MAX9424EGJ [MAXIM]

Lowest Jitter Quad PECL-to-ECL Differential Translators; 最低的抖动四路PECL到ECL差分转换器
MAX9424EGJ
型号: MAX9424EGJ
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Lowest Jitter Quad PECL-to-ECL Differential Translators
最低的抖动四路PECL到ECL差分转换器

转换器
文件: 总11页 (文件大小:346K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2390; Rev 0; 4/02  
Lowest Jitter Quad PECL-to-ECL  
Differential Translators  
General Description  
Features  
The MAX9424–MAX9427 high-speed, low-skew quad  
PECL-to-ECL translators are designed for high-speed  
data and clock driver applications. These devices feature  
0.24ps RMS Added Random Jitter  
10ps Channel-to-Channel Skew in Synchronous  
Mode  
an ultra-low 0.24ps  
random jitter and channel-to-  
(RMS)  
channel skew is less than 90ps in asynchronous mode.  
Guaranteed 500mV Differential Output at 3GHz  
Clock Frequency  
The four channels can be operated synchronously with  
an external clock, or in asynchronous mode determined  
by the state of the SEL input. An enable input provides  
the ability to force all the outputs to a differential low state.  
420ps Propagation Delay in Asynchronous Mode  
Functionally Compatible with  
SK4426 (MAX9424)  
The parts differ from one another by their input and out-  
put termination options. The input options are an open  
input or an internal differential 100termination. The  
output options are an open-emitter output or a series  
50termination. See Ordering Information.  
The MAX9424–MAX9427 operate from a positive voltage  
supply of +2.375V to +5.5V, and a negative supply volt-  
age of -2.375V to -5.5V and operate across the extended  
temperature range of -40°C to +85°C. They are offered in  
32-pin 5mm x 5mm TQFP and space-saving 5mm x 5mm  
QFN packages.  
SK4430 (MAX9425)  
SK4436 (MAX9426)  
SK4440 (MAX9427)  
Integrated 50Outputs (MAX9425/MAX9427)  
Integrated 100Inputs (MAX9426/MAX9427)  
Synchronous/Asynchronous Operation  
Ordering Information  
INPUT OUTPUT  
(IN_, (OUT_,  
TEMP  
RANGE  
PIN-  
PACKAGE  
PART  
Applications  
IN_)  
OUT_)  
Open  
Open  
50  
Data and Clock Driver and Buffer  
MAX9424EHJ -40°C to +85°C 32 TQFP  
MAX9424EGJ* -40°C to +85°C 32 QFN  
MAX9425EHJ -40°C to +85°C 32 TQFP  
MAX9425EGJ* -40°C to +85°C 32 QFN  
MAX9426EHJ -40°C to +85°C 32 TQFP  
MAX9426EGJ* -40°C to +85°C 32 QFN  
MAX9427EHJ -40°C to +85°C 32 TQFP  
MAX9427EGJ* -40°C to +85°C 32 QFN  
Open  
Open  
Open  
Open  
100Ω  
100Ω  
100Ω  
100Ω  
Central Office Backplane Clock Distribution  
DSLAM Backplane  
Base Station  
ATE  
50Ω  
Open  
Open  
50Ω  
50Ω  
*Future product—contact factory for availability.  
Pin Configurations  
TOP VIEW  
TOP VIEW  
32 31 30 29 28 27 26 25  
*
*
V
1
2
3
4
5
6
7
8
24  
V
GG  
V
1
2
3
4
5
6
7
8
24  
V
CC  
CC  
GG  
SEL  
SEL  
CLK  
CLK  
EN  
23 OUT1  
22 OUT1  
SEL  
SEL  
CLK  
CLK  
EN  
23 OUT1  
22 OUT1  
MAX9424  
MAX9425  
MAX9426  
MAX9427  
21  
20  
V
V
EE  
EE  
21  
20  
V
EE  
V
EE  
MAX9424  
MAX9425  
MAX9426  
MAX9427  
19 OUT2  
18 OUT2  
19 OUT2  
18 OUT2  
EN  
EN  
V
CC  
17  
V
GG  
V
17 V  
GG  
CC  
*
*
9
10 11 12 13 14 15 16  
QFN  
TQFP (5mm x 5mm)  
NOTE: CORNER PINS ARE CONNECTED TO V  
.
GG  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
Lowest Jitter Quad PECL-to-ECL  
Differential Translators  
ABSOLUTE MAXIMUM RATINGS  
V
V
to V ............................................................-0.3V to +6.0V  
Junction-to-Ambient Thermal Resistance with  
500LFPM Airflow  
CC  
GG  
GG  
to V .............................................................-0.3V to +6.0V  
