MAX9744_V01 [MAXIM]

20W Stereo Class D Speaker Amplifier with Volume Control;
MAX9744_V01
型号: MAX9744_V01
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

20W Stereo Class D Speaker Amplifier with Volume Control

文件: 总28页 (文件大小:603K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-4078; Rev 1; 9/08  
20W Stereo Class D Speaker Amplifier  
with Volume Control  
MAX974  
General Description  
Features  
The MAX9744 20W stereo Class D audio power amplifi-  
er provides Class AB amplifier performance with Class  
D efficiency, conserving board space and eliminating  
the need for a bulky heatsink. This device features sin-  
gle-supply operation, adjustable gain, shutdown mode,  
a SYNC output, speaker mute, and industry-leading  
click-and-pop suppression.  
Wide 4.5V to 14V Power-Supply Voltage Range  
Filterless Spread-Spectrum Modulation Lowers  
Radiated RF Emissions from Speaker Cables  
20W Stereo Output (4Ω, V  
= 12V, THD+N = 10%)  
DD  
2
Integrated Volume Control (I C or Analog)  
Low 0.04% THD+N  
The MAX9744 features a 64-step dual-mode (analog or  
digital), programmable volume control and mute func-  
tion. The MAX9744 operates from a 4.5V to 14V single  
supply and can deliver up to 20W per channel into a  
4Ω speaker with a 14V supply.  
The MAX9744 offers two modulation schemes: a fixed-  
frequency modulation mode that allows one of several  
preset switching frequencies to be selected, and a  
spread-spectrum modulation mode that helps to  
reduce EMI-radiated emissions.  
High 75dB PSRR  
High 93% Efficiency  
Integrated Click-and-Pop Suppression  
Low-Power Shutdown Mode  
Short-Circuit and Thermal-Overload Protection  
Available in a 44-Pin Thin QFN-EP (7mm x 7mm x  
0.8mm)  
The MAX9744 features high 75dB PSRR, low 0.04%  
THD+N, and SNR in excess of 90dB. Robust short-cir-  
cuit and thermal-overload protection prevent device  
damage during a fault condition. The MAX9744 is avail-  
able in a 44-pin thin QFN-EP (7mm x 7mm x 0.8mm)  
package and is specified over the extended -40°C to  
+85°C temperature range.  
Ordering Information  
PART  
TEMP RANGE  
PIN-PACKAGE  
MAX9744ETH+  
-40°C to +85°C  
44 TQFN-EP*  
+Denotes a lead-free/RoHS-compliant package.  
*EP = Exposed pad.  
Applications  
Flat-Panel Televisions  
PC Speaker Systems  
Multimedia Docking Stations  
Pin Configuration appears at end of data sheet.  
Simplified Block Diagram  
3V TO 3.6V  
4.5V TO 14V  
MAX9744 EMI WITH FERRITE BEAD FILTERS  
MAX9744  
(V = 12V, 1m CABLE, 8Ω LOAD)  
DD  
40  
35  
VOLUME  
CONTROL  
EN5022 B LIMIT  
BIAS  
30  
25  
20  
MUTE  
SHUTDOWN  
CONTROL  
15  
10  
2
I C  
ANALOG  
CONTROL  
5
SYNC  
SYNCOUT  
30  
60  
100  
260  
240  
140 180 220  
300  
280  
OSCILLATOR  
80  
120 160  
200  
FREQUENCY (MHz)  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,  
or visit Maxim’s website at www.maxim-ic.com.  
20W Stereo Class D Speaker Amplifier  
with Volume Control  
ABSOLUTE MAXIMUM RATINGS  
PVDD to PGND ....................................................................+16V  
44-Pin Thin QFN (derate 37mW/°C above +70°C,  
multilayer board) ......................................................2963mW  
V
DD  
to GND ...........................................................................+4V  
FB_, SYNCOUT, SYNC, SDA/VOL, ADDR1,  
ADDR2 to GND........................................-0.3V to (V  
θ
JA  
, Single-Layer Board................................................37°C/W  
, Multilayer Board................................................….27°C/W  
JA  
θ
+ 0.3V)  
DD  
BOOT_ to V ..........................................................-0.3V to +6V  
Continuous Input Current (PVDD, PGND).............................6.4A  
Continuous Output Current (OUT_) ......................................3.2A  
Continuous Input Current (except OUT_)......................... 20mA  
Junction Temperature......................................................+150°C  
Operating Temperature Range ...........................-40°C to +85°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
DD  
BOOT_ to OUT_........................................................-0.3V to +6V  
OUT_ to GND ..........................................-0.3V to (PVDD + 0.3V)  
PGND to GND .......................................................-0.3V to +0.3V  
Any Other Pin to GND ..............................................-0.3V to +4V  
OUT_, Short-Circuit Duration......................................Continuous  
MAX974  
Continuous Power Dissipation (T = +70°C)  
A
44-Pin Thin QFN (derate 27mW/°C above +70°C,  
single-layer board)...................................................2162mW  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
= 12V, V  
= 3.3V, V  
= V  
= 0V, V  
= 0V; max volume setting; all speaker load resistors connected between  
MUTE  
PVDD  
DD  
GND  
PGND  
OUT_+ and OUT_-, R = , unless otherwise stated, C  
= 0.1µF, C  
= 2.2µF, C = 0.47µF, R = 20kΩ, R = 20kΩ, spread-  
L
BOOT_  
BIAS  
IN  
IN  
F_  
spectrum mode, filterless modulation mode, see the Functional Diagrams/Typical Application Circuits. T = T  
to T , unless oth-  
A
MIN  
MAX  
erwise noted. Typical values are at T = +25°C.) (Note 1)  
A
PARAMETER  
GENERAL  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Speaker Amplifier Supply Voltage  
Range  
PVDD  
Inferred from PSRR test  
Inferred from PSRR test  
4.5  
2.7  
14  
V
V
Supply Voltage Range  
V
3.6  
35  
20  
1
DD  
I
20  
10  
DD  
Quiescent Current  
mA  
I
PVDD  
VDDSHDN  
I
T
T
= +25°C  
= +25°C  
0.1  
0.1  
200  
1.5  
A
A
Shutdown Current  
µA  
I
1
PVDDSHDN  
Turn-On Time  
t
ms  
V
ON  
Common-Mode Bias Voltage  
V
BIAS  
Input Amplifier Output-Voltage  
Swing High  
Specified as V  
connected to 1.5V  
– V , R = 2kΩ  
DD OH L  
V
20  
20  
60  
1.8  
mV  
mV  
OH  
Input Amplifier Output-Voltage  
Swing Low  
Specified as V – GND, R = 2kΩ  
OL L  
connected to 1.5V  
V
OL  
Input Amplifier Output Short-  
Circuit Current Limit  
mA  
Input Amplifier Gain-Bandwidth  
Product  
GBW  
MHz  
SPEAKER AMPLIFIERS  
Output stage gain  
Total gain (Note 2)  
29.5  
29.5  
2
Maximum  
volume setting  
Gain  
A
dB  
VMAX  
Output Offset  
V
T
= 25°C  
A
15  
mV  
OS  
2
_______________________________________________________________________________________  
20W Stereo Class D Speaker Amplifier  
with Volume Control  
MAX974  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= 12V, V  
= 3.3V, V  
L
= V  
= 0V, V  
= 0V; max volume setting; all speaker load resistors connected between  
MUTE  
PVDD  
DD  
GND  
PGND  
OUT_+ and OUT_-, R = , unless otherwise stated, C  
spectrum mode, filterless modulation mode, see the Functional Diagrams/Typical Application Circuits. T = T  
= 0.1µF, C  
= 2.2µF, C = 0.47µF, R = 20kΩ, R = 20kΩ, spread-  
BOOT_  
BIAS  
IN  
IN  
F_  
to T , unless oth-  
A
MIN  
MAX  
erwise noted. Typical values are at T = +25°C.) (Note 1)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
= 10W, f = 1kHz,  
MIN  
TYP  
MAX  
UNITS  
P
OUT  
IN  
93  
87  
92  
88  
8Ω load  
Filterless  
modulation  
%
%
P
= 15W, f = 1kHz,  
OUT  
IN  
4Ω load  
Efficiency (Note 3)  
η
P
= 10W, f = 1kHz,  
OUT  
IN  
8Ω load  
PWM  
P
= 15W, f = 1kHz,  
OUT  
IN  
4Ω load  
R = 8Ω, THD+N = 1%  
1.4  
1.8  
2.6  
3.6  
8
L
R = 8Ω, THD+N = 10%  
L
V
= 5V,  
= 1kHz  
PVDD  
PVDD  
PVDD  
f
IN  
R = 4Ω, THD+N = 1%  
L
R = 4Ω, THD+N = 10%  
L
R = 8Ω, THD+N = 1%  
L
R = 8Ω, THD+N = 10%  
10  
L
V
= 12V,  
= 1kHz  
Output Power  
P
W
OUT  
f
IN  
R = 4Ω, THD+N = 1%  
L
14  
R = 4Ω, THD+N = 10%  
L
17  
R = 8Ω, THD+N = 1%  
L
10  
R = 8Ω, THD+N = 10%  
L
13  
V
= 14V,  
f
= 1kHz  
IN  
R = 4Ω, THD+N = 1%  
17.5  
22.5  
5.5  
0.04  
L
R = 4Ω, THD+N = 10%  
L
Hard Output Current Limit  
I
3.9  
A
SC  
f = 1kHz, R =  
8Ω, P  
Filterless modulation  
PWM  
L
Total Harmonic Distortion Plus  
Noise  
THD+N  
%
= 5W,  
OUT  
0.04  
91  
f
= 1kHz  
IN  
Fixed-frequency  
modulation, unweighted  
P
= 10W,  
OUT  
Spread-spectrum,  
unweighted  
R = 8Ω,  
filterless  
modulation  
mode, BW =  
22Hz to 22kHz  
L
90  
94  
94  
91  
81  
94  
89  
dB  
Fixed-frequency  
modulation, A-weighted  
Spread-spectrum,  
A-weighted  
Signal-to-Noise Ratio  
SNR  
Fixed-frequency  
modulation, unweighted  
Spread-spectrum,  
unweighted  
P
= 10W,  
OUT  
R = 8Ω, PWM  
L
dB  
mode, BW =  
22Hz to 22kHz  
Fixed-frequency  
modulation, A-weighted  
Spread-spectrum,  
A-weighted  
_______________________________________________________________________________________  
3
20W Stereo Class D Speaker Amplifier  
with Volume Control  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= 12V, V  
= 3.3V, V  
L
= V  
= 0V, V  
= 0V; max volume setting; all speaker load resistors connected between  
MUTE  
PVDD  
DD  
GND  
PGND  
OUT_+ and OUT_-, R = , unless otherwise stated, C  
spectrum mode, filterless modulation mode, see the Functional Diagrams/Typical Application Circuits. T = T  
= 0.1µF, C  
= 2.2µF, C = 0.47µF, R = 20kΩ, R = 20kΩ, spread-  
BOOT_  
BIAS  
IN  
IN  
F_  
to T , unless oth-  
A
MIN  
MAX  
erwise noted. Typical values are at T = +25°C.) (Note 1)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
1kHz  
85  
68  
Crosstalk  
dB  
20Hz to 20kHz  
MAX974  
V
= 2.7V to 3.6V, T = 25°C,  
A
DD  
68  
MUTE = high  
PV = 4.5V to 14V  
50  
83  
70  
Power-Supply Rejection Ratio  
SYNC Frequency  
PSRR  
dB  
DD  
f = 1kHz, V  
f = 1kHz, V  
= 100mV  
= 200mV  
on V  
DD  
RIPPLE  
P-P  
on PVDD  
75  
RIPPLE  
P-P  
SYNC = GND  
SYNC = unconnected  
1020  
1280  
1200  
1440  
1355  
1640  
f
kHz  
kHz  
SYNC  
1200  
30  
SYNC = V  
(spread-spectrum mode)  
DD  
SYNC = GND  
SYNC = unconnected  
255  
320  
300  
360  
338  
410  
Class D Switching Frequency  
SYNC Frequency Lock Range  
f
SW  
300  
6
SYNC = V  
(spread-spectrum mode)  
DD  
1000  
1600  
kHz  
%
Minimum SYNC Frequency Lock  
Duty Cycle  
40  
60  
Maximum SYNC Frequency Lock  
Duty Cycle  
%
Gain Matching  
Full volume (ideal matching for R and R )  
0.2  
-43  
-43  
-46  
-57  
dB  
IN  
F
Into shutdown  
Out of shutdown  
Into mute  
Peak voltage, 32  
samples/second,  
A-weighted (Note 4)  
Click-and-Pop Level  
K
dBV  
CP  
Out of mute  
VOLUME CONTROL  
VOL Input Leakage Current  
Input Hysteresis  
5
µA  
mV  
V
DC volume control mode  
DC volume control mode  
DC volume control mode  
f = 1kHz, relative to 9.5dB setting  
11  
9.5dB Gain Voltage  
Full Mute Voltage  
0.1 x V  
0.9 x V  
DD  
DD  
V
Full Mute Attenuation  
-115  
dB  
DIGITAL INPUTS/OUTPUT (SHDN, MUTE, ADDR1, ADDR2, SCLK, SDA/VOL)  
Input-Voltage High  
Input-Voltage Low  
Input Leakage Current  
Input Hysteresis  
V
0.7 x V  
V
IH  
DD  
V
0.3 x V  
V
µA  
V
IL  
DD  
I
LK  
T
= +25°C  
A
1
SCLK, SDA/VOL  
0.1 x V  
5
DD  
Input Capacitance  
Output-Voltage Low  
C
V
pF  
V
IN  
IL  
I
= 3mA  
0.4  
OL  
4
_______________________________________________________________________________________  
20W Stereo Class D Speaker Amplifier  
with Volume Control  
MAX974  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= 12V, V  
= 3.3V, V  
L
= V  
= 0V, V  
= 0V; max volume setting; all speaker load resistors connected between  
MUTE  
PVDD  
DD  
GND  
PGND  
OUT_+ and OUT_-, R = , unless otherwise stated, C  
spectrum mode, filterless modulation mode, see the Functional Diagrams/Typical Application Circuits. T = T  
= 0.1µF, C  
= 2.2µF, C = 0.47µF, R = 20kΩ, R = 20kΩ, spread-  
BOOT_  
BIAS  
IN  
IN  
F_  
to T , unless oth-  
A
MIN  
MAX  
erwise noted. Typical values are at T = +25°C.) (Note 1)  
A
PARAMETER  
DIGITAL INPUT (SYNC)  
Input-Voltage High  
SYMBOL  
CONDITIONS  
MIN  
2.3  
TYP  
MAX  
UNITS  
V
V
V
SYNCIH  
Input-Voltage Low  
V
0.8  
13  
SYNCIL  
SYNCIN  
SYNC Input Leakage  
DIGITAL OUTPUT (SYNCOUT)  
I
T
= +25°C  
7.5  
µA  
A
V
0.3  
-
DD  
Output-Voltage High  
V
I
= 1mA  
V
SYNCOUTIH SOURCE  
Output-Voltage Low  
V
I
= 1mA  
0.3  
V
SYNCOUTIL SINK  
Rise/Fall Time  
C = 10pF  
L
50  
V/µs  
THERMAL PROTECTION  
Thermal-Shutdown Threshold  
+165  
15  
°C  
°C  
Thermal-Shutdown Hysteresis  
2
I C TIMING CHARACTERISTICS (Figure 3)  
Serial Clock  
f
400  
kHz  
µs  
SCL  
Bus Free Time Between a STOP  
and a START Condition  
t
1.3  
0.6  
0.6  
BUF  
Hold Time (Repeated) START  
Condition  
t
(Note 5)  
µs  
µs  
HD, STA  
Repeated START Condition  
Setup Time  
t
SU, STA  
STOP Condition Setup Time  
Data Hold Time  
t
0.6  
0
µs  
µs  
ns  
µs  
µs  
SU, STO  
t
0.9  
HD,DAT  
Data Setup Time  
t
100  
1.3  
0.6  
SU,DAT  
SCL Clock Low Period  
SCL Clock High Period  
t
LOW  
t
HIGH  
Rise Time of SDA and SCL,  
Receiving  
20 +  
t
(Note 6)  
(Note 6)  
300  
ns  
R
0.1C  
B
Fall Time of SDA and SCL,  
Receiving  
20 +  
t
300  
50  
ns  
ns  
pF  
F
0.1C  
B
Pulse Width of Spike Suppressed  
t
SP  
0
Capacitive Load for Each Bus  
Line  
C
400  
B
Note 1: All devices are 100% production tested at +25°C. All temperature limits are guaranteed by design.  
Note 2: See the Gain-Setting Resistors section.  
Note 3: Measured on the MAX9744 Evaluation Kit.  
Note 4: Testing performed with an 8Ω resistive load connected across BTL output. Mode transitions are controlled by SHDN or  
MUTE pin, respectively.  
Note 5: A master device must provide a hold time of at least 300ns for the SDA signal in order to bridge the undefined region of the  
SCL’s falling edge.  
Note 6: C = total capacitance of one bus line in pF.  
B
_______________________________________________________________________________________  
5
20W Stereo Class D Speaker Amplifier  
with Volume Control  
Typical Operating Characteristics  
(V  
PVDD  
= 12V, V  
= 3.3V, V  
= V  
= 0V, V  
= 0V; max volume setting; all speaker load resistors connected between  
MUTE  
DD  
GND  
PGND  
OUT_+ and OUT_- with an inductor in series, 8Ω load, L = 68µH, 4Ω load, L= 33µH. R = , unless otherwise stated, C  
= 2.2µF,  
L
BIAS  
C
= 0.47µF, R = 20kΩ, R = 20kΩ, spread-spectrum mode, T = +25°C, unless otherwise noted.)  
