MAX953ESA+T [MAXIM]

Operational Amplifier, 1 Func, 4000uV Offset-Max, CMOS, PDSO8, SO-8;
MAX953ESA+T
型号: MAX953ESA+T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Operational Amplifier, 1 Func, 4000uV Offset-Max, CMOS, PDSO8, SO-8

比较器 运算放大器
文件: 总12页 (文件大小:117K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-0431; Rev 1; 7/97  
Ult ra -Lo w -P o w e r, S in g le -S u p p ly  
Op Am p + Co m p a ra t o r + Re fe re n c e  
1–MAX954  
_______________Ge n e ra l De s c rip t io n  
____________________________Fe a t u re s  
The MAX951–MAX954 fe a ture c omb ina tions of a  
micropower operational amplifier, comparator, and ref-  
e re nc e in a n 8-p in p a c ka g e . In the MAX951 a nd  
MAX952, the comparators inverting input is connected  
to a n inte rna l 1.2V ± 2% b a nd g a p re fe re nc e . The  
MAX953 and MAX954 are offered without an internal  
reference. The MAX951/MAX952 operate from a single  
+2.7V to +7V supply with a typical supply current of  
7µA, while the MAX953/MAX954 operate from +2.4V to  
+7V with a 5µA typical supply current. Both the op amp  
and comparator feature a common-mode input voltage  
range that extends from the negative supply rail to with-  
in 1.6V of the positive rail, as well as output stages that  
swing rail to rail.  
Op Amp + Comparator + Reference in an 8-Pin  
µMAX Package (MAX951/MAX952)  
7µA Typical Supply Current  
(Op Amp + Comparator + Reference)  
Comparator and Op-Amp Input Range Includes  
Ground  
Outputs Swing Rail to Rail  
+2.4V to +7V Supply Voltage Range  
Unity-Gain Stable and 125kHz Decompensated  
A
10V/V Op-Amp Options  
V
Internal 1.2V ±2% Bandgap Reference  
Internal Comparator Hysteresis  
The op amps in the MAX951/MAX953 are internally  
c omp e ns a te d to b e unity-g a in s ta b le , while the op  
amps in the MAX952/MAX954 feature 125kHz typical  
bandwidth, 66V/ms slew rate, and stability for gains of  
10V/V or greater. These op amps have a unique output  
stage that enables them to operate with an ultra-low  
supply current while maintaining linearity under loaded  
conditions. In addition, they have been designed to  
exhibit good DC characteristics over their entire operat-  
ing temperature range, minimizing input referred errors.  
Op Amp Capable of Driving up to 1000pF Load  
________________________Ap p lic a t io n s  
Instruments, Terminals, and Bar-Code Readers  
Battery-Powered Systems  
Automotive Keyless Entry  
Low-Frequency, Local-Area Alarms/Detectors  
Photodiode Preamps  
The comparator output stage of these devices continu-  
ously sources as much as 40mA. The comparators  
eliminate power-supply glitches that commonly occur  
when changing logic states, minimizing parasitic feed-  
back and making the devices easier to use. In addition,  
they contain ±3mV internal hysteresis to ensure clean  
output switching, even with slow-moving input signals.  
Smart Cards  
Infrared Receivers for Remote Controls  
Smoke Detectors and Safety Sensors  
__________________P in Co n fig u ra t io n  
____________________S e le c t io n Ta b le  
INTERNAL  
2%  
PRECISION STABILITY  
OP-AMP  
GAIN  
SUPPLY  
COMPARATOR CURRENT  
(µA)  
TOP VIEW  
PART  
REFERENCE  
(V/V)  
MAX951  
MAX952  
MAX953  
MAX954  
Yes  
Yes  
No  
1
10  
1
Yes  
Yes  
Yes  
Yes  
7
7
5
5
1
2
3
4
8
7
6
5
AMPOUT  
AMPIN-  
AMPIN+  
V
DD  
COMPOUT  
MAX951  
MAX952  
MAX953  
MAX954  
REF (COMPIN-)  
COMPIN+  
No  
10  
V
SS  
DIP/SO/µMAX  
( ) ARE FOR MAX953/MAX954  
Typical Operating Circuit and Ordering Information  
appear at end of data sheet.  
________________________________________________________________ Maxim Integrated Products  
1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800.  
For small orders, phone 408-737-7600 ext. 3468.  
Ult ra -Lo w -P o w e r, S in g le -S u p p ly  
Op Am p + Co m p a ra t o r + Re fe re n c e  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage (V to V )....................................................9V  
SO (derate 5.88mW/°C above +70°C).........................471mW  
µMAX (derate 4.10mW/°C above +70°C) ....................330mW  
CERDIP (derate 8.00mW/°C above +70°C).................640mW  
Operating Temperature Ranges  
DD  
SS  
Inputs  
Current (AMPIN_, COMPIN_)..........................................20mA  
Voltage (AMPIN_, COMPIN_).......(V + 0.3V) to (V - 0.3V)  
DD  
SS  
Outputs  
MAX95_E_A .....................................................-40°C to +85°C  
MAX95_MJA ..................................................-55°C to +125°C  
Maximum Junction Temperatures  
MAX95_E_A .................................................................+150°C  
MAX95_MJA.................................................................+175°C  
Storage Temperature Range .............................-65°C to +165°C  
Lead Temperature (soldering, 10sec) .............................+300°C  
Current (AMPOUT, COMPOUT)......................................50mA  
Current (REF) ..................................................................20mA  
Voltage (AMPOUT,  
COMPOUT, REF) ..............(V + 0.3V) to (V - 0.3V)  
DD  
SS  
Short-Circuit Duration (REF, AMPOUT)..................Continuous  
Short-Circuit Duration (COMPOUT, V to V 7V)......1min  
DD  
SS  
Continuous Power Dissipation (T = +70°C)  
A
Plastic DIP (derate 9.09mW/°C above +70°C) ............727mW  
Stresses beyond those listed under Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
1–MAX954  
ELECTRICAL CHARACTERISTICS  
(V = 2.8V to 7V for MAX951/MAX952, V = 2.4V to 7V for MAX953/MAX954, V = 0V, V = 0V for the MAX953/MAX954,  
CM COMP  
DD  
DD  
SS  
V
= 0V, AMPOUT = (V + V ) / 2, COMPOUT = low, T = T  
to T , typical values are at T = +25°C, unless  
MAX A  
CM OPAMP  
DD  
SS  
A
MIN  
otherwise noted.)  
PARAMETER  
SYMBOL  
CONDITIONS  
= T  
MIN  
2.8  
2.7  
2.4  
TYP  
MAX  
7.0  
7.0  
7.0  
10  
11  
13  
8
UNITS  
T
A
to T  
MAX  
MIN  
MAX951/MAX952  
Supply Voltage Range  
V
DD  
T = -10°C to +85°C  
A
V
MAX953/MAX954  
= +25°C, MAX951/MAX952  
T
A
7
5
MAX951E/MAX952E  
MAX951M/MAX952M  
Supply Current  
(Note 1)  
I
S
µA  
T
A
= +25°C, MAX953/MAX954  
MAX953E/MAX954E  
MAX953M/MAX954M  
9
11  
COMPARATOR  
T
= +25°C  
1
3
4
A
MAX95_EPA/ESA  
MAX95_EUA (µMAX)  
MAX95_MJA  
Input Offset Voltage  
(Note 2)  
V
OS  
mV  
14  
6
T
= +25°C  
4
17  
A
MAX95_EUA (µMAX)  
MAX95_EPA/ESA  
MAX95_MJA  
Trip Point  
(Note 3)  
mV  
nA  
5
7
T
= +25°C  
0.003  
0.003  
0.050  
5
A
Input Leakage Current  
(Note 4)  
MAX95_E  
MAX95_M  
40  
Common-Mode Range  
CMVR  
CMRR  
V
SS  
V
DD  
-1.6V  
V
Common-Mode Rejection Ratio  
V
SS  
to (V - 1.6V), MAX953/MAX954  
0.1  
1
mV/V  
DD  
2
_______________________________________________________________________________________  
Ult ra -Lo w -P o w e r, S in g le -S u p p ly  
Op Am p + Co m p a ra t o r + Re fe re n c e  
1–MAX954  
ELECTRICAL CHARACTERISTICS (continued)  
(V = 2.8V to 7V for MAX951/MAX952, V = 2.4V to 7V for MAX953/MAX954, V = 0V, V = 0V for the MAX953/MAX954,  
CM COMP  
DD  
DD  
SS  
V
= 0V, AMPOUT = (V + V ) / 2, COMPOUT = low, T = T  
to T , typical values are at T = +25°C, unless  
MAX A  
CM OPAMP  
DD  
SS  
A
MIN  
otherwise noted.)  
PARAMETER  
SYMBOL  
CONDITIONS  
MAX951/MAX952, V = 2.8V to 7V  
MIN  
TYP  
MAX  
UNITS  
0.05  
0.05  
22  
1
1
DD  
Power-Supply Rejection Ratio  
Response Time  
PSRR  
mV/V  
MAX953/MAX954, V = 2.4V to 7V  
DD  
V
OD  
= 10mV  
C
= 100pF, T =  
A
L
T
pd  
µs  
+25°C, V - V = 5V  
DD  
SS  
V
OD  
= 100mV  
4
Output High Voltage  
Output Low Voltage  
REFERENCE  
V
I
= 2mA  
V
DD  
- 0.4V  
V
V
OH  
SOURCE  
V
OL  
I
= 1.8mA  
V + 0.4V  
SS  
SINK  
MAX95_EPA/ESA  
MAX95_EUA (µMAX)  
MAX95_MJA  
1.176  
1.130  
1.164  
1.200  
1.200  
1.200  
0.1  
1.224  
1.270  
1.236  
Reference Voltage  
(Note 5)  
V
REF  
V
I
= ±20µA, T = +25°C  
A
OUT  
Load Regulation  
I
= ±6µA, MAX95_E  
= ±3µA, MAX95_M  
1.5  
1.5  
%
OUT  
I
OUT  
Voltage Noise  
e
0.1Hz to 10Hz  
16  
1
µVp-p  
n
OP AMP  
T
= +25°C  
3
A
MAX95_EPA/ESA  
MAX95_EUA (µMAX)  
MAX95_MJA  
4
Input Offset Voltage  
Input Bias Current  
V
mV  
OS  
5
5
T
A
= +25°C  
0.003  
0.003  
0.003  
1000  
0.050  
5
I
MAX95_E  
MAX95_M  
nA  
B
40  
T
= +25°C  
100  
50  
10  
40  
25  
5
A
Large-Signal Gain  
(no load)  
AMPOUT = 0.5V to  
A
VOL  
MAX95_E  
MAX95_M  
V/mV  
V/mV  
4.5V, V - V = 5V  
DD  
SS  
T
A
= +25°C  
150  
Large-Signal Gain  
AMPOUT = 0.5V to  
4.5V, V - V = 5V  
A
VOL  
MAX95_E  
MAX95_M  
(100kload to V  
)
SS  
DD  
SS  
A
= +1V/V, MAX951/MAX953, V - V = 5V  
20  
125  
12.5  
66  
V
DD  
SS  
Gain Bandwidth  
Slew Rate  
GBW  
SR  
kHz  
A = +10V/V, MAX952/MAX954, V - V = 5V  
V
DD  
SS  
A
V
= +1V/V, MAX951/MAX953, V - V = 5V  
DD SS  
V/ms  
A = +10V/V, MAX952/MAX954, V - V = 5V  
V
DD  
SS  
Common-Mode Input Range  
CMVR  
CMRR  
V
SS  
V
DD  
- 1.6  
1
V
Common-Mode Rejection Ratio  
V
= V to (V - 1.6V)  
0.03  
0.07  
0.07  
80  
mV/V  
CM OPAMP  
SS  
DD  
V
DD  
= 2.8V to 7V, MAX951/MAX952  
= 2.4V to 7V, MAX953/MAX954  
1.0  
1.0  
Power-Supply Rejection Ratio  
Input Noise Voltage  
PSRR  
en  
mV/V  
V
DD  
f = 1kHz  
o
nVHz  
f = 0.1Hz to 10Hz  
o
1.2  
µVp-p  
_______________________________________________________________________________________  
3
Ult ra -Lo w -P o w e r, S in g le -S u p p ly  
Op Am p + Co m p a ra t o r + Re fe re n c e  
ELECTRICAL CHARACTERISTICS (continued)  
(V = 2.8V to 7V for MAX951/MAX952, V = 2.4V to 7V for MAX953/MAX954, V = 0V, V = 0V for the MAX953/MAX954,  
CM COMP  
DD  
DD  
SS  
V
= 0V, AMPOUT = (V + V ) / 2, COMPOUT = low, T = T  
to T  
, typical values are at T = +25°C, unless  
CM OPAMP  
otherwise noted.)  
DD  
SS  
A
MIN  
MAX A  
PARAMETER  
SYMBOL  
CONDITIONS  
= 100kto V  
MIN  
V - 500mV  
DD  
TYP  
MAX  
UNITS  
Output High Voltage  
Output Low Voltage  
V
OH  
R
R
V
V
L
L
SS  
V
OL  
= 100kto V  
V + 50mV  
SS  
SS  
T
A
= +25°C  
70  
T
= +25°C, V - V = 5V  
300  
60  
820  
A
DD  
SS  
Output Source Current  
Output Sink Current  
I
µA  
SRC  
MAX95_E  
MAX95_M  
40  
T
A
= +25°C  
70  
T
A
= +25°C, V - V = 5V  
200  
50  
570  
µA  
DD  
SS  
I
SNK  
MAX95_E  
MAX95_M  
1–MAX954  
30  
Note 1: Supply current is tested with COMPIN+ = (REF - 100mV) for MAX951/MAX952, and COMPIN+ = 0V for MAX953/MAX954.  
Note 2: Input Offset Voltage is defined as the center of the input-referred hysteresis. V = REF for MAX951/MAX952, and  
CM COMP  
V
= 0V for MAX953/MAX954.  
CM COMP  
Note 3: Trip Point is defined as the differential input voltage required to make the comparator output change. The difference  
between upper and lower trip points is equal to the width of the input-referred hysteresis. V = REF for  
CM COMP  
MAX951/MAX952, and V  
= 0V for MAX953/MAX954.  
CM COMP  
Note 4: For MAX951/MAX952, input leakage current is measured for COMPIN- at the reference voltage. For MAX953/MAX954, input  
leakage current is measured for both COMPIN+ and COMPIN- at V  
.
SS  
Note 5: Reference voltage is measured with respect to V . Contact factory for availability of a 3% accurate reference voltage in the  
SS  
µMAX package.  
4
_______________________________________________________________________________________  
Ult ra -Lo w -P o w e r, S in g le -S u p p ly  
Op Am p + Co m p a ra t o r + Re fe re n c e  
1–MAX954  
__________________________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s  
(T = +25°C, unless otherwise noted.)  
A
SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
SUPPLY CURRENT  
vs. TEMPERATURE  
REFERENCE VOLTAGE vs. TEMPERATURE  
1.220  
1.215  
1.210  
1.205  
1.200  
10  
9
9
8
8
7
7
MAX951/MAX952  
6
MAX951/MAX952  
6
5
4
3
2
1
0
5
MAX953/MAX954  
4
MAX953/MAX954  
1.195  
1.190  
3
V
= 0V  
DD  
CM OPAMP  
V
= 2.8V (MAX951/2), V = 2.4V  
DD  
DD  
2
1
0
AMPOUT = (V + V )/2  
COMP- = 1.2V or REF  
COMP+ = 1.1V  
SS  
(MAX953/4), V = 0V, V  
= 0V  
SS  
CM OPAMP  
V
DD  
= 5V  
1.185  
1.180  
AMPOUT = 1/2 V , COMP- = 1.2V or REF  
DD  
COMP+ = 1.1V  
-60 -40 -20  
0
20 40 60 80 100 120 140  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
6.5  
7
-60 -40 -20  
0
20 40 60 80 100 120 140  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
DC OPEN-LOOP GAIN vs.  
SUPPLY VOLTAGE  
REFERENCE OUTPUT VOLTAGE  
vs. LOAD CURRENT  
POWER-SUPPLY REJECTION  
RATIO vs. FREQUENCY  
7
1x10  
1.30  
80  
V
= 5V  
V
DD  
= 2.0 to 3.0V, V = -2.5V  
SS  
SUPPLY  
1.28  
1.26  
1.24  
1.22  
1.20  
1.18  
6
NONINVERTING  
AMPIN+ = 0V  
1x10  
70  
60  
A
A
CL  
= 1V/V (MAX951/2)  
= 10V/V (MAX953/4),  
CL  
SINKING CURRENT  
5
1x10  
COMP- = 1.2V or REF  
COMP+ = 1.1V from V  
50  
40  
4
1x10  
SS  
A
3
1x10  
C
30  
20  
2
1.16  
1.14  
1.12  
1.10  
1x10  
B
SOURCING CURRENT  
A: MAX951/952 REF  
10 B: MAX951/953 OP AMP  
1
1x10  
1mHz INPUT SIGNAL  
R = 100k  
C: MAX952/954 OP AMP  
0
L
0
1x10  
2
2.5  
3
3.5  
4 4.5 5 5.5 6 6.5 7  
1x100 1x101 1x102 1x103 1x104 1x105 1x106  
FREQUENCY (Hz)  
1
10  
100  
SUPPLY VOLTAGE (V)  
LOAD CURRENT (µA)  
MAX952/MAX954 OPEN-LOOP GAIN  
AND PHASE vs. FREQUENCY  
MAX951/MAX953 OPEN-LOOP GAIN  
AND PHASE vs. FREQUENCY  
DC OPEN-LOOP GAIN vs. TEMPERATURE  
6
1x10  
1x10  
1x10  
1x10  
1x10  
0
100  
80  
60  
40  
20  
0
100  
80  
0
5
4
3
2
-60  
-60  
PHASE  
PHASE  
GAIN  
-120  
-180  
-240  
-300  
60  
40  
20  
0
-120  
-180  
-240  
-300  
GAIN  
V
DD  
= 5V  
1
1x10  
1x10  
-20  
1mHz INPUT SIGNAL  
R = 100kΩ  
R = 100kΩ  
L
R = 100kΩ  
L
L
0
-360  
-40  
-20  
-360  
-60 -40 -20  
0
20 40 60 80 100 120 140  
1
10  
100  
1k  
10k 100k 1M  
1
10  
100  
1k  
10k 100k 1M  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
_______________________________________________________________________________________  
5
Ult ra -Lo w -P o w e r, S in g le -S u p p ly  
Op Am p + Co m p a ra t o r + Re fe re n c e  
____________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(T = +25°C, unless otherwise noted.)  
A
OP-AMP SHORT-CIRCUIT CURRENT  
vs. SUPPLY VOLTAGE  
OP-AMP OUTPUT VOLTAGE  
vs. LOAD CURRENT  
2000  
1500  
1000  
500  
0.10  
0.08  
NONINVERTING  
A, D: V  
= ±1.5V  
= ±2.5V  
= ±3.5V  
SUPPLY  
AMPIN+ =(V - V )/2  
DD  
SS  
B, E: V  
SUPPLY  
C
B
A
C, F: V  
0.06  
SUPPLY  
0.04  
SINKING CURRENT  
0.02  
SHORT TO V  
SS  
0.10  
-0.02  
-0.04  
-0.06  
-0.08  
-0.10  
SOURCING CURRENT  
0
SHORT TO V  
E
F
D
DD  
-500  
NONINVERTING  
AMPIN+ = GND  
1–MAX954  
-1000  
2.5  
3
3.5  
4
4.5  
5
5.5  
6
6.5  
7
1
10  
100  
1000 2000  
SUPPLY VOLTAGE (V)  
LOAD CURRENT (µA)  
OP AMP PERCENT OVERSHOOT  
vs. CAPACITIVE LOAD  
COMPARATOR OUTPUT VOLTAGE  
vs. LOAD CURRENT  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
PARTS  
V
SUPPLY  
SOURCING CURRENT  
A: MAX951/2 3V  
B: MAX951/3 5V  
D: MAX952/4 3V  
E: MAX952/4 5V  
F
B
MAX951/3 A = 1V/V  
MAX952/4 A = 10V/V  
C
E
AMPOUT = 1V  
D
PP  
V
= (V - V /2)  
DD SS  
CM  
A
V
= 5V  
SUPPLY  
SINKING CURRENT  
1
2
4
5
6
3
10  
10  
10  
10  
10  
10  
0.01  
0.1  
1
10  
100 200  
CAPACITIVE LOAD (pF)  
LOAD CURRENT (mA)  
COMPARATOR SHORT-CIRCUIT  
CURRENT vs. SUPPLY VOLTAGE  
250  
200  
150  
100  
SOURCING CURRENT  
50  
0
SINKING CURRENT  
-50  
2
2.5  
3
3.5  
4 4.5 5 5.5 6 6.5 7  
SUPPLY VOLTAGE (V)  
6
_______________________________________________________________________________________  
Ult ra -Lo w -P o w e r, S in g le -S u p p ly  
Op Am p + Co m p a ra t o r + Re fe re n c e  
1–MAX954  
____________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(T = +25°C, unless otherwise noted.)  
A
COMPARATOR RESPONSE TIME  
COMPARATOR RESPONSE TIME  
FOR VARIOUS INPUT OVERDRIVES (FALLING)  
FOR VARIOUS INPUT OVERDRIVES (RISING)  
0V  
100mV  
100mV  
50mV  
10mV  
50mV  
20mV  
0V  
0V  
20mV  
10mV  
0V  
2µs/div  
MAX953, LOAD = 100kΩ || 100pF, V  
2µs/div  
MAX953, LOAD = 100kΩ || 100pF, V  
= 5V  
= 5V  
SUPPLY  
SUPPLY  
MAX951/MAX953 OP-AMP  
MAX951/MAX953 OP-AMP  
LARGE-SIGNAL TRANSIENT RESPONSE  
SMALL-SIGNAL TRANSIENT RESPONSE  
2.5V  
2.5V  
200µs/div  
100µs/div  
NONINVERTING, A = 1V/V, LOAD = 100kΩ || 100pF to V , V  
= 5V  
NONINVERTING, A = 1V/V, LOAD = 100kΩ || 100pF to V , V  
= 5V  
VCL  
SS SUPPLY  
VCL  
SS SUPPLY  
MAX952/MAX954 OP-AMP  
MAX952/MAX954 OP-AMP  
SMALL-SIGNAL TRANSIENT RESPONSE  
LARGE-SIGNAL TRANSIENT RESPONSE  
2.5V  
2.5V  
100µs/div  
100µs/div  
NONINVERTING, A = 10V/V, LOAD = 100kΩ || 100pF to V , V  
= 5V  
NONINVERTING, A = 10V/V, LOAD = 100kΩ || 100pF to V , V = 5V  
SS SUPPLY  
VCL  
SS SUPPLY  
VCL  
_______________________________________________________________________________________  
7
Ult ra -Lo w -P o w e r, S in g le -S u p p ly  
Op Am p + Co m p a ra t o r + Re fe re n c e  
______________________________________________________________P in De s c rip t io n  
PIN  
NAME  
FUNCTION  
MAX951  
MAX952  
MAX953  
MAX954  
1
2
1
2
AMPOUT  
AMPIN-  
AMPIN+  
Op-Amp Output  
Inverting Op-Amp Input  
Noninverting Op-Amp Input  
Negative Supply or Ground  
Noninverting Comparator Input  
3
3
4
4
V
SS  
5
5
COMPIN+  
REF  
6
6
1.200V Reference Output. Also connected to inverting comparator input.  
7
COMPIN-  
COMPOUT  
Inverting Comparator Input  
Comparator Output  
Positive Supply  
7
8
8
V
DD  
1–MAX954  
AMPOUT  
OP AMP  
V
8
7
DD  
8
1
V
DD  
AMPOUT  
OP AMP  
COMPOUT  
MAX953  
MAX954  
1
2
3
AMPIN-  
AMPIN+  
COMPOUT  
COMPIN-  
7
6
x1  
2
3
AMPIN-  
AMPIN+  
REF  
6
5
1.20V  
4
V
SS  
COMP  
COMP  
4
COMPIN+  
5
V
SS  
COMPIN+  
MAX951  
MAX952  
Figure 1. MAX951–MAX954 Functional Diagrams  
hig h-imp e d a nc e d iffe re ntia l inp uts a nd a c ommon-  
mode input voltage range that extends from the nega-  
tive supply rail to within 1.6V of the positive rail. They  
have a CMOS output stage that swings rail to rail and is  
driven by a proprietary high gain stage, which enables  
them to operate with an ultra-low supply current while  
maintaining linearity under loaded conditions. Careful  
design results in good DC characteristics over their  
entire operating temperature range, minimizing input  
referred errors.  
_______________De t a ile d De s c rip t io n  
The MAX951–MAX954 are combinations of a micropow-  
er op amp, comparator, and reference in an 8-pin pack-  
age, as shown in Figure 1. In the MAX951/MAX952, the  
comparators negative input is connected to a 1.20V  
±2% bandgap reference. All four devices are optimized  
to operate from a single supply. Supply current is less  
than 10µA (7µA typical) for the MAX951/MAX952 and  
less than 8µA (5µA typical) for the MAX953/MAX954.  
Op Am p  
The op amps in the MAX951/MAX953 are internally  
c omp e ns a te d to b e unity-g a in s ta b le , while the op  
amps in the MAX952/MAX954 feature 125kHz typical  
gain bandwidth, 66V/ms slew rate, and stability for  
gains of 10V/V or greater. All these op amps feature  
Co m p a ra t o r  
The comparator in the MAX951–MAX954 has a high-  
impedance differential input stage with a common-  
mod e inp ut volta g e ra ng e tha t e xte nd s from the  
negative supply rail to within 1.6V of the positive rail.  
Their CMOS output stage swings rail to rail and can  
8
_______________________________________________________________________________________  
Ult ra -Lo w -P o w e r, S in g le -S u p p ly  
Op Am p + Co m p a ra t o r + Re fe re n c e  
1–MAX954  
R2  
R2  
RA  
R1  
V
S
V
IN  
COMPOUT  
COMPOUT  
RB  
REF  
REF  
Figure 2. External Hysteresis  
continuously source as much as 40mA. The compara-  
tors eliminate power-supply glitches that commonly  
occur when changing logic states, minimizing parasitic  
feedback and making them easier to use. In addition,  
they include internal hysteresis (±3mV) to ensure clean  
output switching, even with slow-moving input signals.  
The inputs can be taken above and below the supply  
ra ils up to 300mV without d a ma g e . Inp ut volta g e s  
beyond this range can forward bias the ESD-protection  
diodes and should be avoided.  
Co m p a ra t o r Hys t e re s is  
Hysteresis increases the comparators noise immunity  
by increasing the upper threshold and decreasing the  
lower threshold. The comparator in these devices con-  
tain a ±3mV wide internal hysteresis band to ensure  
clean output switching, even with slow-moving signals.  
When necessary, hysteresis can be increased by using  
external resistors to add positive feedback, as shown in  
Fig ure 2. This c irc uit inc re a s e s hys te re s is a t the  
e xp e ns e of more s up p ly c urre nt a nd a s lowe r  
response. The design procedure is as follows:  
The MAX951–MAX954 comparator outputs swing rail to  
rail (from V  
using a +5V ±10% supply.  
to V ). TTL compatibility is assured by  
DD  
SS  
1) Set R2. The leakage current in COMPIN+ is less  
than 5nA (up to +85°C), so current through R2 can  
be as little as 500nA and still maintain good accura-  
cy. If R2 = 2.4M, the current through R2 at the  
The MAX951–MAX954 comparator continuously outputs  
source currents as high as 40mA and sink currents of  
ove r 5mA, while ke e p ing q uie s c e nt c urre nts in the  
microampere range. The output can source 100mA (at  
upper trip point is V  
/ R2 or 500nA.  
REF  
2) Choose the width of the hysteresis band. In this  
V
DD  
= 5V) for short pulses, as long as the packages  
example choose V  
= 50mV.  
EHYST  
maximum power dissipation is not exceeded. The out-  
put stage does not generate crowbar switching currents  
during transitions; this minimizes feedback through the  
supplies and helps ensure stability without bypassing.  
V
2V  
[
]
EHYST  
IHYST  
R1 = R2  
V
+ 2V  
IHYST  
(
)
DD  
where the internal hysteresis is V  
= 3mV.  
IHYST  
Re fe re n c e  
The internal reference in the MAX951/MAX952 has an  
3) Determine R1. If the supply voltage is 5V, then R1 =  
output of 1.20V with respect to V . Its accuracy is ±2%  
SS  
24k.  
in the -40°C to +85°C temperature range. It is comprised  
of a trimmed bandgap reference fed by a proportional-  
to-absolute-temperature (PTAT) current source and  
buffered by a micropower unity-gain amplifier. The REF  
output is typically capable of sourcing and sinking 20µA.  
Do not bypass the reference output. The reference is  
stable for capacitive loads less than 100pF.  
4) Check the hysteresis trip points. The upper trip point is  
R1 + R2  
(
)
V
V
=
+ V  
REF IHYST  
(
)
IN(H)  
R2  
or 1.22V in our example. The lower trip point is 50mV  
less, or 1.17V in our example.  
If a resistor divider is used for R1, the calculations  
should be modified using a Thevenin equivalent  
model.  
__________Ap p lic a t io n s In fo rm a t io n  
The micropower MAX951–MAX954 are designed to  
extend battery life in portable instruments and add  
func tiona lity in p owe r-limite d ind us tria l c ontrols .  
Following are some practical considerations for circuit  
design and layout.  
5) Determine R :  
A
_______________________________________________________________________________________  
9
Ult ra -Lo w -P o w e r, S in g le -S u p p ly  
Op Am p + Co m p a ra t o r + Re fe re n c e  
V
CC  
= 5V  
ANTENNA  
0.1µF  
AMPIN+  
MAX952  
AMP  
0.1µF  
AMPOUT  
20k  
10M  
C1  
390pF C1  
A
B
C1  
C
L1  
330mH  
330pF  
20-60pF  
1.0M  
R2  
COMP  
100k  
1.2V  
5.1M  
R1  
1
REF  
L1 x C1 =  
2
(2π f )  
C
2pF to 10pF  
LAYOUT-SENSITIVE AREA,  
METAL RFI SHIELDING ADVISED  
Figure 3. Compensation for Feedback-Node Capacitance  
Figure 4. Low-Frequency Radio Receiver Application  
1–MAX954  
Op -Am p S t a b ilit y a n d Bo a rd La yo u t  
Co n s id e ra t io n s  
V
SHYST  
R
R2  
, for V  
>> V  
A
SHYST IHYST  
V
DD  
Unlike other industry-standard micropower CMOS op  
amps, the op amps in the MAX951–MAX954 maintain  
stability in their minimum gain configuration while driving  
he a vy c a p a c itive loa d s , a s d e mons tra te d in the  
MAX951/MAX953 Op -Amp Pe rc e nt Ove rs hoot vs .  
Ca p a c itive Loa d g ra p h in the Typ ic a l Op e ra ting  
Characteristics.  
In the example, R is again 24k.  
A
6) Select the upper trip point V  
. Our example is set  
S(H)  
at 4.75V.  
7) Calculate R .  
B
V
+ V  
R2 R  
A
(
) ( )(  
+ V  
)
REF  
IHYST  
Although this family is primarily designed for low-fre-  
quency applications, good layout is extremely impor-  
tant. Low-power, high-impedance circuits may increase  
the effects of board leakage and stray capacitance. For  
example, the combination of a 10Mresistance (from  
leakage between traces on a contaminated, poorly  
designed PC board) and a 1pF stray capacitance pro-  
vides a pole at approximately 16kHz, which is near the  
amplifiers bandwidth. Board routing and layout should  
minimize le a ka g e a nd s tra y c a p a c ita nc e . In s ome  
cases, stray capacitance may be unavoidable and it  
may be necessary to add a 2pF to 10pF capacitor  
across the feedback resistor to compensate; select the  
smallest capacitor value that ensures stability.  
R
=
B
R2 V  
V
R
)(  
+ R2  
(
)
(
)
S H  
( )  
REF  
IHSYT  
A
R
is 8.19k, or approximately 8.2k.  
B
In p u t No is e Co n s id e ra t io n s  
Because low power requirements often demand high-  
impedance circuits, effects from radiated noise are more  
significant. Thus, traces between the op-amp or com-  
parator inputs and any resistor networks attached should  
be kept as short as possible.  
Cro s s t a lk  
Reference  
Internal crosstalk to the reference from the comparator  
In p u t Ove rd rive  
With 100mV overdrive, comparator propagation delay  
is typically 6µs. The Typical Operating Characteristics  
show propagation delay for various overdrive levels.  
is package dependent. Typical values (V  
= 5V) are  
DD  
45mV for the plastic DIP package and 32mV for the SO  
package. Applications using the reference for the op  
amp or external circuitry can eliminate this crosstalk by  
using a simple RC lowpass filter, as shown in Figure 5.  
Supply current can increase when the op amp in the  
MAX951–MAX954 is overdriven to the negative supply rail.  
For example, when connecting the op amp as a compara-  
tor and applying a -100mV input overdrive, supply current  
rises by around 15µA and 32µA for supply voltages of  
2.8V and 7V, respectively.  
Op Amp  
Internal crosstalk to the op amp from the comparator is  
package dependent, but not input referred. Typical val-  
ues (V  
= 5V) are 4mV for the plastic DIP package  
DD  
and 280µV for the SO package.  
10 ______________________________________________________________________________________  
Ult ra -Lo w -P o w e r, S in g le -S u p p ly  
Op Am p + Co m p a ra t o r + Re fe re n c e  
1–MAX954  
V
CC  
= 5V  
10kHz,  
5Vp-p  
C2  
15pF, 5%  
MAX953  
NEC  
PH302B  
V
CC  
R2  
1.0M,  
1%  
NEC  
SE307-C  
0.1µF  
4.7M  
30k  
10M  
51Ω  
RADIOACTIVE  
IONIZATION  
CHAMBER  
R1  
A
49.9k  
1%  
AMP  
C1  
150pF,  
5%  
R1  
B
49.9k  
1%  
AMP  
SMOKE SENSOR  
COMP  
COMP  
100k  
0.1µF  
1.2V  
MAX952  
LAYOUT-SENSITIVE AREA  
5.1M  
REF  
LAYOUT-SENSITIVE AREA  
1
R1 x C1 = R2 x C2 =  
2π f  
C
Figure 5. Infrared Receiver Application  
Figure 6. Sensor Preamp and Alarm Trigger Application  
Friend bandpass filter to reduce disturbances from  
noise and eliminate low-frequency interference from  
sunlight, fluorescent lights, etc. This circuit is applica-  
ble for TV remote controls and low-frequency data links  
up to 20kbps. Carrier frequencies are limited to around  
10kHz. 10kHz is used in the example circuit.  
P o w e r-S u p p ly Byp a s s in g  
Power-supply bypass capacitors are not required if the  
supply impedance is low. For single-supply applications,  
it is good general practice to bypass V with a. 0.1µF  
DD  
capacitor to ground. Do not bypass the reference output.  
________________Ap p lic a t io n Circ u it s  
Component layout and routing for the amplifier should  
be tight to reduce stray capacitance, 60Hz interfer-  
ence, and RFI from the comparator. Crosstalk from  
comparator edges will distort the amplifier signal. In  
ord e r to minimize the e ffe c t, a lowp a s s RC filte r is  
added to the connection from the reference to the non-  
inverting input of the op amp.  
Lo w -Fre q u e n c y Ra d io Re c e ive r fo r  
Ala rm s a n d De t e c t o rs  
Figure 4s circuit is useful as a front end for low-frequen-  
cy RF alarms. The unshielded inductor (M7334-ND from  
Digikey) is used with capacitors C1 , C1 , and C1 in a  
A
B
C
resonant circuit to provide frequency selectivity. The op  
amp from a MAX952 amplifies the signal received. The  
comparator improves noise immunity, provides a signal  
strength threshold, and translates the received signal  
into a pulse train. Carrier frequencies are limited to  
around 10kHz. 10kHz is used in the example in Figure 4.  
S e n s o r P re a m p a n d Ala rm Trig g e r fo r  
S m o k e De t e c t o rs  
The high-impedance CMOS inputs of the MAX951–  
MAX954 op amp are ideal for buffering high-imped -  
ance sensors, such as smoke detector ionization cham-  
bers, piezoelectric transducers, gas detectors, and pH  
sensors. Input bias currents are typically less than 3pA  
at room temperature. A 5µA typical quiescent current  
for the MAX953 will minimize b a tte ry d ra in without  
resorting to complex sleep schemes, allowing continu-  
ous monitoring and immediate detection.  
The layout and routing of components for the amplifier  
s hould b e tig ht to minimize 60Hz inte rfe re nc e a nd  
crosstalk from the comparator. Metal shielding is rec-  
ommended to prevent RFI from the comparator or digi-  
tal circuitry from exciting the receiving antenna. The  
transmitting antenna can be long parallel wires spaced  
about 7.2cm apart, with equal but opposite currents.  
Radio waves from this antenna will be detectable when  
the receiver is brought within close proximity, but can-  
cel out at greater distances.  
Ionization-type smoke detectors use a radioactive source,  
such as Americium, to ionize smoke particles. A positive  
voltage on a plate attached to the source repels the posi-  
tive smoke ions and accelerates them toward an outer  
electrode connected to ground. Some ions collect on an  
intermediate plate. With careful design, the voltage on this  
plate will stabilize at a little less than one-half the supply  
voltage under normal conditions, but rise higher when  
smoke increases the ion current. This voltage is buffered  
In fra re d Re c e ive r Fro n t En d fo r  
Re m o t e Co n t ro ls a n d Da t a Lin k s  
The circuit in Figure 5 uses the MAX952 as a PIN pho-  
todiode preamplifier and discriminator for an infrared  
receiver. The op amp is configured as a Delyiannis-  
______________________________________________________________________________________ 11  
Ult ra -Lo w -P o w e r, S in g le -S u p p ly  
Op Am p + Co m p a ra t o r + Re fe re n c e  
by the high input impedance op amp of a MAX951  
(Figure 6). The comparator and resistor voltage divider  
set an alarm threshold to indicate a fire.  
___________________Ch ip To p o g ra p h y  
V
DD  
Design and fabrication of the connection from the inter-  
mediate plate of the ionization chamber to the nonin-  
ve rting inp ut of the op a mp is c ritic a l, s inc e the  
impedance of this node must be well above 50M. This  
connection must be as short and direct as possible to  
prevent charge leakage and 60Hz interference. Where  
possible, the grounded outer electrode or chassis of  
the ionization chamber should shield this connection to  
re d uc e 60Hz inte rfe re nc e . Pa y s p e c ia l a tte ntion to  
board cleaning, to prevent leakage due to ionic com-  
pounds such as chlorides, flux, and other contaminants  
from the manufacturing process. Where applicable, a  
coating of high-purity wax may be used to insulate this  
connection and prevent leakage due to surface mois-  
ture or an accumulation of dirt.  
AMPOUT  
AMPIN-  
COMPOUT  
0. 084"  
(2. 134mm)  
AMPIN+  
REF(COMPIN-)  
COMPIN+  
V
SS  
1–MAX954  
0. 058"  
(1. 473mm)  
______________Ord e rin g In fo rm a t io n  
(
) ARE FOR MAX953/MAX954  
PART  
TEMP. RANGE  
0°C to +70°C  
PIN-PACKAGE  
Dice*  
TRANSISTOR COUNT: 163  
SUBSTRATE CONNECTED TO V  
MAX951C/D  
MAX951EPA  
MAX951ESA  
MAX951EUA  
MAX951MJA  
MAX952C/D  
MAX952EPA  
MAX952ESA  
MAX952EUA  
MAX952MJA  
MAX953C/D  
MAX953EPA  
MAX953ESA  
MAX953EUA  
MAX953MJA  
MAX954C/D  
MAX954EPA  
MAX954ESA  
MAX954EUA  
MAX954MJA  
DD  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-55°C to +125°C  
0°C to +70°C  
8 Plastic DIP  
8 SO  
8 µMAX  
8 CERDIP**  
Dice*  
__________Typ ic a l Op e ra t in g Circ u it  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-55°C to +125°C  
0°C to +70°C  
8 Plastic DIP  
8 SO  
8
V
CC  
0.1µF  
INPUT  
8 µMAX  
AMPIN+  
3
8 CERDIP**  
Dice*  
MAX951  
MAX952  
2
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-55°C to +125°C  
0°C to +70°C  
8 Plastic DIP  
8 SO  
1
5
6
8 µMAX  
1M  
COMPOUT  
7
R2  
8 CERDIP**  
Dice*  
R1  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-55°C to +125°C  
8 Plastic DIP  
8 SO  
REF  
1.20V  
8 µMAX  
4
V
SS  
8 CERDIP**  
* Dice are tested at T = +25°C, DC parameters only.  
A
** Contact factory for availability and processing to MIL-STD-883.  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
12 ____________________Ma x im In t e g ra t e d P ro d u c t s , 1 2 0 S a n Ga b rie l Drive , S u n n yva le , CA 9 4 0 8 6 4 0 8 -7 3 7 -7 6 0 0  
© 1997 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX953ESA-T

Operational Amplifier, 1 Func, 4000uV Offset-Max, CMOS, PDSO8, SO-8
MAXIM

MAX953EUA

Ultra-Low-Power, Single-Supply Op Amp Comparator Reference
MAXIM

MAX953EUA+

Operational Amplifier, 1 Func, 5000uV Offset-Max, CMOS, PDSO8, UMAX-8
MAXIM

MAX953EUA+T

Operational Amplifier, 1 Func, 5000uV Offset-Max, CMOS, PDSO8, UMAX-8
MAXIM

MAX953EUA-T

暂无描述
MAXIM

MAX953MJA

Ultra-Low-Power, Single-Supply Op Amp Comparator Reference
MAXIM

MAX954

Ultra-Low-Power, Single-Supply Op Amp Comparator Reference
MAXIM

MAX9540

Graphics Video Sync Adder/Extractor
MAXIM

MAX9540EUI

Graphics Video Sync Adder/Extractor
MAXIM

MAX9540EUI+

Consumer Circuit, Bipolar, PDSO28, 4.40 MM, LEAD FREE, MO-153AE, TSSOP-28
MAXIM

MAX9540EUI+T

暂无描述
MAXIM

MAX9541

Quadruple, 2:1, Mux Amplifiers for Standard-Definition and VGA Signals
MAXIM