MAX9672ETI+ [MAXIM]

10-Bit, Programmable Gamma Reference Systems with MTP for TFT LCDs;
MAX9672ETI+
型号: MAX9672ETI+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

10-Bit, Programmable Gamma Reference Systems with MTP for TFT LCDs

CD
文件: 总24页 (文件大小:786K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-4718; Rev 4; 2/11  
10-Bit, Programmable Gamma Reference  
Systems with MTP for TFT LCDs  
23/MAX9674  
General Description  
Features  
The MAX9672/MAX9673/MAX9674 output 12/14/16 volt-  
age references for gamma correction in TFT LCDs and  
one voltage reference for VCOM. Each gamma refer-  
ence voltage has its own 10-bit DAC and buffer to  
ensure a stable voltage. The VCOM reference voltage  
has its own 10-bit DAC and an amplifier to ensure a sta-  
ble voltage when critical levels and patterns are dis-  
played. The MAX9672/MAX9673/MAX9674 feature  
integrated multiple-time programmable (MTP) memory to  
store gamma and VCOM values on the chip, eliminating  
the need for external EEPROM. The MAX9672/  
MAX9673/MAX9674 support up to 300 write operations  
to the on-chip nonvolatile memory.  
o DAC Reference Input  
o 12/14/16-Channel Gamma Correction, 10-Bit  
Resolution  
o VCOM Driver  
o Integrated MTP Memory  
o Programmable VCOM Limits  
o 200mA Peak Current on Gamma Channels  
o 600mA Peak Current on VCOM Channel  
Ordering Information  
GAMMA  
CHANNELS  
PART  
PIN-PACKAGE  
The gamma outputs can drive 200mA peak transient  
current and settle within 1µs. The VCOM output can  
provide 600mA peak transient current and also settles  
within 1µs. The analog supply voltage range extends  
from 9V to 20V, and the digital supply voltage range  
extends from 2.7V to 3.6V.  
*
MAX9672ETI+  
MAX9673ETI+  
MAX9674ETI+  
12  
14  
16  
28 TQFN-EP  
*
28 TQFN-EP  
*
28 TQFN-EP  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
*EP = Exposed pad.  
Note: All devices are specified over the -40°C to +85°C temper-  
ature range.  
Gamma values and the VCOM value are programmed  
into registers through the I2C interface.  
Functional Diagram  
Applications  
REF  
AVDD  
TFT LCDs  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10-BIT  
DAC  
GMA1  
10-BIT  
DAC  
Pin Configuration  
GMA2  
10-BIT  
DAC  
GMA3  
10-BIT  
DAC  
TOP VIEW  
GMA4  
10-BIT  
DAC  
GMA5  
21 20 19 18 17 16 15  
10-BIT  
DAC  
GMA6  
10-BIT  
DAC  
14  
13  
GMA9 22  
GMA3  
GMA2  
GMA7  
10-BIT  
DAC  
GMA10 23  
GMA8  
2
MTP  
MEMORY  
DAC  
REGISTERS  
10-BIT  
DAC  
I
C
12 GMA1  
GMA9  
24  
25  
26  
27  
28  
GMA11  
GMA12  
REGISTERS  
MAX9672  
MAX9673  
MAX9674  
10-BIT  
DAC  
GND  
GMA10  
GMA11  
GMA12  
GMA13*  
GMA14*  
GMA15**  
11  
10  
9
10-BIT  
DAC  
GMA13*  
GMA14*  
GMA15**  
AVDD  
10-BIT  
DAC  
AVDD_AMP  
VCOM_FB  
EP  
6
+
10-BIT  
DAC  
8
10-BIT  
DAC  
1
2
3
4
5
7
10-BIT  
DAC  
10-BIT  
DAC  
GMA16**  
AVDD_AMP  
VCOM  
10-BIT  
DAC  
THIN QFN  
(5mm × 5mm)  
AGND_AMP  
VCOM_FB  
DVDD  
SDA  
SCL  
A0  
MAX9672  
MAX9673  
MAX9674  
2
I
C
EP = EXPOSED PAD, CONNECT EP TO GROUND PLANE.  
*N.C. FOR THE MAX9672  
INTERFACE  
GND  
**N.C. FOR THE MAX9672 AND THE MAX9673  
*NOT AVAILABLE FOR THE MAX9672  
**NOT AVAILABLE FOR THE MAX9672 AND THE MAX9673  
GND  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,  
or visit Maxim’s website at www.maxim-ic.com.  
10-Bit, Programmable Gamma Reference  
Systems with MTP for TFT LCDs  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltages  
SDA, SCL.......................................................................... 20mA  
AVDD, REF to GND ............................................-0.3V to +22V  
AVDD_AMP to AGND_AMP................................-0.3V to +22V  
AVDD to AVDD_AMP.........................................-0.3V to +0.3V  
DVDD to GND.......................................................-0.3V to +4V  
AGND_AMP to GND..........................................-0.1V to +0.1V  
Outputs  
GMA1–GMA16................................................................ 200mA  
VCOM ............................................................................. 600mA  
Continuous Power Dissipation (T = +70°C)  
A
28-Pin TQFN-EP (derate 28.6mW/°C  
above +70°C) ........................................................2285.7mW  
Operating Temperature Range ...........................-40°C to +85°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
Soldering Temperature (reflow) ...................................... +260°C  
GMA1–GMA16 ...................................-0.3V to (V  
+ 0.3V)  
+ 0.3V)  
AVDD  
VCOM.........................................-0.3V to (V  
AVDD_AMP  
Inputs  
SDA, SCL..............................................................-0.3V to +6V  
VCOM_FB...................................-0.3V to (V + 0.3V)  
AVDD_AMP  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
= 18V, V  
= V  
= 18V, V  
= 3.3V, V  
= V  
= 0, VCOM = VCOM_FB, no load, T = T  
to T  
,
MAX  
AVDD  
AVDD_AMP  
REF  
DVDD  
GND  
AGND_AMP  
A
MIN  
unless otherwise noted. Typical values are at T = +25°C.) (Note 1)  
A
PARAMETER  
SUPPLIES  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
,
AVDD  
Analog Supply Voltage Range  
Guaranteed by total output error  
9
20  
20  
V
V
V
V
AVDD_AMP  
Analog Supply Voltage Range for  
Programming MTP  
15  
AVDD_MTP  
23/MAX9674  
Digital Supply Voltage Range  
Analog Quiescent Current  
VCOM Quiescent Current  
V
2.7  
3.6  
35  
V
DVDD  
I
20  
2.7  
mA  
mA  
AVDD  
I
5.6  
AVDD_AMP  
During a register mode load event  
No SCL or SDA transitions  
400  
260  
+160  
15  
Digital Quiescent Current  
I
µA  
DVDD  
600  
2.6  
Thermal Shutdown  
°C  
°C  
Thermal-Shutdown Hysteresis  
DVDD undervoltage lockout voltage  
threshold  
Undervoltage Lockout Threshold  
UVLO  
2.3  
V
REF Input Resistance  
VCOM OUTPUT (VCOM)  
Resolution  
384  
k  
RES  
INL  
10  
Bits  
LSB  
LSB  
Integral Nonlinearity Error  
Differential Nonlinearity Error  
0.125  
0.125  
1
1
DNL  
Code = 512, V  
= +25°C  
= 9V and 20V, T  
A
AVDD_AMP  
Total Output Error  
V
-40  
+40  
mV  
ERR  
Total Output-Error Drift  
Output-Voltage Low  
V  
Code = 512  
15  
µV/°C  
V
ERR  
V
T
A
= +25°C, sinking 100mA  
0.4  
0.85  
OUT  
2
_______________________________________________________________________________________  
10-Bit, Programmable Gamma Reference  
Systems with MTP for TFT LCDs  
23/MAX9674  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= 18V, V  
= V  
= 18V, V  
= 3.3V, V  
= V  
= 0, VCOM = VCOM_FB, no load, T = T  
to T  
,
MAX  
AVDD  
AVDD_AMP  
REF  
DVDD  
GND  
AGND_AMP  
A
MIN  
unless otherwise noted. Typical values are at T = +25°C.) (Note 1)  
A
PARAMETER  
Output-Voltage High  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
V
AVDD_AMP AVDD_AMP  
- 1.1  
V
T
A
= +25°C, sourcing 100mA  
V
OUT  
- 0.6  
To AVDD_AMP, f = 60kHz, REF shorted to  
40  
V
Power-Supply Rejection Ratio  
PSRR  
LR  
dB  
AVDD_AMP  
9V V  
20V  
60  
90  
0.1  
80  
AVDD_AMP  
Output Load Regulation  
Continuous Output Current  
Short-Circuit Current  
Transient -80mA to +80mA, code = 512  
Code = 512 (Note 2)  
mV/mA  
mA  
I
O
9V V  
20V  
600  
mA  
AVDD_AMP  
Swing 4V  
R = 10k, C = 50pF (Note 3)  
L
at VCOM, 10% to 90%,  
L
P-P  
Slew Rate  
SR  
100  
V/µs  
From SCL rising edge for ACK bit after  
programming VCOM to 50% voltage  
change at output  
Program to Output Delay  
t
D
0.8  
µs  
Bandwidth  
BW  
R = 10k, C = 50pF (Note 3)  
60  
MHz  
µV  
S
L
Noise  
e
N
RMS noise voltage (10MHz BW)  
375  
DAC OUTPUTS (GMA1–GMA16)  
Resolution  
RES  
INL  
Guaranteed monotonic  
10  
Bits  
LSB  
LSB  
Integral Nonlinearity Error  
Differential Nonlinearity Error  
0.125  
0.125  
1
1
DNL  
Code = 512, V  
= 9V and 20V,  
AVDD  
Total Output Error  
Output-Voltage Low  
Output-Voltage High  
V
-40  
+40  
0.28  
mV  
V
ERR  
OUT  
OUT  
T
A
= +25°C  
V
V
T
A
= +25°C, sinking 10mA  
0.15  
V
V
AVDD  
- 0.38  
AVDD  
- 0.25  
T
A
= +25°C, sourcing 10mA  
V
To AVDD, f = 60kHz, REF shorted to  
AVDD  
40  
Power-Supply Rejection Ratio  
PSRR  
LR  
dB  
9V V  
20V  
60  
90  
0.5  
200  
84  
AVDD  
Load Regulation  
-12mA to +12mA  
mV/mA  
mA  
Short-Circuit Current  
Output Impedance  
I
Outputs to AVDD or GND  
SC  
Z
Output resistance when output is disabled  
kΩ  
O
Swing 5V  
measurement on output  
at input, 10% to 90%  
P-P  
Slew Rate  
SR  
22  
V/µs  
From SCL rising edge for ACK bit after  
programming gamma to 50% voltage  
change at output  
Program to Output Delay  
t
0.8  
µs  
D
RMS noise voltage at any output (10MHz  
BW)  
Noise  
e
375  
80  
µV  
dB  
N
Channel-to-Channel Isolation  
CXTLK  
f = 5MHz, all channels to all channels  
_______________________________________________________________________________________  
3
10-Bit, Programmable Gamma Reference  
Systems with MTP for TFT LCDs  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= 18V, V  
= V  
= 18V, V  
= 3.3V, V  
= V  
= 0, VCOM = VCOM_FB, no load, T = T  
to T  
,
MAX  
AVDD  
AVDD_AMP  
REF  
DVDD  
GND  
AGND_AMP  
A
MIN  
unless otherwise noted. Typical values are at T = +25°C.) (Note 1)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
LOGIC INPUTS (SDA, SCL)  
0.7 x  
Input High Voltage  
Input Low Voltage  
V
V
V
IH  
V
DVDD  
0.3 x  
V
IL  
V
DVDD  
Input Leakage Current  
Input Capacitance  
I
, I  
V
V
= 0V or V  
-1  
+0.01  
5
+1  
µA  
pF  
µA  
V
IH IL  
IN  
DVDD  
Power-Down Input Current  
I
= 0V, V = 2V  
-10  
+10  
0.4  
IN  
DVDD  
IN  
SDA Output Low Voltage  
V
I
= 6mA  
OL  
SINK  
2
I C TIMING CHARACTERISTICS (Figure 1)  
Serial-Clock Frequency  
f
0
400  
kHz  
µs  
SCL  
Bus Free Time Between STOP  
and START Conditions  
t
1.3  
BUF  
Hold Time (REPEATED) START  
Condition  
t
t
0.6  
µs  
HD,STA  
SCL Pulse-Width Low  
SCL Pulse-Width High  
t
1.3  
0.6  
µs  
µs  
LOW  
t
HIGH  
Setup Time for a REPEATED  
START Condition  
0.6  
µs  
SU,STA  
23/MAX9674  
Data Hold Time  
Data Setup Time  
t
0
900  
ns  
ns  
HD,DAT  
t
100  
SU,DAT  
SDA and SCL Receiving Rise  
Time  
20 +  
t
(Note 4)  
(Note 4)  
(Note 4)  
300  
300  
250  
ns  
ns  
ns  
R
0.1C  
B
SDA and SCL Receiving Fall  
Time  
20 +  
0.1C  
t
F
B
SDA Transmitting Fall  
Time  
20 +  
t
F,TX  
0.1C  
B
Setup Time for STOP Condition  
Bus Capacitance  
t
0.6  
µs  
pF  
ns  
SU,STO  
C
400  
50  
B
Pulse Width of Suppressed Spike  
t
0
SP  
Note 1: All devices are 100% production tested at T = +25°C. All temperature limits are guaranteed by design.  
A
Note 2: Thermal pad attached to multilayered board. Exceeding this limit may cause the thermal shutdown to trip.  
Note 3: Measured with the VCOM amplifier configured as an inverting unity-gain amplifier (R = R = 1k).  
S
F
Note 4: C is in pF.  
B
4
_______________________________________________________________________________________  
10-Bit, Programmable Gamma Reference  
Systems with MTP for TFT LCDs  
23/MAX9674  
Typical Operating Characteristics  
(V  
= V  
= V  
= 18V, V  
= 3.3V, V  
= V = 0, no load, unless otherwise noted. Typical values are at  
AGND_AMP  
AVDD  
AVDD_AMP  
REF  
DVDD  
GND  
T
A
= +25°C.)  
OUTPUT OFFSET-VOLTAGE  
DISTRIBUTION  
GAMMA LOAD REGULATION  
20  
30  
25  
20  
15  
10  
5
15  
10  
5
0
-5  
-10  
-15  
-20  
0
-40 -30 -20 -10  
0
10 20 30 40  
-20 -15 -10 -5  
0
5
10 15 20  
OUTPUT OFFSET (mV)  
LOAD CURRENT (mA)  
DNL  
GAMMA  
VCOM LOAD REGULATION  
0.25  
0.20  
0.15  
0.10  
0.05  
0
60  
40  
20  
0
-0.05  
-0.10  
-0.15  
-0.20  
-0.25  
-20  
-40  
-60  
-150 -100  
-50  
0
50  
100  
150  
0
128 256 384 512 640 768 896 1024  
CODE (UNITS)  
LOAD CURRENT (mA)  
DNL  
VCOM  
GAMMA  
INL  
0.25  
0.20  
0.15  
0.10  
0.05  
0
0.25  
0.20  
0.15  
0.10  
0.05  
0
V
= 10V  
REF  
-0.05  
-0.10  
-0.15  
-0.20  
-0.25  
-0.05  
-0.10  
-0.15  
-0.20  
-0.25  
0
128 256 384 512 640 768 896 1024  
CODE (UNITS)  
0
128 256 384 512 640 768 896 1024  
CODE (UNITS)  
_______________________________________________________________________________________  
5
10-Bit, Programmable Gamma Reference  
Systems with MTP for TFT LCDs  
Typical Operating Characteristics (continued)  
(V  
= V  
= V  
= 18V, V  
= 3.3V, V  
= V  
= 0, no load, unless otherwise noted. Typical values are at  
AVDD  
AVDD_AMP  
REF  
DVDD  
GND  
AGND_AMP  
T
A
= +25°C.)  
VCOM  
INL  
GAMMA  
INL  
0.25  
0.4  
0.3  
0.2  
0.1  
0
V
= 10V  
0.20  
0.15  
0.10  
0.05  
0
REF  
-0.05  
-0.10  
-0.15  
-0.20  
-0.25  
-0.1  
-0.2  
-0.3  
-0.4  
0
128 256 384 512 640 768 896 1024  
CODE (UNITS)  
0
128 256 384 512 640 768 896 1024  
CODE (UNITS)  
VCOM  
INL  
GAMMA  
DNL  
0.25  
0.20  
0.15  
0.10  
0.05  
0
0.12  
0.08  
0.04  
0
23/MAX9674  
-0.05  
-0.10  
-0.15  
-0.20  
-0.25  
-0.04  
-0.08  
-0.12  
0
128 256 384 512 640 768 896 1024  
CODE (UNITS)  
0
128 256 384 512 640 768 896 1024  
CODE (UNITS)  
VCOM  
DNL  
0.20  
V
= 10V  
REF  
0.15  
0.10  
0.05  
0
-0.05  
-0.10  
-0.15  
-0.20  
0
128 256 384 512 640 768 896 1024  
CODE (UNITS)  
6
_______________________________________________________________________________________  
10-Bit, Programmable Gamma Reference  
Systems with MTP for TFT LCDs  
23/MAX9674  
Typical Operating Characteristics (continued)  
(V  
= V  
= V  
= 18V, V  
= 3.3V, V  
= V = 0, no load, unless otherwise noted. Typical values are at  
AGND_AMP  
AVDD  
AVDD_AMP  
REF  
DVDD  
GND  
T
A
= +25°C.)  
POWER-SUPPLY REJECTION RATIO  
vs. FREQUENCY, GAMMA OUTPUTS  
POWER-SUPPLY REJECTION RATIO  
vs. FREQUENCY, VCOM OUTPUT  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
0
V
= 200mV  
P-P  
V
= 200mV  
P-P  
RIPPLE  
RIPPLE  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
CODE = 512  
CODE = 512  
10k  
100k  
1M  
10M  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
REFERENCE REJECTION RATIO  
vs. FREQUENCY, GAMMA OUTPUTS  
REFERENCE REJECTION RATIO  
vs. FREQUENCY, VCOM OUTPUT  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
V
= 200mV  
V = 200mV  
RIPPLE P-P  
RIPPLE  
P-P  
CODE = 512  
CODE = 512  
10k  
100k  
1M  
10M  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
VCOM PULSE RESPONSE  
GAMMA PULSE RESPONSE  
R
C
= 10  
LOAD  
R
C
= 10Ω  
ISO  
ISO  
= 68nF  
= 10nF  
LOAD  
I
I
OUT  
OUT  
250mA/div  
50mA/div  
-2.5V TO +2.5V  
-2.5V TO +2.5V  
R
ISO  
R
ISO  
GAMMA  
DAC  
VCOM  
DAC  
C
LOAD  
C
LOAD  
V
V
OUT  
OUT  
250mV/div  
1V/div  
TIME (2µs/div)  
TIME (2µs/div)  
_______________________________________________________________________________________  
7
10-Bit, Programmable Gamma Reference  
Systems with MTP for TFT LCDs  
Pin Description  
PIN  
MAX9673  
1, 28  
NAME  
FUNCTION  
MAX9672  
MAX9674  
1, 26, 27, 28  
N.C.  
GMA16  
SCL  
No Connection. Not internally connected.  
Gamma DAC Analog Output 16  
2
3
4
5
6
7
8
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
2
I C-Compatible Serial-Clock Input  
2
SDA  
I C-Compatible Serial-Data Input/Output  
2
A0  
I C-Compatible Device Address Bit 0  
DVDD  
Digital Power Supply. Bypass DVDD with a 0.1µF capacitor to GND.  
AGND_AMP Ground for VCOM Amplifier  
VCOM  
VCOM Output  
VCOM_FB  
Feedback for VCOM Amplifier  
Power Supply for VCOM Amplifier. Bypass AVDD_AMP with a 0.1µF  
capacitor to AGND_AMP.  
9
9
9
AVDD_AMP  
10, 21  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
22  
23  
24  
25  
10, 21  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
22  
23  
24  
25  
26  
27  
10, 21  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
22  
23  
24  
25  
26  
27  
28  
AVDD  
GND  
Analog Power Supply. Bypass AVDD with a 0.1µF capacitor to GND.  
Analog Ground  
GMA1  
GMA2  
GMA3  
GMA4  
GMA5  
GMA6  
GMA7  
GMA8  
REF  
Gamma DAC Analog Output 1  
Gamma DAC Analog Output 2  
Gamma DAC Analog Output 3  
Gamma DAC Analog Output 4  
Gamma DAC Analog Output 5  
Gamma DAC Analog Output 6  
Gamma DAC Analog Output 7  
Gamma DAC Analog Output 8  
DAC Reference Input  
23/MAX9674  
GMA9  
GMA10  
GMA11  
GMA12  
GMA13  
GMA14  
GMA15  
Gamma DAC Analog Output 9  
Gamma DAC Analog Output 10  
Gamma DAC Analog Output 11  
Gamma DAC Analog Output 12  
Gamma DAC Analog Output 13  
Gamma DAC Analog Output 14  
Gamma DAC Analog Output 15  
Exposed Pad. EP is internally connected to the analog ground and  
digital ground. EP must be connected to the system’s ground.  
EP  
MTP memory to store gamma and VCOM values on the  
chip, eliminating the need for external EEPROM. The  
MAX9672/MAX9673/MAX9674 support up to 300 write  
operations to the on-chip nonvolatile memory.  
Detailed Description  
The MAX9672/MAX9673/MAX9674 feature 13/15/17  
total programmable reference voltage channels. Each  
channel has a 10-bit DAC to create the reference volt-  
age. One channel has an amplifier that follows the DAC  
while all other channels have a buffer after the DAC.  
The MAX9672/MAX9673/MAX9674 feature integrated  
The MAX9672/MAX9673/MAX9674 can provide the  
gamma, VCOM, and possibly level-shifter reference  
voltages for an LCD panel that can potentially replace a  
discrete digital variable resistor (DVR), VCOM amplifier,  
8
_______________________________________________________________________________________  
10-Bit, Programmable Gamma Reference  
Systems with MTP for TFT LCDs  
23/MAX9674  
gamma buffers, high-voltage linear regulator, and resis-  
The source drivers can kick back a great deal of cur-  
rent to the buffer outputs during a horizontal line  
change or a polarity switch. The DAC output buffers  
can source/sink 200mA of peak current to reduce the  
recovery time of the output voltages when critical levels  
and patterns are displayed.  
tor strings. The high-voltage linear regulator can be  
eliminated because the DAC contains a lowpass filter  
that reduces horizontal line frequency noise by 50dB.  
Power sequencing is well controlled since a single chip  
generates all the various reference voltages needed for  
the LCD panel.  
VCOM Amplifier  
The operational amplifier attached to the VCOM DAC  
holds the VCOM voltage stable while providing the abil-  
ity to source and sink 600mA into the backplane of a  
TFT LCD panel. The operational amplifier can directly  
drive the capacitive load of the TFT LCD backplane  
without the need for a series resistor in most cases. The  
VCOM amplifier has current limiting on its output to pro-  
tect its bond wires.  
Each part has an I2C interface for programming both  
the MTP memory and the I2C registers.  
With the MTP memory and the I2C interface, the  
MAX9672/MAX9673/MAX9674 enable automatic  
gamma and automatic flicker calibration on a panel-by-  
panel basis on the production line. Contact your Maxim  
representative for more details.  
10-Bit DACs  
The voltage at REF sets the full-scale output of the  
DACs. Determine the output voltage using the following  
equation:  
If the application requires more than 600mA, buffer the  
output of the VCOM amplifier with a MAX9650, a VCOM  
power amplifier. The MAX9650 can source or sink 1A of  
current.  
V
OUT  
= (V  
x CODE)/2N  
REF  
Thermal Shutdown  
The MAX9672/MAX9673/MAX9674 feature thermal-  
shutdown protection with temperature hysteresis. When  
the die temperature reaches +165°C, all of the gamma  
outputs are disabled. When the die cools down by  
15°C, the outputs are enabled again.  
where CODE is the numeric value of the DAC’s binary  
input code and N is the bits of resolution. For the  
MAX9672/MAX9673/MAX9674, N = 10 and CODE  
ranges from 0 to 1023.  
The DAC can never output REF because the maximum  
value of CODE is always 1 least significant bit (LSB)  
I2C Serial Interface  
The MAX9672/MAX9673/MAX9674 feature an I2C/  
SMBus™-compatible, 2-wire serial interface consisting of  
a serial-data line (SDA) and a serial-clock line (SCL).  
SDA and SCL facilitate communication between the  
MAX9672/MAX9673/MAX9674 and the master at clock  
rates up to 400kHz. Figure 1 shows the 2-wire interface  
timing diagram. The master generates SCL and initiates  
data transfer on the bus. A master device writes data to  
the MAX9672/MAX9673/MAX9674 by transmitting the  
less than the reference. For example, if V  
CODE = 1023, then the output voltage is:  
= 16V and  
REF  
V
OUT  
= (16V x 1023)/210  
= 15.98438V  
Gamma Buffers  
The gamma buffers are guaranteed to source or sink  
10mA of DC current within 200mV of the supplies.  
SDA  
t
BUF  
t
t
SU,STA  
SU,DAT  
t
t
SP  
HD,STA  
t
t
SU,STO  
t
HD,DAT  
LOW  
SCL  
t
HIGH  
t
HD,STA  
t
t
F
R
REPEATED  
START CONDITION  
STOP  
CONDITION  
START  
CONDITION  
START  
CONDITION  
Figure 1. I2C Serial-Interface Timing Diagram  
SMBus is a trademark of Intel Corp.  
_______________________________________________________________________________________  
9
10-Bit, Programmable Gamma Reference  
Systems with MTP for TFT LCDs  
proper slave address followed by the register address  
and then the data word. Each transmit sequence is  
Table 1. Slave Address  
A0  
READ ADDRESS  
WRITE ADDRESS  
framed by a START (S) or REPEATED START (Sr) condi-  
tion and a STOP (P) condition. Each byte is serially trans-  
mitted to the MAX9672/MAX9673/MAX9674 as 8 bits and  
is followed by an acknowledge clock pulse. A master  
reading data from the MAX9672/MAX9673/MAX9674  
transmit the proper slave address followed by a series of  
nine SCL pulses. The MAX9672/MAX9673/MAX9674  
transmit data on SDA in sync with the master-generated  
SCL pulses. The master acknowledges receipt of each  
byte of data. Each read sequence is framed by a START  
or REPEATED START condition, a not acknowledge, and  
a STOP condition. SDA operates as both an input and an  
open-drain output. A pullup resistor, typically greater  
than 500, is required on the SDA bus. SCL operates as  
only an input. A pullup resistor, typically greater than  
500, is required on SCL if there are multiple masters on  
the bus, or if the master in a single-master system has an  
open-drain SCL output. Series resistors in line with SDA  
and SCL are optional. Series resistors protect the digital  
inputs of the MAX9672/MAX9673/MAX9674 from high-  
voltage spikes on the bus lines, and minimize crosstalk  
and undershoot of the bus signals.  
GND  
DVDD  
E9h  
EBh  
E8h  
EAh  
S
Sr  
P
SCL  
SDA  
Figure 2. START, STOP, and REPEATED START Conditions  
CLOCK PULSE FOR  
ACKNOWLEDGMENT  
START  
CONDITION  
SCL  
1
2
8
9
NOT ACKNOWLEDGE  
Bit Transfer  
One data bit is transferred during each SCL cycle. The  
data on SDA must remain stable during the high period  
of the SCL pulse. Changes in SDA while SCL is high  
are control signals (see the START and STOP  
Conditions section). SDA and SCL idle high when the  
I2C bus is not busy.  
SDA  
ACKNOWLEDGE  
23/MAX9674  
Figure 3. Acknowledge  
Slave Address  
START and STOP Conditions  
SDA and SCL idle high when the bus is not in use. A  
master initiates communication by issuing a START con-  
dition. A START condition is a high-to-low transition on  
SDA with SCL high. A STOP condition is a low-to-high  
transition on SDA while SCL is high (Figure 2). A START  
condition from the master signals the beginning of a  
transmission to the MAX9672/MAX9673/MAX9674. The  
master terminates transmission, and frees the bus, by  
issuing a STOP condition. The bus remains active if a  
REPEATED START condition is generated instead of a  
STOP condition.  
The slave address is defined as the 7 most significant  
bits (MSBs) followed by the read/write (R/W) bit. Set the  
R/W bit to 1 to configure the MAX9672/MAX9673/  
MAX9674 to read mode. Set the R/W bit to 0 to config-  
ure the MAX9672/MAX9673/MAX9674 to write mode.  
The address is the first byte of information sent to the  
MAX9672/MAX9673/MAX9674 after the START condi-  
tion. The MAX9672/MAX9673/MAX9674 slave address  
is configured with A0. Table 1 shows the possible  
addresses for the MAX9672/MAX9673/MAX9674.  
Acknowledge  
The acknowledge bit (ACK) is a clocked 9th bit that the  
MAX9672/MAX9673/MAX9674 use to handshake  
receipt of each byte of data when in write mode (see  
Figure 3). The MAX9672/MAX9673/MAX9674 pull down  
SDA during the entire master-generated ninth clock  
pulse if the previous byte is successfully received.  
Monitoring ACK allows for detection of unsuccessful  
data transfers. An unsuccessful data transfer occurs if  
Early STOP Conditions  
The MAX9672/MAX9673/MAX9674 use a STOP condi-  
tion at any point during data transmission except if the  
STOP condition occurs in the same high pulse as a  
START condition. For proper operation, do not send a  
STOP condition during the same SCL high pulse as the  
START condition.  
10 ______________________________________________________________________________________  
10-Bit, Programmable Gamma Reference  
Systems with MTP for TFT LCDs  
23/MAX9674  
ACKNOWLEDGE FROM  
ACKNOWLEDGE FROM  
MAX9672/MAX9673/MAX9674  
MAX9672/MAX9673/MAX9674  
W1 W0  
X
X
X
X
D9 D8  
D7 D6 D5 D4 D3 D2 D1 D0  
DATA BYTE 2  
ACKNOWLEDGE FROM MAX9672/  
MAX9673/MAX9674  
ACKNOWLEDGE FROM MAX9672/  
MAX9673/MAX9674  
S
SLAVE ADDRESS  
0
A
0
0
REGISTER ADDRESS  
A
DATA BYTE 1  
A
A
P
1 WORD  
AUTOINCREMENT INTERNAL REGISTER ADDRESS POINTER  
R/W  
M1 M0  
Figure 4. Writing a Word of Data to the MAX9672/MAX9673/MAX9674  
ACKNOWLEDGE FROM MAX9672/  
MAX9673/MAX9674  
ACKNOWLEDGE FROM MAX9672/  
MAX9673/MAX9674  
W1 W0  
X
X
X
X
D9 D8  
D7 D6 D5 D4 D3 D2 D1 D0  
ACKNOWLEDGE FROM  
ACKNOWLEDGE FROM  
MAX9672/MAX9673/MAX9674  
MAX9672/MAX9673/MAX9674  
S
SLAVE ADDRESS  
0
A
0
0
REGISTER ADDRESS  
A
DATA BYTE 1  
A
DATA BYTE 2  
A
1 WORD  
R/W  
M1 M0  
AUTOINCREMENT INTERNAL  
REGISTER ADDRESS POINTER  
ACKNOWLEDGE FROM MAX9672/  
ACKNOWLEDGE FROM MAX9672/  
MAX9673/MAX9674  
MAX9673/MAX9674  
W1 W0  
X
X
X
X
D9 D8  
D7 D6 D5 D4 D3 D2 D1 D0  
DATA BYTE n-1  
A
DATA BYTE n  
A
P
1 WORD  
Figure 5. Writing n Bytes of Data to the MAX9672/MAX9673/MAX9674  
a receiving device is busy or if a system fault has  
occurred. In the event of an unsuccessful data transfer,  
the bus master may retry communication. The master  
pulls down SDA during the ninth clock cycle to  
acknowledge receipt of data when the MAX9672/  
MAX9673/MAX9674 are in read mode. An acknowledge  
is sent by the master after each read byte to allow data  
transfer to continue. A not acknowledge is sent when  
the master reads the final byte of data from the  
MAX9672/MAX9673/MAX9674, followed by a STOP  
condition.  
The slave address with the R/W bit set to 0 indicates that  
the master intends to write data to the MAX9672/  
MAX9673/MAX9674. The MAX9672/MAX9673/MAX9674  
acknowledge receipt of the address byte during the  
master-generated ninth SCL pulse.  
The second byte transmitted from the master config-  
ures the MAX9672/MAX9673/MAX9674’s internal regis-  
ter address pointer. The MAX9672/MAX9673/  
MAX9674’s internal address pointer consists of the 6  
LSBs of the second byte. The 2 MSBs of the second  
byte (M1 and M0) are set to 00b when writing to the  
internal registers. See the Memory section for more  
details. The pointer tells the MAX9672/MAX9673/  
MAX9674 where to write the next byte of data. An  
acknowledge pulse is sent by the MAX9672/  
MAX9673/MAX9674 upon receipt of the address point-  
er data.  
Write Data Format  
A write to the MAX9672/MAX9673/MAX9674 consists of  
transmitting a START condition, the slave address with  
the R/W bit set to 0, one data byte of data to configure  
the internal register address pointer, one word (two  
bytes) of data or more, and a STOP condition. Figure 4  
illustrates the proper frame format for writing one word  
of data to the MAX9672/MAX9673/MAX9674. Figure 5  
illustrates the frame format for writing n-bytes of data to  
the MAX9672/MAX9673/MAX9674.  
The third and fourth bytes sent to the MAX9672/  
MAX9673/MAX9674 contain the data that is written to the  
chosen register and which type of register it writes to,  
volatile (DAC) or nonvolatile memory (MTP). See the  
Registers section for more details. An acknowledge pulse  
______________________________________________________________________________________ 11  
10-Bit, Programmable Gamma Reference  
Systems with MTP for TFT LCDs  
Table 2. Register Map  
MTP FACTORY  
REGISTER  
ADDRESS  
REGISTER  
NAME  
REGISTER  
DESCRIPTION  
READ/  
WRITE  
INTIALIZATION VALUE  
MAX9672  
MAX9673  
0x3BA  
0x376  
0x332  
0x2EE  
0x2AA  
0x265  
0x221  
0x1DD  
0x199  
0x155  
0x110  
0x0CC  
0x088  
0x044  
MAX9674  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
GMA1  
GMA2  
Gamma 1  
Gamma 2  
Gamma 3  
Gamma 4  
Gamma 5  
Gamma 6  
Gamma 7  
Gamma 8  
Gamma 9  
Gamma 10  
Gamma 11  
Gamma 12  
Gamma 13  
Gamma 14  
Gamma 15  
Gamma 16  
0x3B0  
0x361  
0x312  
0x2C4  
0x275  
0x226  
0x1D8  
0x189  
0x13A  
0x0EC  
0x09D  
0x04E  
0x3C2  
0x386  
0x34A  
0x30E  
0x2D2  
0x295  
0x259  
0x21D  
0x1E1  
0x1A5  
0x169  
0x12C  
0X0F0  
0x0B4  
0x078  
0x03C  
Read and write  
Read and write  
Read and write  
Read and write  
Read and write  
Read and write  
Read and write  
Read and write  
Read and write  
Read and write  
Read and write  
Read and write  
Read and write  
Read and write  
Read and write  
Read and write  
GMA3  
GMA4  
GMA5  
GMA6  
GMA7  
GMA8  
GMA9  
GMA10  
GMA11  
GMA12  
GMA13  
GMA14  
GMA15  
GMA16  
Reserved  
Reserved  
VCOM  
Common voltage  
0x193  
0x193  
0x193  
Read and write  
23/MAX9674  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
VCOMMIN  
VCOMMAX  
Minimum VCOM value  
Maximum VCOM value  
0x10D  
0x21A  
0x10D  
0x21A  
0x10D  
0x21A  
Read and write  
Read and write  
Reserved,  
DO NOT WRITE  
0x1D  
0x1E  
Reserved,  
DO NOT WRITE  
from the MAX9672/MAX9673/MAX9674 signals receipt of  
each data byte. The address pointer autoincrements to  
the next register address after receiving every other data  
byte. This autoincrement feature allows a master to write  
to sequential register address locations within one contin-  
uous frame. The master signals the end of transmission  
by issuing a STOP condition.  
If data is written into register address 0x1E, the address  
pointer autoincrements to 0xFF and stays at 0xFF until  
the master writes a new value into the register address  
pointer.  
Read Data Format  
The master presets the address pointer by first sending  
the MAX9672/MAX9673/MAX9674’s slave address with  
the R/W bit set to 0 followed by the register address  
12 ______________________________________________________________________________________  
10-Bit, Programmable Gamma Reference  
Systems with MTP for TFT LCDs  
23/MAX9674  
Table 3. Register Description  
REG  
ADDR  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
REG  
B15 B14 B13 B12 B11 B10 B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
GMA1  
GMA2  
GMA3  
GMA4  
GMA5  
GMA6  
GMA7  
GMA8  
GMA9  
GMA10  
GMA11  
GMA12  
GMA13*  
GMA14*  
GMA15**  
GMA16**  
Reserved  
Reserved  
VCOM  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
VCOMMIN  
VCOMMAX  
Reserved  
DO NOT  
WRITE  
W1  
W1  
W1  
W1  
W1  
W1  
W1  
W1  
W1  
W1  
W1  
W1  
W1  
W1  
W1  
W1  
W1  
W1  
W1  
W0  
W0  
W0  
W0  
W0  
W0  
W0  
W0  
W0  
W0  
W0  
W0  
W0  
W0  
W0  
W0  
W0  
W0  
W0  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
b9  
b9  
b9  
b9  
b9  
b9  
b9  
b9  
b9  
b9  
b9  
b9  
b9  
b9  
b9  
b9  
b9  
b9  
b9  
b8  
b8  
b8  
b8  
b8  
b8  
b8  
b8  
b8  
b8  
b8  
b8  
b8  
b8  
b8  
b8  
b8  
b8  
b8  
b7  
b7  
b7  
b7  
b7  
b7  
b7  
b7  
b7  
b7  
b7  
b7  
b7  
b7  
b7  
b7  
b7  
b7  
b7  
b6  
b6  
b6  
b6  
b6  
b6  
b6  
b6  
b6  
b6  
b6  
b6  
b6  
b6  
b6  
b6  
b6  
b6  
b6  
b5  
b5  
b5  
b5  
b5  
b5  
b5  
b5  
b5  
b5  
b5  
b5  
b5  
b5  
b5  
b5  
b5  
b5  
b5  
b4  
b4  
b4  
b4  
b4  
b4  
b4  
b4  
b4  
b4  
b4  
b4  
b4  
b4  
b4  
b4  
b4  
b4  
b4  
b3  
b3  
b3  
b3  
b3  
b3  
b3  
b3  
b3  
b3  
b3  
b3  
b3  
b3  
b3  
b3  
b3  
b3  
b3  
b2  
b2  
b2  
b2  
b2  
b2  
b2  
b2  
b2  
b2  
b2  
b2  
b2  
b2  
b2  
b2  
b2  
b2  
b2  
b1  
b1  
b1  
b1  
b1  
b1  
b1  
b1  
b1  
b1  
b1  
b1  
b1  
b1  
b1  
b1  
b1  
b1  
b1  
b0  
b0  
b0  
b0  
b0  
b0  
b0  
b0  
b0  
b0  
b0  
b0  
b0  
b0  
b0  
b0  
b0  
b0  
b0  
X
X
X
X
0x1D  
0x1E  
Reserved  
DO NOT  
WRITE  
*Reserved for the MAX9672.  
**Reserved for the MAX9672/MAX9673.  
with M1 and M0 set to 00 after a START condition. The  
MAX9672/MAX9673/MAX9674 acknowledge receipt of  
its slave address and the register address by pulling  
SDA low during the ninth SCL clock pulse. A REPEAT-  
ED START condition is then sent followed by the slave  
address with the R/W bit set to 1. The MAX9672/  
MAX9673/MAX9674 transmit the contents of the speci-  
fied register. Transmitted data is valid on the rising  
edge of the master-generated serial clock (SCL). The  
address pointer autoincrements after every other read  
data byte. This autoincrement feature allows all regis-  
ters to be read sequentially within one continuous  
frame. A STOP condition can be issued after any num-  
ber of read data bytes. If a STOP condition is issued  
followed by another read operation, the first data byte  
to be read is from the register address location set by  
the previous transaction and not 0x00. Subsequent  
reads autoincrement the address pointer until the next  
STOP condition. Attempting to read from register  
addresses higher than 0x1E results in repeated reads  
from a dummy register containing all one data. The  
master acknowledges receipt of each read byte during  
the acknowledge clock pulse. The master must  
acknowledge all correctly received bytes except the  
______________________________________________________________________________________ 13  
10-Bit, Programmable Gamma Reference  
Systems with MTP for TFT LCDs  
Table 4. Write Control Bits  
W1  
0
W0  
0
ACTION  
No update.  
2
0
1
All MTP registers get updated when the current I C register has finished updating (end of B0).  
2
1
0
All DAC registers get updated when the current I C register has finished updating (end of B0).  
1
1
No update.  
Table 5. Memory Write Bits  
M1  
0
M0  
0
ACTION  
None.  
2
0
1
Only the addressed I C registers and DAC registers get set to the MTP values.  
2
1
0
All I C registers and DAC registers get set to the MTP values.  
1
1
None.  
last byte. The final byte must be followed by a not  
acknowledge from the master and then a STOP condi-  
tion. Figures 6 and 7 illustrate the frame format for read-  
ing data from the MAX9672/MAX9673/MAX9674.  
full rail-to-rail programmable range for VCOM. Later,  
users can define their own limits by programming  
VCOMMIN and VCOMMAX registers and MTP.  
VCOM register values are limited to the defined range.  
This means if the VCOM register accidentally gets pro-  
grammed with a value higher than VCOMMAX, it auto-  
matically gets locked to the VCOMMAX value. The I2C  
bus does acknowledge and receive the data sent on  
the bus. However, internally the part recognizes that the  
value is outside of the range and adjusts it accordingly.  
The same scenario is true if the value programming  
VCOM is below VCOMMIN.  
Registers  
Register Map  
The MAX9672/MAX9673/MAX9674 have a bank of non-  
volatile MTP memory and two banks of volatile memory  
comprised of I2C registers and DAC registers. Each  
memory location whether in nonvolatile or volatile mem-  
ory holds a 10-bit word. Two bytes must be read or writ-  
ten through the I2C interface for every 10-bit word.  
23/MAX9674  
Memory  
The MAX9672/MAX9673/MAX9674 include both volatile  
memory (I2C and DAC) and nonvolatile memory (MTP).  
It is possible to write to each single DAC memory loca-  
tion from an MTP memory location individually or to  
write to all at once. This is done with memory write bits  
(M1, M0) that are the 2 MSBs of the register address  
byte. Table 5 shows the memory write bits. Set both M1  
and M0 to low or high when writing to or reading from  
the register values through the I2C bus.  
Table 2 shows the register map. The same register  
address and register name exists in the MTP memory  
bank, I2C register bank, and the DAC register bank.  
The write control bits determine which memory location  
the data is stored into.  
Register Description  
Only the 10 LSBs are written to the registers (see Table  
3). During a write operation, the write control bits (the 2  
MSBs) are stripped from the incoming data stream and  
are used to determine whether the MTP or DAC regis-  
ters are updated (see Table 4).  
Volatile Memory  
The MAX9672/MAX9673/MAX9674 feature a double-  
buffered register structure. The volatile (DAC) memory  
can be updated without updating the output voltage.  
Figure 8 shows how to program a single DAC. The out-  
put voltage is updated after sending the LSB (D0).  
VCOM Programmable Range  
The MAX9672/MAX9673/MAX9674 feature the program-  
mable range for VCOM. VCOMMIN and VCOMMAX  
registers provide low and high limits for the VCOM DAC  
register. At the factory, VCOMMIN is set to 0 and  
VCOMMAX is set to 1023 (default values) to provide the  
14 ______________________________________________________________________________________  
10-Bit, Programmable Gamma Reference  
Systems with MTP for TFT LCDs  
23/MAX9674  
ACKNOWLEDGE FROM MAX9672/  
MAX9673/MAX9674  
ACKNOWLEDGE FROM MAX9672/  
MAX9673/MAX9674  
ACKNOWLEDGE FROM MAX9672/  
MAX9673/MAX9674  
S
SLAVE ADDRESS  
0
A
0
0
REGISTER ADDRESS  
A
Sr  
SLAVE ADDRESS  
1
A
R/W  
REPEATED START  
R/W  
ACKNOWLEDGE FROM MASTER  
D9 D8  
M1 M0  
NOT ACKNOWLEDGE FROM MASTER  
D7 D6 D5 D4 D3 D2 D1 D0  
X
X
X
X
X
X
DATA BYTE 1  
A
DATA BYTE 2  
A
P
1 WORD  
AUTOINCREMENT INTERNAL  
REGISTER ADDRESS POINTER  
Figure 6. Reading One Indexed Word of Data from the MAX9672/MAX9673/MAX9674  
ACKNOWLEDGE FROM MAX9672/  
MAX9673/MAX9674  
ACKNOWLEDGE FROM MAX9672/  
MAX9673/MAX9674  
ACKNOWLEDGE FROM MAX9672/  
MAX9673/MAX9674  
S
X
SLAVE ADDRESS  
0
A
0
0
REGISTER ADDRESS  
A
Sr  
SLAVE ADDRESS  
1
A
R/W  
REPEATED START  
R/W  
M1 M0  
ACKNOWLEDGE FROM MASTER  
D9 D8  
ACKNOWLEDGE FROM MASTER  
D7 D6 D5 D4 D3 D2 D1 D0  
ACKNOWLEDGE FROM MASTER  
D9 D8  
NOT ACKNOWLEDGE FROM MASTER  
D7 D6 D5 D4 D3 D2 D1 D0  
X
X
X
X
X
X
X
X
X
X
X
DATA BYTE 1  
A
DATA BYTE 2  
A
DATA BYTE n-1  
A
DATA BYTE n  
A
P
1 WORD  
1 WORD  
AUTOINCREMENT INTERNAL  
REGISTER ADDRESS POINTER  
Figure 7. Reading n Bytes of Indexed Data from the MAX9672/MAX9673/MAX9674  
______________________________________________________________________________________ 15  
10-Bit, Programmable Gamma Reference  
Systems with MTP for TFT LCDs  
R/W  
= 0  
S
1
1
1
0
1
0
B1  
A
0
0
D5  
D4  
D3  
D2  
D1  
D0  
A
SLAVE ID  
M1 M0  
DAC/VCOM ADDRESS  
1
0
X
X
X
X
D9  
D8  
A
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
A
P
DATA  
DATA  
Figure 8. Single DAC Programming  
R/W  
= 0  
S
1
0
0
1
0
0
1
X
X
0
1
X
X
0
X
X
B1  
D9  
D9  
A
A
A
0
0
D5  
D5  
D5  
D4  
D3  
D2  
D1  
D0  
D0  
D0  
A
A
A
SLAVE ID  
M1 M0  
DAC/VCOM ADDRESS  
X
D8  
D8  
D7  
D7  
D6  
D6  
D4  
D3  
D2  
D2  
D1  
D1  
DATA  
DATA  
X
X
D4  
D3  
DATA  
DATA  
DATA  
1
0
X
X
X
D9  
D8  
A
D7  
D6  
D5  
D4  
D3  
DATA  
D2  
D1  
D0  
A
P
23/MAX9674  
Figure 9. Multiple (or All) DACs Programming  
It is possible to write to multiple DACs first then update  
the output voltage of all channels simultaneously, as  
shown in Figure 9. In this mode, it is possible for the I2C  
master to write to all registers of the MAX9672/  
MAX9673/MAX9674 (Gamma and VCOM) in one commu-  
nication. In that case, the value programmed on address-  
es 0x10, 0x11, and 0x13 through 0x17 are meaningless.  
However, the MAX9672/MAX9673/MAX9674 send an  
acknowledge bit for each of the 2 bytes on any of these  
addresses. The control bits (W1, W0) shown in Figure 9  
are set in a way that all DACs are programmed to their  
desired value with no changes to the output voltages until  
the LSB of the last DAC is received and then all the chan-  
nels are updated simultaneously.  
can be written to at least 300 times. Figure 10 shows a  
single write to a MTP address. The control bits on Figure  
10 set in a way that the MTP register is updated at the  
end of the LSB (D0).  
Figure 11 shows how to program multiple MTP registers  
in one communication transition. Similar to program-  
ming the volatile memory, the first 2 bytes of data corre-  
spond to the DAC/VCOM address specified by the  
master on the previous byte and the following 2 bytes  
of data correspond to the next address and so on. In  
this configuration all the MTP registers are programmed  
at the same time following the LSB of the last set of  
data bytes. (The last set of data bytes is different than  
the previous bytes as it is bits 15 and 14.) If for some  
reason the master issues a STOP condition before  
sending the last 2 bytes of the data with appropriate  
values of bits 15 and 14 (01), then none of the MTP reg-  
isters are updated.  
Nonvolatile Memory  
The MAX9672/MAX9673/MAX9674 are able to write to  
nonvolatile memory (MTP) of any single DAC/VCOM reg-  
ister in a single or burst I2C transaction. This memory  
16 ______________________________________________________________________________________  
10-Bit, Programmable Gamma Reference  
Systems with MTP for TFT LCDs  
23/MAX9674  
R/W  
= 0  
S
1
1
1
0
1
0
B1  
A
0
0
D5  
D4  
D3  
D2  
D1  
D0  
A
SLAVE ID  
M1 M0  
DAC/VCOM ADDRESS  
0
1
X
X
X
X
D9  
D8  
A
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
A
P
DATA  
DATA  
Figure 10. Single MTP Programming  
R/W  
= 0  
S
1
0
0
1
0
0
1
X
X
0
1
X
X
0
X
X
B1  
D9  
D9  
A
A
A
0
0
D5  
D5  
D5  
D4  
D3  
D2  
D1  
D0  
D0  
D0  
A
A
A
SLAVE ID  
M1 M0  
DAC/VCOM ADDRESS  
X
D8  
D8  
D7  
D7  
D6  
D6  
D4  
D3  
D2  
D2  
D1  
D1  
DATA  
DATA  
X
X
D4  
D3  
DATA  
DATA  
DATA  
0
1
X
X
X
D9  
D8  
A
D7  
D6  
D5  
D4  
D3  
DATA  
D2  
D1  
D0  
A
P
Figure 11. Multiple MTP Programming  
Programming the MTP registers also updates the  
DACs/VCOM volatile memory as well as the output volt-  
ages. Similar to multiple volatile memory programming,  
the update only occurs after the LSB of the last byte is  
received. All the outputs are programmed and updated  
simultaneously. However, depending on the number of  
MTP registers, it takes 31ms to 500ms to store the val-  
ues into the nonvolatile memory. During this time, the  
MAX9672/MAX9673/MAX9674 are not available on the  
I2C and any communication from the master should be  
delayed until the MTP is programmed. Any attempt  
from the I2C master to talk to the MAX9672/MAX9673/  
MAX9674 is not acknowledged.  
address to 10 to set all the DACs and the output volt-  
ages to the values of MTP (as shown in Figure 12). The  
MAX9672/MAX9673/MAX9674 ignore the DAC/VCOM  
address in this case.  
It is also possible to update the DAC and output volt-  
age of only one channel from the MTP. Set the 2 MSBs  
(M1 and M0) of the DAC/VCOM address to 01 (as  
shown in Figure 13) to move a specific value from MTP  
into the DAC and output voltage of a single channel.  
The MAX9672/MAX9673/MAX9674 feature a double-  
buffered register structure. It is important to note that  
updating the volatile (DAC) memory is not the same as  
updating the output voltage. It is possible to write to  
multiple DACs first then update the output voltage of all  
channels simultaneously.  
General and Single Acquire Commands  
It is possible to update all the DAC outputs to the previ-  
ously stored MTP values with one special command.  
Set the 2 MSBs (M1 and M0) of the DAC/VCOM  
______________________________________________________________________________________ 17  
10-Bit, Programmable Gamma Reference  
Systems with MTP for TFT LCDs  
R/W  
= 0  
S
1
1
1
0
1
0
B1  
A
1
0
0
0
0
0
0
0
A
P
SLAVE ID  
M1 M0  
Figure 12. General Acquire Command to Update All Outputs with MTP  
R/W  
= 0  
S
1
1
1
0
1
0
B1  
A
0
1
D5  
D4  
D3  
D2  
D1  
D0  
A
P
SLAVE ID  
M1 M0  
DAC/VCOM ADDRESS  
Figure 13. Single Acquire Command to Update One Output with MTP  
If REF is powered up after AVDD, then the outputs track  
REF. If REF is powered up before AVDD, then the out-  
puts track AVDD.  
Applications Information  
Driving the Resistor Ladders  
with More Current  
For power-down, AVDD and REF must be powered down  
first to 0V, and then DVDD can safely be powered down.  
If the gamma buffers cannot provide enough current to  
drive the ends of the resistor ladders, then attach an  
additional resistor from the nearest supply. For example,  
at the very top of the resistor ladder, attach an additional  
resistor to AVDD. At the very bottom of the resistor lad-  
der, attach an additional resistor to GND. The  
MAX9672/MAX9673/MAX9674 greatly diminish any  
noise from AVDD supply through the discrete resistor  
because the high-frequency noise from AVDD has been  
attenuated, and the buffers have excellent AC PSRR.  
See Figure 14.  
Power Supplies and Bypass Capacitors  
The MAX9672/MAX9673/MAX9674 operate from a sin-  
gle 9V to 20V analog supply (AVDD) and a 2.7V to 3.6V  
digital supply (DVDD). Bypass AVDD to GND with  
0.1µF and 10µF capacitors in parallel. Use an extensive  
ground plane to ensure optimum performance. Bypass  
DVDD to GND with a 0.1µF capacitor. The 0.1µF  
bypass capacitors should be as close as possible to  
the device.  
23/MAX9674  
Refer to the MAX9672/MAX9673/MAX9674 evaluation  
kit for a proven PCB layout.  
VCOM Operational Amplifier  
with Feedback Resistors  
The output (VCOM) and negative input (VCOM_FB) of  
the operational amplifier would usually be connected  
together, resulting in a unity-gain configuration. If a  
higher, closed-loop gain is desired, add feedback  
resistors as shown in Figure 15.  
Layout and Grounding  
Exposed Pad  
If the MAX9672/MAX9673/MAX9674 are mounted using  
reflow soldering or wave soldering, the ground via(s) for  
the exposed pad should have a finished hole size of at  
least 14 mils to insure adequate wicking of soldering  
onto the exposed pad. If the MAX9672/MAX9673/  
MAX9674 are mounted using the solder mask tech-  
nique, the via requirement does not apply. In either  
case, the exposed pad must be connected to both digi-  
tal and analog grounds through a low thermal resis-  
tance path to ensure adequate heat dissipation. Do not  
route traces under these packages.  
Power-Up and Power-Down  
Figures 16 and 17 show the proper startup sequence of  
the MAX9672/MAX9673/MAX9674. The digital supply  
must be powered up first. The analog supply should not  
be powered up for at least 250µs (typ) after the digital  
supply has been powered up. During this time, the MTP  
register values are overwriting the default values in the  
I2C registers. Once AVDD is above approximately 8V,  
the output buffers have enough headroom to power up.  
18 ______________________________________________________________________________________  
10-Bit, Programmable Gamma Reference  
Systems with MTP for TFT LCDs  
23/MAX9674  
18V  
REF  
AVDD  
GMA1  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10-BIT  
DAC  
GMA2  
10-BIT  
DAC  
GMA3  
10-BIT  
DAC  
GMA4  
10-BIT  
DAC  
GMA5  
10-BIT  
DAC  
GMA6  
10-BIT  
DAC  
GMA7  
10-BIT  
DAC  
GMA8  
10-BIT  
DAC  
SOURCE  
DRIVER  
GMA9  
2
MTP  
MEMORY  
DAC  
REGISTERS  
10-BIT  
DAC  
I C  
REGISTERS  
LCD PANEL  
GMA10  
GMA11  
GMA12  
GMA13*  
GMA14*  
GMA15**  
GMA16**  
10-BIT  
DAC  
10-BIT  
DAC  
10-BIT  
DAC  
10-BIT  
DAC  
10-BIT  
DAC  
10-BIT  
DAC  
10-BIT  
DAC  
18V  
10-BIT  
DAC  
AVDD_AMP  
VCOM  
DVDD  
SDA  
SCL  
A0  
VCOM_FB  
AGND_AMP  
MAX9672  
MAX9673  
MAX9674  
2
I C  
INTERFACE  
GND  
GND  
*NOT AVAILABLE FOR THE MAX9672.  
**NOT AVAILABLE FOR THE MAX9672/MAX9673.  
Figure 14. Typical Application Circuit with Additional Pullup and Pulldown Resistors on GMA1 and GMA16, Respectively  
______________________________________________________________________________________ 19  
10-Bit, Programmable Gamma Reference  
Systems with MTP for TFT LCDs  
VCOM  
VCOM_FB  
Figure 15. VCOM Operational Amplifier with Feedback Resistors  
V
V
= 16.0V  
= 3.3V  
AVDD  
DVDD  
23/MAX9674  
AVDD  
REF  
REF  
5V/div  
0V  
5V/div  
0V  
GMA1  
GMA6  
GMA6  
GMA12  
DVDD  
4ms/div  
4ms/div  
Figure 16. Recommended Power-Up Sequence  
Figure 17. REF Powered Up After AVDD and DVDD  
Chip Information  
PROCESS: BiCMOS  
20 ______________________________________________________________________________________  
10-Bit, Programmable Gamma Reference  
Systems with MTP for TFT LCDs  
23/MAX9674  
Typical Operating Circuit  
18V  
REF  
AVDD  
GMA1  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10-BIT  
DAC  
GMA2  
10-BIT  
DAC  
GMA3  
10-BIT  
DAC  
GMA4  
10-BIT  
DAC  
GMA5  
10-BIT  
DAC  
GMA6  
10-BIT  
DAC  
GMA7  
10-BIT  
DAC  
GMA8  
10-BIT  
DAC  
SOURCE  
DRIVER  
GMA9  
2
MTP  
MEMORY  
DAC  
REGISTERS  
10-BIT  
DAC  
I C  
REGISTERS  
LCD PANEL  
GMA10  
GMA11  
GMA12  
GMA13*  
GMA14*  
GMA15**  
GMA16**  
10-BIT  
DAC  
10-BIT  
DAC  
10-BIT  
DAC  
10-BIT  
DAC  
10-BIT  
DAC  
10-BIT  
DAC  
10-BIT  
DAC  
18V  
10-BIT  
DAC  
AVDD_AMP  
VCOM  
DVDD  
SDA  
SCL  
A0  
MAX9672  
MAX9673  
MAX9674  
VCOM_FB  
AGND_AMP  
2
I C  
INTERFACE  
GND  
GND  
*NOT AVAILABLE FOR THE MAX9672.  
**NOT AVAILABLE FOR THE MAX9672/MAX9673.  
______________________________________________________________________________________ 21  
10-Bit, Programmable Gamma Reference  
Systems with MTP for TFT LCDs  
Package Information  
For the latest package outline information and land patterns (footprints), go to www.maxim-ic.com/packages. Note that a “+”, “#”, or  
“-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing per-  
tains to the package regardless of RoHS status.  
LAND  
PATTERN NO.  
PACKAGE TYPE  
PACKAGE CODE  
OUTLINE NO.  
21-0140  
90-0028  
28 TQFN-EP  
T2855+8  
23/MAX9674  
22 ______________________________________________________________________________________  
10-Bit, Programmable Gamma Reference  
Systems with MTP for TFT LCDs  
23/MAX9674  
Package Information (continued)  
For the latest package outline information and land patterns (footprints), go to www.maxim-ic.com/packages. Note that a “+”, “#”, or  
“-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing per-  
tains to the package regardless of RoHS status.  
______________________________________________________________________________________ 23  
10-Bit, Programmable Gamma Reference  
Systems with MTP for TFT LCDs  
Revision History  
REVISION  
NUMBER  
REVISION  
DATE  
PAGES  
CHANGED  
DESCRIPTION  
0
1
2
9/09  
10/09  
11/09  
Initial release  
12  
MTP factory initialization values changed per customer request in Table 3  
Updated write operations and soldering temperature (reflow)  
1, 2, 8, 16  
2, 3, 4, 6, 8, 11,  
14, 19, 21  
3
4
3/10  
2/11  
Added lead temperature and made various corrections  
MAX69  
Changed MTP factory initialization value of MAX9673 for GMA5  
12  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
24 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2011 Maxim Integrated Products  
Maxim is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX9672ETI+G0E

Analog Circuit, 1 Func, BICMOS, 5 X 5 MM, 0.75 MM HEIGHT, ROHS COMPLIANT, MO-220WHHD-1, TQFN-28
MAXIM

MAX9673

10-Bit, Programmable Gamma Reference Systems with MTP for TFT LCDs
MAXIM

MAX9673ETI+

Analog Circuit, 1 Func, BICMOS, 5 X 5 MM, 0.75 MM HEIGHT, ROHS COMPLIANT, MO-220WHHD-1, TQFN-28
MAXIM

MAX9673ETI+G0E

Analog Circuit, 1 Func, BICMOS, 5 X 5 MM, 0.75 MM HEIGHT, ROHS COMPLIANT, MO-220WHHD-1, TQFN-28
MAXIM

MAX9673ETI+T

Analog Circuit, 1 Func, BICMOS, 5 X 5 MM, 0.75 MM HEIGHT, ROHS COMPLIANT, MO-220WHHD-1, TQFN-28
MAXIM

MAX9674

10-Bit, Programmable Gamma Reference Systems with MTP for TFT LCDs
MAXIM

MAX9674ETI+

Analog Circuit, 1 Func, BICMOS, 5 X 5 MM, 0.75 MM HEIGHT, ROHS COMPLIANT, MO-220WHHD-1, TQFN-28
MAXIM

MAX9674ETI+G0E

Analog Circuit, 1 Func, BICMOS, 5 X 5 MM, 0.75 MM HEIGHT, ROHS COMPLIANT, MO-220WHHD-1, TQFN-28
MAXIM

MAX9674ETI+TG0E

Analog Circuit, 1 Func, BICMOS, 5 X 5 MM, 0.75 MM HEIGHT, ROHS COMPLIANT, MO-220WHHD-1, TQFN-28
MAXIM

MAX9679

12-Channel, 10-Bit Programmable Gamma and VCOM Reference Voltages
MAXIM

MAX967ESA

Single/Dual/Quad, Micropower, Ultra-Low-Voltage, Rail-to-Rail I/O Comparators
MAXIM

MAX967ESA+

Comparator, 2 Func, 7000uV Offset-Max, 20000ns Response Time, CMOS, PDSO8, 0.150 INCH, SOIC-8
MAXIM