MAX9400EVKIT [MAXIM]

Evaluation Kit for the MAX9400/MAX9401/MAX9402/MAX9403/MAX9404/MAX9405 ; 评估板MAX9400 / MAX9401 / MAX9402 / MAX9403 / MAX9404 / MAX9405\n
MAX9400EVKIT
型号: MAX9400EVKIT
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Evaluation Kit for the MAX9400/MAX9401/MAX9402/MAX9403/MAX9404/MAX9405
评估板MAX9400 / MAX9401 / MAX9402 / MAX9403 / MAX9404 / MAX9405\n

文件: 总6页 (文件大小:413K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2313; Rev 0; 1/02  
MAX9400 Evaluation Kit  
General Description  
Features  
Controlled 50 Coplanar Traces  
The MAX9400 evaluation kit (EV kit) contains the  
MAX9400 low-skew quad buffer. The MAX9400 EV kit  
runs at PECL/ECL and LVPECL/LVECL supplies at clock  
rates up to 3.0GHz. The EV kit can be operated synchro-  
nously with an external clock or asynchronously.  
Input Trace Lengths Matched to <2mils  
Output Trace Lengths Matched to <1mil  
Frequency Range  
The EV kit is designed with 50 controlled-impedance  
traces in a four-layer PC board. It can also be used to  
evaluate the MAX9401–MAX9405.  
Up to 3.0GHz (MAX9400/MAX9402/MAX9403/  
MAX9405)  
Up to 2.0GHz (MAX9401/MAX9405)  
PECL/ECL or LVPECL/LVECL Supply  
32-Pin TQFP Package  
Component List  
Fully Assembled and Tested  
DESIGNATION QTY  
DESCRIPTION  
10µF 10%, 10V tantalum  
capacitors (case B)  
AVX TAJB106K010R  
Kemet T494B106010AS  
C1, C2  
C3C11  
C12C20  
2
9
9
Ordering Information  
0.1µF 10%, 16V X7R ceramic chip  
capacitors (0603)  
Murata GRM39X7R104K016A or  
Taiyo Yuden EMK107BJ104KA  
PART  
TEMP RANGE  
IC PACKAGE  
MAX9400EVKIT  
0°C to +70°C  
32 TQFP  
Note: To evaluate the MAX9401–MAX9405, request a  
MAX9401EHJ/MAX9402EHJ/MAX9403EHJ/MAX9404EHJ/  
MAX9405EHJ free sample with the MAX9400EVKIT.  
0.01µF 10%, 16V X7R ceramic  
capacitors (0402)  
Taiyo Yuden EMK105BJ103KW or  
Murata GRM36X7R103K016AD  
Quick Start  
The MAX9400 EV kit is fully assembled and tested. Do  
not turn on the power supplies until all connections  
are completed.  
IN0IN3,  
IN0IN3,  
OUT0OUT3,  
OUT0–  
OUT3, CLK,  
CLK  
SMA edge-mount connectors  
Johnson Components  
142-0701-801  
18  
Recommended Equipment  
One 3GHz (min) differential signal generator (e.g.,  
Agilent 8133A)  
JU1JU4  
R1, R2  
4
0
3-pin jumpers  
One 12GHz (min) bandwidth oscilloscope with  
internal 50 input termination (e.g., Tektronix  
11801C digital sampling oscilloscope with SD-24  
sampling head)  
Not installed resistor (0402)  
R3R8  
6
49.9  
100  
1% resistors (0402)  
R9R36  
28  
1%, 1/8W resistors (1206)  
Two power supplies:  
MAX9400EHJ (32-pin 5mm x 5mm  
TQFP)  
U1  
1
0
a) One 2.0V with 500mA current capability  
b) One adjustable -3.5V to -0.375V with 500mA cur-  
rent capability  
SEL, SEL ,  
EN, EN  
Not installed, SMA edge-mount  
connectors  
Matched male-SMA-to-male-SMA 50 coax cables:  
None  
None  
None  
None  
4
1
1
1
Shunts  
a) Matched SMA 50 coax cables for inputs IN1  
MAX9400 PC board  
MAX9400 EV kit data sheet  
MAX9400 data sheet  
and IN1  
b) Matched SMA 50 coax cables for outputs  
OUT1 and OUT1  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
MAX9400 Evaluation Kit  
Component Suppliers  
SUPPLIER  
PHONE  
FAX  
WEBSITE  
AVX  
843-946-0238  
864-963-6300  
770-436-1300  
800-348-2496  
843-626-3123  
864-963-6322  
770-436-3030  
847-945-0899  
www.avxcorp.com  
www.kemet.com  
www.murata.com  
www.t-yuden.com  
Kemet  
Murata  
Taiyo Yuden  
Note: Please indicate that you are using the MAX9400–MAX9405 when contacting these component suppliers.  
Asynchronous Operation  
Detailed Description  
1) Verify that shunts are across pins 1 and 2 of  
jumpers JU1 (SEL) and JU3 (EN) and pins 2 and 3  
of jumpers JU2 (SEL) and JU4 (EN).  
The MAX9400 EV kit contains an extremely fast, low-  
skew quad LVECL/LVPECL or ECL/PECL buffer. The EV  
kit demonstrates ultra-low propagation delay and chan-  
nel-to-channel skew. The four channels can be operated  
synchronously with an external clock, or in asynchro-  
nous mode, depending on the state of the SEL input.  
2) Connect two matched coax cables to the oscillo-  
scope. Then connect the other end of the cables to  
OUT1 and OUT1 on the MAX9400 EV kit board.  
3) Connect the 2.0V power supply to the VCC pad. Set  
the supply to 2.00V. Connect the supply ground to  
the GND pad closest to VCC.  
Power Supply  
The MAX9400/MAX9402/MAX9403/MAX9405 are speci-  
fied with outputs terminated with 50 to V  
- 2V. In  
CC  
4) Connect the -0.375V to -3.5V power supply to the  
VEE pad. Set the supply to -1.3V. Connect the sup-  
ply ground to the GND closest to VEE.  
order to terminate the outputs with 50 to V  
- 2V  
CC  
using the 50 oscilloscope input termination, V  
is set  
CC  
to 2.0V. The MAX9401/MAX9404 are specified with out-  
puts terminated with 50 to V  
- 3.3V, and with dou-  
CC  
5) Connect two matched coax cables to the differential  
signal generator that provides differential square  
waves with the following setting:  
ble swing outputs. In order to terminate the outputs with  
50 to V - 3.3V, V is set to 3.3V. Table 1 lists the  
CC  
CC  
supply ranges for V  
and V . In an actual applica-  
EE  
and V can have different supplies (refer to  
CC  
a) Frequency = 2GHz  
tion, V  
CC  
EE  
b) V = 1.5V  
IH  
the MAX9400/MAX9402/MAX9403/MAX9405 data sheet  
c) V = 1.0V  
IL  
or the MAX9401/MAX9404 data sheet).  
d) Duty cycle = 50%  
Enable and Select  
EN, EN, SEL, and SEL can be controlled by either  
jumpers or external signals. The MAX9400 EV kit can  
provide internal DC logic signals to EN, EN, SEL, and  
SEL by using jumpers JU1, JU2, JU3, and JU4. Table 2  
lists jumper JU3 and jumper JU4 functions. Table 3 lists  
jumper JU1 and jumper JU2 functions. The EV kit can  
also be controlled by external signals using EN, EN,  
SEL, and SEL connectors. Before connecting external  
signals to the EN, EN, SEL, SEL connectors, verify  
there are no shunts across jumpers JU1–JU4.  
6) Connect the other end of the cables to IN1 and IN1.  
7) Turn on the two power supplies, enable the function  
generator, and verify the differential output signal  
(V  
OUT1  
- V  
) is greater than 500mV.  
OUT1  
To evaluate other channels, make sure the correspond-  
ing output termination resistors on the EV kit board are  
removed and the unused outputs are terminated.  
To eliminate signal distortion, use the matched same-  
length input cables, and use the matched same-length  
output cables.  
2
_______________________________________________________________________________________  
MAX9400 Evaluation Kit  
Evaluating the MAX9401–MAX9405  
The MAX9400 EV kit is a four-layer PC board with 50  
controlled-impedance input traces with 50 termination  
(two parallel 100 resistors). All output signal traces  
are also 50 controlled-impedance traces (with 49.9  
termination resistors).  
Table 1. V  
and V Range  
EE  
CC  
DEVICE  
V
(V)  
V
RANGE (V)  
EE  
CC  
MAX9400  
MAX9401  
MAX9402  
MAX9403  
MAX9404  
MAX9405  
2.0  
-3.5 to -0.375  
-2.2 to +0.3  
3.3  
2.0  
2.0  
3.3  
2.0  
-3.5 to -0.375  
-3.5 to -0.375  
-2.2 to +0.3  
The MAX9400 EV kit can be used to evaluate the  
MAX9401MAX9405 after modification. Table 4 lists on-  
chip input and output termination to the corresponding  
Maxim IC:  
-3.5 to -0.375  
To evaluate the MAX9401, replace the MAX9400EHJ  
with a MAX9401EHJ.  
To evaluate the MAX9402, replace the MAX9400EHJ  
with a MAX9402EHJ and remove output termination  
resistors R1 to R8. The output is half-amplitude  
compared to an open output because of the volt-  
age-divider formed by the on-chip series 50 and  
the 50 oscilloscope input.  
Table 2. Jumper JU3 and JU4 Functions  
JU3  
LOCATION  
EN  
PIN  
JU4  
LOCATION  
EN  
PIN  
OUTPUT  
Connected  
to V  
CC  
Connected  
to GND  
1 and 2  
2 and 3  
2 and 3  
1 and 2  
Enabled  
To evaluate the MAX9403/MAX9404, replace the  
MAX9400EHJ with a MAX9403EHJ/MAX9404EHJ  
and remove input termination resistors R9 to R36.  
Connected  
to GND  
Connected  
to V  
CC  
Disabled  
To evaluate the MAX9405, replace the MAX9400EHJ  
with a MAX9405EHJ and remove input and output  
termination resistors R1 to R36. The output is half-  
amplitude compared to an open output because of  
the voltage-divider formed by the on-chip series  
50 and the 50 oscilloscope input.  
All other combinations  
(not driven externally)  
Undefined  
Table 3. Jumpers JU1 and JU2 Functions  
Table 4. On-Chip Input and Output  
Termination  
JU1  
SEL  
PIN  
JU2  
SEL  
OPERATING  
MODE  
LOCATION  
LOCATION  
PIN  
INPUT  
OUTPUT  
NAME  
TERMINATION  
RESISTOR  
TERMINATION  
RESISTOR  
Open  
Connected  
Connected Asynchronous  
to GND mode  
1 and 2  
2 and 3  
2 and 3  
1 and 2  
to V  
CC  
MAX9400  
MAX9401  
MAX9402  
MAX9403  
MAX9404  
MAX9405  
Open  
Open  
Open  
100  
100Ω  
100Ω  
Connected  
to GND  
Connected Synchronous  
Open  
50Ω  
to V  
mode  
CC  
All other combinations  
(not driven externally)  
Undefined  
Open  
Open  
50Ω  
_______________________________________________________________________________________  
3
MAX9400 Evaluation Kit  
OUT0  
SMA  
OUT0  
SMA  
R8  
49.9  
1%  
R7  
49.9  
1%  
VCC  
VEE  
IN0  
IN0  
IN1  
IN1  
SMA  
SMA  
SMA  
SMA  
C10  
0.1  
C11  
0.1  
F
F
R11  
R35  
R36  
R10  
100  
100  
100  
100  
1%  
1%  
1%  
1%  
C19  
0.01  
C20  
0.01  
F
F
31  
30  
29  
28  
27  
26  
IN1  
25  
IN1  
32  
R12  
R9  
100  
1%  
R13  
R14  
100  
100  
100  
V
OUT0 OUT0  
V
EE  
1N0 1N0  
CC  
VCC  
1%  
1%  
1%  
VCC  
C1  
10  
1
24  
F
V
CC  
V
CC  
10V GND  
C9  
0.1  
C18  
0.01  
C12  
0.01  
C3  
0.1  
VCC  
F
F
F
F
SEL  
SEL  
CLK  
OUT1  
1
3
2
3
4
5
JU1  
2
23  
OUT1  
OUT1  
SMA  
SEL  
SMA  
SMA  
SMA  
SMA  
VCC  
1
R23  
R24  
R1  
100  
100  
OUT1  
OPEN  
1%  
1%  
U1  
JU2  
2
22  
21  
20  
SMA  
SEL  
CLK  
3
MAX9400  
R25  
R26  
R2  
OPEN  
100  
100  
VEE  
1%  
1%  
V
EE  
C2  
10  
C13  
0.01  
C4  
F
R27  
R28  
F
0.1  
F
10V GND  
100  
100  
CLK  
EN  
1%  
1%  
V
EE  
CLK  
EN  
VCC  
R29  
100  
1%  
R30  
100  
OUT2  
1
1%  
6
7
8
JU3  
2
19  
18  
OUT2  
OUT2  
SMA  
SMA  
SMA  
3
VCC  
1
R3  
49.9  
1%  
R32  
100  
1%  
R31  
100  
1%  
EN  
OUT2  
JU4  
2
EN  
SMA  
3
R33  
100  
1%  
R4  
49.9  
1%  
R34  
100  
1%  
17  
VCC  
VCC  
V
CC  
V
CC  
IN3  
1N3  
V
OUT3  
12  
OUT3  
13  
V
IN2  
15  
IN2  
CC  
11  
EE  
14  
9
10  
VCC  
16  
C14  
0.01  
C5  
0.1  
C8  
0.1  
C17  
0.01  
VEE  
F
F
F
F
IN3  
IN2  
IN2  
C16  
0.01  
C15  
0.01  
SMA  
SMA  
SMA  
F
F
R15  
R21  
100  
1%  
R22  
100  
1%  
R16  
100  
1%  
100  
C7  
0.1  
C6  
0.1  
IN3  
1%  
F
F
SMA  
OUT3  
OUT3  
SMA  
SMA  
R17  
100  
1%  
R19  
100  
1%  
R20  
100  
1%  
R18  
100  
1%  
R6  
49.9  
1%  
R5  
49.9  
1%  
Figure 1. MAX9400 EV Kit Schematic  
4
_______________________________________________________________________________________  
MAX9400 Evaluation Kit  
1.0"  
1.0"  
Figure 2. MAX9400 EV Kit Component Placement Guide—  
Component Side  
Figure 3. MAX9400 EV Kit Component Place Guide—Solder Side  
1.0"  
1.0"  
Figure 4. MAX9400 EV Kit PC Board Layout—Component Side  
Figure 5. MAX9400 EV Kit PC Board Layout—Inner Layer 2  
(GND Layer)  
_______________________________________________________________________________________  
5
MAX9400 Evaluation Kit  
1.0"  
1.0"  
Figure 6. MAX9400 EV Kit PC Board Layout—Inner Layer 3  
(VCC Layer)  
Figure 7. MAX9400 EV Kit PC Board Layout—Solder Side  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
6 _____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2002 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX9401

Quad ECL/PECL Differential Buffers/Receivers
MAXIM

MAX9401EGJ

Quad ECL/PECL Differential Buffers/Receivers
MAXIM

MAX9401EHJ

Quad ECL/PECL Differential Buffers/Receivers
MAXIM

MAX9401EHJ-T

Line Transceiver, 4 Func, 4 Driver, 4 Rcvr, BIPolar, PQFP32, 5 X 5 MM, 1 MM HEIGHT, EXPOSED PAD, TQFP-32
MAXIM

MAX9402

Quad Differential LVECL/LVPECL Buffer/Receivers
MAXIM

MAX9402EGJ

Quad Differential LVECL/LVPECL Buffer/Receivers
MAXIM

MAX9402EGJ-T

Line Transceiver, 4 Func, 4 Driver, 4 Rcvr, BIPolar, CQCC32, 5 X 5 MM, 0.90 MM HEIGHT, EXPOSED PAD, QFN-32
MAXIM

MAX9402EHJ

Quad Differential LVECL/LVPECL Buffer/Receivers
MAXIM

MAX9402EHJ-T

Line Transceiver, 4 Func, 4 Driver, 4 Rcvr, BIPolar, PQFP32, 5 X 5 MM, 1 MM HEIGHT, TQFP-32
MAXIM

MAX9403

Quad Differential LVECL/LVPECL Buffer/Receivers
MAXIM

MAX9403EGJ

Quad Differential LVECL/LVPECL Buffer/Receivers
MAXIM

MAX9403EHJ

Quad Differential LVECL/LVPECL Buffer/Receivers
MAXIM