EE  
Input Pins to V ........................................-0.3V to (V + 0.3V)  
32-Pin 5mm x 5mm TQFP..........................................+73°C/W  
Junction-to-Case Thermal Resistance  
GG  
CC  
Differential Input Voltage..............................|V  
- V | or 3.0V,  
CC  
GG  
whichever is less  
Continuous Output Current.................................................50mA  
Surge Output Current........................................................100mA  
32-Pin 5mm x 5mm TQFP..........................................+25°C/W  
32-Pin 5mm x 5mm QFN..............................................+2°C/W  
Operating Temperature Range ...........................-40°C to +85°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range.............................-65°C to +150°C  
ESD Protection  
Human Body Model (all input pins) ............................... 500V  
Human Body Model (all output pins) ............................... 2ꢀV  
Soldering Temperature (10s)...........................................+300°C  
Continuous Power Dissipation (T = +70°C)  
32-Pin 5mm x 5mm TQFP  
A
(derate 9.5mW/°C above +70°C).................................761mW  
32-Pin 5mm x 5mm QFN  
(derate 21.3mW/°C above +70°C)...................................1.7W  
Junction-to-Ambient Thermal Resistance in Still Air  
32-Pin 5mm x 5mm TQFP........................................+105°C/W  
32-Pin 5mm x 5mm QFN............................................+47°C/W  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
DC ELECTRICAL CHARACTERISTICS  
(V  
- V  
= 2.375V to 5.5V, V  
- V  
= 2.375V to 5.5V, MAX9424/MAX9426 outputs terminated with 50to V  
- 2.0V,  
GG  
- V = 3.3V, V  
CC  
GG  
GG  
EE  
MAX9425/MAX9427 not externally terminated, T = -40°C to +85°C. Typical values are at V  
- V  
= 3.3V, V  
A
CC  
GG  
GG EE IHD  
= V  
- 0.9V, V  
= V - 1.7V, T = +25°C, unless otherwise noted.) (Notes 1, 2, and 3)  
CC A  
CC  
ILD  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
INPUTS (IN_, IN_, CLK, CLK, EN, EN, SEL, SEL)  
V
+
GG  
1.4  
Differential Input High Voltage  
Differential Input Low Voltage  
V
Figure 1  
Figure 1  
V
V
V
IHD  
CC  
V
-
CC  
V
V
GG  
ILD  
0.2  
V
V
GG  
3.0  
-
CC  
V
V
- V  
- V  
< 3.0V  
0.2  
0.2  
-10  
CC  
CC  
GG  
Differential Input Voltage  
Input Current  
V
Figure 1  
V
ID  
3.0V  
GG  
MAX9424/ EN, EN, SEL, SEL, IN_, IN_, CLK  
MAX9425 or CLK = V or V  
MAX9426/ EN, EN, SEL, SEL, CLK, or CLK  
MAX9427 = V or V  
25  
25  
IHD  
ILD  
I
, I  
IH IL  
µA  
-10  
86  
IHD  
ILD  
Differential Input Resistance  
(IN_, IN_)  
R
MAX9426/MAX9427  
100  
635  
114  
IN  
OUTPUTS (OUT_, OUT_)  
Differential Output Voltage  
V
- V  
Figure 1  
Figure 1  
600  
mV  
V
OH  
OL  
V
-
V
-
V
-
GG  
GG  
GG  
Output Common-Mode Voltage  
V
OCM  
1.50  
1.25  
1.05  
Output Impedance  
R
MAX9425/MAX9427  
MAX9425/MAX9427  
40  
6
50  
8
60  
10  
OUT  
Internal Current Source  
POWER SUPPLY  
I
mA  
SINK  
Positive Supply Current  
I
(Note 4)  
16  
27  
mA  
mA  
CC  
MAX9424/MAX9426 (Note 4)  
MAX9425/MAX9427 (Note 4)  
100  
172  
130  
230  
Negative Supply Current  
I
EE  
2
_______________________________________________________________________________________  
Lowest Jitter Quad PECL-to-ECL  
Differential Translators  
AC ELECTRICAL CHARACTERISTICS  
(V  
- V  
= 2.375V to 5.5V, V  
- V = 2.375V to 5.5V, outputs terminated with 50to V  
- 2.0V, EN = V , EN = V , f  
ILD CLK  
CC  
GG  
GG  
EE  
GG  
IHD  
3.0GHz, f 1.5GHz, input transition time = 125ps (20% to 80%), V  
= V  
+ 1.4V to V , V  
= V  
to V  
- 0.2V, V  
- V  
IN  
IHD  
GG  
CC ILD  
GG  
CC  
CC  
IHD  
ILD  
= 0.2V to smallest of |V  
- V | or 3.0V, T = -40°C to +85°C, unless otherwise noted. Typical values are at V  
- V  
= 3.3V, V  
CC  
GG  
A
GG  
GG  
- V = 3.3V, V  
= V  
- 0.9V, V  
= V - 1.7V, T = +25°C, unless otherwise noted.) (Notes 1 and 5)  
CC A  
EE  
IHD  
CC  
ILD  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
IN_ to OUT_ Differential  
Propagation Delay  
CLK to OUT_ Differential  
Propagation Delay  
t
t
t
t
Figure 3, SEL = high, asynchronous  
operation  
PLH1  
PHL1  
PLH2  
PHL2  
300  
420  
570  
ps  
Figure 4, SEL = low, synchronous operation  
460  
580  
730  
ps  
SEL = high, asynchronous operation  
(Note 6)  
OUT_ to OUT_ Sꢀew  
OUT_ to OUT_ Sꢀew  
t
t
38  
10  
90  
70  
ps  
ps  
SKD1  
SKD2  
SEL = low, synchronous operation (Note 6)  
MAX9424/MAX9426, V  
SEL = low  
MAX9425/MAX9427, V  
SEL = low  
MAX9424/MAX9426, V  
SEL = high  
MAX9425/MAX9427, V  
SEL = high  
- V 500mV,  
OL  
OH  
OH  
OH  
OH  
Maximum Clocꢀ Frequency  
f
3.0  
2.0  
GHz  
GHz  
CLK(MAX)  
- V 300mV,  
OL  
- V 400mV,  
OL  
Maximum Data Frequency  
Added Random Jitter  
f
IN(MAX)  
- V 250mV,  
OL  
SEL = low, f  
= 3.0GHz clocꢀ, f  
=
IN  
CLK  
0.24  
0.3  
27  
0.8  
0.8  
80  
1.5GHz (Note 7)  
t
ps  
(RMS)  
RJ  
SEL = high, f = 2.0GHz (Note 7)  
IN  
SEL = low, f  
= 3.0GHz, IN_ = 3.0Gbps  
CLK  
223 - 1 PRBS pattern (Note 7)  
SEL = high, IN_ = 2.0Gbps 223 - 1 PRBS  
pattern (Note 7)  
Added Deterministic Jitter  
t
ps  
(P-P)  
DJ  
20  
80  
IN_ to CLK Setup Time  
CLK to IN_ Hold Time  
Output Rise Time  
t
Figure 4  
Figure 4  
Figure 3  
Figure 3  
80  
80  
ps  
ps  
ps  
ps  
S
t
H
t
89  
87  
120  
120  
R
Output Fall Time  
t
F
Propagation Delay Temperature  
Coefficient  
t /T  
PD  
0.2  
1
ps/°C  
Note 1: Measurements are made with the device in thermal equilibrium.  
Note 2: Current into a pin is defined as positive. Current out of a pin is defined as negative.  
Note 3: DC parameters are production tested at +25°C. DC limits are guaranteed by design and characterization over the full  
operating temperature range.  
Note 4: All outputs open, all inputs biased differential high or low except V , V , and V  
.
EE  
CC GG  
Note 5: Guaranteed by design and characterization, and are not production tested. Limits are set to 6 sigma.  
Note 6: Measured between outputs of the same part at the signal crossing points for a same-edge transition.  
Note 7: Device jitter added to the input signal.  
_______________________________________________________________________________________  
3
Lowest Jitter Quad PECL-to-ECL  
Differential Translators  
Typical Operating Characteristics  
(MAX9424: V  
input transition time = 125ps (20% to 80%), V  
- V  
= 3.3V, V  
- V = 3.3V, outputs terminated with 50to V  
- 2.0V, enabled, f  
= 3.0GHz, f = 1.5GHz,  
CLK IN  
CC  
GG  
GG  
EE  
GG  
= V  
- 0.9V, V  
= V - 1.7V, T = +25°C, unless otherwise noted.)  
CC A  
IHD  
CC  
ILD  
OUTPUT AMPLITUDE (V - V  
OH  
)
OL  
OUTPUT RISE/FALL TIME  
vs. TEMPERATURE  
vs. IN_ FREQUENCY  
SUPPLY CURRENT vs. TEMPERATURE  
650  
94  
92  
90  
88  
86  
84  
100  
I
EE  
600  
550  
500  
450  
400  
350  
SEL = HIGH  
FALL TIME  
RISE TIME  
75  
50  
25  
0
INPUTS BIASED  
DIFFERENTIALLY HIGH OR  
LOW, OUTPUTS OPEN  
I
CC  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
IN_ FREQUENCY (GHz)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
IN-TO-OUT PROPAGATION DELAY  
vs. TEMPERATURE  
CLK-TO-OUT PROPAGATION DELAY  
vs. TEMPERATURE  
420  
410  
400  
390  
380  
630  
620  
610  
600  
590  
580  
570  
t
PHL1  
t
,
PLH2  
t
PHL2  
t
PLH1  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
4
_______________________________________________________________________________________  
Lowest Jitter Quad PECL-to-ECL  
Differential Translators  
Pin Description  
PIN  
NAME  
FUNCTION  
Positive Supply Voltage. Bypass V  
to V  
with 0.1µF and 0.01µF ceramic capacitors. Place the  
GG  
CC  
1, 8  
V
CC  
capacitors as close to the device as possible with the smaller value capacitor closest to the device.  
Noninverting Differential Select Input. Setting SEL = 1 and SEL = 0 enables all four channels to  
operate independently. Setting SEL = 0 and SEL = 1 enables all four channels to be synchronized to  
CLK.  
2
SEL  
3
4
5
SEL  
CLK  
CLK  
Inverting Differential Select Input  
Noninverting Differential Clock Input  
Inverting Differential Clock Input  
Noninverting Differential Output Enable Input. Setting EN = 1 and EN = 0 enables all four outputs.  
Setting EN = 0 and EN = 1 disables all four outputs.  
6
EN  
7
9
EN  
IN3  
IN3  
Inverting Differential Output Enable Input  
Noninverting Differential Input 3  
Inverting Differential Input 3  
10  
11, 17, 24,  
V
Ground Reference  
GG  
30  
12  
OUT3  
Inverting Differential Output 3  
13  
OUT3  
Noninverting Differential Output 3  
Negative Supply Voltage. Bypass from V to V  
the capacitors as close to the device as possible with the smaller value capacitor closest to the  
device.  
with 0.1µF and 0.01µF ceramic capacitors. Place  
GG  
EE  
14, 20, 21,  
27  
V
EE  
15  
16  
18  
19  
22  
23  
25  
26  
28  
29  
31  
32  
IN2  
IN2  
Noninverting Differential Input 2  
Inverting Differential Input 2  
Inverting Differential Output 2  
Noninverting Differential Output 2  
Noninverting Differential Output 1  
Inverting Differential Output 1  
Inverting Differential Input 1  
Noninverting Differential Input 1  
Noninverting Differential Output 0  
Inverting Differential Output 0  
Inverting Differential Input 0  
Noninverting Differential Input 0  
OUT2  
OUT2  
OUT1  
OUT1  
IN1  
IN1  
OUT0  
OUT0  
IN0  
IN0  
_______________________________________________________________________________________  
5
Lowest Jitter Quad PECL-to-ECL  
Differential Translators  
Functional Diagram  
V
V
V
EE  
14, 20,  
21, 27  
CC  
GG  
11, 17,  
24, 30  
1, 8  
V
CC  
32  
31  
IN0  
IN0  
1
0
V
CC  
28  
29  
V
V
GG  
OUT0  
OUT0  
D
D
Q
Q
CK  
CK  
V
EE  
CC  
26  
25  
IN1  
IN1  
1
0
V
CC  
22  
23  
V
GG  
CC  
OUT1  
OUT1  
D
Q
Q
D
CK  
CK  
V
EE  
V
15  
16  
IN2  
IN2  
1
0
V
CC  
19  
18  
V
V
GG  
OUT2  
OUT2  
D
Q
Q
D
CK  
CK  
V
EE  
CC  
9
IN3  
IN3  
1
0
10  
V
CC  
13  
12  
V
V
GG  
OUT3  
OUT3  
D
Q
Q
D
CK  
CK  
V
EE  
CC  
4
5
CLK  
CLK  
2
3
MAX9424  
MAX9425  
MAX9426  
MAX9427  
SEL  
SEL  
6
7
EN  
EN  
V
GG  
6
_______________________________________________________________________________________  
Lowest Jitter Quad PECL-to-ECL  
Differential Translators  
V
CC  
V
IHD  
(MAX)  
V
GG  
V
V
V
V
= 0  
ID  
ID  
V
V
OH  
OL  
V
V
(MAX)  
(MIN)  
ILD  
V
- V  
OH OL  
V
OCM  
IHD  
= 0  
ID  
ID  
V
V
GG  
V
(MIN)  
EE  
ILD  
INPUT VOLTAGE DEFINITION  
(PECL)  
OUTPUT VOLTAGE DEFINITION  
(ECL)  
Figure 1. Input and Output Voltage Definitions  
IN_  
IN_  
100k  
IN_  
IN_  
MAX9424/MAX9425  
MAX9426/MAX9427  
V
GG  
V
GG  
50  
50Ω  
OUT_  
OUT_  
OUT_  
OUT_  
8mA  
8mA  
V
EE  
MAX9424/MAX9426  
MAX9425/MAX9427  
Figure 2. Input and Output Configurations  
Supply Voltages  
These devices require a positive voltage supply (con-  
nect to V ), a negative voltage supply (connect to  
Detailed Description  
The MAX9424MAX9427 high-speed, low-sꢀew PECL-to-  
ECL differential translators are designed for high-speed  
data and clocꢀ driver applications. These devices trans-  
late up to four PECL signals to ECL signals.  
CC  
V
), and a ground reference (connect to V ). V  
is  
CC  
EE  
GG  
independent of V and therefore the supply voltages  
EE  
do not need to be symmetrical. The PECL input volt-  
The four channels can be operated synchronously with  
an external clocꢀ, or in asynchronous mode, determined  
by the state of the SEL input. An enable input provides  
the ability to force all the outputs to a differential low state.  
ages are referenced to V , and the ECL output volt-  
CC  
ages are referenced to V  
.
GG  
Data Inputs and Outputs  
The input and output structures are shown in Figure 2.  
The open inputs of the MAX9424/MAX9425 require  
external termination, whereas the MAX9426/MAX9427  
have integrated 100differential input termination  
resistors between IN_ and IN_.  
A variety of input and output terminations are offered  
for maximum design flexibility. The MAX9424 has open  
inputs and open-emitter outputs. The MAX9425 has  
open inputs and 50series outputs. The MAX9426 has  
100differential input impedance and open-emitter  
outputs. The MAX9427 has 100differential input  
impedance and 50series outputs.  
_______________________________________________________________________________________  
7
Lowest Jitter Quad PECL-to-ECL  
Differential Translators  
IN_  
V
- V  
ILD  
IHD  
IN_  
t
t
PHL1  
PLH1  
OUT_  
OUT_  
V
- V  
OH  
OH  
OL  
OL  
V
V
- V  
- V  
80%  
80%  
20%  
20%  
OH  
OL  
DIFFERENTIAL OUTPUT  
WAVEFORM  
OUT_ - OUT_  
t
t
F
R
SEL = HIGH  
EN = HIGH  
Figure 3. IN to OUT Propagation Delay and Transition Timing Diagram  
CLK  
V
IHD  
- V  
ILD  
CLK  
t
H
t
S
t
H
IN_  
IN_  
V
IHD  
- V  
ILD  
t
t
PHL2  
PLH2  
OUT_  
OUT_  
V
IHD  
- V  
ILD  
SEL = LOW  
EN = HIGH  
Figure 4. CLK to OUT Propagation Delay Timing Diagram  
The MAX9425/MAX9427 have internal 50series-out-  
put termination resistors and 8mA internal pulldown  
current sources, removing the need for external termi-  
nation. The MAX9424/MAX9426 have open-emitter out-  
puts, which require external termination (see the Output  
Termination section).  
Asynchronous Operation  
Setting SEL = high and SEL = low enables the four chan-  
nels to operate independently. The clocꢀ signal is  
ignored in this mode. When asynchronous mode is  
selected, drive or bias the CLK and CLK inputs. Biasing  
the clocꢀ inputs properly is shown in Figure 5. This pre-  
vents the unused clocꢀ inputs from toggling, which elimi-  
nates unnecessary switching noise.  
Enable  
Setting EN = high and EN = low enables the device.  
Alternatively, setting EN = low and EN = high forces the  
outputs to a differential low; all changes on CLK, SEL,  
and IN_ are ignored.  
8
_______________________________________________________________________________________  
Lowest Jitter Quad PECL-to-ECL  
Differential Translators  
V
V
CC  
CC  
IN_  
100Ω  
IN_  
IN_  
IN_  
OUT_  
OUT_  
OUT_  
OUT_  
100Ω  
1kΩ  
1/4 MAX9424/MAX9425  
1kΩ  
1/4 MAX9426/MAX9427  
V
GG  
V
GG  
Figure 5. Input Bias Circuits for Unused Inputs  
Synchronous Operation  
Setting SEL = low and SEL = high enables all four  
channels to operate in synchronous mode where the  
buffered inputs are clocꢀed out simultaneously on the  
rising edge of the differential clocꢀ input (CLK and  
CLK). To have the input signals clocꢀed out on the  
falling edge, swap the clocꢀ lines.  
Power-Supply Bypassing  
Typically, V  
is directly connected to ground. Bypass  
GG  
pin to V  
each V  
with high-frequency surface-mount  
CC  
GG  
ceramic 0.01µF capacitors. Place these capacitors as  
close to the device as possible. Use the same bypass  
capacitor configuration between each V pin and V  
.
EE  
GG  
In high-frequency, high-noise environments, add a 0.1µF  
capacitor in parallel with each 0.01µF capacitor.  
Differential Signal Input  
The maximum input signal magnitude for each of the  
Use multiple vias when connecting the bypass capaci-  
tors to V  
(ground). This reduces trace inductance,  
GG  
devices is V  
- V  
or 3.0V, whichever is less. This  
GG  
CC  
lowering power-supply bounce when drawing high  
transient currents.  
includes IN_, IN_, CLK, CLK, SEL, SEL, EN and EN.  
Applications Information  
Circuit Board Traces  
Circuit board trace layout is very important to maintain  
the signal integrity of high-speed differential signals.  
Maintaining integrity is accomplished in part by reduc-  
ing signal reflections and sꢀew, and increasing com-  
mon-mode noise immunity.  
Input Bias  
Bias any unused inputs as shown in Figure 5. This  
avoids noise coupling that can cause toggling of the  
unused outputs.  
Output Termination  
Signal reflections are caused by discontinuities in the  
50characteristic impedance of the traces. Avoid dis-  
continuities by maintaining the distance between differ-  
ential traces, not using sharp corners, and using vias.  
Maintaining distance between the traces also increases  
common-mode noise immunity. Reducing signal sꢀew  
is accomplished by matching the electrical length of  
the differential traces.  
Terminate the open-emitter outputs (MAX9424/  
MAX9426) through 50to V  
- 2V or use equivalent  
GG  
Thevenin terminations. Terminate both outputs of a dif-  
ferential pair and use identical termination on each for  
the lowest output-to-output sꢀew. When a single-ended  
signal is taꢀen from a differential output, terminate both  
outputs. For example, if OUT0 is used as a single-  
ended output, terminate both OUT0 and OUT0.  
Chip Information  
TRANSISTOR COUNT: 882  
Ensure that output currents do not exceed the current  
limits as specified in the Absolute Maximum Ratings.  
Under all operating conditions, the devices total ther-  
mal limits should be observed.  
PROCESS: Bipolar  
_______________________________________________________________________________________  
9
Lowest Jitter Quad PECL-to-ECL  
Differential Translators  
Package Information  
(The pacꢀage drawing(s) in this data sheet may not reflect the most current specifications. For the latest pacꢀage outline information,  
go to www.maxim-ic.com/packages.)  
10 ______________________________________________________________________________________  
Lowest Jitter Quad PECL-to-ECL  
Differential Translators  
Package Information (continued)  
(The pacꢀage drawing(s) in this data sheet may not reflect the most current specifications. For the latest pacꢀage outline information,  
go to www.maxim-ic.com/packages.)  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 11  
© 2002 Maxim Integrated Products  
Printed USA  
is a registered trademarꢀ of Maxim Integrated Products.  

相关型号:

MAX9424EGJ-T

PECL to ECL Translator, 4 Func, Complementary Output, BIPolar, CQCC32, 5 X 5 MM, 0.90 MM HEIGHT, QFN-32
MAXIM

MAX9424EHJ

Lowest Jitter Quad PECL-to-ECL Differential Translators
MAXIM

MAX9424EVKIT

Evaluation Kit for the MAX9424/MAX9425/MAX9426/MAX9427
MAXIM

MAX9425

Lowest Jitter Quad PECL-to-ECL Differential Translators
MAXIM

MAX9425EGJ

Lowest Jitter Quad PECL-to-ECL Differential Translators
MAXIM

MAX9425EGJ-T

PECL to ECL Translator, 4 Func, Complementary Output, BIPolar, CQCC32, 5 X 5 MM, 0.90 MM HEIGHT, QFN-32
MAXIM

MAX9425EHJ

Lowest Jitter Quad PECL-to-ECL Differential Translators
MAXIM

MAX9425EHJ+T

PECL to ECL Translator,
MAXIM

MAX9426

Lowest Jitter Quad PECL-to-ECL Differential Translators
MAXIM

MAX9426EGJ

Lowest Jitter Quad PECL-to-ECL Differential Translators
MAXIM

MAX9426EGJ-T

暂无描述
MAXIM

MAX9426EHJ

Lowest Jitter Quad PECL-to-ECL Differential Translators
MAXIM