IN  
IN  
F_  
A
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER  
100  
100  
100  
PVDD = 12V  
PVDD = 12V  
PVDD = 12V  
R = 4Ω  
R = 4Ω  
L
L
R = 8Ω  
L
MAX974  
PWM MODE  
FILTERLESS MODULATION  
FILTERLESS MODULATION  
10  
1
10  
1
10  
1
f
= 6kHz  
f
IN  
= 6kHz  
IN  
f
IN  
= 6kHz  
0.1  
0.1  
0.1  
f
= 1kHz  
f = 1kHz  
IN  
IN  
f
= 1kHz  
IN  
0.01  
0.001  
0.01  
0.01  
0.001  
f
= 100Hz  
8
f
= 100Hz  
IN  
IN  
f
= 100Hz  
IN  
0.001  
0
3
6
9
12  
0
2
4
6
8
10 12 14 16 18 20  
0
4
12  
16  
20  
OUTPUT POWER (W)  
OUTPUT POWER (W)  
OUTPUT POWER (W)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER  
100  
100  
100  
PVDD = 5V  
PVDD = 12V  
PVDD = 5V  
R = 4Ω  
R = 8Ω  
R = 4Ω  
L
L
L
PWM MODE  
PWM MODE  
FILTERLESS MODULATION  
10  
1
10  
1
10  
1
f
IN  
= 6kHz  
f
= 6kHz  
f
IN  
= 6kHz  
IN  
0.1  
0.1  
0.1  
f
IN  
= 1kHz  
f
= 1kHz  
IN  
0.01  
0.001  
0.01  
0.001  
0.01  
0.001  
f
= 1kHz  
IN  
f
= 100Hz  
1
f
IN  
= 100Hz  
3
IN  
f
= 100Hz  
IN  
0
1
2
3
4
0
6
9
12  
0
2
3
4
OUTPUT POWER (W)  
OUTPUT POWER (W)  
OUTPUT POWER (W)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER  
100  
100  
PVDD = 12V  
PVDD = 12V  
R = 4Ω  
L
R = 8Ω  
L
f
= 1kHz  
IN  
f
= 1kHz  
10  
1
10  
1
IN  
FILTERLESS MODULATION  
FILTERLESS MODULATION  
FFM  
FFM  
0.1  
0.01  
0.1  
SSM  
0.01  
SSM  
0.001  
0.001  
0
4
8
12  
16  
20  
0
2
4
6
8
10  
12  
OUTPUT POWER (W)  
OUTPUT POWER (W)  
6
_______________________________________________________________________________________  
20W Stereo Class D Speaker Amplifier  
with Volume Control  
MAX974  
Typical Operating Characteristics (continued)  
(V  
PVDD  
= 12V, V  
= 3.3V, V  
= V  
= 0V, V  
= 0V; max volume setting; all speaker load resistors connected between  
MUTE  
DD  
GND  
PGND  
OUT_+ and OUT_- with an inductor in series, 8Ω load, L = 68µH, 4Ω load, L= 33µH. R = , unless otherwise stated, C  
= 2.2µF,  
L
BIAS  
C
= 0.47µF, R = 20kΩ, R = 20kΩ, spread-spectrum mode, T = +25°C, unless otherwise noted.)  
IN  
IN  
F_  
A
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY  
100  
100  
100  
PVDD = 12V  
PVDD = 12V  
PVDD = 12V  
R = 4Ω  
R = 4Ω  
R = 4Ω  
L
L
L
PWM MODE  
f
= 1kHz  
FILTERLESS MODULATION  
IN  
10  
1
10  
1
10  
1
PWM MODE  
OUTPUT POWER = 10W  
FFM  
OUTPUT POWER = 10W  
0.1  
0.1  
0.1  
OUTPUT POWER = 5W  
0.01  
0.01  
0.001  
0.01  
0.001  
OUTPUT POWER = 5W  
SSM  
4
0.001  
0
8
12  
16  
20  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
OUTPUT POWER (W)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY  
100  
100  
100  
PVDD = 5V  
PVDD = 12V  
PVDD = 12V  
R = 4Ω  
R = 8Ω  
R = 8Ω  
L
L
L
FILTERLESS MODULATION  
FILTERLESS MODULATION  
PWM MODE  
10  
1
10  
1
10  
1
OUTPUT POWER = 6W  
OUTPUT POWER = 1.5W  
OUTPUT POWER = 6W  
0.1  
0.1  
0.1  
0.01  
0.001  
0.01  
0.001  
0.01  
0.001  
OUTPUT POWER = 500mW  
OUTPUT POWER = 3W  
OUTPUT POWER = 3W  
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY  
100  
100  
PVDD = 5V  
PVDD = 12V  
R = 4Ω  
R = 4Ω  
L
L
PWM MODE  
FILTERLESS MODULATION  
10  
10  
1
P
= 5W  
OUT  
1
0.1  
OUTPUT POWER = 500mW  
SSM  
0.1  
0.01  
0.001  
0.01  
0.001  
OUTPUT POWER = 1.5W  
FFM  
10  
100  
1k  
10k  
100k  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
FREQUENCY (Hz)  
_______________________________________________________________________________________  
7
20W Stereo Class D Speaker Amplifier  
with Volume Control  
Typical Operating Characteristics (continued)  
(V  
PVDD  
= 12V, V  
= 3.3V, V  
= V  
= 0V, V  
= 0V; max volume setting; all speaker load resistors connected between  
MUTE  
DD  
GND  
PGND  
OUT_+ and OUT_- with an inductor in series, 8Ω load, L = 68µH, 4Ω load, L= 33µH. R = , unless otherwise stated, C  
= 2.2µF,  
L
BIAS  
C
= 0.47µF, R = 20kΩ, R = 20kΩ, spread-spectrum mode, T = +25°C, unless otherwise noted.)  
IN  
IN  
F_  
A
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY  
EFFICIENCY vs. OUTPUT POWER  
EFFICIENCY vs. OUTPUT POWER  
MAX9744 toc19  
MAX9744 toc18  
100  
90  
80  
70  
60  
50  
5W  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
10  
9
8
7
6
5
4
3
2
1
0
100  
PVDD = 12V  
FILTERLESS MODULATION  
PWM MODE  
R = 8Ω  
FILTERLESS MODULATION  
PWM MODE  
L
FILTERLESS MODULATION  
MAX974  
10  
P
= 3W  
OUT  
1
0.1  
FFM  
40  
30  
20  
0.01  
0.001  
SSM  
1k  
PVDD = 12V  
= 1kHz  
PVDD = 12V, f = 1kHz, R = 4Ω  
IN  
L
f
IN  
10  
0
R = 8Ω  
L
0W  
0
2
4
6
8
10  
0
4
8
12  
16  
10  
100  
10k  
100k  
OUTPUT POWER (W)  
(PER CHANNEL)  
OUTPUT POWER (W)  
FREQUENCY (Hz)  
EFFICIENCY vs. OUTPUT POWER  
EFFICIENCY vs. SUPPLY VOLTAGE  
EFFICIENCY vs. SUPPLY VOLTAGE  
MAX9744 toc20  
100  
90  
80  
70  
60  
50  
2W  
100  
95  
100  
95  
FILTERLESS MODULATION  
PWM MODE  
THD+N = 10%  
THD+N = 1%  
THD+N = 10%  
THD+N = 1%  
90  
85  
80  
90  
85  
80  
40  
30  
20  
PVDD = 5V  
= 1kHz  
R = 4Ω  
L
f
= 1kHz  
f
= 1kHz  
IN  
L
IN  
L
75  
70  
75  
70  
f
IN  
R = 8Ω  
FILTERLESS MODULATION  
R = 4Ω  
FILTERLESS MODULATION  
10  
0
0W  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
4
6
8
10  
12  
14  
4
6
8
10  
12  
14  
OUTPUT POWER (W)  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
EFFICIENCY vs. SUPPLY VOLTAGE  
OUTPUT POWER vs. SUPPLY VOLTAGE  
100  
95  
90  
85  
80  
75  
70  
24  
f
= 1kHz  
f
= 1kHz  
IN  
L
IN  
L
R = 4Ω  
PWM MODE  
R = 4Ω  
PWM MODE  
20  
16  
12  
8
THD+N = 10%  
THD+N = 1%  
THD+N = 10%  
THD+N = 1%  
4
0
4
6
8
10  
12  
14  
4
6
8
10  
12  
14  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
8
_______________________________________________________________________________________  
20W Stereo Class D Speaker Amplifier  
with Volume Control  
MAX974  
Typical Operating Characteristics (continued)  
(V  
PVDD  
= 12V, V  
= 3.3V, V  
= V  
= 0V, V  
= 0V; max volume setting; all speaker load resistors connected between  
MUTE  
DD  
GND  
PGND  
OUT_+ and OUT_- with an inductor in series, 8Ω load, L = 68µH, 4Ω load, L= 33µH. R = , unless otherwise stated, C  
= 2.2µF,  
L
BIAS  
C
= 0.47µF, R = 20kΩ, R = 20kΩ, spread-spectrum mode, T = +25°C, unless otherwise noted.)  
IN  
IN  
F_  
A
OUTPUT POWER vs. LOAD RESISTANCE  
OUTPUT POWER vs. LOAD RESISTANCE  
OUTPUT POWER vs. SUPPLY VOLTAGE  
4
3
2
20  
16  
12  
8
16  
12  
8
PVDD = 5V  
f = 1kHz  
PWM MODE  
PVDD = 12V  
f = 1kHz  
FILTERLESS MODULATION  
R = 8Ω  
L
f
= 1kHz  
IN  
PWM MODE  
THD+N = 10%  
THD+N = 10%  
THD+N = 10%  
1
0
4
THD+N = 1%  
THD+N = 1%  
4
THD+N = 1%  
0
0
0
5
10  
15  
20  
25  
30  
0
5
10  
15  
20  
25  
30  
4
6
8
10  
12  
14  
LOAD RESISTANCE (Ω)  
LOAD RESISTANCE (Ω)  
SUPPLY VOLTAGE (V)  
CASE TEMPERATURE  
vs. OUTPUT POWER  
CASE TEMPERATURE  
vs. OUTPUT POWER  
POWER-SUPPLY REJECTION RATIO (PVDD)  
vs. FREQUENCY  
75  
50  
25  
0
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
125  
100  
75  
f
= 1kHz  
f
= 1kHz  
IN  
L
PVDD = 12V  
IN  
L
R = 8Ω  
R = 4Ω  
V = 200mV  
RIPPLE P-P  
PVDD = 14V  
PWM MODE  
PVDD = 14V  
PWM MODE  
PVDD = 12V  
PWM MODE  
PVDD = 12V  
PWM MODE  
PWM MODE  
50  
25  
0
PVDD = 12V  
FILTERLESS MODULATION  
PVDD = 12V  
FILTERLESS MODULATION  
PVDD = 14V  
FILTERLESS MODULATION  
FILTERLESS MODULATION  
PVDD = 14V  
FILTERLESS MODULATION  
0
2
4
6
8
10  
12  
10  
100  
1k  
10k  
100k  
0
3
6
9
12  
15  
18  
OUTPUT POWER (W)  
FREQUENCY (Hz)  
OUTPUT POWER (W)  
EMI WITH FERRITE BEAD FILTERS  
(V = 12V, 1m CABLE, 8Ω LOAD)  
DD  
POWER-SUPPLY REJECTION RATIO (V  
vs. FREQUENCY  
)
DD  
40  
35  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
V
V
= 3.3V  
= 100mV  
DD  
RIPPLE  
P-P  
EN5022 B LIMIT  
30  
25  
20  
PWM MODE  
15  
10  
FILTERLESS MODULATION  
5
30  
60  
100  
260  
240  
140 180 220  
300  
280  
10  
100  
1k  
10k  
100k  
80  
120 160  
200  
FREQUENCY (Hz)  
FREQUENCY (MHz)  
_______________________________________________________________________________________  
9
20W Stereo Class D Speaker Amplifier  
with Volume Control  
Typical Operating Characteristics (continued)  
(V  
PVDD  
= 12V, V  
= 3.3V, V  
= V  
= 0V, V  
= 0V; max volume setting; all speaker load resistors connected between  
MUTE  
DD  
GND  
PGND  
OUT_+ and OUT_- with an inductor in series, 8Ω load, L = 68µH, 4Ω load, L= 33µH. R = , unless otherwise stated, C  
= 2.2µF,  
L
BIAS  
C
= 0.47µF, R = 20kΩ, R = 20kΩ, spread-spectrum mode, T = +25°C, unless otherwise noted.)  
IN  
IN  
F_  
A
OUTPUT WAVEFORM  
(FILTERLESS MODULATION)  
OUTPUT WAVEFORM (PWM)  
OUTPUT FREQUENCY SPECTRUM  
MAX9744 toc34  
MAX9744 toc33  
0
-20  
FFM MODE  
V
= -60dBV  
IN  
f = 1kHz  
MAX974  
2V/div  
2V/div  
2V/div  
2V/div  
R = 4Ω  
L
-40  
UNWEIGHTED  
-60  
LEFT  
-80  
-100  
-120  
-140  
RIGHT  
10  
0
5
15  
20  
FREQUENCY (kHz)  
1μs/div  
1μs/div  
WIDEBAND OUTPUT SPECTRUM  
(FIXED-FREQUENCY MODULATION MODE)  
WIDEBAND OUTPUT SPECTRUM  
(FIXED-FREQUENCY MODULATION MODE)  
OUTPUT FREQUENCY SPECTRUM  
0
-20  
20  
0
20  
0
RBW = 1kHz  
INPUT AC GROUNDED  
FILTERLESS MODULATION  
RBW = 1kHz  
INPUT AC GROUNDED  
PWM MODE  
SSM MODE  
V
= -60dBV  
IN  
f = 1kHz  
R = 4Ω  
L
-40  
-20  
-40  
-60  
-80  
-20  
-40  
-60  
-80  
-100  
-120  
UNWEIGHTED  
-60  
LEFT  
-80  
-100  
-120  
-140  
-100  
-120  
RIGHT  
0
5
10  
FREQUENCY (kHz)  
15  
20  
0
1
10  
100  
0
1
10  
100  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
WIDEBAND OUTPUT SPECTRUM  
WIDEBAND OUTPUT SPECTRUM  
(SPREAD-SPECTRUM MODULATION MODE)  
(SPREAD-SPECTRUM MODULATION MODE)  
20  
0
20  
0
RBW = 1kHz  
INPUT AC GROUNDED  
PWM MODE  
RBW = 1kHz  
INPUT AC GROUNDED  
FILTERLESS MODULATION  
-20  
-40  
-60  
-80  
-100  
-120  
-20  
-40  
-60  
-80  
-100  
-120  
0
1
10  
100  
0
1
10  
100  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
10 ______________________________________________________________________________________  
20W Stereo Class D Speaker Amplifier  
with Volume Control  
MAX974  
Typical Operating Characteristics (continued)  
(V  
PVDD  
= 12V, V  
= 3.3V, V  
= V  
= 0V, V  
= 0V; max volume setting; all speaker load resistors connected between  
MUTE  
DD  
GND  
PGND  
OUT_+ and OUT_- with an inductor in series, 8Ω load, L = 68µH, 4Ω load, L= 33µH. R = , unless otherwise stated, C  
= 2.2µF,  
L
BIAS  
C
= 0.47µF, R = 20kΩ, R = 20kΩ, spread-spectrum mode, T = +25°C, unless otherwise noted.)  
IN  
IN  
F_  
A
CROSSTALK vs. FREQUENCY  
CROSSTALK vs. AMPLITUDE  
TURN-ON/OFF RESPONSE  
MAX9744 toc43  
0
-20  
-40  
-60  
-80  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
V
= 200mV  
RMS  
IN  
R = 8Ω  
L
f = 1kHz  
SHDN  
2V/div  
RIGHT TO LEFT  
LEFT TO RIGHT  
LEFT TO RIGHT  
OUTPUT  
-100  
-120  
RIGHT TO LEFT  
10  
100  
1k  
10k  
100k  
-60 -50 -40 -30 -20 -10  
AMPLITUDE (dBV)  
0
10 20  
100ms/div  
FREQUENCY (Hz)  
VOLUME CONTROL LEVEL  
vs. VOLUME CONTROL VOLTAGE  
SUPPLY CURRENT (PVDD)  
vs. SUPPLY VOLTAGE  
20  
16  
14  
12  
10  
8
0
-20  
VOLUME CONTROL LEVEL  
PWM MODE  
-40  
-60  
6
FILTERLESS MODULATION  
-80  
4
-100  
-120  
2
0
4
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5  
(V)  
6
8
10  
12  
14  
V
SUPPLY VOLTAGE (V)  
VOL  
SUPPLY CURRENT (V  
vs. SUPPLY VOLTAGE  
)
DD  
SHUTDOWN CURRENT  
vs. SUPPLY VOLTAGE  
30  
25  
20  
15  
10  
5
0.8  
SHUTDOWN CURRENT = I  
+ I  
PVDD DD  
V
DD  
= 3.3V  
0.7  
0.6  
0.5  
FILTERLESS MODULATION  
PWM MODE  
0.4  
4
3.0  
3.2  
3.4  
3.6  
3.8  
4.0  
6
8
10  
12  
14  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
______________________________________________________________________________________ 11  
20W Stereo Class D Speaker Amplifier  
with Volume Control  
Pin Description  
PIN  
NAME  
FUNCTION  
Left-Channel Positive Speaker Output Boost Flying-Capacitor Connection. Connect a 0.1µF  
ceramic capacitor between BOOTL+ and OUTL+.  
1
BOOTL+  
2, 3  
4, 5, 29, 30  
6, 10, 21, 28  
7, 11, 12, 15, 27  
8
OUTL+  
PVDD  
Left-Channel Speaker Output, Positive Phase  
Speaker Amplifier Power-Supply Input. Bypass each with a 1µF capacitor to PGND.  
Power-Supply Input. Bypass each with a 1µF capacitor to GND.  
MAX974  
V
DD  
GND  
Ground  
2
SDA/VOL I C Serial Data I/O and Analog Volume Control Input  
2
2
I C Serial Clock Input and Modulation Scheme Select. In I C mode (ADDR1 and ADDR2 GND),  
2
9
SCLK/PWM acts as I C serial clock input. When ADDR1 and ADDR2 = GND, set SCLK = 1 for standard PWM  
output scheme, or set SCLK = 0 for filterless modulation output scheme.  
2
Address Select Input 1. Sets device address for I C address option. Connect ADDR1 and ADDR2  
to GND to select analog volume control mode.  
13  
ADDR1  
2
Address Select Input 2. Sets device address for I C address option. Connect ADDR1 and ADDR2  
to GND to select Analog Volume Control mode.  
14  
16  
17  
ADDR2  
INL  
Left-Channel Audio Input  
Left-Channel Feedback. Connect feedback resistor between FBL and INL to set amplifier gain. See  
FBL  
the Gain-Setting Resistors section.  
Right-Channel Feedback. Connect feedback resistor between FBR and INR to set amplifier gain.  
See the Gain-Setting Resistors section.  
18  
FBR  
19  
20  
INR  
Right-Channel Input  
BIAS  
Common-Mode Bias Voltage. Bypass with a 2.2µF capacitor to GND.  
Shutdown Input. Drive SHDN low to disable the audio amplifiers. Connect SHDN to V  
high for normal operation.  
or drive  
DD  
22  
23  
24  
SHDN  
N.C.  
No Connection. Not internally connected.  
Mute Input. Drive MUTE high to mute the speaker outputs. Connect MUTE to GND for normal  
operation (mute function controls speaker outputs only).  
MUTE  
Frequency Select and External Clock Input.  
SYNC = GND: Fixed-frequency mode with f  
= 1200kHz  
SYNC  
SYNC = Unconnected: Fixed-frequency mode with f  
= 1440kHz  
SYNC  
25  
SYNC  
SYNC = V : Spread-spectrum mode with f  
= 1200kHz 30kHz  
SYNC  
DD  
SYNC = Clocked: Fixed-frequency mode with f  
= external clock frequency. f  
= 1/4 the  
SYNC  
SW  
value of f  
.
SYNC  
12 ______________________________________________________________________________________  
20W Stereo Class D Speaker Amplifier  
with Volume Control  
MAX974  
Pin Description (continued)  
PIN  
26  
NAME  
SYNCOUT SYNC Signal Output  
FUNCTION  
31, 32  
OUTR+  
Right-Channel Positive Speaker Output  
Right-Channel Positive Speaker Output Boost Flying-Capacitor Connection. Connect a 0.1µF  
ceramic capacitor between BOOTR+ and OUTR+.  
33  
BOOTR+  
34, 35, 39,  
43, 44  
PGND  
OUTR-  
Power Ground  
36, 37  
Right-Channel Negative Speaker Output  
Right-Channel Negative Speaker Output Boost Flying-Capacitor Connection. Connect a 0.1µF  
ceramic capacitor between BOOTR- and OUTR-.  
38  
BOOTR-  
Left-Channel Negative Speaker Output Boost Flying-Capacitor Connection. Connect a 0.1µF  
ceramic capacitor between BOOTL- and OUTL-.  
40  
41, 42  
BOOTL-  
OUTL-  
EP  
Left-Channel Negative Speaker Output  
Exposed Pad. The external pad lowers the package’s thermal impedance by providing a direct  
heat conduction path from the die to the PCB. Connect the exposed thermal pad to PGND.  
modulation scheme uses minimum pulse outputs when  
Detailed Description  
the audio inputs are at the zero crossing. As the input  
voltage increases or decreases, the duration of the  
pulse at one output increases while the other output  
pulse duration remains the same. This causes the net  
The MAX9744 20W filterless, stereo Class D audio  
power amplifier offers Class AB performance with Class  
D efficiency with a minimal board space solution. The  
MAX9744 features a spread-spectrum modulation  
scheme offering significant improvements to switch-  
mode amplifier technology. This device features analog  
or digitally adjustable volume control, externally set  
input gain, shutdown mode, SYNC input and output,  
mute, and industry-leading click-and-pop suppression.  
voltage across the speaker (V  
- V  
) to change.  
OUT+  
OUT-  
The minimum-width pulse topology reduces EMI and  
increases efficiency.  
Operating Modes  
Fixed-Frequency Modulation Mode  
The MAX9744 features two fixed-frequency modes:  
300kHz and 360kHz. Connect SYNC to GND to select  
300kHz switching frequency; leave SYNC unconnected  
to select the 360kHz switching frequency. The  
MAX9744 frequency spectrum consists of the fundamen-  
tal switching frequency and its associated harmonics  
(see the Wideband Output Spectrum graphs in the Typical  
Operating Characteristics). For applications where exact  
spectrum placement of the switching fundamental is  
important, program the switching frequency so that the  
harmonics do not fall within a sensitive frequency band  
(Table 1). Audio reproduction is not affected by chang-  
ing the switching frequency.  
The MAX9744 features extensive click-and-pop sup-  
pression circuitry that eliminates audible clicks-and-  
pops at startup and shutdown.  
The MAX9744 features a 64-step, dual-mode (analog  
or I2C) volume control and mute function. In analog vol-  
ume control mode, the voltage applied to SDA/VOL  
sets the volume level. Two address inputs (ADDR1,  
ADDR2) set the volume control function between ana-  
log and I2C mode and set the slave address. In I2C  
mode, there are three selectable slave addresses  
allowing for multiple devices on a single bus.  
The MAX9744 offers spread-spectrum and fixed-fre-  
quency modes of operation with classic PWM or filter-  
less modulation output schemes. The filterless  
______________________________________________________________________________________ 13  
20W Stereo Class D Speaker Amplifier  
with Volume Control  
Spread-Spectrum Modulation Mode  
The MAX9744 features a unique spread-spectrum  
mode that flattens the wideband spectral components,  
improving EMI emissions that may be radiated by the  
speaker and cables. This mode is enabled by setting  
SYNCOUT allows several Maxim amplifiers to be cas-  
caded (Figure 1). The synchroniHed output minimiHes  
interference due to clock intermodulation caused by the  
switching spread between single devices. Using  
SYNCOUT and SYNC does not affect the audio perfor-  
mance of the MAX9744.  
SYNC = V  
(Table 1). In spread-spectrum mode, the  
DD  
switching frequency varies randomly by 7.ꢀkꢁH  
around the center frequency (300kꢁH). The modulation  
scheme remains the same, but the period of the trian-  
gle waveform changes from cycle to cycle. Instead of a  
large amount of spectral energy present at multiples of  
the switching frequency, the energy is now spread over  
a bandwidth that increases with frequency. Above a  
few megahertH, the wideband spectrum looks like white  
noise for EMI purposes. A proprietary amplifier topolo-  
gy ensures this does not corrupt the noise floor in the  
audio bandwidth.  
Filterless Modulation/PWM Modulation  
The MAX9744 features two output modulation schemes:  
filterless modulation or classic PWM. The MAX9744 out-  
put modulation schemes are selectable through  
SCLK/PWM when the device is in analog mode (ADDR1  
and ADDR2 = GND, Table 2) or through the I2C inter-  
face (Table 8). Maxim’s unique, filterless modulation  
scheme eliminates the LC filter required by traditional  
Class D amplifiers, reducing component count and con-  
serving board space and system cost. Although the  
MAX9744 meets FCC and other EMI limits with a low-  
cost ferrite bead filter, many applications still may want  
to use a full LC-filtered output. If using a full LC filter,  
audio performance is best with the MAX9744 configured  
for classic PWM output.  
MAX974  
External Clock Mode  
The SYNC input allows the MAX9744 to be synchro-  
niHed to an external clock or another Maxim Class D  
amplifier, creating a fully synchronous system. This  
minimiHes clock intermodulation and allocates spectral  
components of the switching harmonics to insensitive  
frequency bands. Applying a clock signal between  
1MꢁH and 1.6MꢁH to SYNC synchroniHes the  
MAX9744. The MAX9744 Class D amplifier operates at  
1/4 of the SYNC frequency. For example, if SYNC is  
1.6MꢁH, the Class D amplifier operates at 400kꢁH.  
Switching between schemes, the output is not click-and-  
pop protected. To have click-and-pop protection when  
switching between output schemes, the device must  
enter shutdown mode and be configured to the new out-  
put scheme before the startup sequence is finished.  
The external SYNC signal can be any CMOS clock  
source with a 40% to 60% duty cycle. Spread-spectrum  
clocks work well to reduce EMI; therefore, the  
SYNCOUT signal from another MAX9744 in spread-  
spectrum mode is an excellent SYNC input.  
OUTL+  
MAX9744  
OUTL-  
SYNC INPUT  
SYNC  
Table 1. Operating Modes  
OUTR+  
OUTR-  
SYNC  
MODE  
f
(kHz)  
f
(kHz)  
SW  
SYNC  
Fixed-frequency  
modulation  
SYNCOUT  
GND  
1200  
300  
Fixed-frequency  
modulation  
Unconnected  
1440  
360  
Spread-spectrum  
modulation  
V
1200 30  
300 7.ꢀ  
DD  
MAX9709  
1000 to  
1600  
2ꢀ0 to  
400  
OUT+  
Clocked  
EXT  
SYNC  
OUT-  
Figure 1. Cascading Two Amplifiers’ External Clock Mode  
14 ______________________________________________________________________________________  
20W Stereo Class D Speaker Amplifier  
with Volume Control  
MAX974  
Table 2. Modulation Scheme Selection  
ADDR2  
ADDR1  
SDA/VOL  
SCLK/PWM  
FUNCTION  
Filterless modulation  
Classic PWM (50% duty cycle)  
0
0
0
0
Analog volume control  
Analog volume control  
0
1
Efficiency  
Thermal Shutdown  
The high efficiency of a Class D amplifier is due to the  
switching operation of the output stage transistors. In a  
Class D amplifier, the output transistors act as current-  
steering switches and consume negligible additional  
power. Any power loss associated with the Class D out-  
When the die temperature exceeds the thermal-shut-  
down threshold, +165°C (typ), the MAX9744 outputs  
are disabled. Normal operation resumes when the die  
temperature decreases by a factor equal to the  
thermal-shutdown threshold minus the thermal-shut-  
down hysteresis, (typically below +150°C). The effect of  
thermal shutdown is an output signal turning off for  
approximately 3s in most applications, depending on  
the thermal time constant of the audio system. Most  
applications should never enter thermal shutdown.  
Some of the possible causes of thermal shutdown are  
too low of a load impedance, bad thermal contact  
between the MAX9744’s exposed pad and PCB, high  
ambient temperature, poor PCB layout and assembly,  
or excessive output overdrive.  
2
put stage is mostly due to the I R loss of the MOSFET  
on-resistance, and quiescent current overhead.  
The theoretical best efficiency of a linear amplifier is  
78% at peak output power. Under normal operating lev-  
els (typical music reproduction levels), the efficiency  
falls below 30%, whereas the MAX9744 exhibits > 80%  
efficiency under the same conditions (Figure 2).  
Current Limit  
When the output current exceeds the current limit, 5.5A  
(typ), the MAX9744 disables the outputs and initiates a  
220µs startup sequence. The shutdown and startup  
sequence is repeated until the output fault is removed.  
Since the retry repetition is slow, the average supply  
current is low. Most applications do not enter current-  
limit mode unless the output is short circuited or incor-  
rectly connected.  
Shutdown  
The MAX9744 features a shutdown mode that reduces  
power consumption and extends battery life. Driving  
SHDN low places the device in low-power shutdown  
mode. Connect SHDN to digital high for normal opera-  
tion. In shutdown mode, the outputs are high imped-  
ance, SYNCOUT is pulled high, BIAS voltage decays to  
zero, and the common-mode input voltage decays to  
2
zero. The I C register does not retain its contents dur-  
EFFICIENCY  
vs. OUTPUT POWER  
100  
ing shutdown (MAX9744).  
Mute Function  
The MAX9744 features a clickless-and-popless mute  
mode. When the device is muted, the outputs do not  
stop switching; only the volume level is muted to the  
speaker. Mute only affects the output stage and does  
not shut down the device. To mute the MAX9744, drive  
MUTE to logic-high. MUTE should be held high during  
system power-up and power-down to ensure that pops  
caused by circuits before the MAX9744 are eliminated.  
To reduce clicks and pops, the device enters or exits  
mute at zero crossing.  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
MAX9744  
CLASS AB  
PVDD = 12V  
= 1kHz  
R = 4Ω  
L
f
IN  
0
2
4
6
8
10  
OUTPUT POWER (W)  
Figure 2. MAX9744 Efficiency vs. Class AB Efficiency  
______________________________________________________________________________________ 15  
20W Stereo Class D Speaker Amplifier  
with Volume Control  
to 400kHz. Figure 3 shows the 2-wire interface timing  
Volume Control  
For maximum flexibility, the MAX9744 features volume  
control operation using an analog voltage input or  
diagram. The MAX9744 is a receive-only slave device,  
relying on the master to generate the SCL signal. The  
MAX9744 cannot write to the SDA bus except to  
acknowledge the receipt of data from the master. The  
master, typically a microcontroller, generates SCL and  
initiates data transfer on the bus.  
2
through the I C interface. To set the device to analog  
mode, connect ADDR1 and ADDR2 to GND. In analog  
mode, SDA/VOL is an analog input for volume control.  
The analog input range is ratiometric between 0.9 x  
V
and 0.1 x V  
DD  
where 0.9 x V  
= full mute and 0.1  
DD  
x V  
DD  
DD  
A master device communicates to the MAX9744 by  
transmitting the proper address followed by the data  
word. Each transmit sequence is framed by a START (S)  
or Repeated START (Sr) condition and a STOP (P) condi-  
tion. Each word transmitted over the bus is 8 bits long  
and is always followed by an acknowledge clock pulse.  
= full volume (Table 7).  
MAX974  
Use ADDR1 and ADDR2 to select I2C mode. There are  
three addresses that can be chosen, allowing for multi-  
ple devices on a single bus (Table 4). In I2C mode, vol-  
ume is controlled by choosing the speaker volume  
control register in the command byte (Table 5). There  
are 64 volume settings, where the lowest setting is full  
mute (Table 6). See the Write Byte section for more  
information on formatting data and tables to set volume  
levels. The default volume after power-up is position 40  
(-7.1dB) (see Table 7).  
The MAX9744 SDA line operates as both an input and  
an open-drain output. A pullup resistor, greater than  
500Ω, is required on the SDA bus. The MAX9744 SCL  
line operates as an input only. A pullup resistor, greater  
than 500Ω, is required on SCL if there are multiple mas-  
ters on the bus, or if the master in a single-master sys-  
tem has an open-drain SCL output. Series resistors in  
line with SDA and SCL are optional. The SCL and SDA  
inputs have Schmitt trigger and filter circuits that sup-  
press noise spikes to assure proper device operation  
even on a noisy bus.  
2
I C Interface  
2
The MAX9744 features an I C 2-wire serial interface  
consisting of a serial-data line (SDA) and a serial-clock  
line (SCL). SDA and SCL facilitate communication  
between the MAX9744 and the master at clock rates up  
SDA  
t
BUF  
t
t
SU, STA  
SU, DAT  
t
t
SP  
HD, STA  
t
SU, STO  
t
t
HD, DAT  
LOW  
SCL  
t
HIGH  
t
HD, STA  
t
t
F
R
START  
CONDITION  
REPEATED  
START  
STOP  
CONDITION  
START  
CONDITION  
CONDITION  
Figure 3. 2-Wire Serial-Interface Timing Diagram  
16 ______________________________________________________________________________________  
20W Stereo Class D Speaker Amplifier  
with Volume Control  
MAX974  
Bit Transfer  
One data bit is transferred during each SCL cycle. The  
data on SDA must remain stable during the high period  
of the SCL pulse. Changes in SDA while SCL is high  
are control signals (see the START and STOP  
Conditions section). SDA and SCL idle high when the  
I2C bus is not busy.  
Early STOP Conditions  
The MAX9744 recognizes a STOP condition at any point  
during data transmission except if the STOP condition  
occurs in the same high pulse as a START condition.  
Slave Address  
The slave address of the MAX9744 is 8 bits and con-  
sists of 3 fields: the first field is 5 bits wide and is fixed  
(10010), the second is a 2 bit field which is set through  
ADDR1 and ADDR2 (externally connected as logic-high  
or logic-low), and the third field is a R/W flag bit. Set  
R/W = 0 to write to the slave. A representation of the  
slave address is shown in Table 3.  
START and STOP Conditions  
A master device initiates communication by issuing a  
START condition. A START condition is a high to low  
transition on SDA with SCL high. A STOP condition is a  
low to high transition on SDA while SCL is high (Figure  
4). A START (S) condition from the master signals the  
beginning of a transmission to the MAX9744. The mas-  
ter terminates transmission, and frees the bus, by issu-  
ing a STOP (P) condition. The bus remains active if a  
Repeated START (Sr) condition is generated instead of  
a STOP condition.  
When ADDR1 and ADDR2 are connected to GND, seri-  
al interface communication is disabled. Table 4 sum-  
marizes the slave address of the device as a function of  
ADDR1 and ADDR2.  
Acknowledge  
The acknowledge bit (ACK) is a clocked 9th bit that the  
MAX9744 uses to handshake receipt of each byte of  
data (see Figure 5). The MAX9744 pulls down SDA dur-  
ing the master-generated 9th clock pulse. The SDA line  
must remain stable and low during the high period of  
the acknowledge clock pulse. Monitoring ACK allows  
for detection of unsuccessful data transfers. An unsuc-  
cessful data transfer occurs if a receiving device is  
busy or if a system fault has occurred. In the event of  
an unsuccessful data transfer, the bus master may reat-  
tempt communication.  
S
Sr  
P
SCL  
SDA  
Figure 4. START, STOP, and Repeated START Conditions  
Table 3. Slave Address Block  
SA7 (MSB)  
SA6  
SA5  
SA4  
SA3  
SA2  
SA1  
SA0 (LSB)  
1
0
0
1
0
ADDR2  
ADDR1  
R/W  
Table 4. Slave Address  
CLOCK PULSE FOR  
ACKNOWLEDGMENT  
START  
CONDITION  
ADDR2  
ADDR1  
SLAVE ADDRESS  
2
0
0
1
1
0
1
0
1
I C disabled  
SCL  
1
2
8
9
1001001_  
1001010_  
1001011_  
NOT ACKNOWLEDGE  
SDA  
ACKNOWLEDGE  
Figure 5. Acknowledge  
______________________________________________________________________________________ 17  
20W Stereo Class D Speaker Amplifier  
with Volume Control  
Write Byte  
A write to the MAX9744 includes transmission of a  
WRITE BYTE FORMAT  
START condition, the slave address with the R/W bit set  
to 0 (see Table 3), one byte of data to the command  
register, and a STOP condition. Figure 6 illustrates the  
proper format for one frame.  
S
SLAVE  
ADDRESS  
7 BITS  
WR  
0
ACK  
DATA  
ACK  
P
8 BITS  
A write to the MAX9744 consists of a 6-step sequence  
as seen below:  
SLAVE ADDRESS:  
DATA BYTE: GIVES A COMMAND.  
EQUIVALENT TO CHIP-  
SELECT LINE OF A  
3-WIRE INTERFACE.  
9
1) The master sends a START condition.  
2) The master sends the 7 bits slave ID plus a write  
Figure 6. Write Byte Format Example  
bit (low).  
3) The addressed slave asserts an ACK on the data  
Filterless Modulation/PWM  
The MAX9744 features two output modulation schemes:  
filterless modulation or classic PWM, selectable through  
the I2C interface. Table 6 shows the register command  
to set the output scheme.  
line.  
4) The master sends 8 data bits.  
5) The active slave asserts an ACK (or NACK) on the  
data line.  
When switching between schemes, the output is not  
click-and-pop protected. To have click-and-pop protec-  
tion when switching between output schemes, the  
device must enter shutdown mode and be configured  
to the new output scheme before the 220ms startup  
sequence is terminated.  
6) The master generates a stop condition.  
Speaker Volume Control  
The command register is used to control the volume  
level of the speaker amplifier. The two MSBs (A1 and  
A0) are set to 00, while V5–V0 is the data that is written  
into the addresses register to set the volume level  
(Tables 5 and 6).  
Table 5. Data Byte Format  
D7 (MSB)  
D6  
D5  
D4  
D3  
D2  
D1  
D0 (LSB)  
A1  
A0  
V5  
V4  
V3  
V2  
V1  
V0  
Table 6. Command Register Programming  
A A  
0
V5–V0  
SETTING  
Reserved  
A A  
0
V5–V0  
XXXXXX  
000000  
000001  
SETTING  
Volume level (Table 7)  
Filterless modulation  
Classic PWM  
1
1
10  
11  
11  
XXXXXX  
000100  
000101  
00  
01  
01  
Increased volume  
Decreased volume  
18 ______________________________________________________________________________________  
20W Stereo Class D Speaker Amplifier  
with Volume Control  
MAX974  
Table 7. Speaker Volume Levels  
SDA/VOL  
VOLUME  
VOLUME  
POSITION  
V5  
V4  
V3  
V2  
V1  
V0  
VOLUME INPUT VOLTAGE (V)  
ATTENUATION (dB)  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
0.100 x V  
0.113 x V  
0.125 x V  
0.138 x V  
0.151 x V  
0.163 x V  
0.176 x V  
0.189 x V  
0.202 x V  
0.214 x V  
0.227 x V  
0.240 x V  
0.252 x V  
0.265 x V  
0.278 x V  
0.290 x V  
0.303 x V  
0.316 x V  
0.329 x V  
0.341 x V  
0.354 x V  
0.367 x V  
0.379 x V  
0.392 x V  
0.405 x V  
0.417 x V  
0.430 x V  
0.443 x V  
0.456 x V  
0.468 x V  
0.481 x V  
0.494 x V  
9.5  
8.8  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
8.2  
7.6  
7.0  
6.5  
5.9  
5.4  
4.9  
4.4  
3.9  
3.4  
2.9  
2.4  
2.0  
1.6  
1.2  
0.5  
-0.5  
-1.9  
-3.4  
-5.0  
-6.0  
-7.1  
-8.9  
-9.9  
-10.9  
-12.0  
-13.1  
-14.4  
-15.4  
-16.4  
______________________________________________________________________________________ 19  
20W Stereo Class D Speaker Amplifier  
with Volume Control  
Table 7. Speaker Volume Levels (continued)  
SDA/VOL  
VOLUME  
ATTENUATION (dB)  
-17.5  
VOLUME  
POSITION  
V5  
V4  
V3  
V2  
V1  
V0  
VOLUME INPUT VOLTAGE (V)  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1`  
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
0.506 x V  
0.519 x V  
0.532 x V  
0.544 x V  
0.557 x V  
0.570 x V  
0.583 x V  
0.595 x V  
0.608 x V  
0.621 x V  
0.633 x V  
0.646 x V  
0.659 x V  
0.671 x V  
0.684 x V  
0.697 x V  
0.710 x V  
0.722 x V  
0.735 x V  
0.748 x V  
0.760 x V  
0.773 x V  
0.786 x V  
0.798 x V  
0.811 x V  
0.824 x V  
0.837 x V  
0.849 x V  
0.862 x V  
0.875 x V  
0.887 x V  
0.900 x V  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
-19.7  
-21.6  
-23.5  
MAX974  
-25.2  
-27.2  
-29.8  
-31.5  
-33.4  
-36.0  
-37.6  
-39.6  
-42.1  
-43.7  
-45.6  
-48.1  
-50.6  
-54.2  
-56.7  
-60.2  
-62.7  
-66.2  
-68.7  
8
-72.2  
7
-74.7  
6
-78.3  
5
-80.8  
4
-84.3  
3
-86.8  
2
-90.3  
1
-92.8  
0
MUTE  
20 ______________________________________________________________________________________  
20W Stereo Class D Speaker Amplifier  
with Volume Control  
MAX974  
Inductor-Based Output Filters  
Some applications use the MAX9744 with a full induc-  
Applications Information  
Filterless Class D Operation  
The MAX9744 meets common EMC radiation limits with-  
out a filter when the speaker leads are less than approxi-  
mately 10cm. Using lengths beyond 10cm is possible  
verifying against the appropriate EMC standard.  
tor/capacitor-based (LC) output filter. This is common  
for longer speaker lead lengths and to gain increased  
margin to EMC limits. Select the PWM output mode and  
use fixed-frequency modulation mode for best audio  
performance. See Figure 8 for the correct connections  
of these components.  
For longer speaker wire lengths, up to approximately  
1m, use a simple ferrite bead and capacitor filter to  
meet EMC limits. Select a ferrite bead with 100Ω to  
600Ω impedance, and rated for at least 3A. The capaci-  
tor value varies based on the ferrite bead chosen and  
the actual speaker lead length. Select the capacitor  
value based on EMC performance. See Figure 7 for the  
correct connections of these components.  
The component selection is based on the load imped-  
ance of the speaker. Table 8 lists suggested values for  
a variety of load impedances.  
Inductors L1 and L2 and capacitor C1 form the primary  
output filter. In addition to these primary filter compo-  
nents, other components in the filter improve its func-  
tionality. Capacitors C4 and C5 plus resistors R1 and  
R2 form a Zobel at the output. A Zobel corrects the out-  
put loading to compensate for the rising impedance of  
the loudspeaker. Without a Zobel, the filter has a peak  
in its response near the cutoff frequency. Capacitors  
C2 and C3 provide common-mode noise suppression  
to reduce radiated emissions.  
When evaluating the device without a filter or a ferrite  
bead filter, include a series inductor (68µH for 8Ω load  
and 33µH for 4Ω load) to model the actual loudspeak-  
er’s behavior. Omitting this inductor reduces the effi-  
ciency, the THD+N performance, and the output power  
of the MAX9744.  
Table 8. Suggested Values for LC filter  
BOOT_+  
L1, L2  
(µH)  
C2, C3  
(µF)  
R1, R2  
(Ω)  
C4, C5  
(µF)  
R (Ω)  
C1 (µF)  
L
C
0.1μF  
BOOT  
OUT_+  
4
6
8
10  
15  
22  
0.47  
0.33  
0.22  
0.47  
0.22  
0.22  
10  
15  
22  
0.47  
0.33  
0.22  
MAX9744  
C
470pF  
FILT  
OUT_-  
C
470pF  
FILT  
C
0.1μF  
BOOT  
BOOT_-  
Figure 7. Ferrite Bead Filter  
BOOT+  
4
C
BOOT  
0.1μF  
L1  
L2  
OUT+  
1, 2  
MAX9744  
C2  
C3  
C4  
C1  
R1  
R2  
R
L
OUT-  
14, 18  
15  
C
0.1μF  
BOOT  
C5  
BOOT-  
Figure 8. Output Filter for PWM Mode  
______________________________________________________________________________________ 21  
20W Stereo Class D Speaker Amplifier  
with Volume Control  
Choose C that f  
is well below the lowest frequen-  
-3dB  
Component Selection  
IN  
cy of interest. Use capacitors whose dielectrics have  
low-voltage coefficients, such as tantalum or aluminum  
electrolytic. Capacitors with high-voltage coefficients,  
such as ceramics, may result in increased distortion at  
low frequencies.  
Gain-Setting Resistors  
External feedback resistors set the gain of the  
MAX9744. The output stage has an internal 20dB gain  
in addition to the externally set input stage gain. Set the  
maximum gain by using resistors R and R (Figure 9)  
F
IN  
as follows:  
DC-Coupled Input  
The input amplifier can accept DC-coupled inputs that  
are biased to the amplifier’s bias voltage. DC-coupling  
eliminates input-coupling capacitors, reducing compo-  
nent count to potentially one external component. In this  
configuration the highpass filtering effect of the capacitors  
is lost, allowing low-frequency signals to be amplified.  
R
MAX974  
F
A
= 30  
V / V  
V
R
IN  
Choose R between 10kΩ and 50kΩ. Note that the  
F
actual gain of the amplifier is dependent on the volume  
level setting. For example, with the volume set to  
+9.5dB, the amplifier gain would be 9.5dB plus 20dB,  
Power Supplies  
The MAX9744 features separate supplies for each por-  
tion of the device, allowing for the optimum combination  
of headroom power dissipation and noise immunity. The  
speaker amplifier is powered from PVDD and can range  
from 4.5V to 14V. The remainder of the device is pow-  
assuming R = R .  
IN  
F
The input amplifier can be configured into a variety of  
circuits. The FB terminal is an actual operational ampli-  
fier output, allowing the MAX9744 to be configured as a  
summing amplifier, a filter, or an equalizer, for example.  
ered by V . Power supplies are independent of each  
DD  
other so sequencing is not necessary. Power may be  
supplied by separate sources or derived from a single  
higher source using a linear regulator (Figure 10).  
Input Capacitor  
An input capacitor (C ) in conjunction with the input  
IN  
impedance of the MAX9744 form a highpass filter that  
removes the DC bias from an incoming signal. The AC-  
coupling capacitor allows the amplifier to automatically  
bias the signal to an optimum DC level. Assuming zero  
source impedance, the -3dB point of the highpass filter  
is given by:  
BIAS Capacitor  
BIAS is the output of the internally generated DC bias  
voltage. The BIAS bypass capacitor, C  
, improves  
BIAS  
PSRR and THD+N by reducing power supply and other  
noise sources at the common-mode bias node, and  
also generates the clickless/popless, startup/shutdown,  
DC bias waveforms for the speaker amplifiers. Bypass  
BIAS with a 2.2µF capacitor to GND.  
1
f3dB  
=
2πR C  
IN IN  
4.5V TO 14.5V  
MAX9744  
BOOT+  
OUT+  
IN  
PV  
DD  
AUDIO  
INPUT  
1μF  
1μF  
C
IN  
R
IN  
OUT  
3.3V  
SHDN  
IN  
V
DD  
MAX1615  
VOLUME  
CONTROL  
9.5dB (max)  
MAX9744  
R
F
FB  
OUT-  
GND  
BOOT-  
GND  
Figure 9. Setting Gain  
Figure 10. Using a Linear Regulator to Produce 3.3V from a  
Higher Power Supply  
22 ______________________________________________________________________________________  
20W Stereo Class D Speaker Amplifier  
with Volume Control  
MAX974  
Use large, low-resistance output traces. Current drawn  
from the outputs increase as load impedance decreas-  
es. High output trace resistance decreases the power  
delivered to the load. Large output, supply, and GND  
traces allow more heat to move from the MAX9744 to  
the air, decreasing the thermal impedance of the circuit.  
Supply Bypassing, Layout,  
and Grounding  
Proper layout and grounding are essential for optimum  
performance. Use large traces for the power-supply  
inputs and amplifier outputs to minimize losses due to  
parasitic trace resistance. Large traces also aid in mov-  
ing heat away from the package. Proper grounding  
improves audio performance, minimizes crosstalk  
between channels, and prevents any switching noise  
from coupling into the audio signal. Connect PGND and  
GND together at a single point on the PCB. Route all  
traces that carry switching transients away from GND  
and the traces/components in the audio signal path.  
The MAX9744 thin QFN package features an exposed  
thermal pad on its underside. This pad lowers the pack-  
age’s thermal resistance by providing a direct heat con-  
duction path from the die to the PCB. Connect the  
exposed thermal pad to PGND by using a large pad and  
multiple vias to the PGND plane. The exposed pad must  
be connected to PGND for proper device operation.  
Connect all PVDD power supplies together and bypass  
with a 1µF capacitor to PGND. Connect all V  
power  
DD  
supplies together and bypass with a 1µF capacitor to  
GND. Place a bulk capacitor between PVDD and PGND  
if needed.  
Pin Configuration  
TOP VIEW  
32 31 30 29 28 27 26 25 24  
33  
23  
SHDN  
PGND  
PGND  
OUTR-  
22  
21  
20  
34  
35  
36  
V
DD  
BIAS  
19 INR  
18 FBR  
17 FBL  
OUTR- 37  
BOOTR- 38  
PGND  
39  
40  
MAX9744  
16  
INL  
BOOTL-  
15 GND  
OUTL- 41  
OUTL- 42  
14 ADDR2  
ADDR1  
PGND  
PGND  
13  
43  
44  
+
12 GND  
2
3
4
5
6
7
8
9
10  
11  
1
TQFN  
(7mm x 7mm)  
______________________________________________________________________________________ 23  
20W Stereo Class D Speaker Amplifier  
with Volume Control  
Functional Diagrams/Typical Application Circuits  
2
I C MODE  
3V TO 3.6V  
4.5V TO 14V  
PVDD  
1μF  
100μF  
1μF  
V
DD  
MAX974  
6, 10, 21, 28  
4, 5, 29, 30  
R
1
BOOTL+  
F
20kΩ  
MAX9744  
C
0.1μF  
BOOT  
FBL 17  
INL 16  
C
IN  
R
IN  
20kΩ  
2, 3 OUTL+  
0.47μF  
41, 42 OUTL-  
40 BOOTL-  
C
BOOT  
0.1μF  
BIAS  
VOLUME  
CONTROL  
C
IN  
R
IN  
20kΩ  
0.47μF  
PV  
DD  
INR 19  
FBR 18  
33 BOOTR+  
C
BOOT  
31, 32 OUTR+  
36, 37 OUTR-  
0.1μF  
R
F
20kΩ  
MUTE 24  
MUTE  
C
0.1μF  
BOOT  
22  
8
SHDN  
38 BOOTR-  
SHUTDOWN  
CONTROL  
SDA/VOL  
SCLK  
TO μC  
9
2
I C  
ADDR1 13  
ADDR2 14  
ANALOG  
CONTROL  
V
DD  
SYNCOUT  
SYNC 25  
26  
V
DD  
OSCILLATOR  
20 BIAS  
N.C.  
23  
BIAS  
C
2.2μF  
BIAS  
7, 11, 12,  
15, 27  
34, 35, 39, 43, 44  
PGND  
GND  
2
(SHOWN IN I C MODE, A = 29.5dB, f  
= 17Hz, SPREAD-SPECTRUM MODE, MUTE OFF, SLAVE ADDRESS = 1001011_)  
V
-3dB  
24 ______________________________________________________________________________________  
20W Stereo Class D Speaker Amplifier  
with Volume Control  
MAX974  
Functional Diagrams/Typical Application Circuits (continued)  
ANALOG MODE  
3V TO 3.6V  
4.5V TO 14V  
PVDD  
100μF  
1μF  
1μF  
V
DD  
6, 10, 21, 28  
4, 5, 29, 30  
R
1
BOOTL+  
F
20kΩ  
MAX9744  
C
0.1μF  
BOOT  
FBL 17  
INL 16  
C
IN  
R
IN  
20kΩ  
2, 3 OUTL+  
0.47μF  
41, 42 OUTL-  
40 BOOTL-  
C
BOOT  
0.1μF  
BIAS  
VOLUME  
CONTROL  
C
IN  
R
IN  
20kΩ  
0.47μF  
PV  
DD  
INR 19  
FBR 18  
33 BOOTR+  
C
BOOT  
31, 32 OUTR+  
36, 37 OUTR-  
0.1μF  
R
F
20kΩ  
MUTE 24  
MUTE  
C
BOOT  
22  
8
SHDN  
SHUTDOWN  
CONTROL  
38 BOOTR-  
V
DD  
0.1μF  
SDA/VOL  
2
I C  
SCLK/PWM  
9
OUTPUT  
MODULATION  
ADDR1 13  
ADDR2 14  
ANALOG  
CONTROL  
SYNCOUT  
SYNC 25  
26  
V
DD  
OSCILLATOR  
20 BIAS  
N.C.  
23  
BIAS  
C
2.2μF  
BIAS  
7, 11, 12,  
15, 27  
34, 35, 39, 43, 44  
PGND  
GND  
(SHOWN IN ANALOG MODE, A = 29.5dB, f  
= 17Hz, SPREAD-SPECTRUM MODE, MUTE OFF, SLAVE ADDRESS = 1001011_)  
V
-3dB  
______________________________________________________________________________________ 25  
20W Stereo Class D Speaker Amplifier  
with Volume Control  
Package Information  
For the latest package outline information and land patterns, go to www.maxim-ic.com/packages.  
E
DETAIL A  
(NE-1) X  
e
E/2  
MAX974  
k
e
e
D/2  
C
(ND-1) X  
D
D2  
L
D2/2  
b
L
E2/2  
C
L
k
E2  
C
C
L
L
L
L
e
e
A
A1  
A2  
PACKAGE OUTLINE,  
32, 44, 48, 56L THIN QFN, 7x7x0.8mm  
1
21-0144  
G
2
26 ______________________________________________________________________________________  
20W Stereo Class D Speaker Amplifier  
with Volume Control  
MAX974  
Package Information (continued)  
For the latest package outline information and land patterns, go to www.maxim-ic.com/packages.  
PACKAGE OUTLINE,  
32, 44, 48, 56L THIN QFN, 7x7x0.8mm  
2
21-0144  
G
2
Chip Information  
PACKAGE TYPE PACKAGE CODE DOCUMENT NO.  
44 TQFN-EP T4477-3  
21-0144  
PROCESS: BICMOS  
______________________________________________________________________________________ 27  
20W Stereo Class D Speaker Amplifier  
with Volume Control  
Revision History  
REVISION REVISION  
PAGES  
CHANGED  
DESCRIPTION  
NUMBER  
DATE  
0
1
3/08  
9/08  
Initial release  
Updated EC table for single pass flow  
2, 4, 5  
MAX974  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
28 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2008 Maxim Integrated Products  
is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY