MAX9757 [MAXIM]

2.3W Stereo Speaker Amplifiers and DirectDrive Headphone Amplifiers with Automatic Level Control;
MAX9757
型号: MAX9757
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

2.3W Stereo Speaker Amplifiers and DirectDrive Headphone Amplifiers with Automatic Level Control

文件: 总31页 (文件大小:790K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-3782; Rev 1; 1/06  
2.3W Stereo Speaker Amplifiers and DirectDrive  
Headphone Amplifiers with Automatic Level Control  
General Description  
Features  
Automatic Level Control—Protects Speakers  
The MAX9756/MAX9757/MAX9758 combine dual, 2.3W,  
bridge tied load (BTL) stereo audio power amplifiers and  
a DirectDriveTM headphone amplifier in a single device.  
These devices feature single-supply voltage operation,  
shutdown mode, logic-selectable gain, a headphone  
sense input, a 31-step analog volume control, and indus-  
try-leading click-and-pop suppression. The headphone  
amplifier uses Maxim’s DirectDrive architecture that pro-  
duces a ground-referenced output from a single supply,  
eliminating the need for large DC-blocking capacitors.  
Analog Volume Control  
120mW DirectDrive Headphone Amplifiers (16Ω)  
150mA Adjustable LDO  
Class AB, 2.3W, Stereo BTL Speaker Amplifiers  
(3Ω)  
High 95dB PSRR  
Low-Power Shutdown Mode  
Industry-Leading Click-and-Pop Suppression  
Short-Circuit and Thermal Protection  
Beep Input  
The MAX9756/MAX9757 feature automatic level control  
(ALC) that automatically limits output power to the speak-  
er in the event of an overpowered output.  
The MAX9756/MAX9758s’ 150mA internal linear regula-  
tor provides a complete solution for DAC- or CODEC-  
based designs.  
The MAX9756/MAX9757/MAX9758 are offered in space-  
saving, thermally efficient 32-pin (5mm x 5mm x 0.8mm)  
and 36-pin thin QFN (6mm x 6mm x 0.8mm) packages.  
All devices are specified over the extended -40°C to  
+85°C temperature range.  
Ordering Information  
PART  
ALC  
LDO  
PIN-PACKAGE  
36 Thin QFN-EP*  
32 Thin QFN-EP*  
32 Thin QFN-EP*  
MAX9756ETX+  
MAX9757ETJ+  
MAX9758ETJ+  
Applications  
Note: All devices specified for -40°C to +85°C operating  
Notebook PCs  
Tablet PCs  
Flat-Panel TVs  
PC Displays  
temperature range.  
+Denotes lead-free package.  
*EP = Exposed paddle.  
Portable DVD  
Players  
LCD Projectors  
Portable Audio  
Simplified Block Diagrams  
SINGLE SUPPLY 4.5V TO 5.5V  
ALC  
SINGLE SUPPLY 4.5V TO 5.5V  
SINGLE SUPPLY 4.5V TO 5.5V  
ALC  
ALC  
ALC  
VOL  
BEEP  
HPS  
VOL  
BEEP  
HPS  
VOL  
BEEP  
HPS  
1.2V TO 5V  
LDO  
1.2V TO 5V  
LDO  
MAX9757  
MAX9756  
MAX9758  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
2.3W Stereo Speaker Amplifiers and DirectDrive  
Headphone Amplifiers with Automatic Level Control  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage (V , PV , HPV , CPV , IN to GND) ....+6V  
Continuous Input Current (all other pins) ......................... 20mA  
DD  
DD  
DD  
DD  
PGND, CPGND to GND...................................................... 0.3V  
CPV , C1N, V to GND......................................-6.0V to +0.3V  
Continuous Power Dissipation (T = +70°C, single-layer board)  
A
32-Pin Thin QFN (derate 18.6mW/°C above +70°C).....1490mW  
36-Pin Thin QFN (derate 20.4mW/°C above +70°C).....1633mW  
Continuous Power Dissipation (T =+70°C, multilayer board)  
A
32-Pin Thin QFN (derate 24.9mW/°C above +70°C).....1990mW  
36-Pin Thin QFN (derate 27.7mW/°C above +70°C).....2180mW  
Junction Temperature .....................................................+150°C  
Operating Temperature Range ...........................-40°C to +85°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
SS  
SS  
HP_ to GND ........................................................................... 3V  
Any Other Pin .............................................-0.3V to (V + 0.3V)  
DD  
Duration of OUT_ Short Circuit to GND or PV ........Continuous  
DD  
Duration of OUT_+ Short Circuit to OUT_-.................Continuous  
Duration of HP_ Short Circuit to GND,  
V , or HPV .........................................................Continuous  
SS DD  
Duration of OUT Short Circuit to GND........................Continuous  
Continuous Current (PV , OUT_, PGND) ...........................1.7A  
DD  
Continuous Current (CPV , C1N, CPGND, C1P, CPV  
,
SS  
DD  
V
SS  
, HPV , HP_, IN, OUT).............................................0.85A  
DD  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V = PV  
= HPV  
= CPV = IN = +5.0V, GND = PGND = CPGND = 0, SHDN = V , REGEN = V , DR = SET = GND, C  
DD  
DD  
DD DD DD DD BIAS  
= 1µF, C  
= 1µF, C1 = C2 = 1µF, PREF = unconnected, speaker loads terminated between OUT_+ and OUT_-, headphone load  
PVSS  
terminated between HP_ and GND, GAIN1 = GAIN2 = GAIN3 = VOL = 0 (A  
= 15dB, A  
= 0dB), T = -40°C to +85°C, unless  
V(HP) A  
V(SP)  
otherwise noted. Typical values are at T = +25°C.) (Note 1)  
A
PARAMETER  
GENERAL  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Supply Voltage Range  
V
, PV  
Inferred from PSRR test  
4.5  
3.0  
5.5  
5.5  
V
V
DD  
DD  
Headphone Supply Voltage  
HPV  
Inferred from PSRR test  
DD  
HPS = GND, speaker  
14  
7
29  
13  
mode, R =  
I
I
= I  
HPVDD  
+
L
DD  
VDD  
+ I  
Quiescent Supply Current  
I
mA  
DD  
HPS = 5V, headphone  
CPVDD  
mode, R = ∞  
L
Shutdown Supply Current  
Bias Voltage  
I
SHDN = REGEN = GND  
0.2  
2.43  
10  
5
µA  
V
SHDN  
V
2.2  
10  
2.65  
BIAS  
Switching Time  
t
Gain or input switching  
INL and INR  
µs  
kΩ  
ms  
SW  
Input Resistance  
Turn-On Time  
R
20  
30  
15  
IN  
t
25  
SON  
SPEAKER AMPLIFIERS (HPS = GND)  
Measured between OUT_+ and OUT_-,  
Output Offset Voltage  
V
0.4  
mV  
dB  
OS  
T
A
= +25°C  
PV  
= 4.5V to 5.5V, T = +25°C  
75  
95  
83  
DD  
A
Power-Supply Rejection Ratio  
(Note 2)  
PSRR  
f = 1kHz, V  
= 200mV  
RIPPLE  
P-P  
f = 10kHz, V  
= 200mV  
68  
RIPPLE  
P-P  
R = 8Ω  
0.9  
1.3  
L
THD+N = 1%, f = 1kHz  
(T = +25°C)  
R = 4Ω  
L
2.0  
Output Power (Note 3)  
P
W
OUT  
A
R = 3Ω  
L
2.3  
R = 8, BTL P  
= 1W, f = 1kHz  
0.009  
0.015  
L
OUT  
OUT  
OUT  
Total Harmonic Distortion Plus  
Noise  
THD+N  
SNR  
%
R = 4, BTL P  
L
= 1W, f = 1kHz  
R = 8, BTL P  
= 1W, BW = 22Hz to  
L
92  
95  
22kHz, unweighted  
Signal-to-Noise Ratio  
dB  
R = 8, BTL P  
L
= 1W, A weighted  
OUT  
2
_______________________________________________________________________________________  
2.3W Stereo Speaker Amplifiers and DirectDrive  
Headphone Amplifiers with Automatic Level Control  
ELECTRICAL CHARACTERISTICS (continued)  
(V = PV  
= HPV  
= CPV = IN = +5.0V, GND = PGND = CPGND = 0, SHDN = V , REGEN = V , DR = SET = GND, C  
DD  
DD  
DD DD DD DD BIAS  
= 1µF, C  
= 1µF, C1 = C2 = 1µF, PREF = unconnected, speaker loads terminated between OUT_+ and OUT_-, headphone load  
PVSS  
terminated between HP_ and GND, GAIN1 = GAIN2 = GAIN3 = VOL = 0 (A  
= 15dB, A  
= 0dB), T = -40°C to +85°C, unless  
V(HP) A  
V(SP)  
otherwise noted. Typical values are at T = +25°C.) (Note 1)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
µV  
BW = 22Hz to 22kHz, unweighted,  
measured at output, input at AC GND  
Noise  
V
71  
n
RMS  
Capacitive-Load Drive  
Crosstalk  
C
No sustained oscillations  
200  
80  
pF  
dB  
L
L to R, R to L, f = 10kHz  
Slew Rate  
SR  
Measured between OUT_+ and OUT_-  
1.3  
V/µs  
GAIN3 = 0  
GAIN3 = 0  
GAIN3 = 0  
GAIN3 = 0  
GAIN3 = 1  
GAIN3 = 1  
GAIN3 = 1  
GAIN3 = 1  
GAIN2 = 0  
GAIN2 = 0  
GAIN2 = 1  
GAIN2 = 1  
GAIN2 = 0  
GAIN2 = 0  
GAIN2 = 1  
GAIN2 = 1  
GAIN1 = 0  
GAIN1 = 1  
GAIN1 = 0  
GAIN1 = 1  
GAIN1 = 0  
GAIN1 = 1  
GAIN1 = 0  
GAIN1 = 1  
15  
16.5  
18  
19.5  
21  
Gain (Maximum Volume Settings)  
(Note 4)  
A
VMAX  
(SPKR)  
dB  
22.5  
24.0  
25.5  
Into  
shutdown  
Out of  
shutdown  
65  
Peak voltage, 32  
samples/second,  
A weighted (Note 5)  
Click-and-Pop Level  
K
dBV  
CP  
38.5  
HEADPHONE AMPLIFIERS (HPS = V  
)
DD  
Output Offset Voltage  
V
T
= +25°C  
2
90  
7
mV  
dB  
OS(HP)  
A
HPV  
= 3V to 5.5V, T = +25°C  
70  
40  
DD  
A
Power-Supply Rejection Ratio  
(Note 2)  
PSRR  
f = 1kHz, V  
= 200mV  
72  
RIPPLE  
P-P  
f = 10kHz, V  
= 200mV  
70  
RIPPLE  
P-P  
R = 32Ω  
L
68  
THD+N = 1%, f = 1kHz  
(T = +25°C)  
Output Power (Note 3)  
P
mW  
%
OUT  
A
R = 16Ω  
L
130  
0.02  
0.04  
R = 32, V  
= 1V  
= 1V  
, f = 1kHz  
, f = 1kHz  
L
OUT  
RMS  
Total Harmonic Distortion Plus  
Noise  
THD+N  
SNR  
R = 16, V  
L
OUT  
RMS  
R = 32, BTL P  
BW = 22Hz to 22kHz, unweighted  
= 65mW,  
L
OUT  
97  
Signal-to-Noise Ratio  
dB  
R = 32, BTL P = 65W,  
BW = 22Hz to 22kHz, A weighted  
L
OUT  
100  
Noise  
V
BW = 22Hz to 22kHz  
20.4  
200  
60  
µV  
RMS  
n
Capacitive-Load Drive  
Crosstalk  
C
No sustained oscillations  
L to R, R to L, f = 10kHz  
pF  
dB  
L
Slew Rate  
SR  
1.4  
0
V/µs  
GAIN2 = 0, HPS = 1  
GAIN2 = 1, HPS = 1  
Gain (Maximum Volume Settings)  
(Note 6)  
A
dB  
VMAX(HP)  
3.0  
Peak voltage, 32  
samples/second,  
A weighted (Note 4)  
Into shutdown  
Out of shutdown  
62  
50  
Click-and-Pop Level  
K
dBV  
CP  
_______________________________________________________________________________________  
3
2.3W Stereo Speaker Amplifiers and DirectDrive  
Headphone Amplifiers with Automatic Level Control  
ELECTRICAL CHARACTERISTICS (continued)  
(V = PV  
= HPV  
= CPV = IN = +5.0V, GND = PGND = CPGND = 0, SHDN = V , REGEN = V , DR = SET = GND, C  
DD  
DD  
DD DD DD DD BIAS  
= 1µF, C  
= 1µF, C1 = C2 = 1µF, PREF = unconnected, speaker loads terminated between OUT_+ and OUT_-, headphone load  
PVSS  
terminated between HP_ and GND, GAIN1 = GAIN2 = GAIN3 = VOL = 0 (A  
= 15dB, A  
= 0dB), T = -40°C to +85°C, unless  
V(HP) A  
V(SP)  
otherwise noted. Typical values are at T = +25°C.) (Note 1)  
A
PARAMETER  
CHARGE PUMP  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Charge-Pump Frequency  
VOLUME CONTROL  
VOL Input Impedance  
VOL Input Hysteresis  
f
500  
550  
600  
kHz  
OSC  
R
100  
10  
MΩ  
VOL  
mV  
0.858 x  
Full Mute Voltage  
(Note 7)  
= 1kHz  
V
HPV  
DD  
Full Mute Attenuation  
Input Impedance  
f
-85  
dB  
IN  
R
VOL_  
Any gain setting  
100  
0.2  
0.3  
1.0  
MΩ  
A
V
A
V
A
V
= +15dB to 0dB  
= -2dB to -20dB  
= -22dB to -56dB  
Channel Matching  
dB  
BEEP INPUT  
T
= +25°C, R = 47k(see BEEP Input  
B
A
Beep Signal Amplitude Threshold  
0.3  
V
section)  
Beep Signal Frequency  
Threshold  
T
A
= +25°C  
300  
Hz  
AUTOMATIC LEVEL CONTROL SPEAKER AMPLIFIER (MAX9756/MAX9757)  
PREF Threshold Accuracy  
Maximum Gain Compression  
Attack Time  
R
= 180kΩ  
5
8.1  
%
PREF  
6.0  
6.3  
15  
50  
30  
9.5  
3
dB  
ms  
ms  
C = 1µF (Note 8)  
T
Hold Time  
Time between attack and release phases  
0V < V < (0.3V x V  
)
DR  
DD  
C = 1µF,  
T
release from  
6dB  
Release Time (Note 9)  
0.4V < V < (0.6V x V  
)
s
DR  
DD  
0.8V < V < V  
DR  
DD  
DR INPUT (TRI-STATE INPUT)  
0.8 x  
DR Input Voltage High  
V
V
V
V
DRH  
DD  
V
DD  
0.4 x  
0.6 x  
V
DD  
DR Input Voltage Middle  
V
DRM  
V
DD  
0.3 x  
DR Input Voltage Low  
Input Leakage Current  
V
0
V
DRL  
V
DD  
0V V V  
1
µA  
DR  
DD  
LOGIC INPUTS (GAIN_, SHDN, REGEN)  
Input High Voltage  
Input Low Voltage  
Input Leakage Current  
V
2
V
V
IH  
V
0.8  
1
IL  
I
µA  
IN  
4
_______________________________________________________________________________________  
2.3W Stereo Speaker Amplifiers and DirectDrive  
Headphone Amplifiers with Automatic Level Control  
ELECTRICAL CHARACTERISTICS (continued)  
(V = PV  
= HPV  
= CPV = IN = +5.0V, GND = PGND = CPGND = 0, SHDN = V , REGEN = V , DR = SET = GND, C  
DD  
DD  
DD DD DD DD BIAS  
= 1µF, C  
= 1µF, C1 = C2 = 1µF, PREF = unconnected, speaker loads terminated between OUT_+ and OUT_-, headphone load  
PVSS  
terminated between HP_ and GND, GAIN1 = GAIN2 = GAIN3 = VOL = 0 (A  
= 15dB, A  
= 0dB), T = -40°C to +85°C, unless  
V(HP) A  
V(SP)  
otherwise noted. Typical values are at T = +25°C.) (Note 1)  
A
PARAMETER  
LOGIC INPUT HEADPHONE (HPS)  
Input High Voltage  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
2
V
V
IH  
Input Low Voltage  
V
0.8  
IL  
HPS Pullup Current  
35  
µA  
LOW-DROPOUT LINEAR REGULATOR  
Input Voltage Range  
V
Inferred from line regulation  
3.5  
5.5  
V
IN  
I
I
= 0mA, SHDN = GND  
100  
350  
0.1  
160  
OUT  
OUT  
Supply (Ground) Current  
I
µA  
Q
= 150mA  
Shutdown Current  
Output Current  
I
REGEN = 0V  
3
µA  
SHDN  
I
150  
mA  
OUT  
Fixed Output Voltage Accuracy  
Adjustable Output Voltage Range  
SET Reference Voltage  
I
= 1mA  
1.5  
4.85  
1.23  
%
V
OUT  
V
SET  
V
1.19  
1.21  
200  
20  
V
SET  
SET Dual-Mode Threshold  
SET Input Leakage Current  
mV  
nA  
I
500  
50  
SET  
I
I
= 50mA  
25  
OUT  
V
= 4.65V (fixed  
OUT  
Dropout Voltage (Note 10)  
V  
mV  
OD  
output operation)  
= 150mA  
100  
300  
20  
150  
OUT  
Output Current Limit  
Startup Time  
I
mA  
µs  
LIM  
V
= 3.5V to 5.5V, V  
= 1mA  
= 2.5V,  
IN  
OUT  
Line Regulation  
Load Regulation  
Ripple Rejection  
-0.1  
+0.01  
+0.1  
%/V  
%
I
OUT  
V
V
= 4.65V, 1mA < I  
< 150mA  
0.5  
60  
50  
OUT  
OUT  
f = 1kHz  
f = 10kHz  
= 200mV  
dB  
RIPPLE  
P-P  
20Hz to 22kHz, C  
= 2 x 1µF,  
= 4.65V  
OUT  
Output Voltage Noise  
100  
µV  
RMS  
I
= 150mA, V  
OUT  
OUT  
Note 1: All devices are 100% production tested at room temperature. All temperature limits are guaranteed by design.  
Note 2: PSRR is specified with the amplifier input connected to GND through R and C  
.
IN  
IN  
Note 3: Output power levels are measured with the TQFN’s exposed paddle soldered to the ground plane.  
Note 4: Speaker path gain is defined as: A = (V - V )/V ).  
VSPKR  
OUT+  
OUT- IN__  
Note 5: Speaker mode testing performed with 8resistive load connected across BTL output. Headphone mode testing per-  
formed with 32resistive load connected between HP_ and GND. Mode transitions are controlled by SHDN.  
Note 6: Headphone path gain is defined as: A  
= V  
/V  
.
VHP  
HP_ IN__  
Note 7: See Table 3 for detains on the mute levels.  
Note 8: Attack envelope is exponential. Attack time is defined as the 15 x 103 x C .  
T
Note 9: Time for the gain to return to within 10% of nominal gain setting after the input signal has fallen below the PREF threshold.  
Release is linear in dB. Release time is proportional to magnitude of gain compression.  
Note 10: Dropout voltage is defined as (V - V  
) when V  
is 2% below the value of V  
for V = V  
+ 1V.  
OUT(NOM)  
IN  
OUT  
OUT  
OUT  
IN  
_______________________________________________________________________________________  
5
2.3W Stereo Speaker Amplifiers and DirectDrive  
Headphone Amplifiers with Automatic Level Control  
Typical Operating Characteristics  
(V  
= PV  
= HPV  
= CPV  
= IN = +5.0V, GND = PGND = CPGND = 0V, SHDN = V , REGEN = DR = SET = GND, C  
=
DD  
DD  
DD  
DD  
DD  
BIAS  
1µF, C  
= 1µF, C1 = C2 = 1µF, PREF = unconnected, GAIN1 = 1, GAIN2 = GAIN3 = VOL = 0V, measurement BW = 22Hz to  
PVSS  
22kHz, T = +25°C, unless otherwise noted.)  
A
TOTAL HARMONIC DISTORTION PLUS NOISE  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY (HEADPHONE MODE)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY (HEADPHONE MODE)  
vs. FREQUENCY (HEADPHONE MODE)  
10  
10  
10  
V
= 5V  
V
= 5V  
V
= 5V  
DD  
DD  
DD  
R = 3  
L
R = 4Ω  
L
R = 8Ω  
L
1
0.1  
1
1
0.1  
0.1  
OUTPUT POWER = 500mW  
OUTPUT POWER = 500mW  
OUTPUT POWER = 500mW  
0.01  
0.001  
0.01  
0.001  
0.01  
0.001  
OUTPUT POWER = 1.8W  
OUTPUT POWER = 1.5W  
OUTPUT POWER = 1W  
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER (SPEAKER MODE)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER (SPEAKER MODE)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER (SPEAKER MODE)  
100  
100  
100  
V
= 5V  
V
= 5V  
DD  
V
= 5V  
DD  
DD  
R = 3Ω  
L
R = 8Ω  
L
R = 4Ω  
L
10  
10  
10  
1
1
1
f
= 10kHz  
f
= 10kHz  
IN  
IN  
f
= 10kHz  
IN  
0.1  
0.1  
0.1  
0.01  
0.001  
0.01  
0.001  
0.01  
0.001  
f
= 100Hz  
IN  
f
= 1kHz  
f
= 1kHz  
IN  
f = 100Hz  
IN  
IN  
f
= 1kHz  
0.5  
f
= 100Hz  
1.5  
IN  
IN  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5  
OUTPUT POWER (W)  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5  
OUTPUT POWER (W)  
0
1.0  
2.0  
OUTPUT POWER (W)  
POWER DISSIPATION vs. OUTPUT POWER  
(SPEAKER MODE)  
OUTPUT POWER  
vs. LOAD RESISTANCE (SPEAKER MODE)  
POWER-SUPPLY REJECTION RATIO  
vs. FREQUENCY (SPEAKER MODE)  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
0
-10  
R = 4Ω  
L
V
= 200mV  
RIPPLE P-P  
V
= 5V  
DD  
R = 8Ω  
L
f = 1kHz  
-20  
-30  
-40  
THD+N = 10%  
-50  
R = 8Ω  
L
-60  
-70  
-80  
THD+N = 1%  
-90  
-100  
-110  
-120  
f = 1kHz  
P
= P  
+ P  
OUTL OUTR  
OUT  
1
10  
LOAD RESISTANCE ()  
100  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0  
OUTPUT POWER (W)  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
6
_______________________________________________________________________________________  
2.3W Stereo Speaker Amplifiers and DirectDrive  
Headphone Amplifiers with Automatic Level Control  
Typical Operating Characteristics (continued)  
(V  
= PV  
= HPV  
= CPV  
= IN = +5.0V, GND = PGND = CPGND = 0V, SHDN = V , REGEN = DR = SET = GND, C  
=
DD  
DD  
DD  
DD  
DD  
BIAS  
1µF, C  
= 1µF, C1 = C2 = 1µF, PREF = unconnected, GAIN1 = 1, GAIN2 = GAIN3 = VOL = 0V, measurement BW = 22Hz to  
PVSS  
22kHz, T = +25°C, unless otherwise noted.)  
A
CROSSTALK vs. FREQUENCY  
TURN-ON RESPONSE (SPEAKER MODE)  
(SPEAKER MODE)  
TURN-OFF RESPONSE (SPEAKER MODE)  
MAX9756 toc11  
MAX9756 toc12  
0
V
= 200mV  
P-P  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
IN  
SHDN  
5V/div  
SHDN  
5V/div  
OUT_+  
2V/div  
RIGHT TO LEFT  
OUT_+  
2V/div  
OUT_-  
2V/div  
LEFT TO RIGHT  
OUT_-  
2V/div  
OUT_+ - OUT_-  
50mV/div  
OUT_+ - OUT_-  
50mV/div  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
10ms/div  
10ms/div  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY (HEADPHONE MODE)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY (HEADPHONE MODE)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY (HEADPHONE MODE)  
10  
10  
10  
V
= 5V  
V
= 3.3V  
DD  
V
= 5V  
DD  
DD  
R = 32Ω  
L
R = 16Ω  
L
R = 16Ω  
L
1
1
1
OUTPUT POWER = 100mW  
OUTPUT POWER = 80mW  
OUTPUT POWER = 20mW  
0.1  
0.1  
0.1  
0.01  
0.001  
0.01  
0.001  
0.01  
0.001  
OUTPUT POWER = 40mW  
OUTPUT POWER = 20mW  
OUTPUT POWER = 60mW  
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER (HEADPHONE MODE)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER (HEADPHONE MODE)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY (HEADPHONE MODE)  
10  
100  
100  
HPV = 5V  
DD  
R = 16Ω  
L
HPV = 5V  
DD  
R = 32Ω  
L
V
= 3.3V  
DD  
R = 32Ω  
L
10  
1
10  
1
1
f
= 10kHz  
IN  
f
= 1kHz  
IN  
f
= 1kHz  
f
= 100Hz  
IN  
IN  
0.1  
OUTPUT POWER = 50mW  
0.1  
0.1  
0.01  
0.001  
0.01  
0.001  
0.01  
0.001  
OUTPUT POWER = 20mW  
f
= 10kHz  
f
= 100Hz  
IN  
IN  
0
20 40 60 80 100 120 140 160 180 200  
OUTPUT POWER (mW)  
0
10 20 30 40 50 60 70 80 90 100  
OUTPUT POWER (mW)  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
_______________________________________________________________________________________  
7
2.3W Stereo Speaker Amplifiers and DirectDrive  
Headphone Amplifiers with Automatic Level Control  
Typical Operating Characteristics (continued)  
(V  
= PV  
= HPV  
= CPV  
= IN = +5.0V, GND = PGND = CPGND = 0V, SHDN = V , REGEN = DR = SET = GND, C  
=
DD  
DD  
DD  
DD  
DD  
BIAS  
1µF, C  
= 1µF, C1 = C2 = 1µF, PREF = unconnected, GAIN1 = 1, GAIN2 = GAIN3 = VOL = 0V, measurement BW = 22Hz to  
PVSS  
22kHz, T = +25°C, unless otherwise noted.)  
A
OUTPUT POWER vs. LOAD RESISTANCE  
(HEADPHONE MODE)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER (HEADPHONE MODE)  
100  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER (HEADPHONE MODE)  
140  
120  
100  
80  
100  
HPV = 3.3V  
HPV = 3.3V  
DD  
DD  
HPV = 3.3V  
DD  
f = 1kHz  
R = 16Ω  
R = 32Ω  
L
L
10  
1
10  
1
THD+N = 10%  
f
= 1kHz  
IN  
f
= 1kHz  
IN  
f = 100Hz  
IN  
f
= 100Hz  
IN  
THD+N = 1%  
60  
0.1  
0.1  
40  
f
= 10kHz  
100  
0.01  
0.001  
IN  
0.01  
0.001  
20  
f
= 10kHz  
IN  
0
10  
100  
LOAD RESISTANCE ()  
1000  
20 30  
0
20  
40  
60  
80  
120  
0
10  
40 50 60 70 80 90 100  
OUTPUT POWER (mW)  
OUTPUT POWER (mW)  
POWER DISSIPATION vs. OUTPUT POWER  
(HEADPHONE MODE)  
OUTPUT POWER vs. SUPPLY VOLTAGE  
(HEADPHONE MODE)  
OUTPUT POWER vs. LOAD RESISTANCE  
(HEADPHONE MODE)  
0.8  
0.6  
0.4  
0.2  
0
200  
180  
160  
140  
120  
100  
80  
140  
130  
120  
110  
100  
90  
80  
70  
60  
50  
HPV = 5V  
DD  
f = 1kHz  
THD+N = 1%  
f = 1kHz  
P
= P + P  
HL HR  
OUT  
R = 16Ω  
L
R = 16Ω  
L
THD+N = 10%  
THD+N = 1%  
R = 32Ω  
L
60  
40  
30  
20  
10  
R = 32Ω  
L
40  
20  
0
0
0
25 50 75 100 125 150 175 200 225 250  
OUTPUT POWER (mW)  
10  
100  
1000  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
LOAD RESISTANCE ()  
SUPPLY VOLTAGE (V)  
POWER-SUPPLY REJECTION RATIO  
vs. FREQUENCY (HEADPHONE MODE)  
OUTPUT POWER vs. CHARGE-PUMP  
CAPACITANCE (HEADPHONE MODE)  
CROSSTALK vs. FREQUENCY  
(HEADPHONE MODE)  
150  
140  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
f = 1kHz  
THD+N = 1%  
V
= 100mV  
P-P  
RIPPLE  
R = 32Ω  
f = 1kHz  
L
INPUTS AC-GROUNDED  
130  
120  
110  
V
= 200mV  
C1 = C2 = 1µF  
IN  
P-P  
100  
90  
HPV = 3.3V  
DD  
RIGHT TO LEFT  
80  
70  
C1 = C2 = 2.2µF  
60  
50  
LEFT TO RIGHT  
40  
30  
20  
HPV = 5V  
DD  
20  
35 40  
25 30  
LOAD ()  
10 15  
45 50  
10  
100  
1k  
10k  
100k  
0.01  
0.1  
1
10  
100  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
8
_______________________________________________________________________________________  
2.3W Stereo Speaker Amplifiers and DirectDrive  
Headphone Amplifiers with Automatic Level Control  
Typical Operating Characteristics (continued)  
(V  
= PV  
= HPV  
= CPV  
= IN = +5.0V, GND = PGND = CPGND = 0V, SHDN = V , REGEN = DR = SET = GND, C  
=
DD  
DD  
DD  
DD  
DD  
BIAS  
1µF, C  
= 1µF, C1 = C2 = 1µF, PREF = unconnected, GAIN1 = 1, GAIN2 = GAIN3 = VOL = 0V, measurement BW = 22Hz to  
PVSS  
22kHz, T = +25°C, unless otherwise noted.)  
A
SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
TURN-OFF RESPONSE (HEADPHONE MODE)  
TURN-ON RESPONSE (HEADPHONE MODE)  
MAX9756 toc29  
MAX9756 toc28  
20  
17  
14  
11  
8
SHDN  
5V/div  
SHDN  
5V/div  
HPS = GND  
HPR  
10mV/div  
HPR  
10mV/div  
HPS = V  
DD  
HPL  
10mV/div  
HPL  
10mV/div  
5
4.5  
4.7  
4.9  
5.1  
5.3  
5.5  
10ms/div  
10ms/div  
SUPPLY VOLTAGE (V)  
SHUTDOWN CURRENT  
vs. SUPPLY VOLTAGE  
POWER LIMITING OF SINE BURST  
POWER LIMITING OF SINE BURST  
(FAST ATTACK AND SLOW RELEASE)  
(FAST ATTACK AND FAST RELEASE)  
MAX9756 toc32  
MAX9756 toc33  
600  
500  
400  
300  
200  
100  
0
OUTPUT  
2V/div  
OUTPUT  
2V/div  
CT  
1V/div  
CT  
1V/div  
4.5  
4.7  
4.9  
5.1  
5.3  
5.5  
10ms/div  
40ms/div  
SUPPLY VOLTAGE (V)  
LDO OUTPUT VOLTAGE ACCURACY  
vs. LOAD CURRENT  
POWER LIMITING OF SINE BURST  
(SLOW ATTACK AND SLOW RELEASE)  
MAX9756 toc33  
2.0  
1.5  
1.0  
0.5  
0
OUTPUT  
2V/div  
-0.5  
-1.0  
-1.5  
-2.0  
CT  
1V/div  
0
25  
50  
75  
100  
125  
150  
2s/div  
LOAD CURRENT (mA)  
_______________________________________________________________________________________  
9
2.3W Stereo Speaker Amplifiers and DirectDrive  
Headphone Amplifiers with Automatic Level Control  
Typical Operating Characteristics (continued)  
(V  
= PV  
= HPV  
= CPV  
= IN = +5.0V, GND = PGND = CPGND = 0V, SHDN = V , REGEN = DR = SET = GND, C  
=
DD  
DD  
DD  
DD  
DD  
BIAS  
1µF, C  
= 1µF, C1 = C2 = 1µF, PREF = unconnected, GAIN1 = 1, GAIN2 = GAIN3 = VOL = 0V, measurement BW = 22Hz to  
PVSS  
22kHz, T = +25°C, unless otherwise noted.)  
A
CROSSTALK vs. FREQUENCY  
LDO OUTPUT VOLTAGE ACCURACY  
vs. TEMPERATURE  
DROPOUT VOLTAGE  
vs. LOAD CURRENT  
(LDO)  
5
4
0
300  
200  
100  
0
R
P
= 4Ω  
OUT(SPK)  
L
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
= 1W  
3
2
1
0
-1  
-2  
-3  
-4  
-5  
-100  
-200  
-300  
I
= 90mA  
OUT  
I
= 50mA  
OUT  
I
= 10mA  
OUT  
0.1  
-40  
-15  
10  
35  
60  
85  
0.01  
1
10  
100  
0
25  
50  
75  
100  
125  
150  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
LOAD CURRENT (mA)  
POWER-SUPPLY REJECTION RATIO  
vs. FREQUENCY (LDO)  
LDO OUTPUT NOISE  
MAX9756 toc40  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
V
= 100mV  
P-P  
RIPPLE  
LDO_OUT  
1mV/div  
-100  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
200µs/div  
10 ______________________________________________________________________________________  
2.3W Stereo Speaker Amplifiers and DirectDrive  
Headphone Amplifiers with Automatic Level Control  
Typical Operating Characteristics (continued)  
(V  
= PV  
= HPV  
= CPV  
= IN = +5.0V, GND = PGND = CPGND = 0V, SHDN = V , REGEN = DR = SET = GND, C  
=
DD  
DD  
DD  
DD  
DD  
BIAS  
1µF, C  
= 1µF, C1 = C2 = 1µF, PREF = unconnected, GAIN1 = 1, GAIN2 = GAIN3 = VOL = 0V, measurement BW = 22Hz to  
PVSS  
22kHz, T = +25°C, unless otherwise noted.)  
A
OUTPUT NOISE  
vs. FREQUENCY (LDO)  
110  
LINE-TRANSIENT RESPONSE  
MAX9756 toc42  
C
= 2µF  
OUT  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
5.5V  
10Hz TO 100kHz  
V
IN  
500mV/div  
4.5V  
LDO_OUT  
20mV/div  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
40µs/div  
LOAD-TRANSIENT RESPONSE  
LDO SHUTDOWN RESPONSE  
MAX9756 toc43  
MAX9756 toc44  
50V  
REGEN  
5V/div  
I
LOAD  
25mV/div  
0V  
LDO_OUT = 4.65V  
20mV/div  
LDO_OUT  
1V/div  
20µs/div  
100ms/div  
Pin Description  
PIN  
NAME  
FUNCTION  
MAX9756 MAX9757 MAX9758  
1
32  
32  
INL  
Left-Channel Audio Input  
2
3
1
2
1
GAIN1 Gain Control Input 1  
GAIN2 Gain Control Input 2  
GAIN3 Gain Control Input 3  
BEEP Audible Alert Beep Input  
PGND Power Ground  
2
3
4
3
5
4
4
6, 22  
7
5, 21  
6
5, 21  
6
OUTL+ Left-Channel Positive Speaker Output  
OUTL- Left-Channel Negative Speaker Output  
8
7
7
9,19  
8,18  
8, 18  
PV  
Speaker Amplifier Power Supply. Bypass with 1µF ceramic capacitor to PGND.  
DD  
______________________________________________________________________________________ 11  
2.3W Stereo Speaker Amplifiers and DirectDrive  
Headphone Amplifiers with Automatic Level Control  
Pin Description (continued)  
PIN  
NAME  
CPV  
FUNCTION  
MAX9756 MAX9757 MAX9758  
10  
9
9
Charge-Pump Power Supply. Bypass with 1µF ceramic capacitor to CPGND.  
DD  
Charge-Pump Flying-Capacitor Positive Terminal. Connect a 1µF capacitor from C1P  
to C1N.  
11  
10  
10  
C1P  
12  
13  
14  
11  
12  
13  
11  
12  
13  
CPGND Charge-Pump Ground  
Charge-Pump Flying-Capacitor Negative Terminal. Connect a 1µF capacitor from  
C1N  
CPV  
C1P to C1N.  
Charge-Pump Negative Output. Connect to V  
.
SS  
SS  
Headphone Amplifier Negative Power Supply. Bypass with 1µF ceramic capacitor to  
GND.  
15  
14  
14  
V
SS  
16  
17  
15  
16  
15  
16  
HPR  
HPL  
Right Headphone Output  
Left Headphone Output  
18  
17  
17  
HPV  
Headphone Positive Power Supply. Bypass with 1µF ceramic capacitor to GND.  
DD  
20  
21  
19  
20  
19  
20  
OUTR- Right-Channel Negative Speaker Output  
OUTR+ Right-Channel Positive Speaker Output  
Headphone Sense Input. Leave HPS unconnected if automatic headphone sensing  
is not used.  
23  
24  
22  
22  
23  
HPS  
LDO Enable. Connect REGEN to V to enable the LDO. Connect to GND to  
DD  
disable LDO.  
REGEN  
Automatic Level Control Attack to Release Time Ratio Select. Hardwired to V  
GND, or BIAS to set the attack to release ratio; see the ALC section.  
,
DD  
25  
26  
27  
28  
29  
23  
24  
25  
26  
27  
24  
25  
26  
DR  
BIAS  
SHDN  
VOL  
Common-Mode Bias Voltage. Bypass with a 1.0µF capacitor to GND.  
Shutdown Input. Drive SHDN low to disable the audio amplifiers. Connect SHDN to  
for normal operation.  
V
DD  
Analog Volume Control Input  
Power-Limiting Input. Connect a resistor from PREF to GND to set the speaker output  
clamping level. Leave PREF unconnected to disable ALC; see the ALC section.  
PREF  
Regulator Feedback Input. Connect to GND for 4.65V fixed output. Connect to  
resistor-divider for adjustable output; see the Low-Dropout Linear Regulator section.  
30  
27  
SET  
31  
32  
33  
34  
28  
29  
28  
30  
GND  
Ground  
V
Power Supply  
DD  
IN  
LDO Input. Bypass with two 1µF ceramic capacitors to GND.  
LDO Output. Bypass with two 1µF ceramic capacitors to GND.  
OUT  
Automatic Level Control Attack and Release Timing Capacitor. Connect CT to GND  
to disable ALC; see the ALC section.  
35  
30  
CT  
36  
31  
31  
29  
INR  
Right-Channel Audio Input  
V
Power-Supply and LDO Input. Bypass with two 1µF ceramic capacitors to GND.  
DD  
Exposed Pad. The external pad lowers the package’s thermal impedance by  
providing a direct-heat conduction path from the die to the PC board. Connect the  
exposed thermal pad to GND.  
EP  
EP  
EP  
EP  
12 ______________________________________________________________________________________  
2.3W Stereo Speaker Amplifiers and DirectDrive  
Headphone Amplifiers with Automatic Level Control  
All devices feature a single-supply voltage, a shut-  
Detailed Description  
down mode, logic-selectable gain, and a headphone  
The MAX9756/MAX9757/MAX9758 combine dual, 2W  
sense input. Industry-leading click-and-pop suppres-  
BTL stereo audio power amplifiers with a DirectDrive  
sion eliminates audible transients during power and  
headphone amplifier in a single device. The stereo  
shutdown cycles.  
power amplifiers deliver up to 2.3W per channel into a  
Each signal path consists of an input amplifier that sets  
the signal-path gain and feeds both the speaker and  
headphone amplifiers (Figure 1). The speaker amplifier  
uses a BTL architecture, doubling the voltage drive to  
the speakers and eliminating the need for DC-blocking  
capacitors. The output consists of two signals, identical  
in magnitude, but 180° out of phase.  
3Ω speaker from a 5V supply and the stereo head-  
phone amplifiers deliver up to 130mW per channel into  
a 16Ω headphone from a 5V supply.  
The MAX9756/MAX9757 feature ALC that automatically  
controls output power to the speaker, preventing loud-  
speaker, overload and provides optimized dynamic  
range.  
The headphone amplifiers use Maxim’s DirectDrive  
architecture that eliminates the bulky output DC-blocking  
capacitors required by traditional headphone amplifiers.  
The MAX9756/MAX9757/MAX9758 feature 31-step ana-  
log volume control and a BEEP input. The amplifier  
gain is pin programmable. These devices feature click-  
and-pop suppression, eliminating the need for discrete  
muting circuitry. Speaker and headphone outputs have  
short-circuit and thermal protection.  
A charge pump inverts the positive supply (CPV ), cre-  
DD  
ating a negative supply (CPV ). The headphone ampli-  
SS  
fiers operate from these bipolar supplies with their  
outputs biased about GND (Figure 2).  
The MAX9756/MAX9758s’ internal LDO features  
Maxim’s Dual Mode™ feedback. The LDO output volt-  
age is either fixed at 4.65V (SET = GND), or adjusted  
between 1.23V and 5V using a resistive divider at SET.  
The LDO delivers up to 150mA of continuous current,  
and can be enabled independently from the audio  
amplifiers. Short-circuit and thermal-overload protec-  
tion are provided for the LDO.  
The amplifiers have almost twice the supply range  
compared to other single-supply amplifiers, nearly qua-  
drupling the available output power. The benefit of the  
GND bias is that the amplifier outputs do not have a DC  
component (typically V /2). This eliminates the large  
DD  
DC-blocking capacitors required with conventional  
headphone amplifiers, conserving board space and  
system cost while improving frequency response.  
IN_  
V
DD  
V
OUT  
V
DD  
/2  
ALC  
OUT_+  
GND  
BIAS  
BIAS  
CONVENTIONAL DRIVER-BIASING SCHEME  
+V  
DD  
VOLUME  
VOL  
OUT_-  
HP_  
CONTROL  
BIAS  
GND  
GND  
-V  
DD  
DirectDrive BIASING SCHEME  
Figure 1. MAX9756/MAX9757 Signal Path  
Figure 2. Traditional Headphone Amplifier Output Waveform  
vs. DirectDrive Headphone Amplifier Output Waveform  
Dual Mode is a trademark of Maxim Integrated Products, Inc.  
______________________________________________________________________________________ 13  
2.3W Stereo Speaker Amplifiers and DirectDrive  
Headphone Amplifiers with Automatic Level Control  
The MAX9756/MAX9757/MAX9758 feature an under-  
voltage lockout that prevents operation from an insuffi-  
cient power supply and click-and-pop suppression that  
eliminates audible transients on startup and shutdown.  
The amplifiers include thermal-overload and short-cir-  
cuit protection. An additional feature of the amplifiers is  
that there is no phase inversion from input to output.  
applied to the input, eliminating output clipping. Figure 3  
shows a comparison of an overgained speaker input with  
and without ALC.  
The MAX9756/MAX9758 control the gain to the speakers  
by first detecting that the output voltage to the speaker  
has exceeded a preset limit. The speaker amplifier gain  
is rapidly reduced to correct for the excessive output  
power. This process is known as the attack time. When  
the signal subsequently lowers in amplitude, the gain is  
held at the reduced state for a short period before slowly  
increasing to the normal value. This process is known as  
the hold and release time. The speed at which the ampli-  
fiers adjust to changing input signals is set by the exter-  
Automatic Level Control (ALC)  
Two-watt amplifiers are commonly used in notebook  
PCs (almost always powered from a 5V supply). With  
an 8speaker driven from a BTL amplifier, the maxi-  
m
u
m
theoretical continuous power available is:  
nal timing capacitor C and the setting of logic input  
CT  
DR. The output power limit can be set by adjusting the  
value of the external resistor connected to PREF. Gain  
reduction is a function of input signal amplitude with a  
maximum ALC attenuation of 6dB. Figure 4 shows the  
effect of an input burst exceeding the preset limit, output  
attack, hold and release times.  
2
2
V
5
PEAK  
R
2
2
8
P
=
=
= 1.56W  
OUT  
SPEAKER  
This process (referred to as “limiting” in audio) limits the  
amplifier output power so loudspeaker overload can be  
prevented. If the attack and release times are configured  
to respond too fast, audible artifacts often, described as  
“pumping” or “breathing,” can occur as the gain is rapid-  
ly adjusted to follow the dynamics of the signal. For best  
results, adjust the time constant of the ALC to accommo-  
date the source material. Notebook applications in which  
music CDs and DVDs are the main audio source, a  
495µs attack time with a 990ms release time is recom-  
mended with a 1.2W output into an 8load.  
See Figure 5 for suggested ALC component values.  
The ALC feature offers two benefits:  
1) To limit amplifier power to protect a loudspeaker.  
2) To make input signals with a wide dynamic range  
more intelligible by boosting low-level signals with-  
out distorting the high-level signals.  
A device without ALC experiences clipping at the output  
when too much gain is applied to the input. ALC pre-  
vents clipping at the output when too much gain is  
ALC ENABLE, NO CLIPPING AT THE OUTPUT  
ALC DISABLE, CLIPPING AT THE OUTPUT  
INPUT  
SIGNAL  
OUTPUT  
SIGNAL  
10ms/div  
10ms/div  
Figure 3. ALC Disabled vs. ALC Enabled  
14 ______________________________________________________________________________________  
2.3W Stereo Speaker Amplifiers and DirectDrive  
Headphone Amplifiers with Automatic Level Control  
This allows the louder passages to be reduced in vol-  
ume, thereby maximizing output dynamic range.  
Having the attack time too long can possibly result in  
some damage to the loudspeaker under harsh condi-  
tions.  
OUTPUT  
2V/div  
Hold Time  
Hold time is the delay after the signal falls below the  
threshold level before the release phase is initiated.  
Hold time is internally set to 50ms and nonadjustable.  
The hold time is cancelled by any signal exceeding the  
set threshold level and attack is reinitiated.  
CT  
1V/div  
Release Time  
The release time is how long it takes for the gain to  
return to its normal level after the input signal has fallen  
10ms/div  
below the threshold level and 50ms hold time has  
expired. Release time is defined as release from a 6dB  
gain compression to 10% of the nominal gain setting  
after the input signal has fallen below PREF threshold  
and the 50ms hold time has expired. Release time is  
adjustable between 95ms and 10s. The release time is  
Figure 4. Attack, Hold, and Release Time  
Attack Time  
The attack time is the time it takes to reduce the gain  
after the input signal has exceeded the threshold level.  
Suggested attack time range is from 150µs to 50ms.  
The gain attenuation in attack is exponential and the  
attack time is defined as one time constant. The time  
set by picking an attack time using C and setting the  
CT  
attack to release time ratio by configuring DR as shown  
in Table 2. Release time is linear in dB with time and is  
inversely proportional to the magnitude of gain com-  
pression:  
constant of the attack is given by 15,000 x C  
sec-  
CT  
• Use a small ratio to maximize the speed of the ALC.  
onds (where C is the external timing capacitor).  
CT  
• Use a large ratio to maximize the sound quality and  
prevent repeated excursions above the threshold  
from being independently adjusted by the ALC.  
• Use a short attack time for the ALC to react quickly  
to transient signals, such as snare drum beats  
(music) or gun shots (DVD). Fast attack times can  
lead to gain “pumping” where rapid ALC action can  
be heard reacting to dynamic material.  
Release and attack times are set by selecting the  
capacitance value between CT and GND, and by set-  
ting the logic state of DR (Table 1). DR is a tristate logic  
input that sets the attack-to-release time ratio. A fixed  
hold time of 50ms is internally added to the release time.  
• Use a longer attack time to allow the ALC to ignore  
short-duration peaks and only reduce the gain when  
a noticeable increase in loudness occurs. Short-dura-  
tion peaks are not reduced, but louder passages are.  
Table 1. Attack and Release Time  
ATTACK TIME  
DR = ‘X’  
150µs  
RELEASE TIME  
TIMING CAPACITOR  
(C  
)
CT  
DR = V  
DR = V  
DR = GND  
300ms  
990ms  
3s  
DD  
BIAS  
10nF  
33nF  
100nF  
330nF  
1µF  
30ms  
99ms  
300ms  
990ms  
3s  
95ms  
495µs  
313ms  
950ms  
3.1s  
9.5s  
1.5ms  
4.95ms  
15ms  
9.9s  
2.2µF  
3.3µF  
33ms  
6.6s  
49.5ms  
10s  
______________________________________________________________________________________ 15  
2.3W Stereo Speaker Amplifiers and DirectDrive  
Headphone Amplifiers with Automatic Level Control  
The release/attack time ratio that can be achieved by  
programming DR is listed in Table 2.  
OUTPUT POWER THRESHOLD  
vs. R  
PREF  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
Table 2. Release to Attack Ratio  
DR  
RELEASE/ATTACK RATIO  
R = 4  
L
V
200  
633  
DD  
V
BIAS  
GND  
2000  
R = 8Ω  
L
5V  
V
DD  
DR  
CT  
100 110 120 130 140 150 160 170 180 190 200  
(k)  
R
PREF  
MAX9756  
MAX9757  
33nF  
Figure 6. Output Power Threshold vs. R  
PREF  
PREF  
limit on an 8load and a 200kresistor results in a  
1.5W clamp limit on an 8load (Figure 6).  
180kΩ  
Use the following equation to choose the value for  
R
for the desired maximum output power level  
PREF  
based on a sine wave input:  
VALUES SHOWN FOR AN OUTPUT POWER THRESHOLD OF 1.2W WITH AN  
R = 8ATTACK TIME OF 495µs AND A RELEASE TIME OF 990ms  
L
P
R
L
8
OUT  
R
= 180kΩ  
×
PREF  
Figure 5. Recommended Output Power Threshold, Attack, and  
Release Time Components  
1.166  
Output Power Threshold  
To set the threshold at which speaker output is  
clamped, an external resistor must be connected from  
PREF to ground. The suggested external resistor range  
is from 100kto 200k(for best results use a 1% resis-  
tor). Leaving PREF unconnected disables the ALC  
function. A constant current of 12µA is sourced at  
PREF, so that a 180kresistor results in 1.2W clamp  
Gain Selection  
The MAX9756/MAX9757/MAX9758 feature an internally  
set, selectable gain. The GAIN1, GAIN2, and GAIN3  
inputs set the maximum gain for the speaker and head-  
phone amplifiers (Table 3). The gain of the device can  
vary based upon the voltage at VOL but does not  
exceed the maximum gain listed below (see the Analog  
Volume (VOL) Control section).  
Table 3. Maximum Gain Settings  
GAIN3  
GAIN2  
GAIN1  
SPEAKER MODE GAIN (dB)  
HEADPHONE MODE GAIN (dB)  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
+15  
+16.5  
+18  
0
0
+3  
+3  
0
+19.5  
+21  
+22.5  
+24  
0
+3  
+3  
+25.5  
16 ______________________________________________________________________________________  
2.3W Stereo Speaker Amplifiers and DirectDrive  
Headphone Amplifiers with Automatic Level Control  
Analog Volume Control (VOL)  
The MAX9756/MAX9757/MAX9758 feature an analog  
volume control that varies the gain of the device in 31  
MAX9756  
DD  
HPV  
VOL  
discrete steps based upon the DC voltage applied to  
VOL (see Table 4). The input range of VOL is from 0  
V
REF  
(full volume) to HPV  
(full mute), with example step  
DD  
DAC  
sizes shown in Table 3. Connect the reference of the  
device driving VOL (Figure 7) to HPV . Connect VOL  
DD  
to GND (full volume) if volume control is not used.  
Figure 7. Volume Control Circuit  
Table 4. Volume Levels  
V
(V) = MULTIPLIER x  
SPEAKER MODE  
GAIN (dB)  
HEADPHONE MODE  
GAIN (dB)  
VOL  
HPV  
DD  
GAIN3 = 0 GAIN3 = 0 GAIN3 = 0 GAIN3 = 0 GAIN3 = 1 GAIN3 = 1 GAIN3 = 1 GAIN3 = 1 GAIN3 = X GAIN3 = X  
GAIN2 = 0 GAIN2 = 0 GAIN2 = 1 GAIN2 = 1 GAIN2 = 0 GAIN2 = 0 GAIN2 = 1 GAIN2 = 1 GAIN2 = 0 GAIN2 = 1  
GAIN1 = 0 GAIN1 = 1 GAIN1 = 0 GAIN1 = 1 GAIN1 = 0 GAIN1 = 1 GAIN1 = 0 GAIN1 = 1 GAIN1 = X GAIN1 = X  
V
V
VOL  
VOL  
MULTIPLIER  
*
*
(MAX)  
(MIN)  
0.07  
0.16  
0.18  
0.21  
0.23  
0.25  
0.28  
0.30  
0.32  
0.35  
0.37  
0.39  
0.42  
0.44  
0.46  
0.49  
0.51  
0.54  
0.56  
0.58  
0.61  
0.63  
0.65  
0.68  
0.70  
0.72  
0.75  
0.77  
0.79  
0.82  
0.84  
0.93  
0.00  
0.49  
0.57  
0.64  
0.72  
0.80  
0.88  
0.95  
1.03  
1.11  
1.19  
1.26  
1.34  
1.42  
1.50  
1.57  
1.65  
1.73  
1.80  
1.88  
1.96  
2.04  
2.11  
2.19  
2.27  
2.35  
2.42  
2.50  
2.58  
2.66  
2.73  
2.81  
0.49  
0.57  
0.64  
0.72  
0.80  
0.88  
0.95  
1.03  
1.11  
1.19  
1.26  
1.34  
1.42  
1.50  
1.57  
1.65  
1.73  
1.80  
1.88  
1.96  
2.04  
2.11  
2.19  
2.27  
2.35  
2.42  
2.50  
2.58  
2.66  
2.73  
2.81  
3.30  
15  
14  
16.5  
16  
18  
17.5  
17  
19.5  
19  
21  
20  
19  
18  
16  
14  
12  
10  
8
22.5  
22  
21  
20  
19  
18  
16  
14  
12  
10  
8
24  
23.5  
23  
22.5  
22  
21  
20  
19  
18  
16  
14  
12  
10  
8
25.5  
25  
0
-1  
3
2.5  
2
13  
15  
18.5  
18  
24.5  
24  
-2  
12  
14  
16.5  
16  
-3  
1.5  
1
10  
13  
17.5  
17  
23.5  
23  
-5  
8
12  
15  
-7  
0
6
10  
14  
16.5  
16  
22.5  
22  
-9  
-1  
4
8
13  
-11  
-13  
-15  
-17  
-19  
-21  
-23  
-25  
-27  
-29  
-31  
-33  
-35  
-37  
-39  
-41  
-43  
-47  
-51  
-55  
-59  
-63  
-67  
-71  
MUTE  
-2  
2
6
12  
15  
21  
-3  
0
4
10  
14  
6
20  
-5  
-2  
2
8
13  
4
19  
-7  
-4  
0
6
12  
2
6
18  
-9  
-6  
-2  
4
10  
0
4
16  
-11  
-13  
-15  
-17  
-19  
-21  
-23  
-25  
-27  
-29  
-31  
-33  
-35  
-37  
-39  
-41  
-43  
-47  
-51  
MUTE  
-8  
-4  
2
8
-2  
2
14  
-10  
-12  
-14  
-16  
-18  
-20  
-22  
-24  
-26  
-28  
-32  
-36  
-40  
-44  
-48  
-52  
-56  
MUTE  
-6  
0
6
-4  
0
6
12  
-8  
-2  
4
-6  
-2  
4
10  
-10  
-12  
-14  
-16  
-18  
-20  
-22  
-24  
-26  
-28  
-32  
-36  
-40  
-44  
-48  
MUTE  
-4  
2
-8  
-4  
2
8
-6  
0
-10  
-12  
-14  
-16  
-18  
-20  
-22  
-26  
-30  
-34  
-38  
-42  
-46  
-50  
MUTE  
-6  
0
6
-8  
-2  
-8  
-2  
4
-10  
-12  
-14  
-16  
-18  
-20  
-22  
-24  
-26  
-28  
-32  
-36  
MUTE  
-4  
-10  
-12  
-14  
-16  
-18  
-20  
-22  
-26  
-30  
-34  
-38  
-42  
MUTE  
-4  
2
-6  
-6  
0
-8  
-8  
-2  
-10  
-12  
-14  
-16  
-18  
-20  
-22  
-24  
-26  
MUTE  
-10  
-12  
-14  
-16  
-18  
-20  
-22  
-26  
-30  
MUTE  
-4  
-6  
-8  
-10  
-12  
-14  
-15  
-18  
-20  
MUTE  
*Based on HPV  
X = Don’t care.  
= 3.3V.  
DD  
______________________________________________________________________________________ 17  
2.3W Stereo Speaker Amplifiers and DirectDrive  
Headphone Amplifiers with Automatic Level Control  
Since the volume control (VOL) ADC is ratiometric to  
HPV , any variations in HPV  
are negated. The gain  
DD  
DD  
VOLUME CONTROL TRANSFER FUNCTION  
step sizes are not constant; the step sizes are  
0.5dB/step at the upper extreme, 2dB/step in the  
midrange, and 4dB/step at the lower extreme. Figure 8  
shows the transfer function of the volume control for a  
3.3V supply.  
40  
20  
GAIN1 = GAIN2 = GAIN3 = 1  
HPV = 3.3V  
DD  
SPEAKER MODE  
0
Low-Dropout Linear Regulator  
The MAX9756/MAX9758s’ low-dropout linear regulator  
(LDO) can be used to provide a clean power supply to  
a CODEC or other circuitry. The LDO can be enabled  
independently of the audio amplifiers. REGEN  
-20  
-40  
-60  
-80  
HEADPHONE MODE  
enables/disables the LDO, set REGEN = V  
to enable  
DD  
the LDO or set REGEN = GND to disable. The LDO is  
capable of providing up to 150mA continuous current  
and features Maxim’s Dual Mode feedback. When SET  
is connected to GND, the output is internally set to  
approximately 4.65V. Adjust the output from 1.23V to  
5V by connecting two external resistors, used as a volt-  
age-divider, at SET (Figure 9).  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0  
(V)  
V
VOL  
Figure 8. Volume Control Transfer Function  
The output voltage is set by the following equation:  
OUT  
R1  
R2  
V
= V  
1+  
OUT  
SET  
R1  
R2  
10pF  
1µF  
1µF  
MAX9756  
MAX9758  
where V  
= 1.23V.  
SET  
SET  
To simplify resistor selection:  
V
V
OUT  
GND  
R1= R2  
1  
SET  
Since the input bias current at SET is nominally zero,  
large resistance values can be used for R1 and R2 to  
minimize power consumption without losing accuracy.  
Up to 1.5Mis acceptable for R2.  
To minimize the current consumption, it is desirable to  
use high-value resistors (> 10kfor the external feed-  
back divider (R1, R2). The input capacitance at SET  
and the stray and wiring capacitance should be com-  
pensated by placing a small capacitor (in the 10pF  
range) across the upper feedback resistor R1 (see  
Figure 9).  
Figure 9. Adjustable Output Using External Feedback Resistors  
The ESR of each capacitor should not exceed 40mΩ  
for good stability up to the full-rated current (150mA).  
Place the capacitors as close as possible to the device  
to limit the parasitic resistance and inductance. There  
is no upper limit to the amount of additional bypass  
capacitance.  
DirectDrive Headphone Amplifier  
Unlike the MAX9756/MAX9757/MAX9758, conventional  
single-supply headphone amplifiers typically have their  
outputs biased at half the supply voltage for maximum  
dynamic range. Large coupling capacitors are needed  
to block this DC bias from the headphones. Without  
these capacitors, a significant amount of DC current  
flows to the headphone, resulting in unnecessary  
power dissipation and possible damage to both head-  
phone and headphone amplifier.  
This capacitor creates a zero in the feedback loop to  
reduce overshoot. Overcompensation can cause poor  
stability in the high current range.  
The regulator should be compensated with two 1µF  
ceramic capacitors connected between IN and GND  
and OUT and GND. X7R dielectric with 10% tolerance  
is recommended.  
18 ______________________________________________________________________________________  
2.3W Stereo Speaker Amplifiers and DirectDrive  
Headphone Amplifiers with Automatic Level Control  
Maxim’s DirectDrive architecture uses a charge pump to  
create an internal negative supply voltage. This allows the  
MAX9756/MAX9757/MAX9758 headphone amplifier out-  
put to be biased at GND, almost doubling the dynamic  
range while operating from a single supply. With no DC  
component, there is no need for the large DC-blocking  
capacitors. Instead of two large capacitors (220µF, typ),  
the MAX9756/MAX9757/MAX9758 charge pump requires  
only two small ceramic capacitors (1µF typ), conserving  
board space, reducing cost, and improving the frequen-  
cy response of the headphone amplifier. See the Output  
Power vs. Charge-Pump Capacitance graph in the  
Typical Operating Characteristics for details of the possi-  
ble capacitor values.  
Larger values of C  
physically larger, more expensive capacitors. Figure 10  
shows the relationship between the size of C and  
the resulting low-frequency attenuation. Note that the  
-3dB point for a 16Ω headphone with a 100µF-blocking  
capacitor is 100Hz, well within the audio band.  
reduce the attenuation but are  
OUT  
OUT  
Charge Pump  
The MAX9756/MAX9757/MAX9758 feature a low-noise  
inverting charge pump to generate the negative rail  
necessary for DirectDrive headphone operation. The  
switching frequency is well beyond the audio range,  
and does not interfere with the audio signals. The  
switch drivers feature a controlled switching speed that  
minimizes noise generated by turn-on and turn-off tran-  
sients. Limiting the switching speed of the charge  
pump minimizes the di/dt noise caused by the parasitic  
bond wire and trace inductance.  
Low-Frequency Response  
In addition to the cost and size disadvantages, the DC-  
blocking capacitors limit the low-frequency response of  
the amplifier. The impedance of the headphone load to  
the DC-blocking capacitor forms a highpass filter with  
the -3dB point determined by:  
Headphone Sense Input (HPS)  
The headphone sense input (HPS) monitors the head-  
phone jack and automatically configures the MAX9756/  
MAX9757/MAX9758 based upon the voltage applied at  
HPS. A voltage of less than 0.8V enables the speaker  
amplifier. A voltage of greater than 2V disables the  
speaker amplifiers and enables the headphone ampli-  
fiers. For automatic headphone detection, connect HPS  
to the control pin of a 3-wire headphone jack as shown  
in Figure 11. With no headphone present, the output  
impedance of the headphone amplifier pulls HPS low.  
When a headphone plug is inserted into the jack, the  
control pin is disconnected from the tip contact and  
1
f 3dB =  
2πR C  
L
OUT  
where R is the impedance of the headphone and  
L
C
OUT  
is the value of the DC-blocking capacitor.  
The highpass filter is required by conventional single-  
ended, single-supply headphone amplifiers to block the  
midrail DC component of the audio signal from the  
headphones. Depending on the -3dB point, the filter can  
attenuate low-frequency signals within the audio band.  
HPS is pulled to V  
with 35µA.  
DD  
LOW-FREQUENCY ROLLOFF  
V
(R = 16Ω)  
L
DD  
MAX9756/  
0
MAX9757/  
MAX9758  
-1.5  
35μA  
DirectDrive  
330μF  
220μF  
100μF  
-3.0  
-4.5  
-6.0  
SHUTDOWN  
CONTROL  
HPS  
HPL  
-7.5  
-9.0  
HPR  
33μF  
-10.5  
-12.0  
14kΩ  
14kΩ  
-13.5  
-15.0  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
Figure 10. Low-Frequency Attenuation of Common DC-  
Blocking Capacitor Values  
Figure 11. HPS Configuration  
______________________________________________________________________________________ 19  
2.3W Stereo Speaker Amplifiers and DirectDrive  
Headphone Amplifiers with Automatic Level Control  
BIAS  
V
The MAX9756/MAX9757/MAX9758 feature an internally  
generated, power-supply independent, common-mode  
bias voltage of 2.5V referenced to GND. BIAS provides  
both click-and-pop suppression and sets the DC bias  
level for the amplifiers. Choose the value of the bypass  
capacitor as described in the BIAS Capacitor section.  
No external load should be applied to BIAS. Any load  
lowers the BIAS voltage, affecting the overall perfor-  
mance of the device.  
47kΩ  
OUT(BEEP)  
=
+ A  
V(BEEPOUT)  
V
R
B
IN(BEEP)  
where 47kis the value of the BEEP amplifier feedback  
resistor, V  
is the BEEP amplifier output, V  
IN(BEEP)  
BEEP  
is the BEEP input amplitude, and V  
is the total  
OUT(BEEP)  
) is given by the values  
BEEP output signal. A  
V(BEEPOUT  
listed in Table 5. Note that V  
must be higher than  
BEEP  
300mV . The BEEP amplifier can be set up as either  
P-P  
an attenuator, if the original alert signal amplitude is too  
large, or to gain up the alert signal if it is below  
BEEP Input  
The MAX9756/MAX9757/MAX9758 feature an audible  
alert beep input (BEEP) that accepts a mono system  
alert signal and mixes it into the stereo audio path.  
300mV . AC-couple the alert signal to BEEP. Choose  
P-P  
the value of the coupling capacitor as described in the  
Input Filtering section. Multiple beep inputs can be  
summed (Figure 12).  
When the amplitude of V  
exceeds 300mV  
and  
BEEP  
P-P  
the frequency of the beep signal is greater than 300Hz,  
the beep signal is mixed into the active audio path  
(speaker or headphone). If the signal at V  
is either  
BEEP  
Table 5. BEEP Output Gain  
< 300mV  
or < 300Hz, the BEEP signal is not mixed  
P-P  
into the audio path. The amplitude of the BEEP signal at  
the device output is roughly the amplitude V  
the gain of the selected signal path.  
A
V(BEEPOUT)  
times  
BEEP  
GAIN3 GAIN2 GAIN1  
HEADPHONE *  
(V/V)  
SPEAKER*  
(V/V)  
The input resistor (R ) sets the gain of the BEEP input  
B
1.5  
1.5  
8.4  
9.4  
10  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
amplifier, and thus the amplitude of V  
based on:  
. Choose R  
BEEP  
B
1.78  
1.78  
1.5  
V
× 47kΩ  
IN(BEEP)  
10  
R
B
V
15.8  
18.8  
20  
BEEP  
1.5  
The total BEEP gain is given by:  
1.78  
1.78  
20  
*All output gains are for V  
= GND.  
VOL  
R
B
0.47µF  
0.47µF  
0.47µF  
47kΩ  
SOURCE 1  
SOURCE 2  
SOURCE 3  
47kΩ  
R
B
47kΩ  
SPEAKER/HEADPHONE  
AMPLIFIER INPUTS  
BEEP  
V
BEEP  
R
B
47kΩ  
WINDOW  
DETECTOR  
(0.3V THRESHOLD)  
P-P  
MAX9756/  
MAX9757/  
MAX9758  
FREQUENCY  
DETECTOR  
(300Hz THRESHOLD)  
BIAS  
Figure 12. Beep Input  
20 ______________________________________________________________________________________  
2.3W Stereo Speaker Amplifiers and DirectDrive  
Headphone Amplifiers with Automatic Level Control  
Shutdown (SHDN)  
The MAX9756/MAX9757/MAX9758 feature a 0.2µA,  
low-power shutdown mode that reduces quiescent cur-  
V
+1  
OUT(P-P)  
rent consumption and extends battery life. Driving  
SHDN low disables the drive amplifiers, bias circuitry,  
and charge pump, and drives BIAS and all outputs to  
2 x V  
OUT(P-P)  
GND. Connect SHDN to V  
for normal operation.  
DD  
Click-and-Pop Suppression  
-1  
V
OUT(P-P)  
Speaker Amplifier  
The MAX9756/MAX9757/MAX9758 speaker amplifiers  
feature Maxim’s comprehensive, industry-leading click-  
and-pop suppression. During startup, the click-and-  
pop suppression circuitry eliminates any audible  
transient sources internal to the device. When entering  
shutdown, both amplifier outputs ramp to GND quickly  
and simultaneously.  
Figure 13. Bridge-Tied Load Configuration  
package is given in the Absolute Maximum Ratings  
under Continuous Power Dissipation, or can be calcu-  
lated by the following equation:  
Headphone Amplifier  
In conventional single-supply headphone amplifiers, the  
output-coupling capacitor is a major contributor of audi-  
ble clicks and pops. Since the MAX9756/MAX9757/  
MAX9758 do not require output-coupling capacitors, no  
audible transient occurs.  
T
J(MAX) T  
A
P
=
DISSPKG(MAX)  
θ
JA  
where T  
is +150°C, T is the ambient temperature,  
A
J(MAX)  
and θ is the reciprocal of the derating factor in °C/W as  
JA  
specified in the Absolute Maximum Ratings section. For  
Additionally, the MAX9756/MAX9757/MAX9758 feature  
extensive click-and-pop suppression that eliminates any  
audible transient sources internal to the device. The  
Turn-On/Turn-Off waveforms in the Typical Operating  
Characteristics show that there are minimal spectral  
components in the audible range at the output upon  
startup and shutdown.  
example, θ  
of the 32-pin thin QFN package is  
JA  
+40.2°C/W. For optimum power dissipation, the exposed  
paddle of the package should be connected to the  
ground plane (see the Layout and Grounding section).  
Output Power (Speaker Amplifier)  
The increase in power delivered by the BTL configura-  
tion directly results in an increase in internal power dis-  
sipation over the single-ended configuration. The  
maximum power dissipation for a given V  
given by the following equation:  
Applications Information  
and load is  
DD  
BTL Speaker Amplifiers  
The MAX9756/MAX9757/MAX9758 feature speaker  
amplifiers designed to drive a load differentially, a config-  
uration referred to as bridge-tied load (BTL). The BTL  
configuration (Figure 13) offers advantages over the sin-  
gle-ended configuration, where one side of the load is  
connected to ground. Driving the load differentially dou-  
bles the output voltage compared to a single-ended  
amplifier under similar conditions.  
2
2V  
DD  
P
=
DISS(MAX)  
2
π R  
L
If the power dissipation for a given application exceeds  
the maximum allowed for a given package, either reduce  
V
, increase load impedance, decrease the ambient  
DD  
temperature, or add heatsinking to the device or setting  
PREF to limit output power to a safe level. Large output,  
supply, and ground PC board traces improve the maxi-  
mum power dissipation in the package. Thermal-over-  
load protection limits total power dissipation in these  
devices. When the junction temperature exceeds  
+160°C, the thermal-protection circuitry disables the  
amplifier output stage. The amplifiers are enabled once  
the junction temperature cools by 15°C. This results in a  
pulsing output under continuous thermal-overload condi-  
tions as the device heats and cools.  
Since the differential outputs are biased at 2.5V, there is  
no net DC voltage across the load. This eliminates the  
need for DC-blocking capacitors required for single-  
ended amplifiers. These capacitors can be large and  
expensive, can consume board space, and can degrade  
low-frequency performance.  
Power Dissipation and Heat Sinking  
Under normal operating conditions, the MAX9756/  
MAX9757/MAX9758 can dissipate a significant amount  
of power. The maximum power dissipation for each  
______________________________________________________________________________________ 21  
2.3W Stereo Speaker Amplifiers and DirectDrive  
Headphone Amplifiers with Automatic Level Control  
Output Power (Headphone Amplifier)  
The headphone amplifiers have been specified for the  
100  
HPV = 5V  
R = 16Ω  
L
worst-case scenario—when both inputs are in phase.  
DD  
Under this condition, the drivers simultaneously draw  
10  
current from the charge pump, leading to a slight loss  
in headroom of V . In typical stereo audio applica-  
SS  
tions, the left and right signals have differences in both  
magnitude and phase, subsequently leading to an  
increase in the maximum attainable output power.  
Figure 14 shows the two extreme cases for in and out  
of phase. In reality, the available power lies between  
these extremes.  
1
0.1  
OUTPUTS IN PHASE  
0.01  
0.001  
OUTPUTS 180° OUT OF PHASE  
Power Supplies  
The MAX9756/MAX9757/MAX9758 have different sup-  
plies for each portion of the device, allowing for the opti-  
mum combination of headroom and power dissipation  
and noise immunity. The speaker amplifiers are pow-  
40  
80  
180  
100 120 140 160 200  
0
20  
60  
OUTPUT POWER (mW)  
Figure 14. Total Harmonic Distortion Plus Noise vs. Output  
Power with Inputs In/Out of Phase (Headphone Mode)  
ered from PV . PV  
ranges from 4.5V to 5.5V. The  
DD  
DD  
headphone amplifiers are powered from HPV  
and  
DD  
V
. HPV  
is the positive supply of the headphone  
SS  
DD  
amplifiers and ranges from 3V to 5.5V. V is the nega-  
SS  
Setting f  
too high affects the amplifier’s low-fre-  
tive supply of the headphone amplifiers. Connect V to  
SS  
-3dB  
quency response. Use capacitors with low-voltage  
coefficient dielectrics, such as tantalum or aluminum  
electrolytic. Capacitors with high-voltage coefficients,  
such as ceramics, may result in increased distortion at  
low frequencies.  
CPV . The charge pump is powered by CPV  
.
DD  
SS  
CPV  
ranges from 3V to 5.5V and should be the same  
DD  
potential as HPV . The charge pump inverts the volt-  
DD  
age at CPV , and the resulting voltage appears at  
DD  
CPV . The remainder of the device is powered by V  
.
SS  
DD  
BIAS Capacitor  
Component Selection  
BIAS is the output of the internally generated DC bias  
Input Filtering  
voltage. The BIAS bypass capacitor, C  
, improves  
BIAS  
The input capacitor (C ), in conjunction with the ampli-  
IN  
IN  
PSRR and THD+N by reducing power supply and other  
noise sources at the common-mode bias node, and  
also generates the startup/shutdown DC bias wave-  
forms for the speaker amplifiers. Bypass BIAS with a  
1µF capacitor to GND.  
fier input resistance (R ), forms a highpass filter that  
removes the DC bias from an incoming signal (see the  
Typical Application Circuit). The AC-coupling capacitor  
allows the amplifier to bias the signal to an optimum DC  
level. Assuming zero source impedance, the -3dB point  
of the highpass filter is given by:  
Charge-Pump Capacitor Selection  
Use capacitors with an ESR less than 100mfor opti-  
mum performance. Low-ESR ceramic capacitors mini-  
mize the output resistance of the charge pump. For  
best performance over the extended temperature  
range, select capacitors with an X7R dielectric. Table 6  
lists suggested manufacturers.  
1
f3dB  
=
2πR C  
IN IN  
R
is the amplifier’s internal input resistance value  
IN  
given in the Electrical Characteristics. Choose C such  
IN  
that f  
is well below the lowest frequency of interest.  
-3dB  
Table 6. Suggested Capacitor Manufacturers  
SUPPLIER  
Taiyo Yuden  
TDK  
PHONE  
FAX  
WEBSITE  
800-384-2496  
807-803-6100  
800-925-0899  
847-390-4405  
www.t-yuden.com  
www.component.tdk.com  
22 ______________________________________________________________________________________  
2.3W Stereo Speaker Amplifiers and DirectDrive  
Headphone Amplifiers with Automatic Level Control  
Flying Capacitor (C1)  
The value of the flying capacitor (C1) affects the load  
regulation and output resistance of the charge pump. A  
C1 value that is too small degrades the device’s ability to  
provide sufficient current drive, which leads to a loss of  
output voltage. Increasing the value of C1 improves load  
regulation and reduces the charge-pump output resis-  
tance to an extent. See the Output Power vs. Charge-  
Pump Capacitance graph in the Typical Operating  
Characteristics. Above 2.2µF, the on-resistance of the  
switches and the ESR of C1 and C2 dominate.  
When considering the use of CPV  
in this manner,  
SS  
note that the charge-pump voltage of CPV is roughly  
SS  
proportional to CPV  
and is not a regulated voltage.  
DD  
Layout and Grounding  
Proper layout and grounding are essential for optimum  
performance. Use large traces for the power-supply  
inputs and amplifier outputs to minimize losses due to  
parasitic trace resistance, as well as route heat away  
from the device. Good grounding improves audio per-  
formance, minimizes crosstalk between channels, and  
prevents any switching noise from coupling into the  
audio signal. Connect CPGND, PGND, and GND  
together at a single point on the PC board. Route  
CPGND and all traces that carry switching transients  
away from GND, PGND, and the traces and compo-  
nents in the audio signal path.  
Output Capacitor (C2)  
The output capacitor value and ESR directly affect the  
ripple at CPV . Increasing the value of C2 reduces  
SS  
output ripple. Likewise, decreasing the ESR of C2  
reduces both ripple and output resistance. Lower  
capacitance values can be used in systems with low  
maximum output power levels. See the Output Power  
vs. Charge-Pump Capacitance graph in the Typical  
Operating Characteristics.  
Connect all components associated with the charge  
pump (C2 and C3) to the CPGND plane. Connect V  
SS  
and CPV  
together at the device. Place the charge-  
SS  
pump capacitors (C1, C2, and C3) as close to the  
device as possible. Bypass HPV and PV with a  
DD  
DD  
CPV  
Bypass Capacitor  
DD  
1µF capacitor to GND. Place the bypass capacitors as  
close to the device as possible.  
The CPV  
bypass capacitor (C3) lowers the output  
DD  
impedance of the power supply and reduces the impact  
of the MAX9756/MAX9757/MAX9758’s charge-pump  
Use large, low-resistance output traces. As load imped-  
ance decreases, the current drawn from the device out-  
puts increase. At higher current, the resistance of the  
output traces decrease the power delivered to the load.  
switching transients. Bypass CPV  
with C3, the same  
DD  
value as C1, and place it physically close to CPV  
and  
DD  
PGND (refer to the MAX9756/MAX9757/MAX9758  
Evaluation Kit for a suggested layout).  
For example, when compared to a 0trace, a 100mΩ  
trace reduces the power delivered to a 4load from  
2.1W to 2W. Large output, supply, and GND traces also  
improve the power dissipation of the device. The  
MAX9756/MAX9757/MAX9758 thin QFN package fea-  
tures an exposed thermal pad on its underside. This pad  
lowers the package’s thermal resistance by providing a  
direct-heat conduction path from the die to the PC  
board. Connect the exposed thermal pad to GND by  
using a large pad and multiple vias to the GND plane.  
Powering Other Circuits  
from a Negative Supply  
An additional benefit of the MAX9756/MAX9757/  
MAX9758 is the internally generated negative supply  
voltage (CPV ). CPV  
is used by the MAX9756/  
SS  
SS  
MAX9757/MAX9758 to provide the negative supply for  
the headphone amplifiers. It can also be used to power  
other devices within a design. Current draw from  
CPV should be limited to 5mA; exceeding this affects  
SS  
the operation of the headphone amplifier. A typical  
application is a negative supply to adjust the contrast  
of LCD modules.  
______________________________________________________________________________________ 23  
2.3W Stereo Speaker Amplifiers and DirectDrive  
Headphone Amplifiers with Automatic Level Control  
MAX9756 Block Diagram  
4.5V TO 5.5V  
4.5V TO 5.5V  
0.1µF  
0.1µF  
100µF  
V
DD  
PV  
DD  
32  
9, 19  
MAX9756  
C
1µF  
IN  
7
8
OUTL+  
OUTL-  
GAIN/  
VOLUME  
1
INL  
DR  
BTL  
AMPLIFIER  
LEFT-CHANNEL  
AUDIO INPUT  
25  
35  
29  
CT  
PEAK  
DETECT  
PREF  
0.033µF  
180kΩ  
C
1µF  
IN  
21  
20  
OUTR+  
OUTR-  
GAIN/  
VOLUME  
CONTROL  
RIGHT-  
CHANNEL  
AUDIO INPUT  
36  
INR  
BTL  
AMPLIFIER  
BIAS 26  
C
1µF  
18  
23  
HPV  
DD  
BIAS  
0V TO  
HPV  
28  
2
VOL  
3V TO 5.5V  
VOLUME  
AND GAIN  
CONTROL  
DD  
1µF  
GAIN1  
HPS  
V
DD  
3
4
GAIN2  
GAIN3  
HEADPHONE  
DETECTION  
17 HPL  
SHUTDOWN  
CONTROL  
27  
5
SHDN  
BEEP  
R
B
0.47µF  
47kΩ  
BEEP  
DETECTION  
HPR  
16  
CPV  
DD  
10  
3V TO 5.5V  
1µF  
11  
13  
C1P  
C1N  
C1  
1µF  
CHARGE  
PUMP  
CPGND  
12  
C1  
1µF  
CPV  
V
SS 14  
V
DD  
SS 15  
4.65V OUTPUT TO CODEC  
1µF 1µF  
REGEN  
IN  
34  
30  
24  
33  
OUT  
SET  
LDO  
C3, C4  
1µF  
31  
6, 22  
GND  
PGND  
FIGURE SHOWN WITH AN ATTACK TIME = 495µs, RELEASE TIME = 990ms AND AN OUTPUT POWER LIMIT SET TO 1.2W, SPKR GAIN = 25.5dB, LDO SHOWN IN FIXED OUTPUT MODE, HPGAIN = 3dB.  
24 ______________________________________________________________________________________  
2.3W Stereo Speaker Amplifiers and DirectDrive  
Headphone Amplifiers with Automatic Level Control  
MAX9757 Block Diagram  
4.5V TO 5.5V  
4.5V TO 5.5V  
0.1µF  
0.1µF  
100µF  
V
PV  
DD  
DD  
29  
8, 18  
MAX9757  
C
1µF  
IN  
6
7
OUTL+  
OUTL-  
32  
23  
GAIN/  
VOLUME  
INL  
DR  
BTL  
AMPLIFIER  
LEFT-CHANNEL  
AUDIO INPUT  
30  
27  
CT  
PEAK  
DETECT  
PREF  
100µF  
180kΩ  
C
1µF  
IN  
20  
19  
OUTR+  
OUTR-  
GAIN/  
VOLUME  
CONTROL  
RIGHT-  
CHANNEL  
AUDIO INPUT  
31  
INR  
BTL  
AMPLIFIER  
BIAS 26  
C
1µF  
17  
22  
HPV  
DD  
BIAS  
0V TO  
HPV  
28  
1
VOL  
3V TO 5.5V  
VOLUME  
AND GAIN  
CONTROL  
DD  
1µF  
GAIN1  
HPS  
V
DD  
2
3
GAIN2  
GAIN3  
HEADPHONE  
DETECTION  
15 HPL  
SHUTDOWN  
CONTROL  
25  
4
SHDN  
BEEP  
R
B
0.47µF  
47kΩ  
BEEP  
DETECTION  
HPR  
16  
CPV  
DD  
9
3V TO 5.5V  
1µF  
10  
12  
C1P  
C1N  
C1  
1µF  
CHARGE  
PUMP  
CPGND  
11  
C2  
1µF  
CPV  
V
SS 13  
SS 14  
28  
5, 21  
PGND  
GND  
FIGURE SHOWN WITH AN ATTACK TIME = 495µs, RELEASE TIME = 990ms AND AN OUTPUT POWER LIMIT SET TO 1.2W, SPKR GAIN = 25.5dB, HP GAIN = 3dB.  
______________________________________________________________________________________ 25  
2.3W Stereo Speaker Amplifiers and DirectDrive  
Headphone Amplifiers with Automatic Level Control  
MAX9758 Block Diagram  
4.5V TO 5.5V  
4.5V TO 5.5V  
0.1µF  
0.1µF  
100µF  
V
DD  
PV  
DD  
29  
8, 18  
MAX9758  
C
1µF  
IN  
6
7
OUTL+  
OUTL-  
32  
INL  
BTL  
AMPLIFIER  
LEFT-CHANNEL  
AUDIO INPUT  
VOLUME  
C
1µF  
IN  
20  
19  
OUTR+  
OUTR-  
31  
INR  
RIGHT-CHANNEL  
AUDIO INPUT  
BTL  
AMPLIFIER  
VOLUME  
BIAS 24  
C
1µF  
17  
22  
HPV  
DD  
BIAS  
0V TO  
HPV  
26  
1
VOL  
3V TO 5.5V  
VOLUME  
AND GAIN  
CONTROL  
DD  
1µF  
GAIN1  
HPS  
V
DD  
2
3
GAIN2  
GAIN3  
HEADPHONE  
DETECTION  
15 HPL  
SHUTDOWN  
CONTROL  
25  
4
SHDN  
BEEP  
0.47µF  
R
B
BEEP  
DETECTION  
HPR  
16  
CPV  
DD  
9
3V TO 5.5V  
1µF  
10  
12  
C1P  
C1N  
C1  
1µF  
CHARGE  
PUMP  
CPGND  
11  
C2  
1µF  
CPV  
V
SS 13  
3.3V OUTPUT TO CODEC  
SS 14  
30  
27  
OUT  
SET  
REGEN  
23  
LDO  
82kΩ  
47kΩ  
V
10pF  
DD  
1µF  
1µF  
28  
5, 21  
GND  
PGND  
FIGURE SHOWN WITH SPKR GAIN = 25.5dB, LDO SHOWN IN ADJUSTABLE OUTPUT MODE SET TO 3.3V, HP GAIN = 3dB.  
26 ______________________________________________________________________________________  
2.3W Stereo Speaker Amplifiers and DirectDrive  
Headphone Amplifiers with Automatic Level Control  
System Diagram  
4.5V TO 5.5V 3V TO 5.5V  
10µF  
1µF  
V
DD  
PV  
DD  
HPV  
DD  
IN  
OUTL+  
OUTL-  
REGEN  
INL  
1µF  
1µF  
1µF  
MAX9756  
CODEC  
INR  
OUTR+  
OUTR-  
OUT  
1µF  
47kΩ  
BEEP  
HPL  
SHDN  
GAIN1  
HPS  
HPR  
µC  
GAIN2  
GAIN3  
HPV  
DD  
DR  
VOL  
3V TO 5.5V  
1µF  
CPV  
C1P  
DD  
CPV  
SS  
SS  
V
1µF  
1µF  
C1N  
SET  
PREF  
BIAS  
CT  
CPGND  
180kΩ  
BIAS  
1µF  
0.1µF  
0.033µF  
GND  
PGND  
______________________________________________________________________________________ 27  
2.3W Stereo Speaker Amplifiers and DirectDrive  
Headphone Amplifiers with Automatic Level Control  
Pin Configurations  
TOP VIEW  
26 25  
23  
27  
24  
22  
21 20 19  
VOL 28  
PREF 29  
SET 30  
GND 31  
18 HPV  
17 HPL  
16 HPR  
DD  
15  
V
SS  
V
32  
33  
14 CPV  
13 C1N  
DD  
SS  
MAX9756  
IN  
OUT 34  
CT 35  
INR 36  
12 CPGND  
C1P  
10 CPV  
11  
DD  
2
3
5
7
8
9
1
4
6
TQFN  
6mm x 6mm  
24 23 22 21 20 19 18 17  
24 23 22 21 20 19 18 17  
16  
15  
14  
13  
12  
25  
HPL  
HPR  
16  
15  
14  
13  
12  
SHDN  
SHDN 25  
VOL 26  
HPL  
HPR  
VOL 26  
V
SS  
27  
28  
29  
30  
31  
32  
V
SS  
SET  
27  
28  
29  
30  
31  
32  
PREF  
GND  
CPV  
CPV  
SS  
GND  
SS  
MAX9758  
MAX9757  
V
C1N  
V
C1N  
DD  
DD  
11 CPGND  
OUT  
INR  
INL  
11 CPGND  
CT  
INR  
INL  
10  
9
C1P  
CPV  
10  
9
C1P  
CPV  
DD  
DD  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
THIN QFN  
5mm x 5mm  
THIN QFN  
5mm x 5mm  
Chip Information  
PROCESS: BICMOS  
28 ______________________________________________________________________________________  
2.3W Stereo Speaker Amplifiers and DirectDrive  
Headphone Amplifiers with Automatic Level Control  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
D2  
D
b
0.10 M  
C A B  
C
L
D2/2  
D/2  
k
L
MARKING  
AAAAA  
E/2  
E2/2  
C
(NE-1) X  
e
L
E2  
E
PIN # 1 I.D.  
0.35x45°  
DETAIL A  
e/2  
PIN # 1  
I.D.  
e
(ND-1) X  
e
DETAIL B  
e
L
C
L
C
L
L1  
L
L
e
e
0.10  
C
A
0.08  
C
C
A3  
A1  
PACKAGE OUTLINE,  
16, 20, 28, 32, 40L THIN QFN, 5x5x0.8mm  
1
-DRAWING NOT TO SCALE-  
I
21-0140  
2
______________________________________________________________________________________ 29  
2.3W Stereo Speaker Amplifiers and DirectDrive  
Headphone Amplifiers with Automatic Level Control  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
COMMON DIMENSIONS  
EXPOSED PAD VARIATIONS  
PKG.  
SYMBOL MIN. NOM. MAX. MIN. NOM. MAX. MIN. NOM. MAX. MIN. NOM. MAX. MIN. NOM. MAX.  
DOWN  
BONDS  
ALLOWED  
16L 5x5  
20L 5x5  
28L 5x5  
32L 5x5  
40L 5x5  
L
D2  
E2  
exceptions  
PKG.  
CODES  
±0.15  
MIN. NOM. MAX.  
MIN. NOM. MAX.  
A
0.70 0.75 0.80 0.70 0.75 0.80 0.70 0.75 0.80 0.70 0.75 0.80 0.70 0.75 0.80  
0.02 0.05 0.02 0.05 0.02 0.05 0.02 0.05 0.02 0.05  
0.20 REF. 0.20 REF. 0.20 REF. 0.20 REF. 0.20 REF.  
T1655-2  
T1655-3  
3.00 3.10 3.20 3.00 3.10 3.20  
3.00 3.10 3.20 3.00 3.10 3.20  
T1655N-1 3.00 3.10 3.20 3.00 3.10 3.20  
YES  
NO  
NO  
**  
**  
**  
**  
A1  
0
0
0
0
0
A3  
b
0.25 0.30 0.35 0.25 0.30 0.35 0.20 0.25 0.30 0.20 0.25 0.30 0.15 0.20 0.25  
4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10  
4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10  
T2055-3  
T2055-4  
T2055-5  
T2855-3  
3.00 3.10 3.20 3.00 3.10 3.20  
3.00 3.10 3.20 3.00 3.10 3.20  
YES  
NO  
D
E
**  
YES  
3.15 3.25 3.35 3.15 3.25 3.35 0.40  
e
0.80 BSC.  
0.25  
0.65 BSC.  
0.25  
0.50 BSC.  
0.25  
0.50 BSC.  
0.25  
0.40 BSC.  
3.15 3.25 3.35 3.15 3.25 3.35  
**  
YES  
YES  
NO  
k
-
-
-
-
-
-
-
-
0.25 0.35 0.45  
T2855-4  
T2855-5  
2.60 2.70 2.80 2.60 2.70 2.80  
2.60 2.70 2.80 2.60 2.70 2.80  
3.15 3.25 3.35 3.15 3.25 3.35  
**  
**  
L
0.30 0.40 0.50 0.45 0.55 0.65 0.45 0.55 0.65 0.30 0.40 0.50 0.40 0.50 0.60  
L1  
-
-
-
-
-
-
-
-
-
-
-
-
0.30 0.40 0.50  
NO  
YES  
YES  
T2855-6  
T2855-7  
**  
**  
N
ND  
NE  
16  
4
4
20  
5
5
28  
7
7
32  
8
8
40  
10  
10  
2.80  
2.60 2.70  
2.60 2.70 2.80  
T2855-8  
3.15 3.25 3.35 3.15 3.25 3.35 0.40  
WHHB  
WHHC  
WHHD-1  
WHHD-2  
-----  
JEDEC  
T2855N-1 3.15 3.25 3.35 3.15 3.25 3.35  
NO  
YES  
NO  
YES  
NO  
**  
**  
**  
**  
**  
**  
3.20  
3.00 3.10 3.20  
T3255-3  
T3255-4  
T3255-5  
3.00 3.10  
3.00 3.10 3.20 3.00 3.10 3.20  
3.20  
NOTES:  
3.00 3.10  
3.00 3.10 3.20  
1. DIMENSIONING & TOLERANCING CONFORM TO ASME Y14.5M-1994.  
2. ALL DIMENSIONS ARE IN MILLIMETERS. ANGLES ARE IN DEGREES.  
3. N IS THE TOTAL NUMBER OF TERMINALS.  
T3255N-1 3.00 3.10 3.20 3.00 3.10 3.20  
T4055-1 3.20 3.30 3.40 3.20 3.30 3.40  
YES  
**SEE COMMON DIMENSIONS TABLE  
4. THE TERMINAL #1 IDENTIFIER AND TERMINAL NUMBERING CONVENTION SHALL  
CONFORM TO JESD 95-1 SPP-012. DETAILS OF TERMINAL #1 IDENTIFIER ARE  
OPTIONAL, BUT MUST BE LOCATED WITHIN THE ZONE INDICATED. THE TERMINAL #1  
IDENTIFIER MAY BE EITHER A MOLD OR MARKED FEATURE.  
5. DIMENSION b APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN  
0.25 mm AND 0.30 mm FROM TERMINAL TIP.  
6. ND AND NE REFER TO THE NUMBER OF TERMINALS ON EACH D AND E SIDE RESPECTIVELY.  
7. DEPOPULATION IS POSSIBLE IN A SYMMETRICAL FASHION.  
8. COPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS.  
9. DRAWING CONFORMS TO JEDEC MO220, EXCEPT EXPOSED PAD DIMENSION FOR  
T2855-3 AND T2855-6.  
10. WARPAGE SHALL NOT EXCEED 0.10 mm.  
11. MARKING IS FOR PACKAGE ORIENTATION REFERENCE ONLY.  
12. NUMBER OF LEADS SHOWN ARE FOR REFERENCE ONLY.  
13. LEAD CENTERLINES TO BE AT TRUE POSITION AS DEFINED BY BASIC DIMENSION "e", ±0.05.  
PACKAGE OUTLINE,  
16, 20, 28, 32, 40L THIN QFN, 5x5x0.8mm  
2
-DRAWING NOT TO SCALE-  
21-0140  
I
2
30 ______________________________________________________________________________________  
2.3W Stereo Speaker Amplifiers and DirectDrive  
Headphone Amplifiers with Automatic Level Control  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
(NE-1) X  
e
E
E/2  
k
D/2  
C
(ND-1) X  
e
D
D2  
L
D2/2  
e
b
E2/2  
L
C
L
k
E2  
e
L
C
C
L
L
L1  
L
L
e
e
A
A1  
A2  
PACKAGE OUTLINE  
36, 40, 48L THIN QFN, 6x6x0.8mm  
1
F
21-0141  
2
NOTES:  
1. DIMENSIONING & TOLERANCING CONFORM TO ASME Y14.5M-1994.  
2. ALL DIMENSIONS ARE IN MILLIMETERS. ANGLES ARE IN DEGREES.  
3. N IS THE TOTAL NUMBER OF TERMINALS.  
4. THE TERMINAL #1 IDENTIFIER AND TERMINAL NUMBERING CONVENTION SHALL CONFORM TO JESD 95-1  
SPP-012. DETAILS OF TERMINAL #1 IDENTIFIER ARE OPTIONAL, BUT MUST BE LOCATED WITHIN THE  
ZONE INDICATED. THE TERMINAL #1 IDENTIFIER MAY BE EITHER A MOLD OR MARKED FEATURE.  
5. DIMENSION b APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.25 mm AND 0.30 mm  
FROM TERMINAL TIP.  
6. ND AND NE REFER TO THE NUMBER OF TERMINALS ON EACH D AND E SIDE RESPECTIVELY.  
7. DEPOPULATION IS POSSIBLE IN A SYMMETRICAL FASHION.  
8. COPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS.  
9. DRAWING CONFORMS TO JEDEC MO220, EXCEPT FOR 0.4mm LEAD PITCH PACKAGE T4866-1.  
10. WARPAGE SHALL NOT EXCEED 0.10 mm.  
11. MARKING IS FOR PACKAGE ORIENTATION REFERENCE ONLY.  
12. NUMBER OF LEADS SHOWN FOR REFERENCE ONLY.  
PACKAGE OUTLINE  
36, 40, 48L THIN QFN, 6x6x0.8mm  
2
F
21-0141  
2
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 31  
© 2006 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products, Inc.  
Quijano  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY