MAX9667 [MAXIM]

6/8/10-Channel, 10-Bit, Nonvolatile Programmable Gamma and VCOM Reference Voltages;
MAX9667
型号: MAX9667
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

6/8/10-Channel, 10-Bit, Nonvolatile Programmable Gamma and VCOM Reference Voltages

文件: 总41页 (文件大小:1304K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-5000; Rev 4; 7/10  
6/8/10-Channel, 10-Bit, Nonvolatile Programmable  
Gamma and VCOM Reference Voltages  
5/MAX967  
General Description  
Features  
The MAX9665/MAX9666/MAX9667 provide multiple  
programmable reference voltages for gamma correc-  
tion in TFT LCDs and a programmable reference volt-  
age for VCOM adjustment. All gamma and VCOM  
reference voltages have a 10-bit digital-to-analog con-  
verter (DAC) and buffer with high peak current. This  
reduces the recovery time of the output voltage when  
critical levels and patterns are displayed.  
o 6/8/10 Channels Gamma Correction, 10-Bit  
Resolution  
o VCOM Driver  
o Integrated Multiple-Time Programmable Memory  
o DAC Reference Input  
o Single-Wire and I2C Programming of VCOM  
These devices include multiple-time programmable  
(MTP) memory to store gamma and VCOM codes on  
the chip, eliminating the need for external EEPROM.  
The MTP memory supports up to 300 write operations.  
Reference  
o 950mA Peak Transient Current on VCOM Channel  
The MAX9665/MAX9666/MAX9667 feature an I2C inter-  
face to control the programmable reference voltages  
and a single-wire interface to toggle the VCOM refer-  
ence voltage up or down.  
Functional Diagrams  
AVDD  
REF  
Applications  
TFT LCDs  
10  
OUT0  
OUT1  
OUT2  
DAC  
Ordering Information  
GAMMA  
CHANNELS  
PIN-  
PACKAGE  
10  
10  
10  
DAC  
DAC  
DAC  
PART  
TEMP RANGE  
MAX9665ETP+  
MAX9666ETP+  
MAX9667ETP+  
6
8
-40°C to +85°C 20 TQFN-EP*  
-40°C to +85°C 20 TQFN-EP*  
-40°C to +85°C 20 TQFN-EP*  
10  
2
+Denotes a lead(Pb)-free/RoHS-compliant package.  
*EP = Exposed pad.  
OUT3  
I C  
MTP  
MEMORY  
REGISTERS  
Pin Configurations  
10  
10  
OUT4  
OUT5  
DAC  
DAC  
TOP VIEW  
15  
14  
13  
12  
11  
OUT3  
N.C.  
10  
9
REF 16  
AVDD 17  
18  
VCOM  
FB  
10  
DAC  
8
FB  
VCOM 19  
20  
OUT4  
N.C.  
DVDD  
SCL  
MAX9665  
2
I C  
SDA  
7
CE  
MAX9665  
CTL  
6
OUT5  
SINGLE-WIRE  
INTERFACE  
CTL  
EP*  
5
+
GND  
1
2
3
4
Functional Diagrams continued at end of data sheet.  
THIN QFN  
5mm x 5mm  
*EP = EXPOSED PAD. CONNECT TO DIGITAL GROUND PLANE.  
Pin Configurations continued at end of data sheet.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,  
or visit Maxim’s website at www.maxim-ic.com.  
6/8/10-Channel, 10-Bit, Nonvolatile Programmable  
Gamma and VCOM Reference Voltages  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltages  
Continuous Power Dissipation (T = +70°C)  
A
AVDD to GND.....................................................-0.3V to +22V  
DVDD to GND.......................................................-0.3V to +4V  
Outputs  
20-Pin TQFN (derate 25.6mW/°C above +70°C) ....2051.3mW  
Junction-to-Case Thermal Resistance (θJC) (Note 1)  
20-Pin TQFN...................................................................6°C/W  
Junction-to-Ambient Thermal Resistance (θJA) (Note 1)  
OUT0–OUT9, VCOM to GND .............-0.3V to (V  
+ 0.3V)  
AVDD  
Inputs  
20-Pin TQFN.................................................................39°C/W  
Operating Temperature Range ...........................-40°C to +85°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
Soldering Temperature (reflow) .......................................+260°C  
SDA, SCL, CE to GND..........................................-0.3V to +4V  
CTL, REF to GND ...............................................-0.3V to +22V  
FB to GND ..........................................-0.3V to (V  
Continuous Current  
+ 0.3V)  
AVDD  
OUT0–OUT9, VCOM................................................... 400mA  
All Other Pins................................................................ 50mA  
Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-  
layer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
= V  
= 15.7V, V  
= 3.3V, V  
= 0V, VCOM connected to FB, CTL = DVDD/2, no load, T = -40°C to +85°C, unless  
AVDD  
REF  
DVDD  
GND A  
otherwise noted. Typical values are at T = +25°C.) (Note 2)  
A
PARAMETER  
SUPPLIES  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Guaranteed by power-supply rejection  
ratio specification (Note 3)  
Analog-Supply Voltage Range  
V
9
20  
20  
V
AVDD  
5/MAX967  
Analog-Supply Voltage Range for  
Programming MTP  
V
15  
V
V
AVDD_MTP  
Digital-Supply Voltage Range  
Analog Quiescent Current  
V
I
2.7  
3.6  
22  
DVDD  
MAX9665  
12  
14  
mA  
MAX9666  
24  
AVDD  
MAX9667  
16  
26  
Digital Quiescent Current  
DVDD Undervoltage Lockout  
DAC  
I
No SCL or SDA transitions  
450  
2.3  
900  
2.6  
µA  
V
DVDD  
UVLO  
Resolution  
10  
Bits  
LSB  
LSB  
k  
Integral Nonlinearity Error  
Differential Nonlinearity Error  
REF Input Resistance  
GAMMA OUTPUTS (Note 4)  
Short-Circuit Current  
Maximum Capacitive Load  
Output Impedance  
Load Regulation  
INL  
T
T
= +25°C, 16 CODE 1008  
= +25°C, 16 CODE 1008  
1
1
A
DNL  
A
384  
I
SC  
Output to AVDD or GND, T = +25°C  
A
100  
-40  
400  
300  
84  
mA  
pF  
Placed directly at output  
Output resistance when output is disabled  
-5mA to +5mA  
Z
kΩ  
O
R
0.5  
mV/mA  
mV  
EG  
Total Output Error  
T
= +25°C, measured at code = 512  
+40  
A
Slew Rate  
SR  
5V swing, measure 10% to 90%  
22  
V/µs  
2
_______________________________________________________________________________________  
6/8/10-Channel, 10-Bit, Nonvolatile Programmable  
Gamma and VCOM Reference Voltages  
5/MAX967  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= V  
= 15.7V, V  
= 3.3V, V  
= 0V, VCOM connected to FB, CTL = DVDD/2, no load, T = -40°C to +85°C, unless  
AVDD  
REF  
DVDD  
GND A  
otherwise noted. Typical values are at T = +25°C.) (Note 2)  
A
PARAMETER  
Low Output Voltage  
SYMBOL  
CONDITIONS  
Sinking 4mA, T = +25°C  
MIN  
TYP  
MAX  
UNITS  
V
MIN  
0.1  
0.15  
V
A
V
V
AVDD  
AVDD  
- 0.1  
High Output Voltage  
V
MAX  
Sourcing 4mA, T = +25°C  
A
V
- 0.15  
To AVDD, f = 60kHz, REF and AVDD shorted  
40  
90  
80  
Power-Supply Rejection Ratio  
PSRR  
dB  
dB  
9V < V  
< 20V, V  
= 9V  
REF  
60  
50  
AVDD  
Channel-to-Channel Isolation  
GAMMA OUTPUTS (Note 5)  
Short-Circuit Current  
Maximum Capacitive Load  
Output Impedance  
C
f = 5MHz, all channels to all channels  
XTLK  
I
Outputs to AVDD or GND, T = +25°C  
A
200  
300  
84  
mA  
pF  
SC  
Placed directly at output  
Z
Output resistance when output is disabled  
-5mA to +5mA  
k  
O
Load Regulation  
R
0.50  
mV/mA  
mV  
EG  
Total Output Error  
T
= +25°C, measured at code = 512  
-40  
+40  
0.2  
A
Swing 5V  
at input, 10% to 90%  
P-P  
Slew Rate  
SR  
22  
V/µs  
V
measurement on output  
Low Output Voltage  
High Output Voltage  
V
MIN  
Sinking 4mA  
0.15  
V
-
V
AVDD  
- 0.15  
AVDD  
0.2  
V
MAX  
Sourcing 4mA  
V
To AVDD, f = 60kHz, REF and AVDD shorted  
40  
90  
Power-Supply Rejection Ratio  
PSRR  
dB  
9V < V  
< 20V, V  
= 9V  
REF  
60  
AVDD  
Thermal Shutdown  
160  
15  
°C  
°C  
dB  
Thermal-Shutdown Hysteresis  
Channel-to-Channel Isolation  
VCOM OUTPUT  
C
f = 5MHz, all channels to all channels  
80  
XTLK  
Short-Circuit Current  
Maximum Capacitive Load  
Output Impedance  
I
Outputs to AVDD or GND, T = +25°C  
A
50  
200  
300  
84  
mA  
pF  
SC  
Placed directly at output  
Z
Output resistance when output is disabled  
-5mA to +5mA  
kΩ  
O
Load Regulation  
R
0.2  
1
mV/mA  
mV  
EG  
Total Output Error  
T
= +25°C, measured at code = 512  
-50  
+50  
0.2  
A
Swing 4V at VCOM, 10% to 90%,  
P-P  
Slew Rate  
SR  
100  
V/µs  
V
R = 10k, C = 50pF (Note 6)  
L
L
Low Output Voltage  
High Output Voltage  
V
MIN  
Sinking 4mA  
0.15  
V
V
AVDD  
- 0.15  
AVDD  
- 0.2  
V
MAX  
Sourcing 4mA  
V
To AVDD, f = 60kHz, REF and AVDD shorted  
40  
Power-Supply Rejection Ratio  
PSRR  
dB  
9V < V  
< 20V, V  
= 9V  
REF  
70  
AVDD  
_______________________________________________________________________________________  
3
6/8/10-Channel, 10-Bit, Nonvolatile Programmable  
Gamma and VCOM Reference Voltages  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= V  
= 15.7V, V  
= 3.3V, V  
= 0V, VCOM connected to FB, CTL = DVDD/2, no load, T = -40°C to +85°C, unless  
AVDD  
REF  
DVDD  
GND A  
otherwise noted. Typical values are at T = +25°C.) (Note 2)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
SINGLE-WIRE INTERFACE  
0.3 x  
CE Input Low Voltage  
2.6V < V  
< 3.6V  
< 3.6V  
V
DVDD  
V
DVDD  
0.7 x  
CE Input High Voltage  
CE Startup Time  
2.6V < V  
(Note 7)  
V
DVDD  
V
DVDD  
1
ms  
0.7 x  
0.82 x  
V
DVDD  
CTL High Voltage  
CTL Float Votlage  
2.6V < V  
< 3.6V  
< 3.6V  
V
V
DVDD  
V
DVDD  
0.4 x  
0.62 x  
V
DVDD  
2.6V < V  
DVDD  
V
DVDD  
0.2 x  
0.32 x  
V
DVDD  
CTL Low Voltage  
2.6V < V  
< 3.6V  
V
DVDD  
V
DVDD  
CTL Rejected Pulse Width  
CTL Typical Pulse Width  
20  
µs  
µs  
µs  
µs  
50  
CTL Minimum Pulse Width  
CTL Minimum Time Between Pulses  
200  
10  
CTL = GND  
-10  
5/MAX967  
CTL Input Current  
µA  
CTL = DVDD  
+10  
LOGIC INPUTS AND OUTPUTS (SDA, SCL)  
0.7 x  
Input High Voltage  
Input Low Voltage  
V
V
V
IH  
V
DVDD  
0.3 x  
V
IL  
V
DVDD  
Input Leakage Current  
Input Capacitance  
I
, I  
V
= 0V or V  
DVDD  
-10  
-10  
+0.01  
5
+10  
µA  
pF  
µA  
V
IH IL  
SDA/SCL  
(Note 7)  
= 0V, V = 1.98V  
SDA/SCL  
Power-Down Input Current  
SDA Output Low Voltage  
I
V
+10  
0.4  
SDA/SCL  
DVDD  
V
I
= 6mA  
OL  
SINK  
4
_______________________________________________________________________________________  
6/8/10-Channel, 10-Bit, Nonvolatile Programmable  
Gamma and VCOM Reference Voltages  
5/MAX967  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= V  
= 15.7V, V  
= 3.3V, V  
= 0V, VCOM connected to FB, CTL = DVDD/2, no load, T = -40°C to +85°C, unless  
AVDD  
REF  
DVDD  
GND A  
otherwise noted. Typical values are at T = +25°C.) (Note 2)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
2
I C TIMING CHARACTERISTICS (Figure 4)  
Serial-Clock Frequency  
f
0
400  
kHz  
µs  
SCL  
Bus Free Time Between STOP  
and START Conditions  
t
1.3  
BUF  
Hold Time (Repeated) START  
Condition  
t
t
0.6  
µs  
HD,STA  
SCL Pulse-Width Low  
SCL Pulse-Width High  
t
1.3  
0.6  
µs  
µs  
LOW  
t
HIGH  
Setup Time for a Repeated  
START Condition  
0.6  
µs  
SU,STA  
Data Hold Time  
Data Setup Time  
t
0
900  
ns  
ns  
HD,DAT  
t
100  
SU,DAT  
SDA and SCL Receiving Rise  
Time  
20 +  
t
(Note 8)  
(Note 8)  
(Note 8)  
300  
300  
250  
ns  
ns  
ns  
R
0.1C  
B
SDA and SCL Receiving Fall  
Time  
20 +  
0.1C  
t
F
B
20 +  
SDA Transmitting Fall Time  
t
F,TX  
0.1C  
B
Setup Time for STOP Condition  
Bus Capacitance  
t
0.6  
µs  
pF  
ns  
SU,STO  
C
400  
50  
B
Pulse Width of Suppressed Spike  
t
0
SP  
Note 2: All devices are 100% production tested at T = +25°C. Specifications over temperature limits are guaranteed by design.  
A
Note 3: For AVDD below 15.6V, internal LDO must be externally adjusted to meet LDO dropout specification.  
Note 4: This section applies to OUT0, OUT2, OUT3, and OUT5 of the MAX9665; OUT0, OUT3, OUT4, and OUT7 of the MAX9666;  
OUT0, OUT4, OUT5, and OUT9 of the MAX9667.  
Note 5: This section applies to OUT1 and OUT4 of the MAX9665; OUT1, OUT2, OUT5, and OUT6 of the MAX9666; OUT1, OUT2,  
OUT3, OUT6, OUT7, and OUT8 of the MAX9667.  
Note 6: Measured with the VCOM amplifier configured as an inverting unity-gain amplifier. R = R = 10k.  
F
IN  
Note 7: Guaranteed by design. Not production tested.  
Note 8: C is in pF.  
B
_______________________________________________________________________________________  
5
6/8/10-Channel, 10-Bit, Nonvolatile Programmable  
Gamma and VCOM Reference Voltages  
Typical Operating Characteristics  
(V  
= V  
= 15.7V, V  
= 3.3V, V  
= 0V, VCOM connected to FB, CTL = DVDD/2, no load, T = -40°C to +85°C, unless  
GND A  
AVDD  
REF  
DVDD  
otherwise noted. Typical values are at T = +25°C.) (Note 2)  
A
OUTPUT OFFSET  
VOLTAGE DISTRIBUTION  
VCOM LOAD REGULATION  
GAMMA LOAD REGULATION  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
20  
15  
10  
5
CODE 512  
OUT2  
0
0
-5  
-5  
-10  
-15  
-20  
-10  
-15  
-20  
0
-20 -15 -10 -5  
0
5
10 15 20  
-28  
-12 -4  
4
12  
20  
28  
-20  
-20 -15 -10 -5  
0
5
10 15 20  
LOAD CURRENT (mA)  
OUTPUT OFFSET (mV)  
LOAD CURRENT (mA)  
INTEGRAL NONLINEARITY  
vs. DAC CODE  
INTEGRAL NONLINEARITY  
vs. DAC CODE  
0.25  
0.20  
0.15  
0.10  
0.05  
0
0.25  
0.20  
0.15  
0.10  
0.05  
0
V
REF  
= 15.7V  
V
REF  
= 15.7V  
5/MAX967  
-0.05  
-0.10  
-0.15  
-0.20  
-0.25  
-0.05  
-0.10  
-0.15  
-0.20  
-0.25  
OUT2  
128 256 384 512 640 768 896 1024  
VCOM  
0
0
128 256 384 512 640 768 896 1024  
DAC CODE  
DAC CODE  
INTEGRAL NONLINEARITY  
vs. DAC CODE  
INTEGRAL NONLINEARITY  
vs. DAC CODE  
0.25  
0.20  
0.15  
0.10  
0.05  
0
0.25  
0.20  
0.15  
0.10  
0.05  
0
V
= 10V  
V
REF  
= 10V  
REF  
-0.05  
-0.10  
-0.15  
-0.20  
-0.25  
-0.05  
-0.10  
-0.15  
-0.20  
-0.25  
OUT2  
VCOM  
0
128 256 384 512 640 768 896 1024  
DAC CODE  
0
128 256 384 512 640 768 896 1024  
DAC CODE  
6
_______________________________________________________________________________________  
6/8/10-Channel, 10-Bit, Nonvolatile Programmable  
Gamma and VCOM Reference Voltages  
5/MAX967  
Typical Operating Characteristics (continued)  
(V  
= V  
= 15.7V, V  
= 3.3V, V  
= 0V, VCOM connected to FB, CTL = DVDD/2, no load, T = -40°C to +85°C, unless  
GND A  
AVDD  
REF  
DVDD  
otherwise noted. Typical values are at T = +25°C.) (Note 2)  
A
INTEGRAL NONLINEARITY  
vs. DAC CODE  
INTEGRAL NONLINEARITY  
vs. DAC CODE  
DIFFERENTIAL NONLINEARITY  
vs. DAC CODE  
0.25  
0.20  
0.15  
0.10  
0.05  
0
0.25  
0.20  
0.15  
0.10  
0.05  
0
0.25  
0.20  
0.15  
0.10  
0.05  
0
V
= 5V  
V
= 5V  
V
= 15.7V  
REF  
REF  
REF  
-0.05  
-0.10  
-0.15  
-0.20  
-0.25  
-0.05  
-0.10  
-0.15  
-0.20  
-0.25  
-0.05  
-0.10  
-0.15  
-0.20  
-0.25  
OUT2  
128 256 384 512 640 768 896 1024  
VCOM  
OUT2  
0
0
128 256 384 512 640 768 896 1024  
DAC CODE  
0
128 256 384 512 640 768 896 1024  
DAC CODE  
DAC CODE  
DIFFERENTIAL NONLINEARITY  
vs. DAC CODE  
DIFFERENTIAL NONLINEARITY  
vs. DAC CODE  
0.25  
0.20  
0.15  
0.10  
0.05  
0
0.25  
0.20  
0.15  
0.10  
0.05  
0
V
REF  
= 10V  
V
= 15.7V  
REF  
-0.05  
-0.10  
-0.15  
-0.20  
-0.25  
-0.05  
-0.10  
-0.15  
-0.20  
-0.25  
OUT2  
128 256 384 512 640 768 896 1024  
VCOM  
0
0
128 256 384 512 640 768 896 1024  
DAC CODE  
DAC CODE  
DIFFERENTIAL NONLINEARITY  
vs. DAC CODE  
DIFFERENTIAL NONLINEARITY  
vs. DAC CODE  
0.25  
0.20  
0.15  
0.10  
0.05  
0
0.25  
0.20  
0.15  
0.10  
0.05  
0
V
= 10V  
V
REF  
= 5V  
REF  
-0.05  
-0.10  
-0.15  
-0.20  
-0.25  
-0.05  
-0.10  
-0.15  
-0.20  
-0.25  
VCOM  
128 256 384 512 640 768 896 1024  
DAC CODE  
OUT2  
128 256 384 512 640 768 896 1024  
DAC CODE  
0
0
_______________________________________________________________________________________  
7
6/8/10-Channel, 10-Bit, Nonvolatile Programmable  
Gamma and VCOM Reference Voltages  
Typical Operating Characteristics (continued)  
(V  
= V  
= 15.7V, V  
= 3.3V, V  
= 0V, VCOM connected to FB, CTL = DVDD/2, no load, T = -40°C to +85°C, unless  
GND A  
AVDD  
REF  
DVDD  
otherwise noted. Typical values are at T = +25°C.) (Note 2)  
A
DIFFERENTIAL NONLINEARITY  
vs. DAC CODE  
POWER-SUPPLY REJECTION RATIO  
OF GAMMA OUTPUTS vs. FREQUENCY  
POWER-SUPPLY REJECTION RATIO  
OF VCOM vs. FREQUENCY  
0.25  
0.20  
0.15  
0.10  
0.05  
0
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
V
= 5V  
REF  
V
AVDD  
= V = 15.7V 100mV  
REF P-P  
V
= V = 15.7V 100mV  
REF P-P  
AVDD  
-0.05  
-0.10  
-0.15  
-0.20  
-0.25  
VCOM  
128 256 384 512 640 768 896 1024  
0
10k  
100k  
1M  
10M  
10k  
100k  
1M  
10M  
DAC CODE  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
REF POWER-SUPPLY REJECTION RATIO  
OF GAMMA OUTPUTS vs. FREQUENCY  
REF POWER-SUPPLY REJECTION RATIO  
OF VCOM vs. FREQUENCY  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
V
= 15.7V 100mV  
P-P  
REF  
V
= 15.7V 100mV  
REF P-P  
5/MAX967  
10k  
100k  
1M  
10M  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
VCOM LOAD TRANSIENT (±ꢁ110Aꢀ  
GAMMA LOAD TRANSIENT (±±110Aꢀ  
MAX9665 toc21  
MAX9665 toc20  
VCOM OUTPUT  
500mV/div  
GAMMA OUTPUT0  
500mV/div  
VCOM LOAD CURRENT  
200mA/div  
GAMMA LOAD CURRENT  
100mA/div  
2µs/div  
2µs/div  
8
_______________________________________________________________________________________  
6/8/10-Channel, 10-Bit, Nonvolatile Programmable  
Gamma and VCOM Reference Voltages  
5/MAX967  
Pin Description  
PIN  
NAME  
FUNCTION  
MAX9665  
MAX9666  
MAX9667  
Single-Wire Control Interface Enable. Connect CE to DVDD to  
enable the CTL input. Connect CE to GND to disable the CTL  
input and reduce the supply current.  
1
1
1
CE  
2
3
2
3
2
3
DVDD  
SCL  
Digital Supply Input. Bypass to GND with 0.1µF capacitor.  
2
I C Serial-Clock Input  
2
4
4
4
SDA  
I C Serial-Data Input/Output  
5
5
5
GND  
Ground  
6
6
6
OUT9  
OUT8  
OUT7  
OUT6  
OUT5  
OUT4  
OUT3  
OUT2  
OUT1  
OUT0  
REF  
Gamma Output 9  
Gamma Output 8  
Gamma Output 7  
Gamma Output 6  
Gamma Output 5  
Gamma Output 4  
Gamma Output 3  
Gamma Output 2  
Gamma Output 1  
Gamma Output 0  
Reference Input  
7
8
7
9
8
10  
11  
12  
13  
14  
15  
16  
8
10  
11  
13  
14  
15  
16  
10  
11  
13  
15  
16  
Analog Supply Input. Bypass AVDD to GND with a minimum  
0.1µF capacitor.  
17  
17  
17  
AVDD  
18  
19  
18  
19  
18  
19  
FB  
VCOM Amplifier Negative Input  
VCOM Amplifier Output  
VCOM  
VCOM Adjustment and Multiple-Time Programmable Memory  
Control. CTL sets the internal DAC code and programs the  
MTP memory. A pulse-control method is used to adjust the  
VCOM level. See the VCOM Adjustment (CTL) section. To  
program the DAC setting into the MTP memory as the power-  
on default, drive CTL to the MTP programming voltage using  
the correct timing and voltage ramp rates. See the MTP  
Programming (CTL) section.  
20  
20  
20  
CTL  
7, 9, 12, 14  
9, 12  
N.C.  
EP  
No Connection. Not internally connected.  
Exposed Pad. The exposed pad must be connected to GND.  
_______________________________________________________________________________________  
9
6/8/10-Channel, 10-Bit, Nonvolatile Programmable  
Gamma and VCOM Reference Voltages  
Gamma Buffers  
Detailed Description  
There are two types of DAC output buffers: 5mA and  
The MAX9665/MAX9666/MAX9667 are a family of multi-  
10mA. The 5mA buffer is guaranteed to source or sink  
channel, programmable reference voltages. Each  
5mA of DC current within 0.2V of the supplies, and the  
channel has a 10-bit DAC to create the reference volt-  
10mA buffer does the same with 10mA. The 10mA  
age. One channel has an operational amplifier that fol-  
buffers should be attached to the ends of the resistor  
lows the DAC while all other channels have a buffer  
ladders that set the transfer function of the source dri-  
after the DAC. The user can program the DAC codes  
ver (look at the connections from OUT0, OUT4, OUT5,  
into on-chip nonvolatile memory, which is called multi-  
and OUT9 on the typical operating circuit of the  
ple-time programmable (MTP) memory since data can  
MAX9667). The 5mA buffers should be attached to the  
be written into it up to 300 times.  
middle tap points of the resistor ladder because those  
The MAX9665/MAX9666/MAX9667 provide the gamma,  
VCOM, and level shifter reference voltages in a LCD  
panel. A single chip can potentially replace a discrete  
digital variable resistor (DVR), VCOM amplifier, gamma  
buffers, high-voltage linear regulator, and resistor  
strings. The high-voltage linear regulator can be elimi-  
nated because the DAC contains a lowpass filter that  
reduces horizontal line frequency noise by 40dB. Power  
sequencing is well-controlled since a single chip gener-  
ates all the various reference voltages needed for the  
LCD panel.  
Each part has an I2C interface for programming both  
the MTP memory and the I2C registers. For compatibili-  
ty with legacy flicker adjustment production equipment,  
these devices include a single-wire interface that is  
compatible with the MAX1512.  
places require less current than the ends (see the con-  
nections from OUT1, OUT2, OUT7, and OUT8 on the  
typical operating circuit of the MAX9667).  
If the 10mA buffers cannot provide enough current to  
drive the ends of the resistor ladders, attach an addi-  
tional resistor from the nearest supply. For example, at  
the very top of the resistor ladder, attach an additional  
resistor to AVDD. At the very bottom of the resistor lad-  
der, attach an additional resistor to GND. The  
MAX9665/MAX9666/MAX9667 greatly diminish any  
noise from the AVDD supply through the discrete resis-  
tor because the high-frequency noise from REF has  
been attenuated, and the buffers have excellent AC  
PSRR. See Figure 1.  
The source drivers can kick back a great deal of cur-  
rent to the buffer outputs during a horizontal line  
change or a polarity switch. The 5mA DAC output  
buffers can source/sink 200mA of peak transient cur-  
rent, and the 10mA DAC output buffers can source/sink  
400mA of peak transient current to reduce the recovery  
time of the output voltages when critical levels and pat-  
terns are displayed.  
With the MTP memory and the I2C interface, these  
devices enable automatic gamma and flicker calibra-  
tion on a panel-by-panel basis on the production line.  
Contact your Maxim representative for more details.  
5/MAX967  
10-Bit Digital-to-Analog Converters  
The reference input, REF, accepts a DC voltage  
between ground (GND) and the analog supply voltage  
(AVDD). The voltage at REF sets the full-scale output of  
the DACs. Determine the output voltage using the fol-  
lowing equations:  
VCOM Amplifier  
The operational amplifier attached to the bottom DAC  
holds the VCOM voltage stable while providing the abil-  
ity to source and sink 400mA into the backplane of a  
TFT-LCD panel. The operational amplifier can directly  
drive the capacitive load of the TFT-LCD backplane  
without the need for a series resistor in most cases. The  
VCOM amplifier has current limiting on its output to pro-  
tect its bond wires.  
V
OUT  
= (V  
x CODE)/2N  
REF  
where CODE is the numeric value of the DAC’s binary  
input code and N is the bits of resolution. For the  
MAX9665 family, N = 10 and CODE ranges from 0 to  
1023.  
The output (VCOM) and negative input (FB) of the oper-  
ational amplifier are typically connected together in a  
unity-gain configuration. If higher output current is  
required, add an npn emitter follower and a pnp emitter  
follower in the feedback loop.  
Note that even if REF is less than AVDD, the DAC can  
never output REF because the maximum value of  
CODE is always one LSB less than the reference. For  
example, if REF = 16V and CODE = 1023, then the out-  
put voltage is:  
If a higher, closed-loop gain is desired, add feedback  
resistors as shown in Figure 2.  
V
OUT  
= (16V x 1023)/210  
= 15.98438V  
10 ______________________________________________________________________________________  
6/8/10-Channel, 10-Bit, Nonvolatile Programmable  
Gamma and VCOM Reference Voltages  
5/MAX967  
AVDD  
AVDD  
REF  
10  
10  
10  
10  
OUT0  
OUT1  
OUT2  
OUT3  
OUT4  
DAC  
DAC  
DAC  
DAC  
10  
10  
10  
10  
DAC  
SOURCE  
DRIVER  
LCD PANEL  
2
OUT5  
I C  
MTP  
MEMORY  
DAC  
DAC  
DAC  
DAC  
DAC  
DAC  
REGISTERS  
OUT6  
OUT7  
10  
OUT8  
OUT9  
10  
10  
+
-
VCOM  
FB  
DVDD  
SCL  
2
I C  
LEVEL  
SHIFTER  
SDA  
CE  
CTL  
GND  
MAX9667  
SINGLE-WIRE  
INTERFACE  
Figure 1. Pullup and Pulldown Resistors Attached to Source Driver  
______________________________________________________________________________________ 11  
6/8/10-Channel, 10-Bit, Nonvolatile Programmable  
Gamma and VCOM Reference Voltages  
Multiple-Time Programmable (MTP)  
Memory  
MTP memory, which is a form of nonvolatile memory,  
VCOM  
stores the DAC code values even when the chip is not  
powered. When the chip is powered up, the code val-  
ues are automatically transferred from MTP memory to  
the I2C registers. See the Power-On Reset (POR)/  
Power-Up section for more details.  
FB  
The user can program DAC codes into MTP memory for  
MAX9665  
MAX9666  
MAX9667  
up to 300 times. In conventional TFT-LCD applications, a  
resistor string creates the gamma voltages. MTP memory  
eliminates the resistor string and the need to change  
manually the resistor values when searching for the opti-  
Figure 2. VCOM Operational Amplifier with Feedback Resistors  
mal gamma curve for a new TFT-LCD panel model.  
Power-On Reset (POR)/Power-Up  
Digital Interfaces  
The POR circuit that monitors DVDD ensures that all I2C  
registers are reset to their MTP values upon power-up  
or POR. Once DVDD rises above 2.4V (typ), the POR  
circuit releases the I2C registers and the values stored  
in MTP are loaded. Should DVDD drop to less than 2.4V  
typical, then the contents of the registers can no longer  
be guaranteed and a reset is generated. When DVDD  
rises back above the POR voltage, the values stored in  
MTP are loaded back into the I2C registers.  
The MAX9665/MAX9666/MAX9667 have two digital  
interfaces: I2C and single-wire. Through the I2C inter-  
face, the user can change all the registers and program  
MTP memory. The I2C interface is the more general pur-  
pose of the two interfaces.  
The single-wire interface, which is compatible with the  
MAX1512 digital interface, is included to support TFT-  
LCD production lines that depend upon the single-wire  
interface to adjust the VCOM voltage to minimize flick-  
er. Note that the single-wire interface cannot program  
the gamma registers or gamma MTP memory.  
The transfer time of the MTP registers to I2C registers is  
300µs typical and is less than 400µs in the worst case.  
During this time, AVDD should not be powered up, and  
the I2C does not acknowledge any commands (the I2C  
only starts acknowledging commands after all registers  
have been loaded from MTP).  
5/MAX967  
Interoperability Between the Single-Wire  
Interface and the I2C Interface  
To prevent any collision between the single-wire inter-  
face and the I2C interface, operation through one inter-  
face is only allowed if the other is in the idle state. For  
example, if the I2C interface is in the middle of execut-  
ing a command, any input through the single-wire inter-  
face is ignored. Conversely, if the single-wire interface  
is in the middle of executing a command, the I2C inter-  
face does not acknowledge any commands.  
Thermal Protection  
When the die temperature reaches +165°C, all gamma  
buffers except for the middle ones are disabled. See  
Table 1.  
When the die cools down by 15°C, all the buffers are  
enabled again.  
The VCOM operational amplifier does not have thermal  
protection.  
Table 1. Buffer Output Status During Thermal Shutdown  
PART  
ENABLED  
DISABLED  
MAX9665  
MAX9666  
MAX9667  
OUT2 and OUT3  
OUT3 and OUT4  
OUT4 and OUT5  
OUT0, OUT1, OUT4, OUT5  
OUT0, OUT1, OUT2, OUT5, OUT6, OUT7  
OUT0, OUT1, OUT2, OUT3, OUT6, OUT7, OUT8, OUT9  
12 ______________________________________________________________________________________  
6/8/10-Channel, 10-Bit, Nonvolatile Programmable  
Gamma and VCOM Reference Voltages  
5/MAX967  
VCOM WINDOW  
REGISTERS  
VCOM WINDOW  
MTP MEMORY  
2
2
VCOM MTP MEMORY  
LOCATION 0b0011  
VCOM I C REGISTERS  
GAMMA I C REGISTERS  
GAMMA MTP MEMORY  
LOCATION 0b0101  
LOCATION  
0b0000  
LOCATION  
0b0001 LOCATION  
0b0010  
LOCATION 0b0100  
10-BIT BUS  
BUS MASTER  
2
I C INTERFACE  
SINGLE-WIRE INTERFACE  
Figure 3. 10-Bit Bus  
Bus Architecture  
VCOM MTP Programming  
The internal memory, both volatile and nonvolatile, is  
divided into blocks that are connected by a 10-bit bus  
(Figure 3).  
Through the I2C Interface  
To program VCOM MTP memory, the I2C master must  
first write the DAC code that is to be stored into the  
VCOM I2C registers. Next, the I2C master must send a  
command to move the data in the VCOM I2C registers  
to the VCOM MTP memory, thereby finishing the pro-  
gramming.  
The I2C registers (volatile memory) are 8 bits wide. Two  
I2C registers are needed to hold one 10-bit DAC code.  
The I2C registers are separated into blocks that are dis-  
tinguished by whether they hold VCOM DAC codes or  
gamma DAC codes. MTP memory (nonvolatile memory)  
is organized in the same manner. The VCOM MTP  
memory has enough bits to store the single VCOM DAC  
code. Likewise, the gamma MTP memory has enough  
bits to store all of the gamma DAC codes. Each block  
connected to the 10-bit bus has a unique location num-  
ber with one exception. The block that contains the bus  
master, I2C interface, and the single-wire interface does  
not store any data, and hence, it does not have a loca-  
tion number.  
Although the external I2C interface transfers data in  
units of 8 bits (1 byte), the internal bus that connects  
the I2C registers, MTP memory, and digital interfaces is  
10 bits wide because the DAC code size is 10 bits. The  
10-bit bus can also accommodate data transfers of  
fewer than 10 bits since communication to the outside  
world is through either an 8-bit I2C interface or a 1-bit  
single-wire interface. Writing a single byte to any  
address location is ignored.  
To read VCOM MTP memory, the I2C master must issue  
a command to move the data in the VCOM MTP memo-  
ry to the VCOM I2C registers. Then it can read the two  
VCOM I2C registers.  
To program gamma MTP memory, the I2C master must  
first write the complete set of gamma DAC codes into  
the gamma I2C registers. For example, six gamma DAC  
codes must be written into the MAX9665 since it has six  
gamma outputs. Next, the I2C master must send a com-  
mand to move the data in the gamma I2C registers to  
the gamma MTP memory.  
To read gamma MTP memory, the I2C master must  
issue a command to move the data in the gamma MTP  
memory to the gamma I2C registers. Then it can read  
the gamma I2C registers.  
During MTP programming, the parts do not respond to  
the I2C interface. The part generates an acknowledge  
to the MTP programming command, but the I2C inter-  
face does not generate further acknowledge signals  
until MTP programming is complete.  
The 10-bit bus connects together registers, MTP memo-  
ries, and digital interfaces. The bus master resides in  
the same block as the I2C interface and the single-wire  
interface.  
If the analog supply voltage is not greater than the mini-  
mum required for MTP programming, the I2C still  
acknowledges the MTP write command, but MTP pro-  
gramming is disabled. The I2C continues to acknowl-  
edge and process non-MTP write commands.  
See the Register Description section for further expla-  
nation on how to execute commands.  
______________________________________________________________________________________ 13  
6/8/10-Channel, 10-Bit, Nonvolatile Programmable  
Gamma and VCOM Reference Voltages  
SDA  
t
BUF  
t
t
SU,STA  
SU,DAT  
t
t
SP  
HD,STA  
t
t
SU,STO  
t
HD,DAT  
LOW  
SCL  
t
HIGH  
t
HD,STA  
t
R
t
F
REPEATED  
START CONDITION  
STOP  
CONDITION  
START  
CONDITION  
START  
CONDITION  
2
Figure 4. I C Serial-Interface Timing Diagram  
Through the Single-Wire Interface  
For VCOM MTP programming through the single-wire  
interface, see the Single-Wire Interface section.  
acknowledges receipt of each byte of data. Each read  
sequence is framed by a START or REPEATED START  
condition, a not acknowledge, and a STOP condition.  
SDA operates as both an input and an open-drain out-  
put. A pullup resistor, typically greater than 500, is  
required on the SDA bus. SCL operates as only an  
input. A pullup resistor, typically greater than 500, is  
required on SCL if there are multiple masters on the bus,  
or if the master in a single-master system has an open-  
drain SCL output. Series resistors in line with SDA and  
SCL are optional. Series resistors protect the digital  
inputs of the devices from high-voltage spikes on the  
bus lines, and minimize crosstalk and undershoot of the  
bus signals.  
VCOM Programming Range  
Two registers, VCOMMIN and VCOMMAX, are provided  
to set the minimum and maximum VCOM register value.  
These two registers are accessed through the I2C inter-  
face and can be written to and read from MTP memory.  
If any adjustment, either through I2C or the single-wire  
interface takes the VCOM register value less than  
VCOMMIN, then the value in VCOMMIN is stored in the  
VCOM register. Similarly, if any adjustment, either  
5/MAX967  
2
through I C or the single-wire interface takes the VCOM  
register value greater than VCOMMAX, then the value  
in VCOMMAX is stored in the VCOM register.  
Bit Transfer  
One data bit is transferred during each SCL cycle. The  
data on SDA must remain stable during the high period  
of the SCL pulse. Changes in SDA while SCL is high  
are control signals (see the START and STOP  
Conditions section). SDA and SCL idle high when the  
I2C bus is not busy.  
I2C Interface  
The MAX9665/MAX9666/MAX9667 feature an I2C/  
SMBus™-compatible, 2-wire serial interface consisting  
of a serial-data line (SDA) and a serial-clock line (SCL).  
SDA and SCL facilitate communication between the  
devices and the master at clock rates up to 400kHz.  
Figure 4 shows the 2-wire interface timing diagram. The  
master generates SCL and initiates data transfer on the  
bus. A master device writes data to the devices by  
transmitting the proper slave address followed by the  
register address and then the data word. Each transmit  
sequence is framed by a START (S) or REPEATED  
START (Sr) condition and a STOP (P) condition. Each  
word transmitted to the MAX9665/MAX9666/MAX9667 is  
8 bits long and followed by an acknowledge clock  
pulse. A master reading data from the devices transmits  
the proper slave address followed by a series of nine  
SCL pulses. The devices transmit data on SDA in sync  
with the master-generated SCL pulses. The master  
START and STOP Conditions  
SDA and SCL idle high when the bus is not in use. A  
master initiates communication by issuing a START  
condition. A START condition is a high-to-low transition  
on SDA with SCL high. A STOP condition is a low-to-  
high transition on SDA while SCL is high (Figure 5). A  
START condition from the master signals the beginning  
of a transmission to the MAX9665/MAX9666/MAX9667.  
The master terminates transmission, and frees the bus,  
by issuing a STOP condition. The bus remains active if  
a REPEATED START condition is generated instead of  
a STOP condition.  
SMBus is a trademark of Intel Corp.  
14 ______________________________________________________________________________________  
6/8/10-Channel, 10-Bit, Nonvolatile Programmable  
Gamma and VCOM Reference Voltages  
5/MAX967  
CLOCK PULSE FOR  
ACKNOWLEDGMENT  
S
Sr  
P
START  
CONDITION  
SCL  
SDA  
SCL  
1
2
8
9
NOT ACKNOWLEDGE  
SDA  
ACKNOWLEDGE  
Figure 5. START, STOP, and REPEATED START Conditions  
Figure 6. Acknowledge  
Early STOP Conditions  
The MAX9665/MAX9666/MAX9667 recognize a STOP  
condition at any point during data transmission except  
if the STOP condition occurs in the same high pulse as  
a START condition. For proper operation, do not send a  
STOP condition during the same SCL high pulse as the  
START condition.  
Acknowledge  
The acknowledge bit (ACK) is a clocked 9th bit that the  
MAX9665/MAX9666/MAX9667 use to handshake  
receipt of each byte of data when in write mode (see  
Figure 6). The MAX9665/MAX9666/MAX9667 pull down  
SDA during the entire master-generated ninth clock  
pulse if the previous byte is successfully received.  
Monitoring ACK allows for detection of unsuccessful  
data transfers. An unsuccessful data transfer occurs if  
a receiving device is busy or if a system fault has  
occurred. In the event of an unsuccessful data transfer,  
the bus master may retry communication. The master  
pulls down SDA during the ninth clock cycle to  
acknowledge receipt of data when the MAX9665/  
MAX9666/MAX9667 are in read mode. An acknowledge  
is sent by the master after each read byte to allow data  
transfer to continue. A not acknowledge is sent when  
the master reads the final byte of data from the  
MAX9665/MAX9666/MAX9667, followed by a STOP  
condition.  
Slave Address  
The slave address is defined as the 7 most significant  
bits (MSBs) followed by the read/write (R/W) bit. Set the  
R/W bit to 1 to configure the MAX9665/MAX9666/  
MAX9667 to read mode. Set the R/W bit to 0 to config-  
ure the MAX9665/MAX9666/MAX9667 to write mode.  
The address is the first byte of information sent to the  
MAX9665/MAX9666/MAX9667 after the START condi-  
tion. The MAX9665/MAX9666/MAX9667 slave address  
is 0x9E for writing and 0x9F for reading.  
Table 2. Slave ID Description  
WRITE ADDRESS  
(hex)  
READ ADDRESS  
(hex)  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
1
0
0
1
1
1
1
R/W  
0x9E  
0x9F  
______________________________________________________________________________________ 15  
6/8/10-Channel, 10-Bit, Nonvolatile Programmable  
Gamma and VCOM Reference Voltages  
Write Data Format  
A write to the MAX9665/MAX9666/MAX9667 consists of  
transmitting a START condition, the slave address with  
the R/W bit set to 0, one data byte of data to configure  
the internal register address pointer, one or more data  
bytes, and a STOP condition. Figure 7 illustrates the  
frame format for writing one byte of data to the  
MAX9665/MAX9666/MAX9667.  
Read Data Format  
The master presets the address pointer by first sending  
the MAX9665/MAX9666/MAX9667’s slave address with  
the R/W bit set to 0 followed by the register address  
after a START condition. The MAX9665/MAX9666/  
MAX9667 acknowledge receipt of the slave address  
and the register address by pulling SDA low during the  
ninth SCL clock pulse. A REPEATED START condition  
is then sent followed by the slave address with the R/W  
bit set to 1. The MAX9665/MAX9666/MAX9667 transmit  
the contents of the specified register. Transmitted data  
is valid on the rising edge of the master-generated seri-  
al clock (SCL). The address pointer autoincrements  
after each read data byte. This autoincrement feature  
allows all registers to be read sequentially within one  
continuous frame. A STOP condition can be issued  
after any number of read data bytes. If a STOP condi-  
tion is issued followed by another read operation, the  
first data byte to be read is from the register address  
location set by the previous transaction and not 0x00  
and subsequent reads autoincrement the address  
pointer until the next STOP condition. Attempting to  
read from register addresses higher than the highest  
valid address locations (0x13 for MAX9665, 0x17 for  
MAX9666, 0x1B for MAX9667) in repeated reads from a  
dummy register containing all one data. The master  
acknowledges receipt of each read byte during the  
acknowledge clock pulse. The master must acknowl-  
edge all correctly received bytes except the last byte.  
The final byte must be followed by a not acknowledge  
from the master and then a STOP condition. Figures 8  
and 9 illustrate the frame format for reading data from  
the MAX9665/MAX9666/MAX9667.  
The slave address with the R/W bit set to 0 indicates  
that the master intends to write data to the MAX9665/  
MAX9666/MAX9667. The MAX9665/MAX9666/MAX9667  
acknowledge receipt of the address byte during the mas-  
ter-generated ninth SCL pulse.  
The second byte transmitted from the master config-  
ures the MAX9665/MAX9666/MAX9667’s internal reg-  
ister address pointer. The pointer tells the MAX9665/  
MAX9666/MAX9667 where to write the next byte of  
data. An acknowledge pulse is sent by the MAX9665/  
MAX9666/MAX9667 upon receipt of the address  
pointer data.  
The third byte sent to the MAX9665/MAX9666/MAX9667  
contains the data that is written to the chosen register.  
An acknowledge pulse from the MAX9665/MAX9666/  
MAX9667 signals receipt of the data byte. The address  
pointer autoincrements to the next register address  
after each received data byte. This autoincrement fea-  
ture allows a master to write to sequential register  
address locations within one continuous frame. The  
master signals the end of transmission by issuing a  
STOP condition.  
5/MAX967  
16 ______________________________________________________________________________________  
6/8/10-Channel, 10-Bit, Nonvolatile Programmable  
Gamma and VCOM Reference Voltages  
5/MAX967  
ACKNOWLEDGE FROM MAX9665–MAX9667  
B7 B6 B5 B4 B3 B2 B1 B0  
ACKNOWLEDGE FROM MAX9665–MAX9667  
ACKNOWLEDGE FROM MAX9665–MAX9667  
REGISTER ADDRESS  
A
P
S
SLAVE ADDRESS  
0
A
A
DATA BYTE  
1 BYTE  
R/W  
AUTOINCREMENT INTERNAL  
REGISTER ADDRESS POINTER  
Figure 7. Writing One Byte of Data to the MAX9665/MAX9666/MAX9667  
NOT ACKNOWLEDGE FROM MASTER  
ACKNOWLEDGE FROM MAX9665/  
MAX9666/MAX9667  
ACKNOWLEDGE FROM MAX9665/  
MAX9666/MAX9667  
ACKNOWLEDGE FROM MAX9665/  
MAX9666/MAX9667  
A
P
S
SLAVE ADDRESS  
0
A
REGISTER ADDRESS  
A
Sr  
SLAVE ADDRESS  
1
A
DATA BYTE  
1 BYTE  
R/W  
REPEATED START  
R/W  
AUTO-INCREMENT INTERNAL  
REGISTER ADDRESS POINTER  
Figure 8. Reading One Indexed Byte of Data from the MAX9665/MAX9666/MAX9667  
ACKNOWLEDGE FROM MASTER  
B7 B6 B5 B4 B3 B2 B1 B0  
NOT ACKNOWLEDGE FROM MASTER  
B7 B6 B5 B4 B3 B2 B1 B0  
ACKNOWLEDGE FROM MAX9665/  
MAX9666/MAX9667  
ACKNOWLEDGE FROM MAX9665/  
MAX9666/MAX9667  
ACKNOWLEDGE FROM MAX9665/  
MAX9666/MAX9667  
S
SLAVE ADDRESS  
0
A
REGISTER ADDRESS  
A
A
A
DATA BYTE n  
1 BYTE  
DATA BYTE 1  
1 BYTE  
A
P
Sr  
SLAVE ADDRESS  
1
REPEATED START  
R/W  
R/W  
AUTOINCREMENT INTERNAL  
REGISTER ADDRESS POINTER  
Figure 9. Reading n Bytes of Indexed Data from the MAX9665/MAX9666/MAX9667  
______________________________________________________________________________________ 17  
6/8/10-Channel, 10-Bit, Nonvolatile Programmable  
Gamma and VCOM Reference Voltages  
Register Map  
The I2C interface was architected for 8-bit systems.  
With the increase in DAC resolution from 8 bits to 10  
bits, 2 bytes must be transferred to get 10 bits.  
Therefore, the word size is 2 bytes (16 bits) in the regis-  
ter map. Byte order is big endian. The least significant  
byte (LSB) holds the bottom 8 bits of the 10-bit data,  
while the most significant byte (MSB) holds the top 2  
bits of the 10-bit data. The I2C stores each 10-bit DAC  
code in two 8-bit registers, as shown in the register  
maps of Tables 3, 4, and 5.  
Table 3. Register Map for MAX9665  
LEAST SIGNIFICANT BYTE  
MOST SIGNIFICANT BYTE  
COMMENTS  
REGISTER  
ADDRESS  
0x01  
REGISTER  
ADDRESS  
REGISTER NAME  
REGISTER NAME  
CMD_OPND  
VCOMMIN_L  
VCOMMAX_L  
VCOM_L  
0x00  
CMD_OPRN  
VCOMMIN_M  
VCOMMAX_M  
VCOM_M  
Command  
VCOM (minimum)  
VCOM (maximum)  
VCOM  
0x03  
0x05  
0x07  
0x09  
0x0B  
0x0D  
0x0F  
0x11  
0x13  
0x02  
0x04  
0x06  
0x08  
0x0A  
0x0C  
0x0E  
0x10  
0x12  
GMA0_L  
GMA0_M  
Gamma 0  
GMA1_L  
GMA1_M  
Gamma 1  
GMA2_L  
GMA2_M  
Gamma 2  
GMA3_L  
GMA3_M  
Gamma 3  
GMA4_L  
GMA4_M  
Gamma 4  
GMA5_L  
GMA5_M  
Gamma 5  
Table 4. Register Map for MAX9666  
5/MAX967  
LEAST SIGNIFICANT BYTE  
MOST SIGNIFICANT BYTE  
COMMENTS  
REGISTER  
REGISTER  
ADDRESS  
REGISTER NAME  
ADDRESS  
REGISTER NAME  
0x01  
0x03  
0x05  
0x07  
0x09  
0x0B  
0x0D  
0x0F  
0x11  
0x13  
0x15  
0x17  
CMD_OPND  
VCOMMIN_L  
VCOMMAX_L  
VCOM_L  
0x00  
0x02  
0x04  
0x06  
0x08  
0x0A  
0x0C  
0x0E  
0x10  
0x12  
0x14  
0x16  
CMD_OPRN  
VCOMMIN_M  
VCOMMAX_M  
VCOM_M  
GMA0_M  
Command  
VCOM (minimum)  
VCOM (maximum)  
VCOM  
GMA0_L  
Gamma 0  
GMA1_L  
GMA1_M  
Gamma 1  
GMA2_L  
GMA2_M  
Gamma 2  
GMA3_L  
GMA3_M  
Gamma 3  
GMA4_L  
GMA4_M  
Gamma 4  
GMA5_L  
GMA5_M  
Gamma 5  
GMA6_L  
GMA6_M  
Gamma 6  
GMA7_L  
GMA7_M  
Gamma 7  
18 ______________________________________________________________________________________  
6/8/10-Channel, 10-Bit, Nonvolatile Programmable  
Gamma and VCOM Reference Voltages  
5/MAX967  
Table 5. Register Map for MAX9667  
LEAST SIGNIFICANT BYTE  
MOST SIGNIFICANT BYTE  
COMMENTS  
REGISTER  
REGISTER  
REGISTER NAME  
REGISTER NAME  
ADDRESS  
0x01  
0x03  
0x05  
0x07  
0x09  
0x0B  
0x0D  
0x0F  
0x11  
0x13  
0x15  
0x17  
0x19  
0x1B  
ADDRESS  
0x00  
0x02  
0x04  
0x06  
0x08  
0x0A  
0x0C  
0x0E  
0x10  
0x12  
0x14  
0x16  
0x18  
0x1A  
CMD_OPND  
VCOMMIN_L  
VCOMMAX_L  
VCOM_L  
GMA0_L  
CMD_OPRN  
VCOMMIN_M  
VCOMMAX_M  
VCOM_M  
GMA0_M  
Command  
VCOM (minimum)  
VCOM (maximum)  
VCOM  
Gamma 0  
GMA1_L  
GMA1_M  
Gamma 1  
GMA2_L  
GMA2_M  
Gamma 2  
GMA3_L  
GMA3_M  
Gamma 3  
GMA4_L  
GMA4_M  
Gamma 4  
GMA5_L  
GMA5_M  
Gamma 5  
GMA6_L  
GMA6_M  
Gamma 6  
GMA7_L  
GMA7_M  
Gamma 7  
GMA8_L  
GMA8_M  
Gamma 8  
GMA9_L  
GMA9_M  
Gamma 9  
Register Description  
The form of the command is shown below:  
The I2C registers either hold DAC codes or commands  
(see Tables 6, 7, and 8). After power-up, the digital cir-  
cuitry loads the values stored in MTP memory into the  
VCOM and gamma registers. This process takes  
approximately 350µs. During this time, the I2C does not  
respond to any commands (either from the user or from  
the single-wire interface). To ensure the gamma chip  
does not reverse bias, the source driver, the VCOM  
DAC code, and the gamma DAC codes upon power-up  
are as shown in the Tables 6, 7, and 8.  
The I2C master can write a command such as MOV  
(move) into a pair of command registers. To execute a  
valid command, the command operation (CMD_OPRN)  
and command operand (CMD_OPND) registers must  
be written to sequentially in the same I2C transaction  
(between the same I2C start/stop).  
Operation  
Operands  
To move data from gamma registers to gamma MTP  
memory, use the following command (essentially, data  
is being written into MTP memory):  
MOV  
MOV Gamma Registers  
Gamma MTP  
MOV is the operation. Gamma registers and gamma  
MTP memory are operands. Both the operation and the  
operands must be assembled into machine code that is  
written into the command registers. The machine code  
for the operation must be written into the command  
operation register (CMD_OPRN). The machine code for  
the operands (if there are any) must be written into  
command operand register (CMD_OPND). Table 9  
shows the list of operations and operands.  
______________________________________________________________________________________ 19  
6/8/10-Channel, 10-Bit, Nonvolatile Programmable  
Gamma and VCOM Reference Voltages  
Table 6. MAX9665 Register Description  
POWER-ON MTP FACTORY  
READ  
AND  
WRITE?  
BIT  
REGISTER  
ADDRESS  
REGISTER  
NAME  
REGISTER  
DESCRIPTION  
RESET  
VALUE  
INITIALIZATION  
VALUE  
7
6
5
4
3
2
1
0
Command  
operation  
Write  
only  
0x00  
0x01  
CMD_OPRN  
CMD_OPND  
d7 d6 d5 d4 d3 d2 d1 d0  
d7 d6 d5 d4 d3 d2 d1 d0  
0x00  
0x00  
Not applicable  
Not applicable  
Command  
operand  
Write  
only  
VCOMMIN  
(most significant  
byte)  
Read  
and  
write  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
VCOMMIN_M  
x
x
x
x
x
x
d9 d8  
0x00  
0x00  
0x03  
0xFF  
0x02  
0x00  
0x03  
0x80  
0x03  
0x00  
0x02  
0x00  
0x00  
0x03  
0xFF  
0x02  
0x00  
0x03  
0x80  
0x03  
0x00  
0x02  
VCOMMIN  
Read  
and  
write  
VCOMMIN_L (least significant d7 d6 d5 d4 d3 d2 d1 d0  
byte)  
VCOMMAX  
(most significant  
byte)  
Read  
and  
write  
VCOMMAX_M  
VCOMMAX_L  
VCOM_M  
VCOM_L  
x
x
x
x
x
x
d9 d8  
VCOMMAX  
(least significant  
byte)  
Read  
and  
write  
d7 d6 d5 d4 d3 d2 d1 d0  
Read  
and  
write  
VCOM (most  
significant byte)  
x
x
x
x
x
x
d9 d8  
5/MAX967  
Read  
and  
write  
VCOM (least  
significant byte)  
d7 d6 d5 d4 d3 d2 d1 d0  
Gamma 0  
(most significant  
byte)  
Read  
and  
write  
GMA0_M  
GMA0_L  
x
x
x
x
x
x
d9 d8  
Gamma 0  
(least significant  
byte)  
Read  
and  
write  
d7 d6 d5 d4 d3 d2 d1 d0  
Gamma 1  
(most significant  
byte)  
Read  
and  
write  
GMA1_M  
GMA1_L  
x
x
x
x
x
x
d9 d8  
Gamma 1  
Read  
and  
write  
(least significant d7 d6 d5 d4 d3 d2 d1 d0  
byte)  
Gamma 2  
(most significant  
byte)  
Read  
and  
write  
GMA2_M  
x
x
x
x
x
x
d9 d8  
Note: d0, d1, d2, d3, d4, d5, d6, d7, d8, d9 = valid data bits; x = don’t care.  
20 ______________________________________________________________________________________  
6/8/10-Channel, 10-Bit, Nonvolatile Programmable  
Gamma and VCOM Reference Voltages  
5/MAX967  
Table 6. MAX9665 Register Description (continued)  
POWER-ON MTP FACTORY  
READ  
AND  
WRITE?  
BIT  
REGISTER  
ADDRESS  
REGISTER  
NAME  
REGISTER  
DESCRIPTION  
RESET  
VALUE  
INITIALIZATION  
VALUE  
7
6
5
4
3
2
1
0
Gamma 2  
(least significant  
byte)  
Read  
and  
write  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
0x12  
0x13  
GMA2_L  
GMA3_M  
GMA3_L  
GMA4_M  
GMA4_L  
GMA5_M  
GMA5_L  
d7 d6 d5 d4 d3 d2 d1 d0  
0x80  
0x01  
0x80  
0x01  
0x00  
0x00  
0x80  
0x80  
0x01  
0x80  
0x01  
0x00  
0x00  
0x80  
Gamma 3  
(most significant  
byte)  
Read  
and  
write  
x
x
x
x
x
x
d9 d8  
Gamma 3  
Read  
and  
write  
(least significant d7 d6 d5 d4 d3 d2 d1 d0  
byte)  
Gamma 4  
(most significant  
byte)  
Read  
and  
write  
x
x
x
x
x
x
d9 d8  
Gamma 4  
Read  
and  
write  
(least significant d7 d6 d5 d4 d3 d2 d1 d0  
byte)  
Gamma 5  
(most significant  
byte)  
Read  
and  
write  
x
x
x
x
x
x
d9 d8  
Gamma 5  
Read  
and  
write  
(least significant d7 d6 d5 d4 d3 d2 d1 d0  
byte)  
Note: d0, d1, d2, d3, d4, d5, d6, d7, d8, d9 = valid data bits; x = don’t care.  
______________________________________________________________________________________ 21  
6/8/10-Channel, 10-Bit, Nonvolatile Programmable  
Gamma and VCOM Reference Voltages  
Table 7. MAX9666 Register Description  
POWER-ON MTP FACTORY  
READ  
AND  
WRITE?  
BIT  
REGISTER  
ADDRESS  
REGISTER  
NAME  
REGISTER  
DESCRIPTION  
RESET  
VALUE  
INITIALIZATION  
VALUE  
7
6
5
4
3
2
1
0
Command  
operation  
Write  
only  
0x00  
0x01  
CMD_OPRN  
CMD_OPND  
d7 d6 d5 d4 d3 d2 d1 d0  
d7 d6 d5 d4 d3 d2 d1 d0  
0x00  
0x00  
Not applicable  
Not applicable  
Command  
operand  
Write  
only  
VCOMMIN  
(most  
significant  
byte)  
Read  
and write  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
VCOMMIN_M  
VCOMMIN_L  
VCOMMAX_M  
VCOMMAX_L  
VCOM_M  
x
x
x
x
x
x
d9 d8  
0x00  
0x00  
0x03  
0xFF  
0x02  
0x00  
0x03  
0x80  
0x00  
0x00  
0x03  
0xFF  
0x02  
0x00  
0x03  
0x80  
VCOMMIN  
(least  
significant  
byte)  
Read  
and write  
d7 d6 d5 d4 d3 d2 d1 d0  
VCOMMAX  
(most  
significant  
byte)  
Read  
and write  
x
x
x
x
x
x
d9 d8  
VCOMMAX  
(least  
significant  
byte)  
Read  
and write  
d7 d6 d5 d4 d3 d2 d1 d0  
5/MAX967  
VCOM  
(most  
significant  
byte)  
Read  
and write  
x
x
x
x
x
x
d9 d8  
VCOM  
(least  
significant  
byte)  
Read  
and write  
VCOM_L  
d7 d6 d5 d4 d3 d2 d1 d0  
Gamma 0  
(most  
significant  
byte)  
Read  
and write  
GMA0_M  
x
x
x
x
x
x
d9 d8  
Gamma 0  
(least  
significant  
byte)  
Read  
and write  
GMA0_L  
d7 d6 d5 d4 d3 d2 d1 d0  
Note: d0, d1, d2, d3, d4, d5, d6, d7, d8, d9 = valid data bits; x = don’t care.  
22 ______________________________________________________________________________________  
6/8/10-Channel, 10-Bit, Nonvolatile Programmable  
Gamma and VCOM Reference Voltages  
5/MAX967  
Table 7. MAX9666 Register Description (continued)  
BIT  
POWER-ON MTP FACTORY  
READ  
AND  
WRITE?  
REGISTER  
ADDRESS  
REGISTER  
NAME  
REGISTER  
DESCRIPTION  
RESET  
VALUE  
INITIALIZATION  
VALUE  
7
6
5
4
3
2
1
0
Gamma 1  
(most  
significant  
byte)  
Read  
and write  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
0x12  
GMA1_M  
GMA1_L  
GMA2_M  
GMA2_L  
GMA3_M  
GMA3_L  
GMA4_M  
GMA4_L  
GMA5_M  
x
x
x
x
x
x
d9 d8  
0x03  
0x40  
0x03  
0x00  
0x02  
0x80  
0x01  
0x80  
0x01  
0x03  
0x40  
0x03  
0x00  
0x02  
0x80  
0x01  
0x80  
0x01  
Gamma 1  
(least  
significant  
byte)  
Read  
and write  
d7 d6 d5 d4 d3 d2 d1 d0  
Gamma 2  
(most  
significant  
byte)  
Read  
and write  
x
x
x
x
x
x
d9 d8  
Gamma 2  
(least  
significant  
byte)  
Read  
and write  
d7 d6 d5 d4 d3 d2 d1 d0  
Gamma 3  
(most  
significant  
byte)  
Read  
and write  
x
x
x
x
x
x
d9 d8  
Gamma 3  
(least  
significant  
byte)  
Read  
and write  
d7 d6 d5 d4 d3 d2 d1 d0  
Gamma 4  
(most  
significant  
byte)  
Read  
and write  
x
x
x
x
x
x
d9 d8  
Gamma 4  
(least  
significant  
byte)  
Read  
and write  
d7 d6 d5 d4 d3 d2 d1 d0  
Gamma 5  
(most  
significant  
byte)  
Read  
and write  
x
x
x
x
x
x
d9 d8  
Note: d0, d1, d2, d3, d4, d5, d6, d7, d8, d9 = valid data bits; x = don’t care.  
______________________________________________________________________________________ 23  
6/8/10-Channel, 10-Bit, Nonvolatile Programmable  
Gamma and VCOM Reference Voltages  
Table 7. MAX9666 Register Description (continued)  
POWER-ON MTP FACTORY  
READ  
AND  
WRITE?  
BIT  
REGISTER  
ADDRESS  
REGISTER  
NAME  
REGISTER  
DESCRIPTION  
RESET  
VALUE  
INITIALIZATION  
VALUE  
7
6
5
4
3
2
1
0
Gamma 5  
(least  
significant  
byte)  
Read  
and write  
0x13  
0x14  
0x15  
0x16  
0x17  
GMA5_L  
GMA6_M  
GMA6_L  
GMA7_M  
GMA7_L  
d7 d6 d5 d4 d3 d2 d1 d0  
0x00  
0x00  
0xC0  
0x00  
0x80  
0x00  
0x00  
0xC0  
0x00  
0x80  
Gamma 6  
(most  
significant  
byte)  
Read  
and write  
x
x
x
x
x
x
d9 d8  
Gamma 6  
(least  
significant  
byte)  
Read  
and write  
d7 d6 d5 d4 d3 d2 d1 d0  
Gamma 7  
(most  
significant  
byte)  
Read  
and write  
x
x
x
x
x
x
d9 d8  
Gamma 7  
(least  
significant  
byte)  
Read  
and write  
d7 d6 d5 d4 d3 d2 d1 d0  
5/MAX967  
Note: d0, d1, d2, d3, d4, d5, d6, d7, d8, d9 = valid data bits; x = don’t care.  
24 ______________________________________________________________________________________  
6/8/10-Channel, 10-Bit, Nonvolatile Programmable  
Gamma and VCOM Reference Voltages  
5/MAX967  
Table 8. MAX9667 Register Description  
POWER-ON MTP FACTORY  
READ  
AND  
WRITE?  
BIT  
REGISTER  
ADDRESS  
REGISTER  
NAME  
REGISTER  
DESCRIPTION  
RESET  
VALUE  
INITIALIZATION  
VALUE  
7
6
5
4
3
2
1
0
Command  
operation  
0x00  
0x01  
CMD_OPRN  
CMD_OPND  
d7 d6 d5 d4 d3 d2 d1 d0  
d7 d6 d5 d4 d3 d2 d1 d0  
0x00  
0x00  
Not applicable Write only  
Not applicable Write only  
Command  
operand  
VCOMMIN  
(most  
significant byte)  
Read and  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
VCOMMIN_M  
x
x
x
x
x
x
d9 d8  
0x00  
0x00  
0x03  
0xFF  
0x02  
0x00  
0x00  
write  
VCOMMIN  
Read and  
VCOMMIN_L (least significant d7 d6 d5 d4 d3 d2 d1 d0  
byte)  
0x00  
write  
VCOMMAX  
(most  
significant byte)  
Read and  
VCOMMAX_M  
x
x
x
x
x
x
d9 d8  
0x03  
write  
VCOMMAX  
Read and  
VCOMMAX_L (least significant d7 d6 d5 d4 d3 d2 d1 d0  
byte)  
0xFF  
write  
VCOM (most  
significant  
byte)  
Read and  
VCOM_M  
VCOM_L  
x
x
x
x
x
x
d9 d8  
0x02  
write  
VCOM (least  
significant  
byte)  
Read and  
d7 d6 d5 d4 d3 d2 d1 d0  
0x00  
write  
Gamma 0  
(most  
significant  
byte)  
Read and  
0x08  
0x09  
0x0A  
0x0B  
GMA0_M  
GMA0_L  
GMA1_M  
GMA1_L  
x
x
x
x
x
x
d9 d8  
0x03  
0x80  
0x03  
0x40  
0x03  
write  
Gamma 0  
(least  
significant  
byte)  
Read and  
d7 d6 d5 d4 d3 d2 d1 d0  
0x80  
write  
Gamma 1  
(most  
significant  
byte)  
Read and  
x
x
x
x
x
x
d9 d8  
0x03  
write  
Gamma 1  
(least  
significant  
byte)  
Read and  
d7 d6 d5 d4 d3 d2 d1 d0  
0x40  
write  
Note: d0, d1, d2, d3, d4, d5, d6, d7, d8, d9 = valid data bits; x = don’t care.  
______________________________________________________________________________________ 25  
6/8/10-Channel, 10-Bit, Nonvolatile Programmable  
Gamma and VCOM Reference Voltages  
Table 8. MAX9667 Register Description (continued)  
POWER-ON MTP FACTORY  
READ  
AND  
WRITE?  
BIT  
REGISTER  
ADDRESS  
REGISTER  
NAME  
REGISTER  
DESCRIPTION  
RESET  
VALUE  
INITIALIZATION  
VALUE  
7
6
5
4
3
2
1
0
Gamma 2  
(most  
significant  
byte)  
Read and  
write  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
GMA2_M  
GMA2_L  
GMA3_M  
GMA3_L  
GMA4_M  
GMA4_L  
GMA5_M  
GMA5_L  
GMA6_M  
GMA6_L  
x
x
x
x
x
x
d9 d8  
0x03  
0x00  
0x02  
0xC0  
0x02  
0x80  
0x01  
0x80  
0x01  
0x40  
0x03  
0x00  
0x02  
0xC0  
0x02  
0x80  
0x01  
0x80  
0x01  
0x40  
Gamma 2  
(least  
significant  
byte)  
Read and  
write  
d7 d6 d5 d4 d3 d2 d1 d0  
Gamma 3  
(most  
significant  
byte)  
Read and  
write  
x
x
x
x
x
x
d9 d8  
Gamma 3  
(least  
significant  
byte)  
Read and  
write  
d7 d6 d5 D4 d3 d2 d1 d0  
Gamma 4  
(most  
significant  
byte)  
Read and  
write  
x
x
x
x
x
x
d9 d8  
Gamma 4  
(least  
significant  
byte)  
5/MAX967  
Read and  
write  
d7 d6 d5 d4 d3 d2 d1 d0  
Gamma 5  
(most  
significant  
byte)  
Read and  
write  
x
x
x
x
x
x
d9 d8  
Gamma 5  
(least  
significant  
byte)  
Read and  
write  
d7 d6 d5 d4 d3 d2 d1 d0  
Gamma 6  
(most  
significant  
byte)  
Read and  
write  
x
x
x
x
x
x
d9 d8  
Gamma 6  
(least  
significant  
byte)  
Read and  
write  
d7 d6 d5 d4 d3 d2 d1 d0  
Note: d0, d1, d2, d3, d4, d5, d6, d7, d8, d9 = valid data bits; x = don’t care.  
26 ______________________________________________________________________________________  
6/8/10-Channel, 10-Bit, Nonvolatile Programmable  
Gamma and VCOM Reference Voltages  
5/MAX967  
Table 8. MAX9667 Register Description (continued)  
POWER-ON MTP FACTORY  
READ  
AND  
WRITE?  
BIT  
REGISTER  
ADDRESS  
REGISTER  
NAME  
REGISTER  
DESCRIPTION  
RESET  
VALUE  
INITIALIZATION  
VALUE  
7
6
5
4
3
2
1
0
Gamma 7  
(most  
significant  
byte)  
Read and  
write  
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
GMA7_M  
GMA7_L  
GMA8_M  
GMA8_L  
GMA9_M  
GMA9_L  
x
x
x
x
x
x
d9 d8  
0x01  
0x00  
0x00  
0xC0  
0x00  
0x80  
0x01  
0x00  
0x00  
0xC0  
0x00  
0x80  
Gamma 7  
(least  
significant  
byte)  
Read and  
write  
d7 d6 d5 d4 d3 d2 d1 d0  
Gamma 8  
(most  
significant  
byte)  
Read and  
write  
x
x
x
x
x
x
d9 d8  
Gamma 8  
(least  
significant  
byte)  
Read and  
write  
d7 d6 d5 d4 d3 d2 d1 d0  
Gamma 9  
(most  
significant  
byte)  
Read and  
write  
x
x
x
x
x
x
d9 d8  
Gamma 9  
(least  
significant  
byte)  
Read and  
write  
d7 d6 d5 d4 d3 d2 d1 d0  
Note: d0, d1, d2, d3, d4, d5, d6, d7, d8, d9 = valid data bits; x = don’t care.  
Table 9. Command Set  
MACHINE  
CODE FOR  
OPERATION  
OPERANDS  
DESCRIPTION  
OPERATION*  
0x00  
0x01  
NOP  
None  
No operation.  
Move data in source location to destination location. Source location is  
bits 4 through 7, and destination location is bits 0 through 3. Source  
locations and destination locations must be of the same type. For  
example, commands that move data from the VCOM registers to the  
MOV  
Source, destination  
2
gamma registers and vice-versa are not valid, and the I C interface  
issues a NACK.  
*Write to I2C Register 0x00.  
______________________________________________________________________________________ 27  
6/8/10-Channel, 10-Bit, Nonvolatile Programmable  
Gamma and VCOM Reference Voltages  
Table 10. Example Commands for MOV  
Operation  
Table 11. Source and Destination  
Locations for MOV Command  
I2C REGISTER ADDRESS  
0x00 0x01  
LOCATION CODE  
DESCRIPTION  
VCOM Window Registers  
VCOM Window MTP Memory  
VCOM Register  
0b0000  
Operation: Move Gamma register value to  
Gamma MTP memory  
0x01 0x45  
0b0001  
0b0010  
Operation: Move VCOM MTP memory to VCOM  
register  
0x01 0x32  
0x01 0x67  
0b0011  
VCOM MTP Memory  
Gamma Registers  
0b0100  
Operation: Move all register values to MTP  
memory  
0b0101  
Gamma MTP Memory  
All Registers  
0b0110  
For a move (MOV) command, 0x01 should be written into  
I2C register 0x00, and the source and destination written  
in I2C register 0x01. See Table 10 for examples. The  
upper 4 bits (7 to 4) designate the source, and the lower  
4 bits (3 to 0) destination, per Table 11.  
It takes 30ms (typ) and 32ms (max) to move one I2C reg-  
ister to MTP memory. Thus, it needs 400ms (typ) and  
450ms (max) to program all I2C registers to MTP memory  
for VCOM window, VCOM, and gamma.  
0b0111  
All MTP Memory  
VCOM Adjustment (CTL)  
Pulse CTL low for more than 200µs to increment the  
DAC setting, which lowers the VCOM level by 1 least-  
significant bit (LSB) (Figure 10). Similarly, pulse CTL  
high for more than 200µs, which raises the VCOM level  
by 1 LSB.  
To avoid unintentional VCOM adjustment, the parts are  
guaranteed to reject CTL pulses shorter than 20µs. In  
addition, to avoid the possibility of a single false pulse  
caused by power-up sequencing between DVDD and  
CTL, the very first pulse is ignored.  
The command operand and operation registers must  
be written to consecutively, otherwise the command  
does not execute.  
Single-Wire Interface  
The MAX9665/MAX9666/MAX9667 have a single-wire  
interface that is compatible with the MAX1512 interface.  
5/MAX967  
28 ______________________________________________________________________________________  
6/8/10-Channel, 10-Bit, Nonvolatile Programmable  
Gamma and VCOM Reference Voltages  
5/MAX967  
> 1ms  
> 200µs  
> 200µs  
> 200µs >10µs > 200µs  
< 20µs  
< 20µs  
CTL HIGH  
DVDD/2  
VCOM UP  
CTL  
FIRST  
COUNT  
IGNORED  
VCOM DOWN  
CTL LOW  
SHORT  
COUNTS  
IGNORED  
CTL  
ENABLED  
CE/DVDD  
DAC SETTING  
512  
513  
512  
511  
UNDEFINED  
VCOM  
Figure 10. VCOM Adjustment  
______________________________________________________________________________________ 29  
6/8/10-Channel, 10-Bit, Nonvolatile Programmable  
Gamma and VCOM Reference Voltages  
MTP Programming (CTL)  
To program the MTP memory, apply the MTP program-  
ming waveform through the CTL interface (Figure 11).  
CTL VOLTAGE  
Unlike the MAX1512, the control interface only delivers  
DAC adjustment commands, not programming power.  
AVDD must be valid for MTP programming to occur. If  
AVDD is not valid for MTP programming, the single-wire  
V
P-P  
interface is in shutdown.  
To apply the MTP programming waveform, carefully  
ramp CTL from midscale (DVDD/2) to the programming  
voltage, V , in 7.5ms as shown in Figure 11. If the  
P-P  
ramp is generated digitally, use at least 45 steps to  
achieve the required 320mV ramp resolution. During  
the ramp time, VCOM adjustment is disabled and the  
MTP cell is biased in preparation for programming.  
DVDD/2  
0
After reaching V , hold CTL at V  
for 1ms. During  
P-P  
P-P  
T1  
T2  
T3  
T4  
TIME  
the MTP program time, the MTP memory stores the  
DAC setting. Next, drive CTL to ground in less than  
1ms and hold for at least 200µs. Finally, drive CTL to  
DVDD/2 to complete the write cycle. The MTP memory  
is factory set to half scale. Follow the MTP program-  
ming specification in Table 12 to guarantee reliable  
MTP memory programming. Violating the specifications  
can damage the MTP memory or affect data retention.  
Figure 11. MTP Memory Programming  
DVDD  
Table 12 shows the timing and voltage parameters for  
MTP programming. This table is used for programming  
through the single-wire interface.  
CE  
5/MAX967  
Single-Wire Interface Enable/Disable (CE)  
The single-wire interface can be disabled to reduce the  
DVDD supply current. Connect CE to GND to reduce the  
typical supply current from 450µA to 320µA. Connect  
CE to DVDD to enable the single-wire interface.  
R
CE  
PROGRAMMING  
CIRCUIT  
MAX9665  
MAX9666  
MAX9667  
CTL  
The programming circuit in Figure 12 drives CE high to  
enable the CTL input when it is connected. When the  
programming circuit is not connected, CE is pulled low  
GND  
through resistor R , which disables the CTL input. The  
CE  
CTL input is relatively immune to noise and brief voltage  
transients. It can be safely left continuously enabled if  
higher supply current is acceptable.  
Figure 12. Optional Circuit to Drive CE  
Table 12. MTP Memory Programming Specifications  
PARAMETER  
CTL Programming Voltage  
CTL Programming Ramp  
MTP Memory Program Time  
SYMBOL  
MIN  
15.25  
7.0  
TYP  
15.5  
7.5  
1.0  
MAX  
15.75  
8.0  
UNITS  
V
V
P-P  
T1  
T2  
T3  
T4  
ms  
ms  
µs  
µs  
0.9  
1.1  
V
Fall Time  
10  
1000  
P-P  
Done Hold Time  
200  
30 ______________________________________________________________________________________  
6/8/10-Channel, 10-Bit, Nonvolatile Programmable  
Gamma and VCOM Reference Voltages  
5/MAX967  
During this time, the MTP register values are loaded  
Applications Information  
into the I2C registers and the default I2C register values  
Power-Up and Power-Down  
Figure 13 below shows the power-up sequence. The  
digital supply must be powered up first. The analog  
supply should not be powered up for at least 350µs  
(min) after the digital supply has been powered up.  
are overwritten. Once AVDD is above approximately  
8V, the output buffers have enough headroom and  
power up proportionally with the AVDD.  
For power-down, AVDD must be lowered first to 0V,  
and then DVDD can safely be powered down.  
VOLTAGE (V)  
AVDD  
15.6  
OUT0  
OUT1  
OUT2  
OUT3  
OUT4  
OUT5  
8.0  
OUT6  
OUT7  
OUT8  
OUT9  
DVDD  
3.6  
0
TIME  
> 350µs  
Figure 13. Power-Up Sequence  
______________________________________________________________________________________ 31  
6/8/10-Channel, 10-Bit, Nonvolatile Programmable  
Gamma and VCOM Reference Voltages  
Electrostatic Discharge (CTL, CE)  
Often, CTL and CE are exposed at the panel connector  
and are therefore subject to electrostatic discharge  
(ESD). Resistor-capacitor (RC) filters can be employed  
at these inputs to improve their ESD performance  
(Figure 14).  
Leakage Current (CTL)  
The CTL pin is internally biased to DVDD/2, but it is  
sensitive to leakage currents above 0.1µA. When CTL is  
not driven, avoid leakage currents around the CTL pin.  
Otherwise, reinforce the DVDD/2 set point with an exter-  
nal resistive voltage-divider.  
If the CE panel connector is to be left unconnected  
after programming, be sure to include a resistor to  
Power Supplies and Bypass Capacitors  
The MAX9665/MAX9666/MAX9667 operate from a single  
9V to 20V analog supply and a 2.5V to 3.6V digital sup-  
ply. Bypass AVDD to GND with 0.1µF and 10µF capaci-  
tors in parallel. Use an extensive ground plane to ensure  
optimum performance. Bypass DVDD to GND with a  
0.1µF capacitor. Refer to the MAX9665/MAX9666/  
MAX9667 evaluation kit for a proven PCB layout.  
ground (R ) to ensure a valid logic-low on CE. The  
CE  
time constant for a CE filter is not critical, but the driving  
resistor must have a much lower resistance than R to  
CE  
properly drive CE. If a filter is used at the CTL panel  
connector, its RC time-constant should be short enough  
to avoid interfering with CTL pulses or MTP memory  
programming timing. A time constant less than 200µs  
does not interfere with MTP memory programming. To  
avoid interfering with CTL pulses, make the time con-  
stant small compared to the CTL pulse width needed.  
Layout and Grounding  
The exposed pad on the TQFN package is electrically  
connected to GND. Solder the exposed pad to a  
ground plane to provide a low thermal resistance to  
ground for heat dissipation. Do not route traces under  
these packages.  
DVDD DURING  
PROGRAMMING  
UNCONNECTED  
10kΩ  
5/MAX967  
CE  
AFTER PROGRAMMING  
R
CE  
100kΩ  
0.1µF  
MAX9665  
MAX9666  
MAX9667  
1kΩ  
UNCONNECTED  
AFTER PROGRAMMING  
CTL  
0.1µF  
GND  
Figure 14. Improved EOS/Surge Performance  
32 ______________________________________________________________________________________  
6/8/10-Channel, 10-Bit, Nonvolatile Programmable  
Gamma and VCOM Reference Voltages  
5/MAX967  
Typical Operating Circuits  
AVDD  
REF  
AVDD  
REF  
10  
10  
10  
OUT0  
OUT1  
DAC  
DAC  
DAC  
DAC  
OUT2  
OUT3  
10  
10  
10  
SOURCE  
DRIVER  
LCD PANEL  
2
I C  
OUT4  
OUT5  
MTP  
MEMORY  
DAC  
DAC  
REGISTERS  
10  
VCOM  
FB  
DAC  
DVDD  
SCL  
2
I C  
SDA  
LEVEL  
SHIFTER  
MAX9665  
CE  
CTL  
SINGLE-WIRE  
INTERFACE  
GND  
______________________________________________________________________________________ 33  
6/8/10-Channel, 10-Bit, Nonvolatile Programmable  
Gamma and VCOM Reference Voltages  
Typical Operating Circuits (continued)  
AVDD  
REF  
AVDD  
REF  
10  
10  
10  
OUT0  
OUT1  
OUT2  
OUT3  
DAC  
DAC  
DAC  
DAC  
10  
10  
10  
10  
SOURCE  
DRIVER  
LCD PANEL  
2
OUT4  
I C  
MTP  
MEMORY  
DAC  
DAC  
DAC  
DAC  
REGISTERS  
OUT5  
OUT6  
5/MAX967  
10  
10  
OUT7  
VCOM  
FB  
DAC  
DVDD  
SCL  
2
I C  
SDA  
LEVEL  
SHIFTER  
MAX9666  
CE  
SINGLE-WIRE  
INTERFACE  
CTL  
GND  
34 ______________________________________________________________________________________  
6/8/10-Channel, 10-Bit, Nonvolatile Programmable  
Gamma and VCOM Reference Voltages  
5/MAX967  
Typical Operating Circuits (continued)  
AVDD  
REF  
10  
10  
10  
10  
OUT0  
DAC  
DAC  
DAC  
DAC  
OUT1  
OUT2  
OUT3  
10  
10  
OUT4  
OUT5  
DAC  
DAC  
SOURCE  
DRIVER  
LCD PANEL  
2
10  
10  
I C  
OUT6  
OUT7  
MTP  
MEMORY  
DAC  
DAC  
REGISTERS  
10  
10  
OUT8  
OUT9  
DAC  
DAC  
VCOM  
FB  
10  
DAC  
DVDD  
SCL  
LEVEL  
SHIFTER  
2
I C  
SDA  
MAX9667  
CE  
CTL  
SINGLE-WIRE  
INTERFACE  
GND  
______________________________________________________________________________________ 35  
6/8/10-Channel, 10-Bit, Nonvolatile Programmable  
Gamma and VCOM Reference Voltages  
Functional Diagrams (continued)  
AVDD  
REF  
10  
10  
10  
10  
OUT0  
OUT1  
OUT2  
OUT3  
OUT4  
DAC  
DAC  
DAC  
DAC  
2
I C  
MTP  
MEMORY  
10  
10  
10  
10  
REGISTERS  
DAC  
OUT5  
DAC  
DAC  
DAC  
5/MAX967  
OUT6  
OUT7  
VCOM  
FB  
10  
DAC  
DVDD  
SCL  
2
I C  
SDA  
MAX9666  
CE  
SINGLE-WIRE  
INTERFACE  
CTL  
GND  
36 ______________________________________________________________________________________  
6/8/10-Channel, 10-Bit, Nonvolatile Programmable  
Gamma and VCOM Reference Voltages  
5/MAX967  
Functional Diagrams (continued)  
AVDD  
REF  
10  
10  
10  
10  
OUT0  
OUT1  
OUT2  
OUT3  
OUT4  
DAC  
DAC  
DAC  
DAC  
10  
10  
10  
10  
DAC  
2
OUT5  
I C  
MTP  
MEMORY  
DAC  
DAC  
DAC  
DAC  
DAC  
DAC  
REGISTERS  
OUT6  
OUT7  
10  
OUT8  
OUT9  
10  
10  
VCOM  
FB  
DVDD  
SCL  
2
I C  
SDA  
MAX9667  
CE  
SINGLE-WIRE  
INTERFACE  
CTL  
GND  
______________________________________________________________________________________ 37  
6/8/10-Channel, 10-Bit, Nonvolatile Programmable  
Gamma and VCOM Reference Voltages  
Pin Configurations (continued)  
TOP VIEW  
TOP VIEW  
15  
14  
13  
12  
11  
15  
14  
13  
12  
11  
OUT5  
OUT6  
10  
9
REF 16  
OUT4  
N.C.  
10  
9
REF 16  
AVDD 17  
FB 18  
AVDD 17  
FB 18  
8
OUT7  
OUT8  
OUT9  
8
OUT5  
OUT6  
OUT7  
MAX9667  
MAX9666  
VCOM  
CTL  
7
19  
20  
VCOM  
CTL  
7
19  
20  
6
6
EP*  
5
EP*  
5
+
+
1
2
3
4
1
2
3
4
THIN QFN  
5mm x 5mm  
THIN QFN  
5mm x 5mm  
*EP = EXPOSED PAD. CONNECT TO DIGITAL GROUND PLANE.  
5/MAX967  
38 ______________________________________________________________________________________  
6/8/10-Channel, 10-Bit, Nonvolatile Programmable  
Gamma and VCOM Reference Voltages  
5/MAX967  
Package Information  
For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a "+", "#", or "-" in the  
package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the  
package regardless of RoHS status.  
LAND  
PATTERN NO.  
PACKAGE TYPE  
PACKAGE CODE  
OUTLINE NO.  
21-0140  
90-0121  
20 TQFN-EP  
T2055+3  
______________________________________________________________________________________ 39  
6/8/10-Channel, 10-Bit, Nonvolatile Programmable  
Gamma and VCOM Reference Voltages  
Package Information (continued)  
For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a "+", "#", or "-" in the  
package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the  
package regardless of RoHS status.  
5/MAX967  
40 ______________________________________________________________________________________  
6/8/10-Channel, 10-Bit, Nonvolatile Programmable  
Gamma and VCOM Reference Voltages  
5/MAX967  
Revision History  
REVISION  
NUMBER  
REVISION  
DATE  
PAGES  
CHANGED  
DESCRIPTION  
0
1
2
10/09  
11/09  
1/10  
Initial release  
Added soldering temperature (reflow) and made minor updates  
Updated MTP write qualification and MOV command description  
1, 2, 10, 38  
1, 10, 12, 28, 30  
1, 2, 3, 5–9, 15–20,  
22, 25, 30,  
3
4
3/10  
7/10  
Corrected various errors and added soldering temperature  
Corrected terminology in TOCs 2 and 3 and typos  
31, 33, 38  
6, 16, 17  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 41  
© 2010 Maxim Integrated Products  
Maxim is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY