient  
uses to handshake receipt of each byte of data (Figure 29).  
Thus, each byte transferred effectively requires nine bits.  
The master generates the 9th clock pulse, and the recipi-  
ent pulls down SDA during the acknowledge clock pulse.  
The SDA line is stable low during the high period of the  
clock pulse. When the master is transmitting to the slave  
device, the slave device generates the acknowledge bit  
because the slave device is the recipient. When the slave  
device is transmitting to the master, the master generates  
the acknowledge bit because the master is the recipient.  
The device generates an acknowledge even when the  
forward control channel is not active. To prevent acknowl-  
edge generation when the forward control channel is not  
active, set the I2CLOCACK bit low.  
The deserializers have 7-bit long slave addresses. The  
bit following a 7-bit slave address is the R/W bit, which is  
low for a write command and high for a read command.  
The slave address for the deserializer is XX01XXX1 for  
read commands and XX01XXX0 for write commands.  
See Figure 30.  
Bus Reset  
2
The device resets the bus with the I C START condition  
for reads. When the R/W bit is set to 1, the deserializers  
transmit data to the master, thus the master is reading  
from the device.  
START  
CONDITION  
CLOCK PULSE FOR  
ACKNOWLEDGE  
1
2
8
9
SCL  
SDA  
BY  
TRANSMITTER  
SDA  
BY  
RECEIVER  
S
Figure 29. Acknowledge  
X
0
1
X
X
X
R/W  
LSB  
SDA  
SCL  
X
ACK  
MSB  
Figure 30. Slave Address  
Maxim Integrated  
37  
www.maximintegrated.com  
MAX9276/MAX9280  
3.12Gbps GMSL Deserializers  
for Coax or STP Input and Parallel Output  
device takes no further action beyond storing the register  
address (Figure 31). Any bytes received after the register  
address are data bytes. The first data byte goes into the  
register selected by the register address, and subsequent  
data bytes go into subsequent registers (Figure 32). If  
multiple data bytes are transmitted before a STOP con-  
dition, these bytes are stored in subsequent registers  
because the register addresses autoincrements.  
Format for Writing  
Writes to the deserializers comprise the transmission of  
the slave address with the R/W bit set to zero, followed by  
at least one byte of information. The first byte of informa-  
tion is the register address or command byte. The register  
address determines which register of the device is to be  
written by the next byte, if received. If a STOP (P) condi-  
tion is detected after the register address is received, the  
0 = WRITE  
ADDRESS = 0x80  
REGISTER ADDRESS = 0x00  
REGISTER 0x00 WRITE DATA  
S
1
0
0
0
0
0
0
0
A
0
0
0
0
0
0
0
0
A
D7 D6 D5 D4 D3 D2 D1 D0  
A
P
S = START BIT  
P = STOP BIT  
A = ACK  
D_ = DATA BIT  
2
Figure 31. Format for I C Write  
0 = WRITE  
ADDRESS = 0x80  
REGISTER ADDRESS = 0x00  
S
1
0
0
0
0
0
0
0
A
A
0
0
0
0
0
0
0
0
A
N
S = START BIT  
P = STOP BIT  
A = ACK  
N = NACK  
D_ = DATA BIT  
REGISTER 0x00 WRITE DATA  
REGISTER 0x01 WRITE DATA  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
P
Figure 32. Format for Write to Multiple Registers  
Maxim Integrated  
38  
www.maximintegrated.com  
MAX9276/MAX9280  
3.12Gbps GMSL Deserializers  
for Coax or STP Input and Parallel Output  
2
remote side I C setup and hold times should be adjusted  
Format for Reading  
by setting the I2CSLVSH register settings on both sides.  
The deserializers are read using the internally stored  
register address as an address pointer, the same way the  
stored register address is used as an address pointer for  
a write. The pointer autoincrements after each data byte  
is read using the same rules as for a write. Thus, a read  
is initiated by first configuring the register address by  
performing a write (Figure 33). The master can now read  
consecutive bytes from the device, with the first data byte  
being read from the register address pointed by the previ-  
ously written register address. Once the master sends a  
NACK, the device stops sending valid data.  
2
I C Address Translation  
2
The deserializers support I C address translation for up to  
two device addresses. Use address translation to assign  
unique device addresses to peripherals with limited  
2
I C addresses. Source addresses (address to translate  
from) are stored in registers 0x18 and 0x1A. Destination  
addresses (address to translate to) are stored in registers  
0x19 and 0x1B.  
In a multilink situation where there are multiple deserial-  
izers and/or peripheral devices connected to these serial-  
izers, the deserializers support broadcast commands to  
control these multiple devices. Select an unused device  
address to use as a broadcast device address. Program  
all the remote side serializer devices to translate the  
broadcast device address (source address stored in reg-  
isters 0x0F, 0x11) to the peripherals’ address (destination  
address stored in registers 0x10, 0x12). Any commands  
sent to the broadcast address (selected unused address)  
will be sent to all deserializers and/or peripheral devices  
connected to the deserializers whose addresses match  
the translated broadcast address.  
2
I C Communication with Remote Side Devices  
2
The deserializers support I C communication with a  
peripheral on the remote side of the communication link  
using SCL clock stretching. While multiple masters can  
reside on either side of the communication link, arbitration  
is not provided. The connected masters need to support  
2
SCL clock stretching. The remote side I C bit rate range  
2
must be set according to the local side I C bit rate.  
Supported remote side bit rates can be found in Table 6.  
2
Set the I2CMSTBT (register 0x1C) to set the remote I C  
bit rate. If using a bit rate different from 400kbps, local and  
0 = WRITE  
ADDRESS = 0x80  
REGISTER ADDRESS = 0x00  
S
1
0
0
0
0
0
0
0
A
0
0
0
0
0
0
0
0
A
S = START BIT  
P = STOP BIT  
A = ACK  
1 = READ  
ADDRESS = 0x81  
REGISTER 0x00 READ DATA  
REPEATED START  
N = NACK  
D_ = DATA BIT  
S
1
0
0
0
0
0
0
1
A
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
N
P
2
Figure 33. Format for I C Read  
2
Table 6. I C Bit Rate Ranges  
LOCAL BIT RATE  
f > 50kbps  
REMOTE BIT RATE RANGE  
Up to 1Mbps  
I2CMSTBT SETTING  
ANY  
Up to 110  
000  
20kbps > f > 50kbps  
f < 20kbps  
Up to 400kbps  
Up to 10kbps  
Maxim Integrated  
39  
www.maximintegrated.com  
MAX9276/MAX9280  
3.12Gbps GMSL Deserializers  
for Coax or STP Input and Parallel Output  
GPO/GPI Control  
Line Equalizer  
GPO on the serializer follows GPI transitions on the dese-  
rializer. This GPO/GPI function can be used to transmit  
signals such as a frame sync in a surround-view camera  
system. The GPI to GPO delay is 0.35ms max. Keep  
time between GPI transitions to a minimum 0.35ms. This  
includes transitions from the other deserializer in coax  
splitter mode. Bit D4 of register 0x06 in the deserializer  
stores the GPI input state. GPO is low after power-up.  
The µC can set GPO by writing to the SETGPO register  
bit. Do not send a logic-low value on the deserializer RX/  
SDA input (UART mode) longer than 100µs in either base  
or bypass mode to ensure proper GPO/GPI functionality.  
The deserializer includes an adjustable line equalizer to  
further compensate cable attenuation at high frequencies.  
The cable equalizer has 11 selectable levels of com-  
pensation from 2.1dB to 13dB (Table 7). To select other  
equalization levels, set the corresponding register bits  
in the deserializer (0x05 D[3:0]). Use equalization in the  
deserializer, together with preemphasis in the serializer, to  
create the most reliable link for a given cable.  
Spread Spectrum  
To reduce the EMI generated by the transitions on  
the serial link, the deserializer output is programmable  
for spread spectrum. If the serializer, paired with the  
MAX9276/MAX9280, has programmable spread spec-  
trum, do not enable spread for both at the same time or  
their interaction will cancel benefits. The deserializer will  
track the serializer spread and will pass the spread to the  
deserializer output. The programmable spread-spectrum  
amplitudes are ±2%,and ±4% (Table 8).  
Table 7. Cable Equalizer Boost Levels  
BOOST SETTING  
TYPICAL BOOST GAIN (dB)  
(0x05 D[3:0])  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
2.1  
2.8  
3.4  
4.2  
5.2  
6.2  
7
The deserializer includes a sawtooth divider to control the  
spread modulation rate. Autodetection of the PCLKOUT  
operation range guarantees a spread-spectrum modu-  
lation frequency within 20kHz to 40kHz. Additionally,  
manual configuration of the sawtooth divider (SDIV: 0x03,  
D[5:0]) allows the user to set a modulation frequency  
according to the PCLKOUT frequency. When ranges are  
manually selected, program the SDIV value for a fixed  
modulation frequency around 20kHz.  
8.2  
9.4  
10.7  
1001  
Power-up default  
Manual Programming of the Spread-Spectrum  
Divider  
The modulation rate relates to the PCLKOUT frequency  
as follows:  
1010  
1011  
11.7  
13  
f
Table 8. Output Spread  
PCLKOUT  
f
= 1+ DRS  
(
)
M
MOD × SDIV  
SS  
00  
01  
10  
11  
SPREAD (%)  
No spread spectrum. Power-up default  
±2% spread spectrum.  
where:  
= Modulation frequency  
f
M
No spread spectrum  
DRS = DRS value (0 or 1)  
= PCLKOUT frequency  
±4% spread spectrum  
f
PCLKOUT  
MOD = Modulation coefficient given in Table 9  
Table 9. Modulation Coefficients and  
Maximum SDIV Settings  
SDIV = 5-bit SDIV setting, manually programmed by the µC  
To program the SDIV setting, first look up the modulation  
coefficient according to the desired bus-width and spread-  
spectrum settings. Solve the above equation for SDIV  
using the desired pixel clock and modulation frequencies.  
If the calculated SDIV value is larger than the maximum  
allowed SDIV value in Table 9, set SDIV to the maximum  
value.  
SPREAD-  
SPECTRUM  
SETTING (%)  
MODULATION  
COEFFICIENT  
MOD (DECIMAL)  
SDIV UPPER  
LIMIT (DECIMAL)  
4
208  
208  
15  
2
30  
Maxim Integrated  
40  
www.maximintegrated.com  
MAX9276/MAX9280  
3.12Gbps GMSL Deserializers  
for Coax or STP Input and Parallel Output  
GMSL  
SERIALIZER  
MAX9276  
MAX9280  
OUT+  
IN+  
IN-  
OUT-  
OPTIONAL  
COMPONENTS  
FOR INCREASED  
POWER-SUPPLY  
REJECTION  
MAX9276  
MAX9280  
IN+  
IN-  
Figure 34. 2:1 Coax Splitter Connection Diagram  
HS/DE. Set HVTRMODE = 0 (D4 of register 0x15) to  
disable full periodic tracking. HS/VS/DE tracking can be  
turned on in 24-bit and 32-bit modes to track and correct  
against bit errors in HS/VS/DE link bits.  
GMSL  
SERIALIZER  
MAX9276  
MAX9280  
OUT+  
Serial Input  
IN+  
IN-  
The device can receive serial data from two kinds of  
cable: 100Ω twisted pair and 50Ω coax. (Contact the fac-  
tory for devices compatible with 75Ω cables).  
OUT-  
AVDD  
OPTIONAL COMPONENTS FOR  
INCREASED POWER-SUPPLY  
REJECTION  
Coax Splitter Mode  
50  
In coax mode, OUT+ and OUT- of the serializer are active.  
This enables the use as a 1:2 splitter (Figure 34). In coax  
mode, connect OUT+ to IN+ of the deserializer. Connect  
OUT- to IN- of the second deserializer. Control channel  
data is broadcast from the serializer to both deserializers  
and their attached peripherals. Assign a unique address  
to send control data to one deserializer. Leave all unused  
IN_ pins unconnected, or connect them to ground through  
50Ω and a capacitor for increased power-supply rejection.  
Figure 35. Coax Connection Diagram  
Table 10. Configuration Input Map  
CX/TP  
High  
Mid  
FUNCTION  
Coax+ input. 7-bit device address is XXXXXX0 (bin).  
Coax- input. 7-bit device address is XXXXXX1 (bin).  
If OUT- is not used, connect OUT- to V  
through a 50Ω  
DD  
Twisted pair input. 7-bit device address is  
XXXXXX0 (bin).  
resistor (Figure 35). When there are µCs at the serializer,  
and at each deserializer, only one µC can communicate  
at a time. Disable forward and reverse channel links  
according to the communicating deserializer connection  
to prevent contention in I C to I C mode. Use ENREVP  
or ENREVN register bits to disable/enable the control  
channel link. In UART mode, the serializer provides  
arbitration of the control channel link.  
Low  
HS/VS/DE Tracking  
2
2
The deserializer has tracking to filter out HS/VS/DE bit or  
packet errors. HS/VS/DE tracking is on by default when  
the device is in high-bandwidth mode (BWS = open),  
and off by default when in 24-bit or 32-bit mode (BWS =  
low or high). Set/clear HVTREN (D6 of register 0x15) to  
enable/disable HS/VS tracking. Set/clear DETREN (D5 of  
register 0x15) to enable/disable DE tracking. By default,  
the device uses a partial and full periodic tracking of  
Cable Type Configuration Input  
CX/TP determine the power-up state of the serial input.  
In coax mode, CX/TP also determine which coax input is  
active, along with the default device address (Table 10).  
Maxim Integrated  
41  
www.maximintegrated.com  
MAX9276/MAX9280  
3.12Gbps GMSL Deserializers  
for Coax or STP Input and Parallel Output  
0x00 for LUTADDR and 0x00 as the number of bytes field  
in UART packet, when reading a 256-byte data block.  
Color Lookup Tables  
The deserializer includes 3 color lookup tables (LUT) to  
support automatic translation of RGB pixel values. This  
feature can be used for color gamma correction, bright-  
ness/contrast or for other purposes. There are 3 lookup  
tables, each 8 bits wide and 256 entries deep, enabling a  
1 to 1 translation of 8-bit input values to any 8-bit output  
value for each color (24-bits total).  
LUT Color Translation  
After power-up or going out of sleep or power-down  
modes, LUT translation is disabled and LUT contents  
are unknown. After program and verify operations  
are finished, in order to enable LUT translations, set  
LUTPROG bit to 0 and set the respective LUT enable bits  
(RED_LUT_EN, GRN_LUT_EN, BLU_LUT_EN) to 1 to  
enable the desired LUT translation function. Only the  
selected colors are translated by the LUT (the other col-  
ors are not touched). The µC does not need to fill in all  
three color lookup tables if all 3 color translations are not  
needed.  
Programming and Verifying LUT Data  
The µC must set the LUTPROG register bit to 1 before  
programming and verifying the tables. To program a LUT,  
the µC generates a write packet with register address  
set to the assigned register address for respective LUT  
(0x7D, 0x7E, or 0x7F). The deserializer writes data in  
the packet to the respective LUT starting from the LUT  
address location set in LUTADDR register. Successive  
bytes in the data packet are written to the next LUT  
address location, however each new data packet write  
starts from the address location stored in the LUTADDR  
register. Use 0x00 for LUTADDR and 0x00 as the number  
of bytes field in UART packet, when writing a 256 byte  
data-block, because 8-bit wide number of bytes field  
cannot normally represent 9-bit wide “256” value. There  
After a pixel is deserialized decoded and decrypted (if  
necessary) it is segmented into its color components Red,  
Green and Blue according to Table 11 and Figure 36. If  
LUT translation is enabled, each 8-bit pre-translation color  
value is used as address to the respective LUT table to  
look up the corresponding (translated) 8-bit color value.  
LUT Bit Width  
In 32-bit mode and high-bandwidth mode, 24 bits are  
available for color data (8 bits per color) and each LUT will  
be used for 8-bit to 8-bit color translation. In 24-bit mode,  
the deserializer can receive only up to 18-bit color (6 bits  
per color). The LUT tables can translate from 6-bit to 6-bit,  
using the first 64 locations (0x00 to 0x3F). program the  
MSB 2 bits of each LUT value to 00. Alternatively, pro-  
gram full 8-bit values to each LUT for 6-bit to 8-bit color  
translation.  
2
2
is no number of bytes field in I C-to-I C modes.  
To readback the contents of an LUT, the µC generates  
a read packet with register address set to the assigned  
register address for respective LUT (0x7D, 0x7E, or  
0x7F). the deserializer outputs read data from the respec-  
tive LUT starting from the LUT address location set in  
LUT_ADDR register. Similar to the write operation, use  
Table 11. Pixel Data Format  
DOUT  
[5:0]  
DOUT  
[11:6]  
DOUT  
[17:12]  
DOUT  
18  
DOUT  
19  
DOUT  
20  
DOUT  
[22:21]  
DOUT  
[24:23]  
DOUT  
[26:25]  
R[5:0]  
G[5:0]  
B[5:0]  
HS  
VS  
DE  
R[7:6]  
G[7:6]  
B[7:6]  
Maxim Integrated  
42  
www.maximintegrated.com  
MAX9276/MAX9280  
3.12Gbps GMSL Deserializers  
for Coax or STP Input and Parallel Output  
32-BIT OR HIGH-  
BANDWIDTH MODE  
32-BIT OR HIGH-  
BANDWIDTH MODE  
32-BIT OR HIGH-  
BANDWIDTH MODE  
R7  
R6  
G7  
G6  
B7  
B6  
24-BIT MODE  
0
0
24-BIT MODE  
0
0
24-BIT MODE  
0
0
R5  
R4  
R3  
R2  
R1  
R0  
G5  
G4  
G3  
G2  
G1  
G0  
B5  
B4  
B3  
B2  
B1  
B0  
LSB  
LSB  
LSB  
MSB  
MSB  
MSB  
REDLUTEN  
GRNLUTEN  
BLULUTEN  
ADDR  
RED LUT  
EN  
ADDR  
GREEN LUT  
ADDR  
BLUE LUT  
EN  
EN  
DATA  
DATA  
DATA  
LSB  
LSB  
LSB  
MSB  
MSB  
MSB  
OUTPUT DOUT DOUT  
DOUT DOUT DOUT DOUT  
DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT  
DOUT5 DOUT4 DOUT3 DOUT2 DOUT1 DOUT0  
DOUT9 DOUT8 DOUT7 DOUT6  
PIN  
22  
21  
24  
23  
11  
10  
26  
25  
17  
16  
15  
14  
13  
12  
OUTPUT  
SIGNAL  
R7  
R6  
R5  
R4  
R3  
R2  
R1  
R0  
G7  
G6  
G5  
G4  
G3  
G2  
G1  
G0  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
Figure 36. LUT Dataflow  
4) Repeat steps 2 and 3 for the green LUT, using 0x7E  
Recommended LUT Program Procedure  
as the register address  
1) Write LUTPROG = 1 to register 0x7C. Keep  
BLULUTEN = 0, GRNLUTEN = 0, REDLUTEN = 0  
(write 0x08 to register 0x7C).  
5) Repeat steps 2 and 3 for the blue LUT, using 0x7F as  
the register address  
2) Write contents of red LUT with a single write packet.  
For 24-bit RGB, use 0x7D as register address and  
0x00 as number of bytes (UART only) and write 256  
bytes. For 18-bit RGB, use 0x7D as register address  
and 0x40 as number of bytes (UART only) and write 64  
bytes. (Optional: Multiple write packets can be used if  
LUTADDR is set before each LUT write packet.)  
6a) To finish the program and verify routine, without  
enabling the LUT color translation, write LUTPROG =  
0 (Write 0x00 to register 0x7C).  
6b) To finish the program and verify routine, and start LUT  
color translation, write LUTPROG = 0, BLULUTEN =  
1, GRNLUTEN = 1, REDLUTEN = 1 (Write 0x07 to  
register 0x7C).  
3) Read contents of red LUT and verify that they are  
correct. Use the same register address and number  
of bytes used in the previous step.  
Maxim Integrated  
43  
www.maximintegrated.com  
MAX9276/MAX9280  
3.12Gbps GMSL Deserializers  
for Coax or STP Input and Parallel Output  
Table 12. Reverse Control-Channel Modes  
2
HIGHIMM BIT OR  
SD/HIM PIN SETTING  
REVFAST  
MAX UART/I C BIT RATE  
REVERSE CONTROL-CHANNEL MODE  
BIT  
(kbps)  
Legacy reverse control-channel mode  
(compatible with all GMSL devices)  
LOW (1)  
X
1000  
0
High-immunity mode  
500  
HIGH (1)  
1
Fast high-immunity mode  
1000  
X = Don’t care  
Sleep Mode  
Table 13. Fast High-Immunity Mode  
Requirements  
The deserializers have sleep mode to reduce power  
consumption. The devices enter or exit sleep mode by a  
command from a remote µC using the control channel.  
Set the SLEEP bit to 1 to initiate sleep mode. Entering  
sleep mode resets the HDCP registers, but not the con-  
figuration registers. The deserializer sleeps after serial  
link inactivity or 8ms (whichever arrives first) after setting  
its SLEEP = 1. See the Link Startup Procedure section  
for details on waking up the device for different µC and  
starting conditions.  
ALLOWED PCLKOUT FREQUENCY  
BWS SETTING  
(MHz)  
Low  
High  
Open  
> 41.66  
> 30  
> 83.33  
Fast high-immunity mode requires DRS = 0  
High-Immunity Reverse Control Channel Mode  
The deserializer contains a high-immunity reverse con-  
trol channel mode, which has increased robustness at  
half the bit rate over the standard GMSL reverse control  
channel link (Table 12). Connect a 30kΩ resistor to GPO/  
HIM on the serializer, and SD/HIM on the deserializer to  
use high-immunity mode at power-up. Set the HIGHIMM  
bit high in both the serializer and deserializer to enable  
high-immunity mode at any time after power-up. Set the  
HIGHIMM bit low in both the serializer and deserializer  
to use the legacy reverse control channel mode. The  
deserializer reverse channel mode is not available for  
500µs/1.92ms after the reverse control channel mode is  
changed through the serializer/deserializer’s HIGHIMM  
bit setting respectively. The user must set SD/HIM and  
GPO/HIM or the HIGHIMM bits to the same value for  
proper reverse control channel communication.  
To wake up from the local side, send an arbitrary control  
channel command to deserializer, wait for 5ms for the  
chip to power up and then write 0 to SLEEP register bit  
to make the wake-up permanent. To wake up from the  
remote side, enable serialization. The deserializer will  
detect the activity on serial link and then when it locks, it  
will automatically set its SLEEP register bit to 0.  
Power-Down Mode  
The deserializers have a power-down mode which fur-  
ther reduces power consumption compared to Sleep  
Mode. Set PWDN low to enter power-down mode. In  
power-down, the parallel outputs remain high impedance.  
Entering power-down resets the device’s registers. Upon  
exiting power-down, the state of external pins ADD[2:0],  
CX/TP, I2CSEL, SD/HIM, and BWS are latched.  
In high-immunity mode, Set HPFTUNE = 00 in the equal-  
izer, if the serial bit rate = [PCLKOUT x 30 (BWS = low  
or open) or 40 (BWS = high)] is larger than 1Gbps when  
BWS is low or high. When BWS = open, set HPFTUNE =  
00 when the serial bit rate is larger than 2GBps. In addi-  
tion, use 47nF AC-coupling capacitors. Note that legacy  
reverse-control channel mode may not function when  
using 47nF AC-coupling capacitors.  
Configuration Link  
The control channel can operate in a low-speed mode  
called configuration link in the absence of a clock input.  
This allows a microprocessor to program configuration  
registers before starting the video link. An internal oscil-  
lator provides the clock for the configuration link. Set  
CLINKEN = 1 on the serializer to enable configuration  
link. Configuration link is active until the video link is  
enabled. The video link overrides the configuration link  
and attempts to lock when SEREN = 1.  
By default, high-immunity mode uses a 500kbps bit rate.  
Set REVFAST =1 (D7 in register 0x1A in the serializer and  
register 0x11 in the deserializer) in both devices to use a  
1Mbps bit rate. Certain limitations apply when using the  
fast high-immunity mode (Table 13).  
Maxim Integrated  
44  
www.maximintegrated.com  
MAX9276/MAX9280  
3.12Gbps GMSL Deserializers  
for Coax or STP Input and Parallel Output  
after the video link or the configuration link is established.  
If the deserializer powers up after the serializer, the con-  
trol channel becomes unavailable for 2ms after power-up.  
Link Startup Procedure  
Table 14 lists the startup procedure for display applica-  
tions. Table 15 lists the startup procedure for image-  
sensing applications. The control channel is available  
Table 14. Startup Procedure for Video-Display Applications  
SERIALIZER  
NO.  
µC  
DESERIALIZER  
(AUTOSTART ENABLED)  
(AUTOSTART DISABLED)  
Sets all configuration  
Sets all configuration  
Sets all configuration  
inputs. If any configuration  
inputs are available on one  
end of the link but not the  
other, always connects that  
configuration input low.  
inputs. If any configuration  
inputs are available on one  
end of the link but not the  
other, always connects that  
configuration input low.  
inputs. If any configuration  
inputs are available on one  
end of the link but not the  
other, always connects that  
configuration input low  
µC connected to serializer  
Powers up and loads default  
settings. Establishes video  
link when valid PCLK  
available  
Powers up and loads default  
settings. Locks to video link  
signal if available.  
Powers up and loads default  
settings  
1
Powers up  
Enables serial link by setting  
SEREN = 1 or configuration  
link by setting SEREN = 0  
and CLINKEN = 1 (if valid  
PCLK not available) and gets  
an acknowledge. Waits for  
link to be establish (~3ms)  
Establishes configuration or  
video link  
Locks to configuration or  
video link signal  
2
3
Writes configuration bits in  
the serializer/deserializer and Configuration changed from default settings  
gets an acknowledge.  
Configuration changed from  
default settings  
If not already enabled,  
sets SEREN = 1, gets an  
Establishes video link when valid PCLK available (if not  
acknowledge and waits for  
Locks to video link signal (if  
not already locked)  
4
already enabled)  
video link to be established  
(~3ms)  
Begin sending video data to  
Video data received and  
deserialized  
5
Video data serialized and sent across serial link  
input  
Maxim Integrated  
45  
www.maximintegrated.com  
MAX9276/MAX9280  
3.12Gbps GMSL Deserializers  
for Coax or STP Input and Parallel Output  
Table 15. Startup Procedure for Image-Sensing Applications (CDS = High)  
SERIALIZER  
NO.  
µC  
DESERIALIZER  
(AUTOSTART ENABLED)  
(AUTOSTART DISABLED)  
Sets all configuration  
inputs  
µC connected to deserializer  
Sets all configuration inputs Sets all configuration inputs  
Powers up and loads  
Powers up and loads  
default settings.  
Powers up and loads  
default settings.  
Locks to video link  
signal if available.  
1
Powers up  
default settings. Goes to  
Establishes video link when  
sleep after 8ms.  
valid PCLK available.  
Configuration  
changed from default  
settings  
Writes deserializer configuration bits  
and gets an acknowledge  
2
Wakes up the serializer by sending  
dummy packet, and then writing  
SLEEP = 0 within 8ms. May not get  
an acknowledge (or gets a dummy  
acknowledge) if not locked.  
3
Wakes up  
Writes serializer configuration bits.  
May not get an acknowledge (or gets  
a dummy acknowledge) if not locked.  
4
Configuration changed from default settings  
If not already enabled, sets SEREN =  
1, gets an acknowledge and waits for  
serial link to be established (~3ms)  
Locks to video link  
signal (if not already  
locked)  
Establishes video link when valid PCLK available (if not  
already enabled)  
5
6
Video data received  
and deserialized  
Begin sending video data to input  
Video data serialized and sent across serial link  
SLEEP = 1, VIDEO LINK OR CONFIG  
LINK NOT LOCKED AFTER 8ms  
CONFIG LINK  
CONFIG LINK  
OPERATING  
UNLOCKED  
WAKE-UP  
SIGNAL  
SIGNAL  
POWER-ON  
IDLE  
SERIAL PORT  
LOCKING  
SLEEP  
DETECTED  
PROGRAM  
REGISTERS  
CONFIG LINK  
LOCKED  
0
SLEEP  
VIDEO LINK  
LOCKED  
VIDEO LINK  
UNLOCKED  
SERIAL LINK ACTIVITY STOPS OR 8ms ELAPSES AFTER  
µC SETS SLEEP = 1  
PWDN = HIGH,  
POWER-ON  
GPI CHANGES FROM  
LOW TO HIGH OR  
PRBSEN = 0  
PRBSEN = 1  
SEND GPI TO  
POWER-DOWN  
VIDEO LINK  
OPERATING  
VIDEO LINK  
PRBS TEST  
HIGH TO LOW  
PWDN = LOW OR  
ALL STATES  
OR  
POWER-OFF  
POWER-OFF  
GMSL  
SERIALIZER  
0
SLEEP  
Figure 37. State Diagram  
Maxim Integrated  
46  
www.maximintegrated.com  
MAX9276/MAX9280  
3.12Gbps GMSL Deserializers  
for Coax or STP Input and Parallel Output  
every 128 frames. These values are compared internally  
(internal comparison mode) or can be compared in the  
host µC.  
High-Bandwidth Digital Content  
Protection (HDCP)  
Note: The explanation of HDCP operation in this data  
sheet is provided as a guide for general understanding.  
Implementation of HDCP in a product must meet the  
requirements given in the HDCP System v1.3 Amendment  
for GMSL, which is available from DCP.  
In addition, the GMSL serializer/deserializer provide  
response values for the enhanced link verification.  
Enhanced link verification is an optional method of link  
verification for faster detection of loss-of-synchronization.  
For this option, the GMSL serializer and deserializer  
generate 8-bit enhanced link-verification response values  
(PJ and PJ’) every 16 frames. The host must detect three  
consecutive PJ/PJ’ mismatches before resampling.  
HDCP has two main phases of operation: authentication  
and the link integrity check. The µC starts authentica-  
tion by writing to the START_AUTHENTICATION bit in  
the GMSL serializer. The GMSL serializer generates a  
64-bit random number. The host µC first reads the 64-bit  
random number from the GMSL serializer and writes it  
to the deserializer. The µC then reads the GMSL serial-  
izer public key selection vector (AKSV) and writes it to  
the deserializer. The µC then reads the deserializer KSV  
(BKSV) and writes it to the GMSL serializer. The µC  
begins checking BKSV against the revocation list. Using  
the cipher, the GMSL serializer and deserializer calculate  
a 16-bit response value, R0 and R0’, respectively. The  
GMSL amendment for HDCP reduces the 100ms mini-  
mum wait time allowed for the receiver to generate R0’  
(specified in HDCP rev 1.3) to 128 pixel clock cycles in  
the GMSL amendment.  
Encryption Enable  
The GMSL link transfers either encrypted or nonen-  
crypted data. To encrypt data, the host µC sets the  
encryption enable (ENCRYPTION_ENABLE) bit in both  
the GMSL serializer and deserializer. The µC must set  
ENCRYPTION_ENABLE in the same VSYNC cycle in  
both the GMSL serializer and deserializer (no internal  
VSYNC falling edges between the two writes). The same  
timing applies when clearing ENCRYPTION_ENABLE to  
disable encryption.  
Note: ENCRYPTION_ENABLE enables/disables encryp-  
tion on the GMSL irrespective of the content. To comply  
with HDCP, the µC must not allow content requiring  
encryption to cross the GMSL unencrypted.  
There are two response-value comparison modes: internal  
comparison and µC comparison. Set EN_INT_COMP = 1  
to select internal comparison mode. Set EN_INT_COMP  
= 0 to select µC comparison mode. In internal compari-  
son mode, the µC reads the deserializer response R0’  
and writes it to the GMSL serializer. The GMSL serializer  
compares R0’ to its internally generated response value  
R0, and sets R0_RI_MATCHED. In µC comparison mode,  
the µC reads and compares the R0/R0’ values from the  
GMSL serializer/deserializer.  
The µC must complete the authentication process before  
enabling encryption. In addition, encryption must be dis-  
abled before starting a new authentication session.  
Synchronization of Encryption  
The video vertical sync (VSYNC) synchronizes the start  
of encryption. Once encryption has started, the GMSL  
generates a new encryption key for each frame and each  
line, with the internal falling edge of VSYNC and HSYNC.  
Rekeying is transparent to data and does not disrupt the  
encryption of video or audio data.  
During response-value generation and comparison, the  
host µC checks for a valid BKSV (having 20 1s and 20  
0s is also reported in BKSV_INVALID) and checks BKSV  
against the revocation list. If BKSV is not on the list and  
the response values match, the host authenticates the  
link. If the response values do not match, the µC resam-  
ples the response values (as described in HDCP rev 1.3,  
Appendix C). If resampling fails, the µC restarts authen-  
tication by setting the RESET_HDCP bit in the GMSL  
serializer. If BKSV appears on the revocation list, the host  
cannot transmit data that requires protection. The host  
knows when the link is authenticated and decides when  
to output data requiring protection. The µC performs a link  
integrity check every 128 frames or every 2s ±0.5s. The  
GMSL serializer/deserializer generate response values  
Repeater Support  
The GMSL serializer/deserializer include features to build  
an HDCP repeater. An HDCP repeater receives and  
decrypts HDCP content and then encrypts and transmits  
on one or more downstream links. A repeater can also use  
decrypted HDCP content (e.g., to display on a screen).  
To support HDCP repeater-authentication protocol, the  
deserializer has a REPEATER register bit. This register  
bit must be set to 1 by a µC (most likely on the repeater  
module). Both the GMSL serializer and deserializer use  
SHA-1 hash-value calculation over the assembled KSV  
lists. HDCP GMSL links support a maximum of 15 receiv-  
ers (total number including the ones in repeater modules).  
Maxim Integrated  
47  
www.maximintegrated.com  
MAX9276/MAX9280  
3.12Gbps GMSL Deserializers  
for Coax or STP Input and Parallel Output  
If the total number of downstream receivers exceeds 14,  
the µC must set the MAX_DEVS_EXCEEDED register bit  
when it assembles the KSV list.  
(refer to the HDCP 1.3 Amendment for GMSL for details).  
The µC must perform link integrity checks while encryp-  
tion is enabled (see Table 17). Any event that indicates  
that the deserializer has lost link synchronization should  
retrigger authentication. The µC must first write 1 to the  
RESET_HDCP bit in the GMSL serializer before starting  
a new authentication attempt.  
HDCP Authentication Procedures  
The GMSL serializer generates a 64-bit random number  
exceeding the HDCP requirement. The GMSL serial-  
izer/deserializer internal one-time programmable (OTP)  
memories contain a unique HDCP keyset programmed at  
the factory. The host µC initiates and controls the HDCP  
authentication procedure. The GMSL serializer and dese-  
rializer generate HDCP authentication response values  
for the verification of authentication. Use the following  
procedures to authenticate the HDCP GMSL encryption  
HDCP Protocol Summary  
Table 10, Table 11, and Table 12 list the summaries of the  
HDCP protocol. These tables serve as an implementation  
guide only. Meet the requirements in the GMSL amend-  
ment for HDCP to be in full compliance.  
Table 16. Startup, HDCP Authentication, and Normal Operation (Deserializer is Not a  
Repeater)—First Part of the HDCP Authentication Protocol  
NO.  
µC  
HDCP GMSL SERIALIZER  
HDCP GMSL DESERIALIZER  
Powers up waiting for HDCP  
authentication.  
Powers up waiting for HDCP  
authentication.  
1
Initial state after power-up.  
Makes sure that A/V data not requiring  
protection (low-value content) is available at  
the GMSL serializer inputs (such as blue or  
informative screen). Alternatively, uses the  
FORCE_VIDEO and FORCE_AUDIO bits of  
the GMSL serializer to mask A/V data at the  
input of the GMSL serializer. Starts the link by  
writing SEREN = H or link starts automatically  
if AUTOS is low.  
2
Starts serialization and transmits Locks to incoming data stream and  
3
low-value content A/V data.  
outputs low-value content A/V data.  
Reads the locked bit of the deserializer and  
makes sure the link is established.  
4
Combines seed with internally  
generated random number. If  
no seed provided, only internal  
random number is used.  
Optionally writes a random-number seed to  
the GMSL serializer.  
5
6
If HDCP encryption is required, starts  
authentication by writing 1 to the  
START_AUTHENTICATION bit of the GMSL  
serializer.  
Generates (stores) AN, and  
resets the  
START_AUTHENTICATION bit  
to 0.  
Reads AN and AKSV from the GMSL serializer  
and writes to the deserializer.  
Generates R0’ triggered by the µC’s  
write of AKSV.  
7
8
Generates R0, triggered by the  
µC’s write of BKSV.  
Reads the BKSV and REPEATER bit from  
deserializer and writes to the GMSL serializer.  
Maxim Integrated  
48  
www.maximintegrated.com  
MAX9276/MAX9280  
3.12Gbps GMSL Deserializers  
for Coax or STP Input and Parallel Output  
Table 16. Startup, HDCP Authentication, and Normal Operation (Deserializer is Not a  
Repeater)—First Part of the HDCP Authentication Protocol (continued)  
NO.  
µC  
HDCP GMSL SERIALIZER  
HDCP GMSL DESERIALIZER  
Reads the INVALID_BKSV bit of the GMSL  
serializer and continues with authentication  
if it is 0. Authentication can be restarted if it  
fails (set RESET_HDCP = 1 before restarting  
authentication).  
9
Reads R0’ from the deserializer and reads  
R0 from the GMSL serializer. If they match,  
continues with authentication; otherwise,  
retries up to two more times (optionally, GMSL  
serializer comparison can be used to detect if  
R0/R0’ match). Authentication can be restarted  
if it fails (set RESET_HDCP = 1 before  
restarting authentication).  
10  
Waits for the VSYNC falling edge (internal to  
the GMSL serializer) and then sets the  
ENCRYPTION_ENABLE bit to 1 in the  
deserializer and GMSL serializer (if the FC is  
not able to monitor VSYNC, it can utilize the  
VSYNC_DET bit in the GMSL serializer).  
Encryption enabled after the  
next VSYNC falling edge.  
Decryption enabled after the next  
VSYNC falling edge.  
11  
Checks that BKSV is not in the Key  
Revocation list and continues if it is not.  
Authentication can be restarted if it fails.  
Note: Revocation list check can start after  
BKSV is read in step 8.  
12  
13  
Starts transmission of A/V content that needs  
protection.  
Performs HDCP encryption on  
high-value content A/V data.  
Performs HDCP decryption on high-  
value content A/V data.  
Maxim Integrated  
49  
www.maximintegrated.com  
MAX9276/MAX9280  
3.12Gbps GMSL Deserializers  
for Coax or STP Input and Parallel Output  
Table 17. Link Integrity Check (Normal)—Performed Every 128 Frames After Encryption  
is Enabled  
NO.  
µC  
HDCP GMSL SERIALIZER  
HDCP GMSL DESERIALIZER  
Generates Ri and updates the  
RI register every 128 VSYNC  
cycles.  
Generates Ri’ and updates the RI’  
register every 128 VSYNC cycles.  
1
Continues to encrypt and  
transmit A/V data.  
Continues to receive, decrypt, and  
output A/V data.  
2
3
Every 128 video frames (VSYNC cycles) or  
every 2s.  
4
Reads RI from the GMSL serializer.  
Reads RI’ from the deserializer.  
5
Reads RI again from the GMSL serializer and  
makes sure it is stable (matches the previous  
RI that it has read from the GMSL serializer). If  
RI is not stable, go back to step 5.  
6
7
If RI matches RI’, the link integrity check is  
successful; go back to step 3.  
If RI does not match RI’, the link integrity  
check fails. After the detection of failure of  
link integrity check, the FC makes sure that  
A/V data not requiring protection (low-value  
content) is available at the GMSL serializer  
inputs (such as blue or informative screen).  
Alternatively, the FORCE_VIDEO and  
FORCE_AUDIO bits of the GMSL serializer  
can be used to mask A/V data input of the  
GMSL serializer.  
8
Disables encryption and  
transmits low-value content A/V  
data.  
Writes 0 to the ENCRYPTION_ENABLE bit of  
the GMSL serializer and deserializer.  
Disables decryption and outputs low-  
value content A/V data.  
9
Restarts authentication by writing 1 to the  
RESET_HDCP bit followed by writing 1 to the  
START_AUTHENTICATION bit in the GMSL  
serializer.  
10  
Maxim Integrated  
50  
www.maximintegrated.com  
MAX9276/MAX9280  
3.12Gbps GMSL Deserializers  
for Coax or STP Input and Parallel Output  
Table 18. Optional Enhanced Link Integrity Check—Performed Every 16 Frames After  
Encryption is Enabled  
NO.  
µC  
HDCP GMSL SERIALIZER  
HDCP GMSL DESERIALIZER  
Generates PJ and updates the  
PJ register every 16 VSYNC  
cycles.  
Generates PJ’ and updates the PJ’  
register every 16 VSYNC cycles.  
1
Continues to encrypt and  
transmit A/V data.  
Continues to receive, decrypt, and  
output A/V data.  
2
3
4
Every 16 video frames, reads PJ from the  
GMSL serializer and PJ’ from the deserializer.  
If PJ matches PJ’, the enhanced link integrity  
check is successful; go back to step 3.  
If there is a mismatch, retry up to two more  
times from step 3. Enhanced link integrity  
check fails after 3 mismatches. After the  
detection of failure of enhanced link integrity  
check, the µC makes sure that A/V data not  
requiring protection (low-value content) is  
available at the GMSL serializer inputs (such  
as blue or informative screen). Alternatively,  
the FORCE_VIDEO and FORCE_AUDIO bits  
of the GMSL serializer can be used to mask  
A/V data input of the GMSL serializer.  
5
Disables encryption and  
transmits low-value content A/V  
data.  
Writes 0 to the ENCRYPTION_ENABLE bit of  
the GMSL serializer and deserializer.  
Disables decryption and outputs low-  
value content A/V data.  
6
7
Restarts authentication by writing 1 to the  
RESET_HDCP bit followed by writing 1 to the  
START_AUTHENTICATION bit in the GMSL  
serializer.  
Maxim Integrated  
51  
www.maximintegrated.com  
MAX9276/MAX9280  
3.12Gbps GMSL Deserializers  
for Coax or STP Input and Parallel Output  
Example Repeater Network—Two µCs  
The example shown in Figure 38 has one repeater and two µCs. Table 19 summarizes the authentication operation.  
BD-DRIVE  
TX_B1  
REPEATER  
RX_R1  
DISPLAY 1  
RX_D1  
TX_R1  
TX_R2  
VIDEO  
ROUTING  
µC_B  
DISPLAY 2  
RX_D2  
MEMORY  
WITH SRM  
RX_R2  
µC_R  
VIDEO CONNECTION  
CONTROL CONNECTION 1 (µC_B IN BD-DRIVE IS MASTER)  
CONTROL CONNECTION 2 (µC_R IN REPEATER IS MASTER)  
Figure 38. Example Network with One Repeater and Two µCs (Tx = GMSL Serializer’s, Rx = Deserializer’s)  
Table 19. HDCP Authentication and Normal Operation (One Repeater, Two µCs)—First  
and Second Parts of the HDCP Authentication Protocol  
HDCP GMSL  
SERIALIZER  
(TX_B1, TX_R1,  
TX_R2)  
HDCP GMSL  
DESERIALIZER  
(RX_R1, RX_D1,  
RX_D2)  
NO.  
µC_B  
µC_R  
TX_B1 CDS = 0  
TX_R1 CDS = 0  
TX_R2 CDS = 0  
RX_R1 CDS = 1  
RX_D1 CDS = 0  
RX_D2 CDS = 0  
All: Power-up waiting for  
HDCP authentication.  
All: Power-up waiting for  
HDCP authentication.  
1
Initial state after power-up.  
Initial state after power-up.  
Writes REPEATER = 1 in  
RX_R1. Retries until proper  
acknowledge frame received.  
Note: This step must be  
completed before the first part  
of authentication is started  
between TX_B1 and RX_R1 by  
the µC_B (step 7). For example,  
to satisfy this requirement,  
RX_R1 can be held at power-  
down until µC_R is ready to  
write the REPEATER bit, or  
µC_B can poll µC_R before  
starting authentication.  
2
Maxim Integrated  
52  
www.maximintegrated.com  
MAX9276/MAX9280  
3.12Gbps GMSL Deserializers  
for Coax or STP Input and Parallel Output  
Table 19. HDCP Authentication and Normal Operation (One Repeater, Two µCs)—First  
and Second Parts of the HDCP Authentication Protocol (continued)  
HDCP GMSL  
SERIALIZER  
(TX_B1, TX_R1,  
TX_R2)  
HDCP GMSL  
DESERIALIZER  
(RX_R1, RX_D1,  
RX_D2)  
NO.  
µC_B  
µC_R  
TX_B1 CDS = 0  
TX_R1 CDS = 0  
TX_R2 CDS = 0  
RX_R1 CDS = 1  
RX_D1 CDS = 0  
RX_D2 CDS = 0  
Makes sure that A/V data  
not requiring protection (low-  
value content) is available at  
the TX_B1 inputs (such as  
blue or informative screen).  
Alternatively, the FORCE_  
VIDEO and FORCE_AUDIO  
bits of TX_B1 can be used to  
mask A/V data input of TX_B1.  
Starts the link between TX_B1  
and RX_R1 by writing SEREN  
= H to TX_B1, or link starts  
automatically if AUTOS is low.  
TX_B1: Starts  
RX_R1: Locks to  
serialization and  
transmits low-value  
content A/V data.  
incoming data stream  
and outputs low-value  
content A/V data.  
3
Starts all downstream links  
by writing SEREN = H to  
TX_R1, TX_R2, or links start  
automatically if AUTOS of  
transmitters are low.  
TX_R1, TX_R2: Starts  
serialization and  
transmits low-value  
content A/V data.  
RX_D1, RX_D2: Locks  
to incoming data stream  
and outputs low-value  
content A/V data.  
4
Reads the locked bit of RX_D1  
and makes sure the link  
Reads the locked bit of RX_R1  
and makes sure the link  
between TX_B1 and RX_R1 is  
established.  
between TX_R1 and RX_D1 is  
established. Reads the locked  
bit of RX_D2 and makes sure  
the link between TX_R2 and  
RX_D2 is established.  
5
Writes 1 to the  
GPIO_0_FUNCTION and  
GPIO_1_FUNCTION bits  
in RX_R1 to change GPIO  
functionality used for HDCP  
purpose. Optionally, writes a  
random-number seed to TX_R1  
and TX_R2.  
Optionally, writes a random  
number seed to TX_B1.  
6
7
Starts and completes the  
TX_B1: According  
to commands from  
µC_B, generates AN,  
computes R0.  
RX_R1: According to  
commands from µC_B,  
computes R0’.  
first part of the authentication  
protocol between TX_B1, RX_R1  
(see steps 6–10 in Table 10).  
Maxim Integrated  
53  
www.maximintegrated.com  
MAX9276/MAX9280  
3.12Gbps GMSL Deserializers  
for Coax or STP Input and Parallel Output  
Table 19. HDCP Authentication and Normal Operation (One Repeater, Two µCs)—First  
and Second Parts of the HDCP Authentication Protocol (continued)  
HDCP GMSL  
SERIALIZER  
(TX_B1, TX_R1,  
TX_R2)  
HDCP GMSL  
DESERIALIZER  
(RX_R1, RX_D1,  
RX_D2)  
NO.  
µC_B  
µC_R  
TX_B1 CDS = 0  
TX_R1 CDS = 0  
TX_R2 CDS = 0  
RX_R1 CDS = 1  
RX_D1 CDS = 0  
RX_D2 CDS = 0  
When GPIO_1 = 1 is detected,  
starts and completes the first part TX_R1, TX_R2:  
RX_D1, RX_D2:  
of the authentication protocol  
between the (TX_R1, RX_D1)  
and (TX_R2, RX_D2) links (see  
steps 6–10 in Table 10).  
According to commands According to commands  
8
from µC_R, generates  
AN, computes R0.  
from µC_R, computes  
R0’.  
Waits for the VSYNC falling  
edge and then enables  
encryption on the (TX_B1,  
RX_R1) link. Full authentication  
is not complete yet so it makes  
sure A/V content that needs  
protection is not transmitted.  
Since REPEATER = 1 was read  
from RX_R1, the second part of  
authentication is required.  
TX_B1: Encryption  
enabled after next  
VSYNC falling edge.  
RX_R1: Decryption  
enabled after next  
VSYNC falling edge.  
9
When GPIO_0 = 1 is detected,  
enables encryption on the  
(TX_R1, RX_D1) and (TX_R2,  
RX_D2) links.  
TX_R1, TX_R2:  
Encryption enabled  
after next VSYNC  
falling edge.  
RX_D1, RX_D2:  
Decryption enabled  
after next VSYNC  
falling edge.  
10  
11  
RX_R1: Control  
Blocks control channel  
channel from serializer  
side (TX_B1) is blocked  
after FWDCCEN =  
REVCCEN = 0 is  
written.  
from µC_B side by setting  
REVCCEN = FWDCCEN = 0  
in RX_R1. Retries until proper  
acknowledge frame received.  
Waits for some time to allow  
µC_R to make the KSV list  
ready in RX_R1. Then polls  
(reads) the KSV_LIST_READY  
bit of RX_R1 regularly until  
proper acknowledge frame is  
received and bit is read as 1.  
RX_R1: Triggered by  
µC_R’s write of BINFO,  
calculates hash value  
(V’) on the KSV list,  
BINFO and the secret-  
value M0’.  
Writes BKSVs of RX_D1 and  
RX_D2 to the KSV list in RX_  
R1. Then, calculates and writes  
the BINFO register of RX_R1.  
12  
13  
Writes 1 to the KSV_LIST_  
READY bit of RX_R1 and then  
unblocks the control channel  
from the µC_B side by setting  
REVCCEN = FWDCCEN = 1 in  
RX_R1.  
RX_R1: Control channel  
from the serializer side  
(TX_B1) is unblocked  
after FWDCCEN =  
REVCCEN = 1 is  
written.  
Maxim Integrated  
54  
www.maximintegrated.com  
MAX9276/MAX9280  
3.12Gbps GMSL Deserializers  
for Coax or STP Input and Parallel Output  
Table 19. HDCP Authentication and Normal Operation (One Repeater, Two µCs)—First  
and Second Parts of the HDCP Authentication Protocol (continued)  
HDCP GMSL  
SERIALIZER  
(TX_B1, TX_R1,  
TX_R2)  
HDCP GMSL  
DESERIALIZER  
(RX_R1, RX_D1,  
RX_D2)  
NO.  
µC_B  
µC_R  
TX_B1 CDS = 0  
TX_R1 CDS = 0  
TX_R2 CDS = 0  
RX_R1 CDS = 1  
RX_D1 CDS = 0  
RX_D2 CDS = 0  
Reads the KSV list and BINFO  
from RX_R1 and writes them  
to TX_B1. If any of the MAX_  
DEVS_EXCEEDED or MAX_  
CASCADE_EXCEEDED bits  
is 1, then authentication fails.  
Note: BINFO must be written  
after the KSV list.  
TX_B1: Triggered by  
µC_B’s write of BINFO,  
calculates hash value  
(V) on the KSV list,  
BINFO and the secret-  
value M0.  
14  
15  
Reads V from TX_B1 and V’  
from RX_R1. If they match,  
continues with authentication;  
otherwise, retries up to two  
more times.  
Searches for each KSV in the  
KSV list and BKSV of RX_R1 in  
the Key Revocation list.  
16  
17  
18  
If keys are not revoked,  
the second part of the  
authentication protocol is  
completed.  
All: Perform HDCP  
encryption on high-  
value A/V data.  
All: Perform HDCP  
decryption on high-  
value A/V data.  
Starts transmission of A/V  
content that needs protection.  
Use the following procedure to notify downstream links of  
the start of a new authentication request:  
Detection and Action Upon New Device  
Connection  
When a new device is connected to the system, the  
device must be authenticated and the device’s KSV  
checked against the revocation list. The downstream  
µCs can set the NEW_DEV_CONN bit of the upstream  
receiver and invoke an interrupt to notify upstream µCs.  
1) Host µC begins authentication with the HDCP repeat-  
er’s input receiver.  
2) When AKSV is written to HDCP repeater’s input  
receiver, its AUTH_STARTED bit is automatically set  
and its GPIO1 goes high (if GPIO1_FUNCTION is set  
to high).  
Notification of Start of Authentication and  
Enable of Encryption to Downstream Links  
HDCP repeaters do not immediately begin authentication  
upon startup or detection of a new device, but instead wait  
for an authentication request from the upstream transmit-  
ter/repeaters.  
3) HDCP repeater’s µC waits for a low-to-high transition  
on HDCP repeater input receiver’s AUTH_STARTED  
bit and/or GPIO1 (if configured) and starts authentica-  
tion downstream.  
4) HDCP repeater’s µC resets the AUTH_STARTED bit.  
Maxim Integrated  
55  
www.maximintegrated.com  
MAX9276/MAX9280  
3.12Gbps GMSL Deserializers  
for Coax or STP Input and Parallel Output  
Set GPIO0_FUNCTION to high to have GPIO0 follow the  
ENCRYPTION_ENABLE bit of the receiver. The repeater  
µC can use this function for notification when encryption  
is enabled/disabled by an upstream µC.  
applications. However, a µC can reside on each side  
simultaneously, and trade off running the control channel.  
In this case, each µC can communicate with the serializer  
and deserializer and any peripheral devices.  
Contention will occur if both µCs attempt to use the  
control channel at the same time. It is up to the user  
to prevent this contention by implementing a higher  
level protocol. In addition, the control channel does not  
Applications Information  
Self PRBS Test  
The serializers include a PRBS pattern generator which  
works with bit-error verification in the deserializer. To  
run the PRBS test, disable encryption (if used), set  
DISHSFILT, DISVSFILT, and DISDEFILT to ‘1’, to disable  
glitch filter in the deserializer. Then, set PRBSEN = 1  
(0x04, D5) in the serializer and then in the deserializer.  
To exit the PRBS test, set PRBSEN = 0 (0x04, D5) in the  
deserializer and then in the serializer.  
2
provide arbitration between I C masters on both sides of  
the link. An acknowledge frame is not generated when  
communication fails due to contention. If communication  
across the serial link is not required, the µCs can disable  
the forward and reverse control channel using the  
FWDCCEN and REVCCEN bits (0x04, D[1:0]) in the  
serializer/deserializer. Communication across the serial  
link is stopped and contention between µCs cannot occur.  
Error Checking  
As an example of dual µC use in an image-sensing  
application, the serializer can be in sleep mode and  
waiting for wake-up by µC on the deserializer side. After  
wake-up, the serializer-side µC assumes master control  
of the serializer’s registers.  
The deserializers check the serial link for errors and  
store the number of decoding errors in the 8-bit registers  
DECERR (0x0D). If a large number of decoding errors  
are detected within a short duration (error rate ≥ 1/4), the  
deserializers lose lock and stop the error counter. The  
deserializers then attempt to relock to the serial data.  
DECERR reset upon successful video link lock, suc-  
cessful readout of the register (through µC), or whenever  
auto error reset is enabled. The deserializers use a sepa-  
rate PRBS Register during the internal PRBS test, and  
DECERR are reset to 0x00.  
Changing the Clock Frequency  
It is recommended that the serial link be enabled after  
the video clock (f  
) and the control-channel  
PCLKOUT  
clock (f /f ) are stable. When changing the clock  
UART I2C  
frequency, stop the video clock for 5µs, apply the clock  
at the new frequency, then restart the serial link or toggle  
SEREN. On-the-fly changes in clock frequency are  
possible if the new frequency is immediately stable and  
without glitches. The reverse control channel remains  
unavailable for 500µs after serial link start or stop. When  
using the UART interface, limit on-the-fly changes in  
ERR Output  
The deserializers have an open-drain ERR output. This  
output asserts low whenever the number of decoding  
errors exceeds the error thresholds during normal opera-  
tion, or when at least 1 PRBS error is detected during  
PRBS test. ERR reasserts high whenever DECERR  
resets, due to DECERR readout, video link lock, or auto  
error reset.  
f
to factors of less than 3.5 at a time to ensure  
UART  
that the device recognizes the UART sync pattern. For  
example, when lowering the UART frequency from 1Mbps  
to 100kbps, first send data at 333kbps then at 100kbps for  
reduction ratios of 3 and 3.333, respectively.  
Auto Error Reset  
The default method to reset errors is to read the respec-  
tive error registers in the deserializers (0x0D and 0x0E).  
Auto error reset clears the error counters DECERR and  
the ERR output ~1µs after ERR goes low. Auto error reset  
is disabled on power-up. Enable auto error reset through  
AUTORST (0x06, D5). Auto error reset does not run when  
the device is in PRBS test mode.  
Fast Detection of Loss of Synchronization  
A measure of link quality is the recovery time from loss of  
synchronization. The host can be quickly notified of loss-  
of-lock by connecting the deserializer’s LOCK output to  
the GPI input. If other sources use the GPI input, such as  
a touch-screen controller, the µC can implement a routine  
to distinguish between interrupts from loss-of-sync and  
normal interrupts. Reverse control-channel communica-  
tion does not require an active forward link to operate  
and accurately tracks the LOCK status of the GMSL link.  
LOCK asserts for video link only and not for the configura-  
tion link.  
Dual µC Control  
Usually systems have one microcontroller to run the  
control channel, located on the serializer side for display  
applications or on the deserializer side for image-sensing  
Maxim Integrated  
56  
www.maximintegrated.com  
MAX9276/MAX9280  
3.12Gbps GMSL Deserializers  
for Coax or STP Input and Parallel Output  
high level, a pulldown resistor to GND to set a low level, or  
open to set a mid level. For digital control, use three-state  
logic to drive the 3-level logic input.  
Providing a Frame Sync (Camera  
Applications)  
The GPI/GPO provide a simple solution for camera  
applications that require a Frame Sync signal from the  
ECU (e.g. surround view systems). Connect the ECU  
Frame Sync signal to the GPI input, and connect GPO  
output to the camera Frame Sync input. GPI/GPO has  
a typical delay of 275µs. Skew between multiple GPI/  
GPO channels is typically 115µs. If a lower skew signal  
is required, connect the camera’s frame sync input one of  
Configuration Blocking  
The deserializers can block changes to registers. Set  
CFGBLOCK to make registers 0x00 to registers 0x1F as  
read only. Once set, the registers remain blocked until the  
supplies are removed or until PWDN is low.  
Compatibility with Other GMSL Devices  
2
the deserializer’s GPIOs and use an I C broadcast write  
The deserializers are designed to pair with the MAX9275–  
MAX9281 serializers but interoperates with any GMSL  
serializers. See the Table 20 for operating limitations  
command to change the GPIO output state. This has a  
maximum skew of 1.5µs, independent from the used I C  
bit rate.  
2
Key Memory  
Software Programming of the Device  
Addresses  
Each device has a unique HDCP key set that is stored  
in secure nonvolatile memory (NVM). The HDCP key set  
consists of forty 56-bit private keys and one 40-bit public  
key. The NVM is qualified for automotive applications.  
The serializers and deserializers have programmable  
device addresses. This allows multiple GMSL devices,  
2
along with I C peripherals, to coexist on the same control  
HS/VS/DE Inversion  
channel. The serializer device address is in register 0x00  
of each device, while the deserializer device address is in  
register 0x01 of each device. To change a device address,  
first write to the device whose address changes (register  
0x00 of the serializer for serializer device address change,  
or register 0x01 of the deserializer for deserializer device  
address change). Then write the same address into the  
corresponding register on the other device (register 0x00  
of the deserializer for serializer device address change,  
or register 0x01 of the serializer for deserializer device  
address change).  
The deserializer uses an active-high HS, VS, and DE  
for encoding and HDCP encryption. Set INVHSYNC,  
INVVSYNC, and INVDE in the serializer (registers 0x0D,  
0x0E) to invert active-low input signals for use with the  
GMSL devices. Set INVHSYNC, INVVSYNC, and INVDE  
in the deserializer (register 0x0E) to output active-low  
signals for use with downstream devices.  
WS/SCK Inversion  
The deserializer uses standard polarities for I S. Set  
2
INVWS, INVSCK in the serializer (register 0x1B) to invert  
opposite polarity signals for use with the GMSL devices.  
Set INVWS, INVSCK in the deserializer (register 0x1D) to  
output reverse-polarity signals for downstream use.  
3-Level Configuration Inputs  
CX/TP and BWS are 3-level inputs that control the serial  
interface configuration and power-up defaults. Connect  
3-level inputs through a pullup resistor to IOVDD to set a  
Table 20. MAX9276/MAX9280 Feature Compatibility  
MAX9276/MAX9280 FEATURE  
HDCP (MAX9280 only)  
GMSL SERIALIZER  
If feature not supported in serializer, must not be turned on in the MAX9280  
If feature not supported in serializer, must only use 24-bit and 32-bit modes  
High-bandwidth mode  
2
2
2
I C to I C  
If feature not supported in serializer, must use UART to I C or UART to UART  
If feature not supported in serializer, must connect unused serial output through 200nF and  
Coax  
50Ω in series to V  
and set the reverse control channel amplitude to 100mV.  
DD  
High-immunity control channel  
TDM encoding  
If feature not supported in serializer, must use the legacy reverse control channel mode  
2
If feature not supported in serializer, must use I S encoding (with 50% WS duty cycle), if  
supported  
2
2
I S encoding  
If feature not supported in serializer must disable I S in the MAX9276/MAX9280  
Maxim Integrated  
57  
www.maximintegrated.com  
MAX9276/MAX9280  
3.12Gbps GMSL Deserializers  
for Coax or STP Input and Parallel Output  
2
even when the device is not in operation. I C specifies  
Table 21. Staggered Output Delay  
300ns rise times (30% to 70%) for fast mode, which  
is defined for data rates up to 400kbps (see the I C  
specifications in the AC Electrical Characteristics table  
OUTPUT DELAY RELATIVE  
TO DOUT0 (ns)  
2
OUTPUT  
DISSTAG = 0  
DISSTAG = 1  
for details). To meet the fast-mode rise-time requirement,  
choose the pullup resistors so that rise time t = 0.85  
DOUT0–DOUT5,  
DOUT21, DOUT22  
R
0
0.5  
1
0
x R  
x C  
< 300ns. The waveforms are not  
BUS  
PULLUP  
recognized if the transition time becomes too slow. The  
DOUT6–DOUT10,  
DOUT23, DOUT24  
2
0
0
device supports I C/UART rates up to 1Mbps.  
DOUT11–DOUT15,  
DOUT25, DOUT26  
AC-Coupling  
AC-coupling isolates the receiver from DC voltages up  
to the voltage rating of the capacitor. Capacitors at the  
serializer output and at the deserializer input are needed  
for proper link operation and to provide protection if either  
end of the cable is shorted to a battery. AC-coupling  
blocks low-frequency ground shifts and low-frequency  
common-mode noise.  
DOUT16–DOUT20,  
DOUT27, DOUT28  
1.5  
0
0
PCLKOUT  
0.75  
GPIOs  
Selection of AC-Coupling Capacitors  
The deserializers have two open-drain GPIOs available  
when not used for HDCP purposes (see the Notification  
of Start of Authentication and Enable of Encryption to  
Downstream Links section), GPIO1OUT and GPIO0OUT  
(0x06, D3 and D1) set the output state of the GPIOs.  
Setting the GPIO output bits to ‘0’ low pulls the output low,  
while setting the bits to ‘1’ leaves the output undriven, and  
pulled high through internal/external pullup resistors. The  
GPIO input buffers are always enabled. The input states  
are stored in GPIO1 and GPIO0 (0x06, D2 and D0). Set  
GPIO1OUT/GPIO0OUT to 1 when using GPIO1/GPIO0  
as an input.  
Voltage droop and the digital sum variation (DSV) of  
transmitted symbols cause signal transitions to start from  
different voltage levels. Because the transition time is fixed,  
starting the signal transition from different voltage levels  
causes timing jitter. The time constant for an AC-coupled  
link needs to be chosen to reduce droop and jitter to an  
acceptable level. The RC network for an AC-coupled link  
consists of the CML/coax receiver termination resistor  
(R ), the CML/coax driver termination resistor (R ),  
TR  
TD  
and the series AC-coupling capacitors (C). The RC  
time constant for four equal-value series capacitors  
is (C x (R  
+ R ))/4. R  
and R  
are required to  
TR  
TD  
TR  
TD  
Staggered Parallel Outputs  
match the transmission line impedance (usually 100Ω  
differential, 50Ω single ended). This leaves the capacitor  
selection to change the system time constant. Use at  
0.22μF (using legacy reverse control channel), 47nF  
(using high-immunity reverse control channel), or larger  
high-frequency surface-mount ceramic capacitors, with  
sufficient voltage rating to withstand a short to battery, to  
pass the lower speed reverse control-channel signal. Use  
capacitors with a case size less than 3.2mm x 1.6mm to  
have lower parasitic effects to the high-speed signal.  
The deserializers stagger the parallel data outputs to  
reduce EMI and noise. Staggering outputs also reduces  
the power-supply transient requirements. By default,  
the deserializers stagger outputs according to Table 21.  
Disable output staggering through the DISSTAG bit (0x06,  
D7).  
Internal Input Pulldowns  
The control and configuration inputs (except 3-level  
inputs) include a pulldown resistor to GND. External pull-  
down resistors are not needed.  
Power-Supply Circuits and Bypassing  
The deserializers use an AVDD and DVDD of 3.0V to  
3.6V. All single-ended inputs and outputs except for the  
serial input derive power from an IOVDD of 1.7V to 3.6V,  
which scale with IOVDD. Proper voltage-supply bypass-  
ing is essential for high-frequency circuit stability.  
2
Choosing I C/UART Pullup Resistors  
2
I C and UART open-drain lines require a pullup resistor  
to provide a logic-high level. There are tradeoffs between  
power dissipation and speed, and a compromise may  
be required when choosing pullup resistor values. Every  
device connected to the bus introduces some capacitance  
Maxim Integrated  
58  
www.maximintegrated.com  
MAX9276/MAX9280  
3.12Gbps GMSL Deserializers  
for Coax or STP Input and Parallel Output  
Power-Supply Table  
Cables and Connectors  
Power-supply currents shown in the DC Electrical  
Characteristics table is the sum of the currents from  
AVDD, DVDD, and IOVDD. IOVDD is measured at  
Interconnect for CML typically has a differential imped-  
ance of 100Ω. Use cables and connectors that have  
matched differential impedance to minimize impedance  
discontinuities. Coax cables typically have a characteristic  
impedance of 50Ω, contact the factory for 75Ω operation).  
Table 24 lists the suggested cables and connectors used  
in the GMSL link.  
V
= 3.6V. If using a different IOVDD voltage, the  
IOVDD  
IOVDD worst-case supply current will vary according to  
Table 22. HDCP operation (MAX9280 only) draws addi-  
tional current. This is shown in Table 23.  
Table 22. IOVDD Current Simulation Results  
IOVDD SUPPLY VOLTAGE  
IOVDD WORST-CASE SUPPLY CURRENT  
1.9V  
4.4  
3.3V*  
7.9  
3.6V  
8.6  
C = 5pF  
L
BWS = low,  
= 16.6MHz  
f
PCLKOUT  
C = 10pF  
6.4  
12.4  
14.5  
23.1  
25.6  
40.7  
38.7  
60.3  
18.2  
28.9  
45  
13.5  
15.8  
25.2  
27.9  
44.4  
42.2  
65.8  
19.8  
31.5  
49  
L
C = 5pF  
8
L
BWS = low,  
= 33.3MHz  
f
PCLKOUT  
C = 10pF  
13.2  
14.9  
23.4  
21.6  
34.8  
10.2  
16.6  
25.1  
40.4  
L
C = 5pF  
L
BWS = low,  
= 66.6MHz  
f
PCLKOUT  
C = 10pF  
L
mA  
C = 5pF  
L
BWS = low,  
= 104MHz  
f
PCLKOUT  
C = 10pF  
L
C = 5pF  
L
BWS = mid,  
= 36.6MHz  
f
PCLKOUT  
C = 10pF  
L
C = 5pF  
L
BWS = mid,  
= 104MHz  
f
PCLKOUT  
C = 10pF  
70.2  
76.5  
L
Table 23. Additional Supply Current from HDCP (MAX9280 Only)  
PCLK  
(MHz)  
MAXIMUM HDCP CURRENT  
(mA)  
16.6  
33.3  
36.6  
66.6  
104  
6
9
9
12  
18  
Table 24. Suggested Connectors and Cables for GMSL  
VENDOR  
Rosenberger  
Rosenberger  
Nissei  
CONNECTOR  
59S2AX-400A5-Y  
D4S10A-40ML5-Z  
GT11L-2S  
CABLE  
TYPE  
Coax  
STP  
RG174  
Dacar 538  
F-2WME AWG28  
A-BW-Lxxxxx  
STP  
JAE  
MX38-FF  
STP  
Maxim Integrated  
59  
www.maximintegrated.com  
MAX9276/MAX9280  
3.12Gbps GMSL Deserializers  
for Coax or STP Input and Parallel Output  
Board Layout  
R
D
Separate LVCMOS logic signals and CML/coax high-  
speed signals to prevent crosstalk. Use a four-layer PCB  
with separate layers for power, ground, CML/coax, and  
LVCMOS logic signals. Layout PCB traces close to each  
other for a 100Ω differential characteristic impedance for  
STP. The trace dimensions depend on the type of trace  
used (microstrip or stripline). Note that two 50Ω PCB  
traces do not have 100Ω differential impedance when  
brought close together—the impedance goes down when  
the traces are brought closer. Use a 50Ω trace for the  
single-ended output when driving coax.  
1M  
1.5kΩ  
CHARGE-CURRENT- DISCHARGE  
LIMIT RESISTOR  
RESISTANCE  
HIGH-  
VOLTAGE  
DC  
DEVICE  
UNDER  
TEST  
C
100pF  
S
STORAGE  
CAPACITOR  
SOURCE  
Figure 39. Human Body Model ESD Test Circuit  
Route the PCB traces for differential CML channel in par-  
allel to maintain the differential characteristic impedance.  
Avoid vias. Keep PCB traces that make up a differential  
pair equal length to avoid skew within the differential pair.  
R
330  
D
CHARGE-CURRENT- DISCHARGE  
LIMIT RESISTOR  
RESISTANCE  
ESD Protection  
HIGH-  
VOLTAGE  
DC  
DEVICE  
UNDER  
TEST  
C
S
STORAGE  
CAPACITOR  
ESD tolerance is rated for Human Body Model, IEC  
61000-4-2, and ISO 10605. The ISO 10605 and IEC  
61000-4-2 standards specify ESD tolerance for electronic  
systems. The serial link inputs are rated for ISO 10605  
ESD protection and IEC 61000-4-2 ESD protection. All  
pins are tested for the Human Body Model. The Human  
150pF  
SOURCE  
Figure 40. IEC 61000-4-2 Contact Discharge ESD Test Circuit  
Body Model discharge components are C = 100pF and  
S
R
= 1.5kΩ (Figure 39). The IEC 61000-4-2 discharge  
D
components are C = 150pF and R = 330Ω (Figure 40).  
S
D
R
D
The ISO 10605 discharge components are C = 330pF  
2k  
S
and R = 2kΩ (Figure 41).  
D
CHARGE-CURRENT- DISCHARGE  
LIMIT RESISTOR  
RESISTANCE  
HIGH-  
VOLTAGE  
DC  
DEVICE  
UNDER  
TEST  
C
S
STORAGE  
CAPACITOR  
330pF  
SOURCE  
Figure 41. ISO 10605 Contact Discharge ESD Test Circuit  
Maxim Integrated  
60  
www.maximintegrated.com  
MAX9276/MAX9280  
3.12Gbps GMSL Deserializers  
for Coax or STP Input and Parallel Output  
Table 25. Register Table  
REGISTER  
ADDRESS  
DEFAULT  
VALUE  
BITS  
NAME  
VALUE  
FUNCTION  
Serializer device address (power-up default value  
XX00XX0  
D[7:1]  
D0  
SERID  
XXXXXXX  
0
depends on latched address pin level)  
0x00  
Reserved  
0
Deserializer device address (power-up default  
value depends on latched address pin level).  
D[7:1]  
DESID  
XXXXXXX  
XX01XXX  
0x01  
0
Normal operation  
D0  
CFGBLOCK  
0
1
Registers 0x00 to 0x1F are read only  
No spread spectrum.  
00  
01  
10  
11  
±2% spread spectrum  
No spread spectrum  
D[7:6]  
SS  
00  
±4% spread spectrum  
WS, SCK configured as output (deserializer  
sourced clock)  
0
D5  
D4  
AUDIOMODE  
AUDIOEN  
PRNG  
0
1
WS, SCK configured as input (system sourced  
clock)  
1
2
0
Disable I S/TDM channel  
0x02  
2
1
Enable I S/TDM channel  
00  
01  
10  
11  
00  
01  
10  
11  
12.5MHz to 25MHz pixel clock  
25MHz to 50MHz pixel clock  
50MHz to 104MHz pixel clock  
Automatically detect the pixel clock range  
0.5 to 1Gbps serial data rate  
1 to 2Gbps serial data rate  
D[3:2]  
11  
D[1:0]  
D[7:6]  
SRNG  
11  
2 to 3.12Gbps serial data rate  
Automatically detect serial data rate  
Calibrate spread modulation rate only once after  
locking  
00  
01  
10  
11  
Calibrate spread modulation rate every 2ms after  
locking  
AUTOFM  
00  
Calibrate spread modulation rate every 16ms after  
locking  
0x03  
Calibrate spread modulation rate every 256ms  
after locking  
D5  
0
Reserved  
0
00000  
Auto calibrate sawtooth divider  
Manual SDIV setting. See the Manual  
Programming of the Spread-Spectrum Divider  
section.  
D[4:0]  
SDIV  
00000  
XXXXX  
Maxim Integrated  
61  
www.maximintegrated.com  
MAX9276/MAX9280  
3.12Gbps GMSL Deserializers  
for Coax or STP Input and Parallel Output  
Table 25. Register Table (continued)  
REGISTER  
ADDRESS  
DEFAULT  
VALUE  
BITS  
NAME  
VALUE  
FUNCTION  
0
LOCK output is low  
LOCK output is high  
0
D7  
LOCKED  
(Read only)  
1
Enable outputs (power-up default value depends  
on ENABLE pin value at power-up)  
0
D6  
D5  
D4  
OUTENB  
PRBSEN  
SLEEP  
0, 1  
0
Disable outputs (power-up default value depends  
on ENABLE pin value at power-up)  
Disable PRBS test  
Enable PRBS test  
1
0
1
Normal mode (power-up default value depends on  
MS pin value at power-up)  
0
0, 1  
0x04  
Activate sleep mode (power-up default value  
depends on MS pin value at power-up)  
1
2
00  
01  
Local control channel uses I C when I2CSEL = 0  
D[3:2]  
D1  
INTTYPE  
Local control channel uses UART when I2CSEL = 0  
Local control channel disabled  
01  
1
10, 11  
0
Disable reverse control channel to serializer (sending)  
Enable reverse control channel to serializer (sending)  
REVCCEN  
1
Disable forward control channel from serializer  
(receiving)  
0
1
0
1
D0  
D7  
FWDCCEN  
1
Enable forward control channel from serializer  
(receiving)  
2
I C conversion sends the register address when  
2
converting UART to I C  
I2CMETHOD  
0
2
Disable sending of I C register address when  
2
converting UART to I C (command-byte-only mode)  
00  
01  
7.5MHz equalizer highpass filter cutoff frequency  
3.75MHz equalizer highpass filter cutoff frequency  
2.5MHz equalizer highpass filter cutoff frequency  
1.87MHz equalizer highpass filter cutoff frequency  
Enable equalizer  
D[6:5]  
D4  
HPFTUNE  
PDEQ  
01  
10  
11  
0
0
1
Disable equalizer  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
11XX  
2.1dB equalizer boost gain  
2.8dB equalizer boost gain  
0x05  
3.4dB equalizer boost gain  
4.2dB equalizer boost gain  
5.2dB equalizer boost gain  
6.2dB equalizer boost gain  
D[3:0]  
EQTUNE  
7dB equalizer boost gain  
1001  
8.2dB equalizer boost gain  
9.4dB equalizer boost gain  
10.7dB equalizer boost gain. Power-up default  
11.7dB equalizer boost gain  
13dB equalizer boost gain  
Do not use  
Maxim Integrated  
62  
www.maximintegrated.com  
MAX9276/MAX9280  
3.12Gbps GMSL Deserializers  
for Coax or STP Input and Parallel Output  
Table 25. Register Table (continued)  
REGISTER  
ADDRESS  
DEFAULT  
VALUE  
BITS  
NAME  
VALUE  
FUNCTION  
0
Enable staggered outputs  
D7  
DISSTAG  
0
1
Disable staggered outputs  
Do not automatically reset error registers and  
outputs  
0
1
0
1
D6  
D5  
AUTORST  
DISGPI  
0
Automatically reset DECERR register 1µs after  
ERR asserts  
Enable GPI to GPO signal transmission to  
serializer  
0
Disable GPI to GPO signal transmission to  
serializer  
0x06  
0
GPI input is low  
GPI input is high  
Set GPIO1 to low  
Set GPIO1 to high  
GPIO1 input is low  
GPIO1 input is high  
Set GPIO0 to low  
Set GPIO0 to high  
GPIO0 input is low  
GPIO0 input is high  
Reserved  
0
D4  
D3  
D2  
D1  
D0  
GPIIN  
(Read only)  
1
0
GPIO1OUT  
GPIO1IN  
1
1
0
0
(Read only)  
1
0
GPIO0OUT  
GPIO0IN  
1
1
0
0
(Read only)  
1
0x07  
0x08  
D[7:0]  
D[7:3]  
01010100  
01010100  
00110  
00110  
Reserved  
0
Enable DE glitch filter  
Disable DE glitch filter  
Enable VS glitch filter  
Disable VS glitch filter  
Enable HS glitch filter  
Disable HS glitch filter  
Reserved  
D2  
D1  
D0  
DISDEFILT  
DISVSFILT  
DISHSFILT  
0
0
0
1
0
1
0
1
0x09  
0x0A  
0x0B  
0x0C  
D[7:0]  
D[7:0]  
D[7:0]  
D[7:0]  
11001000  
00010XXX  
00100000  
11001000  
00010XXX  
00100000  
00000000  
Reserved  
Reserved  
ERRTHR  
XXXXXXXX Error threshold for decoding errors.  
00000000  
(Read only)  
0x0D  
0x0E  
D[7:0]  
D[7:0]  
DECERR  
XXXXXXXX Decoding error counter  
00000000  
(Read only)  
PRBSERR  
XXXXXXXX PRBS error counter  
0x0F  
0x10  
D[7:0]  
D[7:0]  
XXXXXXXX Reserved  
XXXXXXXX Reserved  
(Read only)  
(Read only)  
High-immunity reverse channel mode uses  
500kbps bit rate  
0
D7  
REVFAST  
0
0x11  
High-immunity reverse channel mode uses 1Mbps  
bit rate  
1
D[6:0]  
0100010  
Reserved  
0100010  
Maxim Integrated  
63  
www.maximintegrated.com  
MAX9276/MAX9280  
3.12Gbps GMSL Deserializers  
for Coax or STP Input and Parallel Output  
Table 25. Register Table (continued)  
REGISTER  
ADDRESS  
DEFAULT  
VALUE  
BITS  
NAME  
VALUE  
FUNCTION  
0
MCLK derived from PCLKOUT. See Table 5.  
D7  
MCLKSRC  
0
1
MCLK derived from internal oscillator  
0x12  
0000000  
MCLK disabled  
0000000  
D[6:0]  
D[7:0]  
D7  
MCLKDIV  
XXXXXXX  
MCLK divider  
0x13  
0X000000  
Reserved  
0X000000  
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
No VS inversion at the output  
Invert VS at the output  
INVVSYNC  
No HS inversion at the output  
Invert HS at the output  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
INVHSYNC  
INVDE  
DRS  
0
0
0
0
0
0
0
No DE inversion at the output  
Invert DE at the output  
High data rate mode  
Low data rate mode  
0x14  
Normal parallel output driver current  
Boosted parallel output driver current  
Enable remote wake-up  
DCS  
DISRWAKE  
ES  
Disable remote wake-up  
Output data valid on rising edge of PCLKOUT  
Output data valid on falling edge of PCLKOUT  
Drive INTOUT low  
INTOUT  
Drive INTOUT high  
INTOUT pin output controlled by INTOUT bit above  
D7  
D6  
AUTOINT  
HVTREN  
1
Writes to any AVINFO bytes sets INTOUT to high.  
Reads to any AVINFO bytes sets INTOUT to low  
1
0
1
0
1
Disable HS/VS tracking (power-up default value  
depends on state of BWS input value at power-up)  
0, 1  
Enable HS/VS tracking (power-up default value  
depends on state of BWS input value at power-up)  
Disable DE tracking (power-up default value  
depends on state of BWS input value at power-up)  
0x15  
D5  
DETREN  
0, 1  
Enable DE tracking (power-up default value  
depends on state of BWS input value at power-up)  
0
1
Partial periodic HS/VS and DE tracking  
Partial and full periodic HS/VS and DE tracking  
Reserved  
D4  
D[3:2]  
D1  
HVTRMODE  
1
00  
0
00  
0
MCLK output operates normally  
WS is output from MCLK (MCLK mirrors WS)  
MCLK output on DOUT28/CNTL2  
MCLK output on CNTL0/ADD0  
MCLKWS  
1
0
D0  
MCLKPIN  
0
1
Maxim Integrated  
64  
www.maximintegrated.com  
MAX9276/MAX9280  
3.12Gbps GMSL Deserializers  
for Coax or STP Input and Parallel Output  
Table 25. Register Table (continued)  
REGISTER  
ADDRESS  
DEFAULT  
VALUE  
BITS  
NAME  
VALUE  
FUNCTION  
Legacy reverse control channel mode (power-up  
default value depends on SD/HIM at power-up)  
0
D7  
HIGHIMM  
0, 1  
High-immunity reverse control channel mode  
(power-up default value depends on SD/HIM at  
power-up)  
0x16  
1
D[6:0]  
D[7:0]  
D[7:1]  
D0  
1011010  
Reserved  
Reserved  
1011010  
0x17  
0x18  
000XXXXX  
000XXXXX  
2
I2CSRCA  
XXXXXXX  
I C Address translator source A  
0000000  
0
Reserved  
0
2
D[7:1]  
D0  
I2CDSTA  
XXXXXXX  
I C Address translator destination A  
0000000  
0x19  
0x1A  
0x1B  
0
Reserved  
0
2
D[7:1]  
D0  
I2CSRCB  
XXXXXXX  
I C Address translator source B  
0000000  
0
XXXXXXX  
0
Reserved  
0
0000000  
0
2
D[7:1]  
D0  
I2CDSTB  
I C Address translator destination B  
Reserved  
Acknowledge not generated when forward  
channel is not available  
0
D7  
I2CLOCACK  
I2CSLVSH  
1
2
2
I C to I C-slave generates local acknowledge  
1
when forward channel is not available  
2
00  
01  
352ns/117ns I C setup/hold time  
2
469ns/234ns I C setup/hold time  
D[6:5]  
01  
2
10  
938ns/352ns I C setup/hold time  
2
11  
1046ns/469ns I C setup/hold time  
2
2
000  
001  
010  
011  
100  
101  
110  
111  
00  
8.47kbps (typ) I C to I C-Master bit-rate setting  
2
2
28.3kbps (typ) I C to I C-Master bit-rate setting  
0x1C  
2
2
84.7kbps (typ) I C to I C-Master bit-rate setting  
2
2
105kbps (typ) I C to I C-Master bit-rate setting  
D[4:2]  
D[1:0]  
I2CMSTBT  
I2CSLVTO  
101  
2
2
173kbps (typ) I C to I C-Master bit-rate setting  
2
2
339kbps (typ) I C to I C-Master bit-rate setting  
2
2
533kbps (typ) I C to I C-Master bit-rate setting  
2
2
837kbps (typ) I C to I C-Master bit-rate setting  
2
2
64µs (typ) I C to I C-Slave remote timeout  
2
2
01  
256µs (typ) I C to I C-Slave remote timeout  
10  
2
2
10  
1024µs (typ) I C to I C-Slave remote timeout  
2
2
11  
No I C to I C-Slave remote timeout  
Reserved  
D[7:3]  
00000  
00000  
0
Audio FIFO repeats last audio word when FIFO is  
empty  
0
D2  
AUDUFBEH  
1
0
1
0
1
Audio FIFO outputs all zeroes when FIFO is empty  
Do not invert SCK at output  
Invert SCK at output  
0x1D  
D1  
INVSCK  
INVWS  
0
0
Do not invert WS at output  
Invert WS at output  
D0  
Maxim Integrated  
65  
www.maximintegrated.com  
MAX9276/MAX9280  
3.12Gbps GMSL Deserializers  
for Coax or STP Input and Parallel Output  
Table 25. Register Table (continued)  
REGISTER  
ADDRESS  
DEFAULT  
VALUE  
BITS  
NAME  
VALUE  
00100X10  
000  
FUNCTION  
Device identifier  
00100X10  
0x1E  
D[7:0]  
ID  
(MAX9276 = 0x22)  
(Read only)  
(MAX9280 = 0x26)  
000  
(Read only)  
D[7:5]  
D4  
Reserved  
0x1F  
0
1
Not HDCP capable (MAX9276)  
(Read only)  
CAPS  
HDCP capable (MAX9280)  
D[3:0]  
D[7:0]  
D[7:0]  
REVISION  
AVINFO  
XXXX  
Device revision  
(Read only)  
All zeroes  
0x40 to 0x59  
0x77  
XXXXXXXX Video/Audio format/status/information bytes  
XXXXXXXX  
(Read only)  
Audio FIFO last overflow/underflow period  
XXXXXXXX  
0x78  
D[7:0]  
D7  
AUDOUPER  
AUDOU  
(Read only)  
(Read only)  
(AUDIOMODE = 1 only)  
0
Audio FIFO is in underflow (AUDIOMODE = 1 only)  
Audio FIFO is in overflow (AUDIOMODE = 1 only)  
1
0x79  
0x7B  
0000XXX  
(Read only)  
D[6:0]  
0000XXX  
Reserved  
D[7:0]  
D[7:4]  
LUTADDR  
XXXXXXXX LUT start address for write and read  
00000000  
0000  
0000  
Reserved  
0
1
0
1
0
1
0
1
Disable LUT write and read  
Enable LUT write and read  
Disable blue LUT  
Enable blue LUT  
D3  
D2  
D1  
D0  
LUTPROG  
BLULUTEN  
GRNLUTEN  
REDLUTEN  
0
0
0
0
0x7C  
Disable green LUT  
Enable green LUT  
Disable red LUT  
Enable red LUT  
0x7D  
0x7E  
D[7:0]  
D[7:0]  
D[7:0]  
REDLUT  
GREENLUT  
BLUELUT  
XXXXXXXX Red LUT value (see Table 11)  
XXXXXXXX Green LUT value (see Table 11)  
XXXXXXXX Blue LUT value (see Table 11)  
00000000  
00000000  
00000000  
0x7F  
X = Don’t care  
Maxim Integrated  
66  
www.maximintegrated.com  
MAX9276/MAX9280  
3.12Gbps GMSL Deserializers  
for Coax or STP Input and Parallel Output  
Table 26. HDCP Register Table (MAX9280 Only)  
REGISTER  
ADDRESS  
SIZE  
(Bytes)  
READ/  
WRITE  
DEFAULT VALUE  
(hex)  
NAME  
FUNCTION  
0X80 to 0x84  
0X85 to 0x86  
0X87  
5
2
1
8
5
BKSV  
RI’  
Read only  
Read only  
Read only  
Read/write  
Read/write  
HDCP receiver KSV  
(Read only)  
(Read only)  
Link verification response  
Enhanced link verification response  
Session random number  
PJ’  
(Read only)  
0X88 to 0x8F  
0X90 to 0x94  
AN  
0x0000000000000000  
0x0000000000  
AKSV  
HDCP transmitter KSV  
D7 = PD_HDCP  
1 = Power down HDCP circuits  
0 = HDCP circuits normal  
D[6:4] = Reserved  
D3 = GPIO1_FUNCTION  
1 = GPIO1 mirrors AUTH_STARTED  
0 = normal GPIO1 operation  
D2 = GPIO0_FUNCTION  
0x95  
1
BCTRL  
Read/write  
1 = GPIO0 mirrors ENCRYPTION_ENABLE  
0 = normal GPIO0 operation  
0x00  
D1 = AUTH_STARTED  
1 = Authentication started (triggered by write  
to AKSV)  
0 = Authentication not started  
D0 = ENCRYPTION_ENABLE  
1 = Enable encryption  
0 = Disable encryption  
D[7:2] = Reserved  
D1 = NEW_DEV_CONN  
1 = Set to 1 if a new connected device is  
detected  
0 = Set to 0 if no new device is connected  
0x96  
1
BSTATUS  
Read/write  
0x00  
0x00  
D0 = KSV_LIST_READY  
1 = Set to 1 if KSV list and BINFO is ready  
0 = Set to 0 if KSV list or BINFO is not ready  
D[7:1] = Reserved  
D0 = REPEATER  
1 = Set to one if device is a repeater  
0 = Set to zero if device is not a repeater  
0x97  
1
BCAPS  
Read/write  
Read only  
0x0000000000000000  
(Read only)  
0x98 to 0x9F  
8
Reserved  
0XA0 to 0xA3  
0XA4 to 0xA7  
0XA8 to 0xAB  
0XAC to 0xAF  
0XB0 to 0xB3  
4
4
4
4
4
V’.H0  
V’.H1  
V’.H2  
V’.H3  
V’.H4  
Read/write  
Read/write  
Read/write  
Read/write  
Read/write  
H0 part of SHA-1 hash value  
H1 part of SHA-1 hash value  
H2 part of SHA-1 hash value  
H3 part of SHA-1 hash value  
H4 part of SHA-1 hash value  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
Maxim Integrated  
67  
www.maximintegrated.com  
MAX9276/MAX9280  
3.12Gbps GMSL Deserializers  
for Coax or STP Input and Parallel Output  
Table 26. HDCP Register Table (MAX9280 Only) (continued)  
REGISTER  
ADDRESS  
SIZE  
(Bytes)  
READ/  
WRITE  
DEFAULT VALUE  
(hex)  
NAME  
FUNCTION  
D[15:12] = Reserved  
D11 = MAX_CASCADE_EXCEEDED  
1 = Set to one if more than seven cascaded  
devices attached  
0 = Set to zero if seven or fewer cascaded  
devices attached  
D[10:8] = DEPTH  
Depth of cascaded devices  
0XB4 to 0xB5  
2
BINFO  
Read/write  
0x0000  
D7 = MAX_DEVS_EXCEEDED  
1 = Set to one if more than 14 devices  
attached  
0 = Set to zero if 14 or fewer devices  
attached  
D[6:0] = DEVICE_COUNT  
Number of devices attached  
0xB6  
1
GPMEM  
Read/write  
Read only  
General-purpose memory byte  
Reserved  
0x00  
0xB7 to 0xB9  
3
0x000000  
List of KSVs downstream repeaters and  
receivers (maximum of 14 devices)  
0xBA to 0xFF  
70  
KSV_LIST  
Read/write  
All zero  
Maxim Integrated  
68  
www.maximintegrated.com  
MAX9276/MAX9280  
3.12Gbps GMSL Deserializers  
for Coax or STP Input and Parallel Output  
Typical Application Circuit  
PCLK  
RGB  
PCLKOUT  
DOUT(26:0)  
I2CSEL  
PCLK  
PCLKIN  
RGBHV  
DIN(26:0)  
DISPLAY  
45.3k  
4.99kΩ  
45.3kΩ  
4.99kΩ  
CNTL0/ADD0  
CDS/CNTL3  
GPU  
CNTL3/ADD1  
INTOUT/ADD2  
LMN1  
LMN0  
MAX9275  
MAX9279  
MAX9276  
MAX9280  
ECU  
TO PERIPHERALS  
INT  
RX/SDA  
TX  
RX  
TX/SCL  
RX/SDA  
TX/SCL  
OUT+  
OUT-  
IN+  
IN-  
UART  
SCL  
SDA  
LOCK  
LFLT  
LFLT  
INT  
IMS  
GPO/HIM  
MS/CNTLO  
MAX9850  
49.9kΩ  
49.9kΩ  
CONF3  
CONF2  
CONF0  
CONF1  
WS  
SCK  
SD/HIM  
WS  
SCK  
SD  
WS  
SCK  
SD  
WS  
AUDIO  
SCK  
SD  
CX/TP  
DOUT28/MCLK  
MCLK  
NOTE: NOT ALL PULLUP/PULLDOWN RESISTORS ARE SHOWN. SEE PIN DESCRIPTION FOR DETAILS.  
VIDEO-DISPLAY APPLICATION  
Package Information  
Ordering Information  
For the latest package outline information and land patterns  
(footprints), go to www.maximintegrated.com/packages. Note  
that a “+”, “#”, or “-” in the package code indicates RoHS status  
only. Package drawings may show a different suffix character, but  
the drawing pertains to the package regardless of RoHS status.  
PIN-  
PACKAGE  
PART  
TEMP RANGE  
HDCP  
MAX9276GTN+  
-40°C to +105°C 56 TQFN-EP*  
-40°C to +105°C 56 TQFN-EP*  
NO  
NO  
MAX9276GTN/V+  
MAX9276GGN/VY+ -40°C to +105°C 56 QFND-EP* NO  
PACKAGE  
TYPE  
PACKAGE  
CODE  
OUTLINE  
NO.  
LAND  
PATTERN NO.  
MAX9280GTN+  
-40°C to +105°C 56 TQFN-EP* YES**  
-40°C to +105°C 56 TQFN-EP* YES**  
MAX9280GTN/V+  
56 TQFN-EP  
56 QFND-EP  
T5688+2  
21-0135  
90-0046  
90-0423  
/V denotes an automotive qualified product.  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
*EP = Exposed pad.  
G5688Y+1  
21-0704  
**HDCP parts require registration with Digital Content  
Protection, LLC..  
Chip Information  
PROCESS: CMOS  
Maxim Integrated  
69  
www.maximintegrated.com  
MAX9276/MAX9280  
3.12Gbps GMSL Deserializers  
for Coax or STP Input and Parallel Output  
Revision History  
REVISION REVISION  
PAGES  
DESCRIPTION  
CHANGED  
NUMBER  
DATE  
0
3/13  
Initial release  
1, 7, 9, 13, 17, 21,  
Fixed typos, clarified functions, added new simplified diagram and Figure 2a,  
deleted Table 1 renumbering remaining tables, added QFND package, and  
removed future product designations from Ordering Information table  
25–30, 32, 33,  
36–38, 43–50,  
52–63, 65–73  
1
11/15  
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated’s website at www.maximintegrated.com.  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses  
are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits)  
shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
©
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  
2015 Maxim Integrated Products, Inc.  
70  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY