MAX9712EUB-T [MAXIM]

Audio Amplifier, 0.7W, 1 Channel(s), 1 Func, BICMOS, PDSO10, MICRO, MAX-10;
MAX9712EUB-T
型号: MAX9712EUB-T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Audio Amplifier, 0.7W, 1 Channel(s), 1 Func, BICMOS, PDSO10, MICRO, MAX-10

放大器 信息通信管理 光电二极管 商用集成电路
文件: 总18页 (文件大小:531K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2917; Rev 1; 1/04  
500mW, Low EMI, Filterless,  
Class D Audio Amplifier  
General Description  
Features  
The MAX9712 mono class D audio power amplifier pro-  
vides class AB amplifier performance with class D effi-  
ciency, conserving board space, and extending battery  
life. Using a class D architecture, the MAX9712 delivers  
up to 500mW into an 8load while offering efficiencies  
above 85%. A patented, low EMI modulation scheme  
renders the traditional class D output filter unnecessary.  
Filterless Amplifier Passes FCC Radiated  
Emissions Standards with 100mm of Cable  
Unique Spread-Spectrum Mode Offers 5dB  
Emissions Improvement Over Conventional  
Methods  
Optional External SYNC Input  
Simple Master-Slave Setup for Stereo Operation  
85% Efficiency  
The MAX9712 offers two modulation schemes: a fixed-  
frequency (FFM) mode, and a spread-spectrum (SSM)  
mode that reduces EMI-radiated emissions due to the  
modulation frequency. Furthermore, the MAX9712 oscil-  
lator can be synchronized to an external clock through  
the SYNC input, allowing the switching frequency to be  
user defined. The SYNC input also allows multiple  
MAX9712s to be cascaded and frequency locked, mini-  
mizing interference due to clock intermodulation. The  
device utilizes a fully differential architecture, a full-  
bridged output, and comprehensive click-and-pop sup-  
pression. The gain is internally set to +4V/V, further  
reducing external component count.  
Up to 500mW into 8  
Low 0.01% THD+N  
High PSRR (72dB at 217Hz)  
Integrated Click-and-Pop Suppression  
Low Quiescent Current (4mA)  
Low-Power Shutdown Mode (0.1µA)  
Short-Circuit and Thermal-Overload Protection  
Available in Thermally Efficient, Space-Saving  
Packages  
The MAX9712 features high 72dB PSRR, a low 0.01%  
THD+N, and SNR in excess of 90dB. Short-circuit and  
thermal-overload protection prevent the device from  
damage during a fault condition. The MAX9712 is avail-  
able in 10-pin TDFN (3mm 3mm 0.8mm), 10-pin  
µMAX, and 12-bump UCSP™ (1.5mm 2mm 0.6mm)  
packages. The MAX9712 is specified over the extended  
-40°C to +85°C temperature range.  
10-Pin TDFN (3mm 3mm 0.8mm)  
10-Pin µMAX  
12-Bump UCSP (1.5mm 2mm 0.6mm)  
Ordering Information  
PIN/BUMP-  
PACKAGE  
TOP  
MARK  
Applications  
PART  
TEMP RANGE  
Cellular Phones  
PDAs  
MP3 Players  
MAX9712ETB  
MAX9712EUB  
MAX9712EBC-T  
-40°C to +85°C 10 TDFN  
-40°C to +85°C 10 µMAX  
-40°C to +85°C 12 UCSP-12  
AAI  
Portable Audio  
ABN  
Simplified Block Diagram  
V
DD  
Pin Configurations  
TOP VIEW  
DIFFERENTIAL  
AUDIO INPUT  
MODULATOR  
AND H-BRIDGE  
V
1
2
3
4
5
10 PV  
DD  
DD  
IN+  
IN-  
9
8
7
6
OUT-  
OUT+  
PGND  
SYNC  
MAX9712  
SYNC  
INPUT  
OSCILLATOR  
GND  
SHDN  
MAX9712  
TDFN/µMAX  
Pin Configurations continued at end of data sheet.  
UCSP is a trademark of Maxim Integrated Products, Inc.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
500mW, Low EMI, Filterless,  
Class D Audio Amplifier  
ABSOLUTE MAXIMUM RATINGS  
V
to GND..............................................................................6V  
Continuous Power Dissipation (T = +70°C)  
A
DD  
PV  
to PGND .........................................................................6V  
10-Pin TDFN (derate 24.4mW/°C above +70°C) .....1951.2mW  
DD  
o
GND to PGND .......................................................-0.3V to +0.3V  
10-Pin µMAX (derate 5.6mW/ C above +70°C).........444.4mW  
All Other Pins to GND.................................-0.3V to (V  
+ 0.3V)  
12-Bump UCSP (derate 6.1mW/°C above +70°C)........484mW  
Junction Temperature......................................................+150°C  
Operating Temperature Range ...........................-40°C to +85°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
Bump Temperature (soldering)  
DD  
Continuous Current Into/Out of PV /PGND/OUT_........±600mA  
DD  
Continuous Input Current (all other pins)..........................±20mA  
Duration of OUT_ Short Circuit to GND or PV ........Continuous  
DD  
Duration of Short Circuit Between OUT+ and OUT- ..Continuous  
Reflow ..........................................................................+235°C  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
DD  
= PV  
= SHDN = 3.3V, GND = PGND = 0V, SYNC = GND (FFM), R = 8, R connected between OUT+ and OUT-, T  
=
DD  
L
L
A
T
MIN  
to T  
, unless otherwise noted. Typical values are at T = +25°C.) (Notes 1, 2)  
MAX A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
GENERAL  
Supply Voltage Range  
Quiescent Current  
Shutdown Current  
Turn-On Time  
V
Inferred from PSRR test  
2.5  
5.5  
5.2  
5
V
DD  
I
4
0.1  
30  
mA  
µA  
ms  
k  
V
DD  
I
SHDN  
t
ON  
Input Resistance  
Input Bias Voltage  
Voltage Gain  
R
T
A
= +25°C  
14  
0.73  
3.8  
20  
IN  
V
Either input  
0.83  
4
0.93  
4.2  
BIAS  
A
V/V  
V
MAX9712EUB/MAX9712ETB  
MAX9712EBC  
±11  
±15  
±40  
±65  
±65  
±95  
T
= +25°C  
A
Output Offset Voltage  
V
mV  
OS  
MAX9712EUB/MAX9712ETB  
MAX9712EBC  
T
T
T ≤  
A
MIN  
MAX  
Common-Mode Rejection Ratio  
CMRR  
PSRR  
f
= 1kHz, input referred  
72  
70  
dB  
dB  
IN  
V
= 2.5V to 5.5V  
50  
DD  
Power-Supply Rejection Ratio  
(Note 3)  
f
f
= 217Hz  
= 20kHz  
72  
RIPPLE  
200mV  
ripple  
P-P  
55  
RIPPLE  
R = 16, V  
= 5V  
700  
450  
250  
L
DD  
Output Power  
P
THD+N = 1%  
R = 8Ω  
L
mW  
%
OUT  
R = 6Ω  
L
R = 8,  
L
0.01  
0.01  
P
= 125mW  
OUT  
Total Harmonic Distortion Plus  
Noise  
f
IN  
= 1kHz, either  
THD+N  
FFM or SSM  
R = 6,  
L
P
= 125mW  
OUT  
2
_______________________________________________________________________________________  
500mW, Low EMI, Filterless,  
Class D Audio Amplifier  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
DD  
= PV  
= SHDN = 3.3V, GND = PGND = 0V, SYNC = GND (FFM), R = 8, R connected between OUT+ and OUT-, T  
=
DD  
L
L
A
T
MIN  
to T  
, unless otherwise noted. Typical values are at T = +25°C.) (Notes 1, 2)  
MAX A  
PARAMETER  
SYMBOL  
CONDITIONS  
BW = 22Hz  
MIN  
TYP  
88  
MAX  
UNITS  
FFM  
SSM  
FFM  
SSM  
to 22kHz  
86  
Signal-to-Noise Ratio  
Oscillator Frequency  
SNR  
V
= 1.8V  
dB  
OUT  
RMS  
91  
A-weighted  
89  
SYNC = GND  
SYNC = float  
980  
1100  
1450  
1220  
1620  
1280  
f
kHz  
OSC  
1220  
±120  
SYNC = V  
(SSM mode)  
DD  
SYNC Frequency Lock Range  
Efficiency  
800  
2
2000  
kHz  
%
η
P
= 300mW, f = 1kHz  
85  
OUT  
IN  
DIGITAL INPUTS (SHDN, SYNC)  
V
V
IH  
IL  
Input Thresholds  
V
0.8  
±1  
±5  
SHDN Input Leakage Current  
µA  
µA  
SYNC Input Current  
Note 1: All devices are 100% production tested at +25°C. All temperature limits are guaranteed by design.  
Note 2: Testing performed with a resistive load in series with an inductor to simulate an actual speaker load. For R = 6, L = 47µH.  
L
For R = 8, L = 68µH. For R = 16, L = 136µH.  
L
L
Note 3: PSRR is specified with the amplifier inputs connected to GND through C  
.
IN  
Typical Operating Characteristics  
(V  
DD  
= 3.3V, V  
= GND, T = +25°C, unless otherwise noted.)  
SYNC  
A
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY  
1
1
1
V
DD  
= +3.3V  
V
DD  
= +5V  
V
DD  
= +3.3V  
R = 8  
R = 8Ω  
L
R = 8Ω  
L
L
P
= 125mW  
OUT  
0.1  
0.1  
0.1  
P
OUT  
= 300mW  
P
OUT  
= 300mW  
SSM MODE  
0.01  
0.01  
0.001  
0.01  
0.001  
P
= 125mW  
OUT  
P
= 125mW  
10k  
OUT  
FFM MODE  
0.001  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
10  
100  
1k  
100k  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
FREQUENCY (Hz)  
_______________________________________________________________________________________  
3
500mW, Low EMI, Filterless,  
Class D Audio Amplifier  
Typical Operating Characteristics (continued)  
(V  
DD  
= 3.3V, V  
= GND, T = +25°C, unless otherwise noted.)  
SYNC  
A
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER  
100  
100  
10  
1
100  
10  
1
V
DD  
= 3.3V  
V
DD  
= 5V  
V
DD  
= 3.3V  
R = 8Ω  
L
R = 16Ω  
L
R = 6Ω  
L
10  
1
f = 10kHz  
f = 10kHz  
0.1  
0.1  
0.1  
f = 10kHz  
0.01  
0.01  
0.01  
f = 100Hz  
0.2  
f = 100Hz  
0.3  
f = 1kHz  
f = 100Hz  
0.6 0.8  
f = 1kHz  
0.4  
f = 1kHz  
0.001  
0.001  
0.001  
0
0.1  
0.2  
0.4  
0.5  
0
0.2  
1.0  
0
0.1  
0.3  
0.4  
OUTPUT POWER (W)  
OUTPUT POWER (W)  
OUTPUT POWER (W)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER  
100  
10  
1
100  
10  
1
100  
10  
1
V
= 2.5V  
V
DD  
= 3.3V  
DD  
V
DD  
= 3.3V  
R = 8  
R = 8Ω  
SYNC = 3.3V  
L
L
R = 8Ω  
L
f = 2MHz  
SYNC  
V
CM  
= 1.25V  
P-P  
NO INPUT CAPACITORS  
50% DUTY CYCLE  
SQUARE WAVE  
f
= 1.4MHz  
SYNC  
SSM  
(SYNC = V  
FFM  
DIFFERENTIAL  
INPUT  
)
DD  
(SYNC FLOATING)  
0.1  
0.1  
0.1  
0.01  
0.01  
0.01  
SINGLE-ENDED  
FFM  
f
= 800kHz  
0.2  
SYNC  
(SYNC = GND)  
0.001  
0.001  
0.001  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0
0.1  
0.3  
0.4  
0.5  
0.6  
OUTPUT POWER (W)  
OUTPUT POWER (W)  
OUTPUT POWER (W)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. COMMON-MODE VOLTAGE  
EFFICIENCY vs. OUTPUT POWER  
EFFICIENCY vs. OUTPUT POWER  
10  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
DD  
= 3.3V  
R = 8Ω  
L
f = 1kHz  
R = 16Ω  
L
P
= 300mW  
R = 16Ω  
L
OUT  
DIFFERENTIAL INPUT  
R = 8Ω  
L
1
R = 8Ω  
L
R = 6Ω  
L
0.1  
V
DD  
= 5V  
V
DD  
= 3.3V  
f = 1kHz  
f = 1kHz  
0.01  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7  
OUTPUT POWER (W)  
OUTPUT POWER (W)  
COMMON-MODE VOLTAGE (V)  
4
_______________________________________________________________________________________  
500mW, Low EMI, Filterless,  
Class D Audio Amplifier  
Typical Operating Characteristics (continued)  
(V  
DD  
= 3.3V, V  
= GND, T = +25°C, unless otherwise noted.)  
SYNC  
A
EFFICIENCY  
vs. SYNC INPUT FREQUENCY  
OUTPUT POWER  
vs. SUPPLY VOLTAGE  
EFFICIENCY vs. SUPPLY VOLTAGE  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
100  
f = 1kHz  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
R = 16Ω  
L
R = 8Ω  
L
R = 6Ω  
L
R = 16Ω  
L
R = 8Ω  
L
V
= 3.3V  
DD  
f = 1kHz  
= 300mW  
P
OUT  
R = 6Ω  
L
R = 8Ω  
f = 1kHz  
L
800 1000 1200 1400 1600 1800 2000  
SYNC FREQUENCY (kHz)  
2.5  
3.1  
3.7  
4.3  
4.9  
5.5  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
COMMON-MODE REJECTION RATIO  
vs. FREQUENCY  
POWER-SUPPLY REJECTION RATIO  
vs. FREQUENCY  
OUTPUT POWER  
vs. LOAD RESISTANCE  
0
0
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
f = 1kHz  
THD+N = 1%  
INPUT REFERRED  
OUTPUT REFERRED  
INPUTS AC GROUNDED  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
V
IN  
= 200mV  
P-P  
V
DD  
= 3.3V  
V
= 5V  
DD  
V
= 3.3V  
DD  
-90  
-90  
-100  
-100  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
10  
100  
1k  
10k  
100k  
0
10 20 30 40 50 60 70 80 90 100  
FREQUENCY (Hz)  
LOAD RESISTANCE ()  
GSM POWER-SUPPLY REJECTION  
OUTPUT FREQUENCY SPECTRUM  
MAX9712TOC19  
0
-20  
-40  
-60  
-80  
FFM MODE  
V
OUT  
= -60dBV  
f = 1kHz  
500mV/div  
V
DD  
R = 8Ω  
L
UNWEIGHTED  
-100  
-120  
-140  
MAX9712  
OUTPUT  
100µV/div  
2ms/div  
0
5k  
10k  
15k  
20k  
f = 217Hz  
INPUT LOW = 3V  
INPUT HIGH = 3.5V  
DUTY CYCLE = 88%  
R = 8Ω  
FREQUENCY (Hz)  
L
_______________________________________________________________________________________  
5
500mW, Low EMI, Filterless,  
Class D Audio Amplifier  
Typical Operating Characteristics (continued)  
(V  
DD  
= 3.3V, V  
= GND, T = +25°C, unless otherwise noted.)  
SYNC  
A
WIDEBAND OUTPUT SPECTRUM  
(FFM MODE)  
OUTPUT FREQUENCY SPECTRUM  
OUTPUT FREQUENCY SPECTRUM  
0
0
0
-20  
SSM MODE  
SSM MODE  
RBW = 10kHz  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
V
= -60dBV  
V
= -60dBV  
OUT  
OUT  
-20  
-40  
f = 1kHz  
f = 1kHz  
R = 8Ω  
R = 8Ω  
L
L
-40  
UNWEIGHTED  
A-WEIGHTED  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-100  
-120  
-140  
-90  
-100  
1M  
10M  
100M  
1G  
0
5
10  
15  
20  
0
5
10  
15  
20  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
FREQUENCY (Hz)  
WIDEBAND OUTPUT SPECTRUM  
(SSM MODE)  
TURN-ON/TURN-OFF RESPONSE  
0
RBW = 10kHz  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
3V  
SHDN  
0V  
MAX9712  
OUTPUT  
250mV/div  
-90  
-100  
1M  
10M  
100M  
1G  
10ms/div  
f = 1kHz  
R = 8Ω  
FREQUENCY (Hz)  
L
SHUTDOWN SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
0.16  
0.14  
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0
T
= +85°C  
A
T
= +85°C  
A
T
A
= +25°C  
T
A
= +25°C  
T
= -40°C  
A
T
A
= -40°C  
3.0  
2.5  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
6
_______________________________________________________________________________________  
500mW, Low EMI, Filterless,  
Class D Audio Amplifier  
Functional Diagram  
V
DD  
10µF  
1µF  
1
10  
6
(C4)  
(B1)  
(C2)  
V
DD  
PV  
DD  
SYNC  
5
(B3)  
SHDN  
UVLO/POWER  
MANAGEMENT  
CLICK AND POP  
SUPPRESSION  
OSCILLATOR  
PV  
DD  
2
(B4)  
8
(C1)  
IN+  
IN-  
OUT+  
OUT-  
PGND  
CLASS D  
MODULATOR  
3
(A4)  
PV  
DD  
9
(A1)  
MAX9712  
PGND  
GND  
PGND  
7
4
(B2)  
(A5)  
( ) UCSP BUMP.  
_______________________________________________________________________________________  
7
500mW, Low EMI, Filterless,  
Class D Audio Amplifier  
Pin Description  
PIN  
BUMP  
UCSP  
C4  
NAME  
FUNCTION  
TDFN/µMAX  
1
2
3
4
5
V
Analog Power Supply  
Noninverting Audio Input  
Inverting Audio Input  
Analog Ground  
DD  
B4  
IN+  
IN-  
A4  
A3  
GND  
SHDN  
B3  
Active-Low Shutdown Input. Connect to V  
for normal operation.  
DD  
Frequency Select and External Clock Input.  
SYNC = GND: Fixed-frequency mode with f = 1100kHz.  
S
6
C2  
SYNC  
SYNC = Float: Fixed-frequency mode with f = 1450kHz.  
S
SYNC = V : Spread-spectrum mode with f = 1220kHz ±120kHz.  
DD  
S
SYNC = Clocked: Fixed-frequency mode with f = external clock frequency.  
S
7
8
B2  
C1  
A1  
B1  
PGND  
OUT+  
OUT-  
Power Ground  
Amplifier Output Positive Phase  
Amplifier Output Negative Phase  
H-Bridge Power Supply  
9
10  
PV  
DD  
Operating Modes  
Detailed Description  
Fixed-Frequency Modulation (FFM) Mode  
The MAX9712 features two FFM modes. The FFM  
modes are selected by setting SYNC = GND for a  
1.1MHz switching frequency, and SYNC = FLOAT for a  
1.45MHz switching frequency. In FFM mode, the fre-  
quency spectrum of the class D output consists of the  
fundamental switching frequency and its associated  
harmonics (see the Wideband FFT graph in the Typical  
Operating Characteristics). The MAX9712 allows the  
switching frequency to be changed by +32%, should  
the frequency of one or more of the harmonics fall in a  
sensitive band. This can be done at any time and does  
not affect audio reproduction.  
The MAX9712 filterless, class D audio power amplifier  
features several improvements to switch-mode amplifier  
technology. The MAX9712 offers class AB performance  
with class D efficiency, while occupying minimal board  
space. A unique filterless modulation scheme, synchro-  
nizable switching frequency, and SSM mode create a  
compact, flexible, low-noise, efficient audio power  
amplifier. The differential input architecture reduces  
common-mode noise pick-up, and can be used without  
input-coupling capacitors. The device can also be con-  
figured as a single-ended input amplifier.  
Comparators monitor the MAX9712 inputs and com-  
pare the complementary input voltages to the sawtooth  
waveform. The comparators trip when the input magni-  
tude of the sawtooth exceeds their corresponding input  
voltage. Both comparators reset at a fixed time after the  
rising edge of the second comparator trip point, gener-  
Spread-Spectrum Modulation (SSM) Mode  
The MAX9712 features a unique, patented spread-spec-  
trum mode that flattens the wideband spectral compo-  
nents, improving EMI emissions that may be radiated by  
the speaker and cables by 5dB. Proprietary techniques  
ensure that the cycle-to-cycle variation of the switching  
period does not degrade audio reproduction or efficien-  
cy (see the Typical Operating Characteristics). Select  
ating a minimum-width pulse t  
at the output of  
ON(min)  
the second comparator (Figure 1). As the input voltage  
increases or decreases, the duration of the pulse at one  
output increases (the first comparator to trip) while the  
SSM mode by setting SYNC = V . In SSM mode, the  
DD  
other output pulse duration remains at t  
. This  
OUT+  
ON(min)  
switching frequency varies randomly by ±120kHz  
around the center frequency (1.22MHz). The modulation  
scheme remains the same, but the period of the saw-  
tooth waveform changes from cycle to cycle (Figure 2).  
Instead of a large amount of spectral energy present at  
multiples of the switching frequency, the energy is now  
causes the net voltage across the speaker (V  
-
V
) to change.  
OUT-  
8
_______________________________________________________________________________________  
500mW, Low EMI, Filterless,  
Class D Audio Amplifier  
t
SW  
V
IN-  
V
IN+  
OUT-  
OUT+  
t
ON(MIN)  
V
OUT+  
- V  
OUT-  
Figure 1. MAX9712 Outputs with an Input Signal Applied  
system), or allocating the spectral components of the  
switching harmonics to insensitive frequency bands.  
Applying an external TTL clock of 800kHz to 2MHz to  
SYNC synchronizes the switching frequency of the  
MAX9712. The period of the SYNC clock can be ran-  
domized, enabling the MAX9712 to be synchronized to  
another MAX9712 operating in SSM mode.  
Table 1. Operating Modes  
SYNC INPUT  
MODE  
GND  
FFM with f = 1100kHz  
S
FLOAT  
FFM with f = 1450kHz  
S
V
SSM with f = 1220kHz ±120kHz  
S
DD  
Clocked  
FFM with f = external clock frequency  
S
Filterless Modulation/Common-Mode Idle  
The MAX9712 uses Maxim’s unique, patented modula-  
tion scheme that eliminates the LC filter required by  
traditional class D amplifiers, improving efficiency,  
reducing component count, conserving board space  
and system cost. Conventional class D amplifiers out-  
put a 50% duty cycle square wave when no signal is  
present. With no filter, the square wave appears across  
spread over a bandwidth that increases with frequency.  
Above a few MHz, the wideband spectrum looks like  
white noise for EMI purposes (Figure 3).  
External Clock Mode  
The SYNC input allows the MAX9712 to be synchro-  
nized to a system clock (allowing a fully synchronous  
_______________________________________________________________________________________  
9
500mW, Low EMI, Filterless,  
Class D Audio Amplifier  
t
t
t
t
SW  
SW  
SW  
SW  
V
IN-  
V
IN+  
OUT-  
OUT+  
t
ON(MIN)  
V
OUT+  
- V  
OUT-  
Figure 2. MAX9712 Output with an Input Signal Applied (SSM Mode)  
the load as a DC voltage, resulting in finite load current,  
increasing power consumption. When no signal is pre-  
sent at the input of the MAX9712, the outputs switch as  
shown in Figure 4. Because the MAX9712 drives the  
speaker differentially, the two outputs cancel each  
other, resulting in no net idle mode voltage across the  
speaker, minimizing power consumption.  
The theoretical best efficiency of a linear amplifier is  
78%, however, that efficiency is only exhibited at peak  
output powers. Under normal operating levels (typical  
music reproduction levels), efficiency falls below 30%,  
whereas the MAX9712 still exhibits >80% efficiencies  
under the same conditions (Figure 5).  
Efficiency  
Efficiency of a class D amplifier is attributed to the  
region of operation of the output stage transistors. In a  
class D amplifier, the output transistors act as current-  
steering switches and consume negligible additional  
power. Any power loss associated with the class D out-  
put stage is mostly due to the I R loss of the MOSFET  
on-resistance, and quiescent current overhead.  
10 ______________________________________________________________________________________  
500mW, Low EMI, Filterless,  
Class D Audio Amplifier  
V
IN  
= 0V  
50.0  
45.0  
40.0  
35.0  
30.0  
25.0  
20.0  
15.0  
10.0  
OUT-  
OUT+  
30.0  
60.0 80.0 100.0 120.0 140.0 160.0 180.0 200.0 220.0 240.0 260.0 280.0 300.0  
FREQUENCY (MHz)  
V - V = 0V  
OUT+ OUT-  
Figure 3. MAX9712 with 76mm of Speaker Cable  
Figure 4. MAX9712 Outputs with No Input Signal  
Shutdown  
The MAX9712 has a shutdown mode that reduces power  
consumption and extends battery life. Driving SHDN low  
places the MAX9712 in a low-power (0.1µA) shutdown  
EFFICIENCY vs. OUTPUT POWER  
100  
90  
80  
70  
mode. Connect SHDN to V  
for normal operation.  
DD  
Click-and-Pop Suppression  
The MAX9712 features comprehensive click-and-pop  
suppression that eliminates audible transients on start-  
up and shutdown. While in shutdown, the H-bridge is in  
a high-impedance state. During startup, or power-up,  
the input amplifiers are muted and an internal loop sets  
the modulator bias voltages to the correct levels, pre-  
venting clicks and pops when the H-bridge is subse-  
quently enabled. For 35ms following startup, a soft-start  
function gradually unmutes the input amplifiers.  
MAX9712  
60  
50  
40  
CLASS AB  
30  
V
DD  
= 3.3V  
20  
10  
0
f = 1kHz  
R - 8Ω  
L
0
0.1  
0.2  
0.3  
0.4  
0.5  
OUTPUT POWER (W)  
Applications Information  
Figure 5. MAX9712 Efficiency vs. Class AB Efficiency  
Filterless Operation  
Traditional class D amplifiers require an output filter to  
recover the audio signal from the amplifier’s output. The  
filters add cost, increase the solution size of the amplifi-  
er, and can decrease efficiency. The traditional PWM  
Because the frequency of the MAX9712 output is well  
beyond the bandwidth of most speakers, voice coil  
movement due to the square-wave frequency is very  
small. Although this movement is small, a speaker not  
designed to handle the additional power may be dam-  
aged. For optimum results, use a speaker with a series  
inductance >10µH. Typical 8speakers exhibit series  
inductances in the range of 20µH to 100µH.  
scheme uses large differential output swings (2 x V  
DD  
peak-to-peak) and causes large ripple currents. Any  
parasitic resistance in the filter components results in a  
loss of power, lowering the efficiency.  
The MAX9712 does not require an output filter. The  
device relies on the inherent inductance of the speaker  
coil and the natural filtering of both the speaker and the  
human ear to recover the audio component of the  
square-wave output. Eliminating the output filter results  
in a smaller, less costly, more efficient solution.  
Power Conversion Efficiency  
Unlike a class AB amplifier, the output offset voltage of  
a class D amplifier does not noticeably increase quies-  
cent current draw when a load is applied. This is due to  
______________________________________________________________________________________ 11  
500mW, Low EMI, Filterless,  
Class D Audio Amplifier  
the power conversion of the class D amplifier. For exam-  
ple, an 8mV DC offset across an 8load results in 1mA  
extra current consumption in a class AB device. In the  
class D case, an 8mV offset into 8equates to an addi-  
tional power drain of 8µW. Due to the high efficiency of  
the class D amplifier, this represents an additional quies-  
1µF  
SINGLE-ENDED  
AUDIO INPUT  
IN+  
IN-  
MAX9712  
cent current draw of: 8µW/(V /100η), which is on the  
1µF  
DD  
order of a few microamps.  
Input Amplifier  
Differential Input  
The MAX9712 features a differential input structure,  
making it compatible with many CODECs, and offering  
improved noise immunity over a single-ended input  
amplifier. In devices such as cellular phones, high-fre-  
quency signals from the RF transmitter can be picked  
up by the amplifier’s input traces. The signals appear at  
the amplifier’s inputs as common-mode noise. A differ-  
ential input amplifier amplifies the difference of the two  
inputs, any signal common to both inputs is canceled.  
Figure 6. Single-Ended Input  
high-voltage coefficients, such as ceramics, may result  
in increased distortion at low frequencies.  
Other considerations when designing the input filter  
include the constraints of the overall system and the  
actual frequency band of interest. Although high-fidelity  
audio calls for a flat-gain response between 20Hz and  
20kHz, portable voice-reproduction devices such as  
cellular phones and two-way radios need only concen-  
trate on the frequency range of the spoken human  
voice (typically 300Hz to 3.5kHz). In addition, speakers  
used in portable devices typically have a poor response  
below 150Hz. Taking these two factors into considera-  
tion, the input filter may not need to be designed for a  
20Hz to 20kHz response, saving both board space and  
cost due to the use of smaller capacitors.  
Single-Ended Input  
The MAX9712 can be configured as a single-ended  
input amplifier by capacitively coupling either input to  
GND, and driving the other input (Figure 6).  
DC-Coupled Input  
The input amplifier can accept DC-coupled inputs that  
are biased within the amplifier’s common-mode range  
(see the Typical Operating Characteristics). DC cou-  
pling eliminates the input-coupling capacitors, reduc-  
ing component count to potentially one external  
component (see the System Diagram). However, the  
low-frequency rejection of the capacitors is lost, allow-  
ing low-frequency signals to feedthrough to the load.  
Output Filter  
The MAX9712 does not require an output filter. The  
device passes FCC emissions standards with 100mm  
of unshielded speaker cables. However, output filtering  
can be used if a design is failing radiated emissions  
due to board layout or cable length, or the circuit is  
near EMI sensitive devices. Use an LC filter when radi-  
ated emissions are a concern, or when long leads are  
used to connect the amplifier to the speaker.  
Component Selection  
Input Filter  
An input capacitor, C , in conjunction with the input  
IN  
impedance of the MAX9712 forms a highpass filter that  
removes the DC bias from an incoming signal. The AC-  
coupling capacitor allows the amplifier to bias the sig-  
nal to an optimum DC level. Assuming zero-source  
impedance, the -3dB point of the highpass filter is  
given by:  
Supply Bypassing/Layout  
Proper power-supply bypassing ensures low distortion  
operation. For optimum performance, bypass VDD to  
GND and PVDD to PGND with separate 0.1µF capaci-  
tors as close to each pin as possible. A low-imped-  
ance, high-current power-supply connection to PVDD is  
assumed. Additional bulk capacitance should be  
added as required depending on the application and  
power-supply characteristics. GND and PGND should  
be star connected to system ground. Refer to the  
MAX9712 Evaluation Kit for layout guidance.  
1
f
=
3dB  
2πR C  
IN IN  
Choose C so f  
is well below the lowest frequency  
-3dB  
IN  
-3dB  
of interest. Setting f  
too high affects the low-fre-  
Stereo Configuration  
Two MAX9712s can be configured as a stereo amplifier  
(Figure 7). Device U1 is the master amplifier; its unfil-  
quency response of the amplifier. Use capacitors  
whose dielectrics have low-voltage coefficients, such  
as tantalum or aluminum electrolytic. Capacitors with  
12 ______________________________________________________________________________________  
500mW, Low EMI, Filterless,  
Class D Audio Amplifier  
tered output drives the SYNC input of the slave device  
(U2), synchronizing the switching frequencies of the two  
devices. Synchronizing two MAX9712s ensures that no  
beat frequencies occur within the audio spectrum. This  
configuration works when the master device is in either  
FFM or SSM mode. There is excellent THD+N perfor-  
mance and minimal crosstalk between devices due to  
the SYNC connection (Figures 8 and 9). U2 locks onto  
only the frequency present at SYNC, not the pulse  
width. The internal feedback loop of device U2 ensures  
that the audio component of U1’s output is rejected.  
V
DD  
1µF  
V
DD  
PV  
DD  
MAX9712  
IN+  
IN-  
OUT+  
RIGHT-CHANNEL  
DIFFERENTIAL  
AUDIO INPUT  
OUT-  
UCSP Applications Information  
SYNC  
For the latest application details on UCSP construction,  
dimensions, tape carrier information, printed circuit  
board techniques, bump-pad layout, and recommend-  
ed reflow temperature profile, as well as the latest  
information on reliability testing results, refer to the  
Application Note: UCSPA Wafer-Level Chip-Scale  
Package available on Maxim’s website at www.maxim-  
ic.com/ucsp.  
1µF  
V
DD  
PV  
DD  
MAX9712  
IN+  
IN-  
OUT+  
LEFT-CHANNEL  
DIFFERENTIAL  
AUDIO INPUT  
Chip Information  
TRANSISTOR COUNT: 3595  
OUT-  
PROCESS: BiCMOS  
SYNC  
Figure 7. Master-Slave Stereo Configuration  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER  
CROSSTALK vs. FREQUENCY  
100  
0
V
= 3.3V  
DD  
V
L
= 3.3V  
R = 8Ω  
f = 1kHz  
DD  
f = 1kHz  
R = 8Ω  
L
-20  
-40  
10  
1
SLAVE DEVICE  
V
= 500mV  
IN  
P-P  
-60  
MASTER-TO-SLAVE  
SLAVE-TO-MASTER  
0.1  
-80  
0.01  
-100  
-120  
0.001  
0
0.1  
0.2  
0.3  
0.4  
0.5  
10  
100  
1k  
10k  
100k  
OUTPUT POWER (W)  
FREQUENCY (Hz)  
Figure 8. Master-Slave THD  
Figure 9. Master-Slave Crosstalk  
______________________________________________________________________________________ 13  
500mW, Low EMI, Filterless,  
Class D Audio Amplifier  
System Diagram  
V
DD  
V
DD  
0.1µF  
2.2kΩ  
AUX_IN  
1µF  
V
DD  
PV  
DD  
MAX9712  
MAX4063  
IN+  
OUT+  
CODEC/  
BASEBAND  
PROCESSOR  
BIAS  
IN-  
OUT  
OUT  
2.2kΩ  
0.1µF  
OUT-  
SHDN  
SYNC  
IN+  
IN-  
V
DD  
0.1µF  
100kΩ  
1µF  
MODE1  
MODE2  
INL  
V
DD  
HPS  
OUTL  
OUTR  
1µF  
1µF  
V
DD  
MAX9720  
INR  
10kΩ  
µCONTROLLER  
ALERT  
TIME  
PV  
SV  
DD  
DD  
C1P  
CIN  
220nF  
1µF  
1µF  
Pin Configurations (continued)  
TOP VIEW  
(BUMP SIDE DOWN)  
1
MAX9712  
2
3
4
OUT-  
GND  
IN-  
A
B
PV  
SHDN  
IN+  
PGND  
SYNC  
DD  
OUT+  
V
DD  
C
UCSP  
14 ______________________________________________________________________________________  
500mW, Low EMI, Filterless,  
Class D Audio Amplifier  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
PACKAGE OUTLINE, 4x3 UCSP  
1
21-0104  
F
1
______________________________________________________________________________________ 15  
500mW, Low EMI, Filterless,  
Class D Audio Amplifier  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
L
A
D2  
D
A2  
PIN 1 ID  
1
N
1
C0.35  
b
[(N/2)-1] x e  
REF.  
E
E2  
PIN 1  
INDEX  
AREA  
DETAIL A  
e
k
A1  
C
L
C
L
L
L
e
e
A
DALLAS  
SEMICONDUCTOR  
PROPRIETARY INFORMATION  
TITLE:  
PACKAGE OUTLINE, 6, 8 & 10L,  
TDFN, EXPOSED PAD, 3x3x0.80 mm  
APPROVAL  
DOCUMENT CONTROL NO.  
REV.  
NUMBER OF LEADS SHOWN ARE FOR REFERENCE ONLY  
1
2
21-0137  
D
16 ______________________________________________________________________________________  
500mW, Low EMI, Filterless,  
Class D Audio Amplifier  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
COMMON DIMENSIONS  
SYMBOL  
MIN.  
0.70  
2.90  
2.90  
0.00  
0.20  
MAX.  
0.80  
3.10  
3.10  
0.05  
0.40  
A
D
E
A1  
L
k
0.25 MIN.  
0.20 REF.  
A2  
PACKAGE VARIATIONS  
PKG. CODE  
T633-1  
N
6
D2  
E2  
e
JEDEC SPEC  
MO229 / WEEA  
MO229 / WEEC  
b
[(N/2)-1] x e  
1.90 REF  
1.95 REF  
2.00 REF  
1.50±0.10 2.30±0.10 0.95 BSC  
1.50±0.10 2.30±0.10 0.65 BSC  
0.40±0.05  
0.30±0.05  
T833-1  
8
T1033-1  
10  
1.50±0.10 2.30±0.10 0.50 BSC MO229 / WEED-3 0.25±0.05  
DALLAS  
SEMICONDUCTOR  
PROPRIETARY INFORMATION  
TITLE:  
PACKAGE OUTLINE, 6, 8 & 10L,  
TDFN, EXPOSED PAD, 3x3x0.80 mm  
APPROVAL  
DOCUMENT CONTROL NO.  
REV.  
2
2
21-0137  
D
______________________________________________________________________________________ 17  
500mW, Low EMI, Filterless,  
Class D Audio Amplifier  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
e
4X S  
10  
10  
INCHES  
MAX  
MILLIMETERS  
MAX  
1.10  
0.15  
0.95  
3.05  
3.00  
3.05  
3.00  
5.05  
0.70  
DIM MIN  
MIN  
-
A
-
0.043  
0.006  
0.037  
0.120  
0.118  
0.120  
0.118  
0.199  
A1  
A2  
D1  
D2  
E1  
E2  
H
0.002  
0.030  
0.116  
0.114  
0.116  
0.114  
0.187  
0.05  
0.75  
2.95  
2.89  
2.95  
2.89  
4.75  
0.40  
H
ÿ 0.50±0.1  
0.6±0.1  
L
0.0157 0.0275  
0.037 REF  
L1  
b
0.940 REF  
0.007  
0.0106  
0.177  
0.270  
0.200  
1
1
e
0.0197 BSC  
0.500 BSC  
0.6±0.1  
c
0.0035 0.0078  
0.0196 REF  
0.090  
BOTTOM VIEW  
0.498 REF  
S
α
TOP VIEW  
0  
6∞  
0∞  
6∞  
D2  
E2  
GAGE PLANE  
A2  
c
A
E1  
b
L
α
A1  
D1  
L1  
FRONT VIEW  
SIDE VIEW  
PROPRIETARY INFORMATION  
TITLE:  
PACKAGE OUTLINE, 10L uMAX/uSOP  
APPROVAL  
DOCUMENT CONTROL NO.  
REV.  
1
21-0061  
I
1
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
18 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2004 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX9713

6W, Filterless, Spread-Spectrum Mono/Stereo Class D Amplifiers
MAXIM

MAX9713ETJ

6W, Filterless, Spread-Spectrum Mono/Stereo Class D Amplifiers
MAXIM

MAX9713ETJ+

Audio Amplifier, 8W, 1 Channel(s), 1 Func, BICMOS, 5 X 5 MM, 0.80 MM HEIGHT, MO-220WHHD-2, TQFN-32
MAXIM

MAX9713ETJ+T

Audio Amplifier, 8W, 1 Channel(s), 1 Func, BICMOS, 5 X 5 MM, 0.80 MM HEIGHT, EXPOSED PAD, TQFN-32
MAXIM

MAX9713ETJ-T

Audio Amplifier, 8W, 1 Channel(s), 1 Func, BICMOS, PQCC32, 5 X 5 MM, 0.80 MM HEIGHT, MO-220WHHD-2, TQFN-32
MAXIM

MAX9713EVKIT

MAX9713 Evaluation Kit
MAXIM

MAX9713_07

MAX9713 Evaluation Kit
MAXIM

MAX9713|MAX9714

6W. Filterless. Spread-Spectrum Mono/Stereo Class D Amplifiers
MAXIM

MAX9714

6W, Filterless, Spread-Spectrum Mono/Stereo Class D Amplifiers
MAXIM

MAX9714ETJ

6W, Filterless, Spread-Spectrum Mono/Stereo Class D Amplifiers
MAXIM

MAX9714ETJ+T

暂无描述
MAXIM

MAX9714ETJ-T

Audio Amplifier, 8W, 2 Channel(s), 1 Func, BICMOS, PQCC32, 7 X 7 MM, 0.80 MM HEIGHT, MO-220, TQFN-32
MAXIM