MAX9763EUI+T [MAXIM]

Audio Amplifier, 3W, 2 Channel(s), 1 Func, BICMOS, PDSO28, 4.40 MM, ROHS COMPLIANT, MO-153AET, TSSOP-28;
MAX9763EUI+T
型号: MAX9763EUI+T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Audio Amplifier, 3W, 2 Channel(s), 1 Func, BICMOS, PDSO28, 4.40 MM, ROHS COMPLIANT, MO-153AET, TSSOP-28

复用器 放大器 功率放大器 驱动
文件: 总31页 (文件大小:904K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2744; Rev 0; 1/03  
Stereo 3W Audio Power Amplifiers with  
Headphone Drive and Input Mux  
General Description  
Features  
The MAX9760–MAX9763 family combines a stereo or  
mono 3W bridge-tied load (BTL) audio power amplifier,  
stereo single-ended headphone amplifier, headphone  
sensing, and a 2:1 input multiplexer all in a tiny 28-pin  
thin QFN package. These devices operate from a sin-  
gle 4.5V to 5.5V supply and feature an industry-leading  
100dB PSRR, allowing these devices to operate from  
noisy supplies without the addition of a linear regulator.  
An ultra-low 0.002% THD+N ensures clean, low-distor-  
tion amplification of the audio signal. Patented click-  
and-pop suppression eliminates audible transients on  
power and shutdown cycles. Power-saving features  
Industry-Leading, Ultra-High 100dB PSRR  
PC99/01 Compliant  
3W BTL Stereo Speaker Amplifier  
200mW Stereo Headphone Amplifier  
Low 0.002% THD+N  
Patented Click-and-Pop Suppression  
ESD-Protected Outputs  
Low Quiescent Current: 13mA  
Low-Power Shutdown Mode: 10µA  
MUTE Function  
include low 4mV V  
(minimizes DC current drain  
OS  
through the speakers), low 13mA supply current, and a  
10µA shutdown mode. A MUTE function allows the out-  
puts to be quickly enabled or disabled.  
Headphone Sense Input  
Stereo 2:1 Input Multiplexer  
A headphone sense input detects the presence of a  
headphone jack and automatically configures the  
amplifiers for either speaker or headphone mode. In  
speaker mode, the amplifiers can deliver up to 3W of  
continuous average power into a 3load. In head-  
phone mode, the amplifier can deliver up to 200mW of  
continuous average power into a 16load. The gain of  
the amplifiers is externally set, allowing maximum flexi-  
bility in optimizing output levels for a given load. The  
amplifiers also feature a 2:1 input multiplexer, allowing  
multiple audio sources to be selected. The multiplexer  
can also be used to compensate for limitations in the  
frequency response of the loud speakers by selecting  
an external equalizer network. The various functions are  
controlled by either an I2C-compatible or simple parallel  
control interface.  
Optional 2-Wire, I2C-Compatible or Parallel  
Interface  
Tiny 28-Pin Thin QFN (5mm 5mm 0.8mm) and  
TSSOP-EP Packages  
Ordering Information  
PART  
TEMP RANGE  
-40°C to +85°C  
-40°C to +85°C  
PIN-PACKAGE  
28 Thin QFN-EP*  
28 TSSOP-EP*  
MAX9760ETI  
MAX9760EUI  
*EP = Exposed paddle.  
Ordering Information continued at end of data sheet.  
Simplified Block Diagram  
The MAX9760–MAX9763 are available in either a ther-  
mally efficient 28-pin thin QFN package (5mm 5mm ✕  
0.8mm) or a TSSOP-EP package. All devices have ther-  
mal overload protection (OVP) and are specified over  
the extended -40°C to +85°C temperature range.  
SINGLE SUPPLY  
4.5V TO 5.5V  
LEFT IN1  
LEFT IN2  
Applications  
Notebooks  
SE/  
BTL  
Portable DVD Players  
Tablet PCs  
RIGHT IN1  
RIGHT IN2  
PC Audio Peripherals  
Camcorders  
I2C-  
CONTROL  
COMPATIBLE  
Pin Configurations and Functional Diagrams appear at end  
of data sheet.  
MAX9760  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
Stereo 3W Audio Power Amplifiers with  
Headphone Drive and Input Mux  
ABSOLUTE MAXIMUM RATINGS  
DD  
V
to GND ...........................................................................+6V  
Continuous Power Dissipation  
SV  
SV  
PV  
to GND .........................................................................+6V  
28-Pin Thin QFN (derate 20.8ꢀW/°C above +70°C)....1667ꢀW  
28-Pin TSSOP-EP (derate 23.8ꢀW/°C above +70°C) ..1905ꢀW  
Operating Teꢀperature Range ...........................-40°C to +85°C  
Storage Teꢀperature Range.............................-65°C to +150°C  
Junction Teꢀperature......................................................+150°C  
Lead Teꢀperature (soldering, 10s) .................................+300°C  
DD  
DD  
DD  
to V .........................................................................-0.3V  
DD  
DD  
to V  
....................................................................... 0.3V  
PGND to GND..................................................................... 0.3V  
All Other Pins to GND.................................-0.3V to (V + 0.3V)  
Continuous Input Current (into any pin except power-supply  
DD  
and output pins) ............................................................... 20ꢀA  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
= PV  
= 5.0V, GND = PGND = 0V, SHDN = 5V, C  
= 1µF, R = R = 15k, R = . T = T  
to T  
, unless otherwise  
MAX  
DD  
DD  
BIAS  
IN  
F
L
A
MIN  
noted. Typical values are at T = +25°C.) (Note 1)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
Inferred froꢀ PSRR test  
MIN  
TYP  
MAX  
5.5  
32  
UNITS  
Supply Voltage Range  
V
/PV  
4.5  
V
DD  
DD  
MAX9760/MAX9761  
MAX9762/MAX9763  
13  
7
BTL ꢀode,  
HPS = 0V  
Quiescent Supply Current  
I
18  
ꢀA  
DD  
(I  
+ I  
)
VDD  
PVDD  
Single-ended ꢀode, HPS = V  
SHDN = GND  
7
18  
DD  
Shutdown Current  
Switching Tiꢀe  
I
10  
10  
300  
30  
160  
15  
50  
µA  
µs  
SHDN  
t
Gain or input switching  
SW  
C
C
= 1µF  
BIAS  
BIAS  
Turn-On Tiꢀe  
t
ꢀs  
ON  
= 0.1µF  
Therꢀal Shutdown Threshold  
Therꢀal Shutdown Hysteresis  
oC  
oC  
OUTPUT AMPLIFIERS (SPEAKER MODE, HPS = GND)  
Output Offset Voltage  
V
OUT_+ - OUT_-, A = 1V/V  
4
32  
ꢀV  
dB  
OS  
V
V
= 4.5V to 5.5V  
75  
100  
DD  
f = 1kHz, V  
=
RIPPLE  
82  
70  
200ꢀV  
P-P  
Power-Supply Rejection Ratio  
PSRR  
(Note 2)  
f = 20kHz, V  
200ꢀV  
=
RIPPLE  
P-P  
R = 8  
1
1.4  
2.6  
3
L
f
= 1kHz,  
IN  
Output Power  
P
W
%
THD+N < 1%,  
T
R = 4Ω  
L
OUT  
= +25°C  
A
R = 3Ω  
L
P
P
= 1W, R = 8Ω  
0.005  
0.01  
95  
OUT  
OUT  
L
Total Harꢀonic Distortion Plus  
Noise  
f
= 1kHz, BW =  
IN  
THD+N  
22Hz to 22kHz  
= 2W, R = 4Ω  
L
Signal-to-Noise Ratio  
Slew Rate  
SNR  
SR  
R = 8, P  
= 1W, BW = 22Hz to 22kHz  
OUT  
dB  
V/µs  
nF  
L
1.6  
1
Maxiꢀuꢀ Capacitive Load Drive  
Crosstalk  
C
No sustained oscillations  
= 10kHz  
L
f
73  
dB  
IN  
2
_______________________________________________________________________________________  
Stereo 3W Audio Power Amplifiers with  
Headphone Drive and Input Mux  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= PV  
= 5.0V, GND = PGND = 0V, SHDN = 5V, C  
= 1µF, R = R = 15k, R = . T = T  
to T  
, unless otherwise  
MAX  
DD  
DD  
BIAS  
IN  
F
L
A
MIN  
noted. Typical values are at T = +25°C.) (Note 1)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
OUTPUT AMPLIFIERS (HEADPHONE MODE, HPS = V  
)
DD  
V
= 4.5V to 5.5V  
75  
106  
88  
DD  
f = 1kHz, V  
200ꢀV  
=
RIPPLE  
Power-Supply Rejection Ratio  
Output Power  
PSRR  
(Note 2)  
P-P  
dB  
f = 20kHz, V  
=
RIPPLE  
76  
200ꢀV  
P-P  
R = 32Ω  
= 1kHz, THD+N <  
88  
L
f
IN  
P
ꢀW  
%
OUT  
1%, T = +25°C  
A
R = 16Ω  
L
120  
200  
P
= 60ꢀW,  
OUT  
0.002  
0.002  
92  
R = 32Ω  
L
Total Harꢀonic Distortion Plus  
Noise  
f
= 1kHz, BW =  
IN  
THD+N  
22Hz to 22kHz  
P
= 125ꢀW,  
OUT  
R = 16Ω  
L
R = 32, BW = 22Hz to 22kHz,  
L
Signal-to-Noise Ratio  
SNR  
SR  
dB  
V
= 1V  
OUT  
RMS  
Slew Rate  
1.8  
2
V/µs  
nF  
Maxiꢀuꢀ Capacitive Load Drive  
Crosstalk  
C
No sustained oscillations  
= 10kHz  
L
f
78  
dB  
IN  
STANDBY SUPPLY (SV ) (Note 3)  
DD  
V
V
= 1.25V, V  
= 0V  
425  
750  
15  
BIAS  
BIAS  
DD  
SV  
DD  
Current  
I
µA  
SVDD  
= 2.5V, V  
= 5V  
DD  
BIAS VOLTAGE (BIAS)  
BIAS Voltage  
V
R
2.35  
2
2.5  
50  
2.65  
V
BIAS  
Output Resistance  
kΩ  
BIAS  
1
DIGITAL INPUTS (MUTE, SHDN, HPS_EN, GAINA/B, IN /2)  
Input Voltage High  
V
V
V
IH  
Input Voltage Low  
V
0.8  
1
IL  
Input Leakage Current  
HEADPHONE SENSE INPUT (HPS)  
I
IN  
µA  
0.9 x  
Input Voltage High  
V
V
IH  
V
DD  
0.7 x  
Input Voltage Low  
V
V
IL  
V
DD  
Input Leakage Current  
I
IN  
1
µA  
_______________________________________________________________________________________  
3
Stereo 3W Audio Power Amplifiers with  
Headphone Drive and Input Mux  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= PV  
= 5.0V, GND = PGND = 0V, SHDN = 5V, C  
= 1µF, R = R = 15k, R = . T = T  
to T  
, unless otherwise  
MAX  
DD  
DD  
BIAS  
IN  
F
L
A
MIN  
noted. Typical values are at T = +25°C.) (Note 1)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
2-WIRE SERIAL INTERFACE (SCL, SDA, ADD, INT) (MAX9760/MAX9762)  
Input Voltage High  
V
2.6  
V
V
IH  
Input Voltage Low  
V
0.8  
IL  
Input Hysteresis  
0.2  
10  
V
Input High Leakage Current  
Input Low Leakage Current  
Input Capacitance  
I
V
V
= 5V  
= 0V  
1
1
µA  
µA  
pF  
V
IH  
IN  
IN  
I
IL  
C
IN  
OL  
OH  
Output Voltage Low  
Output Current High  
V
I
= 3ꢀA  
0.4  
1
OL  
I
V
= 5V  
µA  
OH  
TIMING CHARACTERISTICS (MAX9760/MAX9762)  
Serial Clock Frequency  
f
400  
kHz  
µs  
SCL  
Bus Free Tiꢀe Between STOP  
and START Conditions  
t
1.3  
BUF  
START Condition Hold Tiꢀe  
START Condition Setup Tiꢀe  
Clock Period Low  
t
0.6  
0.6  
1.3  
0.6  
100  
0
µs  
µs  
µs  
µs  
ns  
µs  
HD:STA  
t
SU:STA  
t
LOW  
Clock Period High  
t
HIGH  
Data Setup Tiꢀe  
t
SU:DAT  
HD:DAT  
Data Hold Tiꢀe  
t
(Note 4)  
0.9  
20 +  
Receive SCL/SDA Rise Tiꢀe  
Receive SCL/SDA Fall Tiꢀe  
Transꢀit SDA Fall Tiꢀe  
t
t
t
(Note 5)  
(Note 5)  
(Note 5)  
(Note 6)  
300  
ns  
ns  
ns  
ns  
r
f
f
0.1C  
B
20 +  
0.1C  
300  
250  
B
20 +  
0.1C  
B
Pulse Width of Suppressed  
Spike  
t
50  
SP  
Note 1: All devices are 100% production tested at +25°C. All teꢀperature liꢀits are guaranteed by design.  
Note 2: PSRR is specified with the aꢀplifier inputs connected to GND through R and C  
.
IN  
IN  
Note 3: Refer to the SV  
section.  
DD  
Note 4: A ꢀaster device ꢀust provide a hold tiꢀe of at least 300ns for the SDA signal to bridge the undefined region of SCLs falling  
edge.  
Note 5: C = total capacitance of one of the bus lines in picofarads. Device tested with C = 400pF. 1kpullup resistors connected  
B
B
froꢀ SDA/SCL to V  
.
DD  
Note 6: Input filters on SDA, SCL, and ADD suppress noise spikes of less than 50ns.  
4
_______________________________________________________________________________________  
Stereo 3W Audio Power Amplifiers with  
Headphone Drive and Input Mux  
Typical Operating Characteristics  
(V  
= PV  
= 5V, T = +25°C, unless otherwise noted.)  
DD  
DD  
A
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY (SPEAKER MODE)  
1
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY (SPEAKER MODE)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY (SPEAKER MODE)  
1
1
R = 3  
R = 4Ω  
L
L
R = 3Ω  
L
V
A
= 4V/V  
A = 2V/V  
V
V
A
= 2V/V  
0.1  
0.1  
0.01  
0.1  
0.01  
P
= 500mW  
= 1W  
P
OUT  
P
OUT  
P
= 1W  
P
= 500mW  
OUT  
OUT  
P
= 250mW  
P
OUT  
= 500mW  
OUT  
0.01  
= 2.5W  
OUT  
P
= 2W  
100  
OUT  
P
= 2W  
P
= 2.5W  
1k  
OUT  
OUT  
P
= 2W  
OUT  
P
= 1W  
100  
OUT  
0.001  
0.001  
0.001  
10  
100  
10k  
100k  
10  
1k  
FREQUENCY (Hz)  
10k  
100k  
10  
1k  
FREQUENCY (Hz)  
10k  
100k  
FREQUENCY (Hz)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY (SPEAKER MODE)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY (SPEAKER MODE)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY (SPEAKER MODE)  
1
1
1
R = 8Ω  
R = 4Ω  
R = 8Ω  
L
L
L
A
= 4V/V  
A
= 4V/V  
A
= 2V/V  
V
V
V
0.1  
0.01  
0.1  
0.01  
0.1  
0.01  
P
= 250mW  
P
= 500mW  
OUT  
OUT  
P
= 250mW  
P
= 500mW  
OUT  
OUT  
P
= 250mW  
OUT  
P
= 500mW  
OUT  
P
= 2W  
OUT  
1k  
P
= 1W  
100  
OUT  
P
= 1.2W  
OUT  
P
= 1W  
100  
OUT  
P
= 1W  
= 1.2W  
OUT  
P
OUT  
0.001  
0.001  
0.001  
10  
10k  
100k  
10  
100  
1k  
10k  
100k  
10  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER (SPEAKER MODE)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER (SPEAKER MODE)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER (SPEAKER MODE)  
100  
100  
100  
A = 4V/V  
V
L
A
= 2V/V  
A
= 2V/V  
V
V
R = 3Ω  
R = 3Ω  
L
R = 4Ω  
L
10  
10  
10  
1
1
1
f = 10kHz  
f = 1kHz  
f = 10kHz  
f = 10kHz  
0.1  
0.1  
0.1  
f = 20Hz  
f = 1kHz  
1
f = 1kHz  
0.01  
0.001  
0.01  
0.001  
0.01  
0.001  
f = 20Hz  
f = 20Hz  
0
2
3
4
0
1
2
OUTPUT POWER (W)  
3
4
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5  
OUTPUT POWER (W)  
OUTPUT POWER (W)  
_______________________________________________________________________________________  
5
Stereo 3W Audio Power Amplifiers with  
Headphone Drive and Input Mux  
Typical Operating Characteristics (continued)  
(V  
= PV  
= 5V, T = +25°C, unless otherwise noted.)  
DD  
A
DD  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER (SPEAKER MODE)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER (SPEAKER MODE)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER (SPEAKER MODE)  
100  
100  
100  
A
= 4V/V  
A
= 2V/V  
A
= 4V/V  
V
V
V
R = 4Ω  
R = 8Ω  
R = 8Ω  
L
L
L
10  
1
10  
10  
f = 10kHz  
1
1
f = 10kHz  
f = 1kHz  
f = 20Hz  
f = 10kHz  
0.1  
0.01  
0.1  
0.1  
f = 1kHz  
f = 1kHz  
0.01  
0.001  
0.01  
0.001  
f = 20Hz  
0.5  
f = 20Hz  
0.5  
0.001  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5  
OUTPUT POWER (W)  
0
1.0  
1.5  
2.0  
0
1.0  
1.5  
2.0  
OUTPUT POWER (W)  
OUTPUT POWER (W)  
OUTPUT POWER vs. TEMPERATURE  
(SPEAKER MODE)  
OUTPUT POWER vs. TEMPERATURE  
(SPEAKER MODE)  
OUTPUT POWER vs. TEMPERATURE  
(SPEAKER MODE)  
4
3
2
1
0
4
3
2
1
0
2.0  
1.5  
1.0  
0.5  
0
THD+N = 10%  
THD+N = 10%  
THD+N = 10%  
THD+N = 1%  
THD+N = 1%  
THD+N = 1%  
f = 1kHz  
f = 1kHz  
f = 1kHz  
R = 3Ω  
R = 4Ω  
R = 8Ω  
L
L
L
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
OUTPUT POWER vs. LOAD RESISTANCE  
(SPEAKER MODE)  
POWER DISSIPATION vs. OUTPUT POWER  
(SPEAKER MODE)  
5
4
3
2
1
0
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
f = 1kHz  
THD+N = 10%  
THD+N = 1%  
R = 4Ω  
L
f = 1kHz  
1
10  
100  
1k  
10k  
100k  
0
0.5  
1.0  
1.5  
2.0  
2.5  
LOAD RESISTANCE ()  
OUTPUT POWER (W)  
6
_______________________________________________________________________________________  
Stereo 3W Audio Power Amplifiers with  
Headphone Drive and Input Mux  
Typical Operating Characteristics (continued)  
(V  
= PV  
= 5V, T = +25°C, unless otherwise noted.)  
DD  
DD  
A
POWER-SUPPLY REJECTION RATIO  
vs. FREQUENCY (SPEAKER MODE)  
CROSSTALK vs. FREQUENCY  
(SPEAKER MODE)  
40  
50  
-40  
-50  
V
= 200mV  
P-P  
RIPPLE  
V = 200mV  
IN P-P  
R = 8Ω  
L
-60  
60  
-70  
RIGHT TO LEFT  
70  
-80  
-90  
80  
-100  
-110  
-120  
LEFT TO RIGHT  
90  
100  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
ENTERING SHUTDOWN (SPEAKER MODE)  
EXITING SHUTDOWN (SPEAKER MODE)  
MAX9760 toc20  
MAX9760 toc21  
SHDN  
SHDN  
2V/div  
2V/div  
OUT_+  
AND OUT_-  
OUT_+  
AND OUT_-  
1V/div  
1V/div  
OUT_+  
- OUT_-  
OUT_+  
- OUT_-  
200mV/div  
200mV/div  
100ms/div  
100ms/div  
R = 8Ω  
R = 8Ω  
L
L
INPUT AC-COUPLED TO GND  
INPUT AC-COUPLED TO GND  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY (HEADPHONE MODE)  
1
ENTERING POWER-DOWN  
(SPEAKER MODE)  
MAX9760 toc22  
R = 16Ω  
L
V
A
= 1V/V  
V
DD  
2V/div  
0.1  
P
= 25mW  
OUT  
P
= 50mW  
OUT  
0.01  
OUT_+  
AND OUT_-  
1V/div  
0.001  
0.0001  
P
= 100mW  
100  
OUT  
OUT_+  
- OUT_-  
P
= 150mW  
10k  
OUT  
200mV/div  
10  
1k  
100k  
100ms/div  
R = 8Ω  
L
FREQUENCY (Hz)  
INPUT AC-COUPLED TO GND  
_______________________________________________________________________________________  
7
Stereo 3W Audio Power Amplifiers with  
Headphone Drive and Input Mux  
Typical Operating Characteristics (continued)  
(V  
= PV  
= 5V, T = +25°C, unless otherwise noted.)  
DD  
A
DD  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY (HEADPHONE MODE)  
1
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY (HEADPHONE MODE)  
1
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY (HEADPHONE MODE)  
1
R = 32Ω  
R = 32Ω  
V
R = 16Ω  
L
V
L
L
V
A
= 1V/V  
A
= 2V/V  
A
= 2V/V  
0.1  
0.1  
0.01  
0.1  
0.01  
P
= 25mW  
OUT  
P
= 25mW  
OUT  
P
P
= 50mW  
P
= 50mW  
OUT  
OUT  
OUT  
P
= 25mW  
OUT  
0.01  
0.001  
P
= 50mW  
OUT  
0.001  
0.0001  
P
= 100mW  
P
= 150mW  
10k  
OUT  
OUT  
0.001  
0.0001  
= 100mW  
P
= 150mW  
100  
OUT  
P
= 100mW  
100  
OUT  
P
= 150mW  
10k  
OUT  
0.0001  
10  
100  
1k  
FREQUENCY (Hz)  
100k  
10  
1k  
100k  
10  
1k  
FREQUENCY (Hz)  
10k  
100k  
FREQUENCY (Hz)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER (HEADPHONE MODE)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER (HEADPHONE MODE)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER (HEADPHONE MODE)  
100  
100  
100  
A
= 1V/V  
A
= 2V/V  
A
= 1V/V  
V
V
V
R = 32Ω  
R = 16Ω  
R = 16Ω  
L
L
L
10  
10  
10  
1
1
1
f = 10kHz  
f = 20Hz  
f = 10kHz  
f = 10kHz  
0.1  
0.1  
0.1  
f = 20Hz  
f = 20Hz  
0.01  
0.001  
0.0001  
0.01  
0.001  
0.0001  
0.01  
0.001  
0.0001  
f = 1kHz  
f = 1kHz  
f = 1kHz  
75  
OUTPUT POWER (mW)  
0
50  
100  
150  
200  
250  
300  
0
50  
100  
150  
200  
250  
300  
0
25  
50  
100  
125  
OUTPUT POWER (mW)  
OUTPUT POWER (mW)  
OUTPUT POWER vs. TEMPERATURE  
(HEADPHONE MODE)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER (HEADPHONE MODE)  
OUTPUT POWER vs. TEMPERATURE  
(HEADPHONE MODE)  
150  
125  
100  
75  
100  
300  
250  
200  
150  
100  
50  
A
= 2V/V  
V
R = 32Ω  
L
THD+N = 10%  
THD+N = 1%  
THD+N = 10%  
THD+N = 1%  
10  
f = 1kHz  
1
f = 10kHz  
f = 20Hz  
0.1  
50  
0.01  
0.001  
0.0001  
25  
f = 1kHz  
f = 1kHz  
R = 32Ω  
R = 16Ω  
L
L
0
0
-40  
-15  
10  
35  
60  
85  
0
25  
50  
75  
100  
125  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
OUTPUT POWER (mW)  
TEMPERATURE (°C)  
8
_______________________________________________________________________________________  
Stereo 3W Audio Power Amplifiers with  
Headphone Drive and Input Mux  
Typical Operating Characteristics (continued)  
(V  
= PV  
= 5V, T = +25°C, unless otherwise noted.)  
DD  
DD  
A
OUTPUT POWER vs. LOAD RESISTANCE  
(HEADPHONE MODE)  
POWER DISSIPATION vs. OUTPUT POWER  
(HEADPHONE MODE)  
POWER DISSIPATION vs. OUTPUT POWER  
(HEADPHONE MODE)  
600  
500  
400  
300  
200  
100  
0
70  
60  
50  
40  
30  
20  
10  
0
120  
100  
80  
60  
40  
20  
0
f = 1kHz  
THD+N = 10%  
THD+N = 1%  
R = 32Ω  
L
R = 16Ω  
L
f = 1kHz  
f = 1kHz  
1
10  
100  
1k  
10k  
0
20  
40  
60  
80  
100  
0
50  
100  
150  
200  
LOAD RESISTANCE ()  
OUTPUT POWER (mW)  
OUTPUT POWER (mW)  
CROSSTALK vs. FREQUENCY  
(HEADPHONE MODE)  
POWER-SUPPLY REJECTION RATIO  
vs. FREQUENCY (HEADPHONE MODE)  
EXITING SHUTDOWN (HEADPHONE MODE)  
MAX9760 toc38  
-40  
-50  
40  
50  
V
= 200mV  
P-P  
R = 16Ω  
V
= 200mV  
P-P  
IN  
L
RIPPLE  
SHDN  
2V/div  
1V/div  
-60  
60  
-70  
-80  
70  
RIGHT TO LEFT  
OUT_+  
-90  
80  
-100  
-110  
-120  
90  
HP JACK  
200mV/div  
LEFT TO RIGHT  
100  
100ms/div  
10  
100  
1k  
10k  
100k  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
R = 16Ω  
L
FREQUENCY (Hz)  
INPUT AC-COUPLED TO GND  
EXITING POWER-DOWN  
(HEADPHONE MODE)  
ENTERING SHUTDOWN (HEADPHONE MODE)  
MAX9760 toc39  
MAX9760 toc40  
2V/div  
1V/div  
V
SHDN  
DD  
2V/div  
OUT_+  
OUT_+  
1V/div  
200mV/div  
HP JACK  
200mV/div  
HP JACK  
100ms/div  
INPUT AC-COUPLED TO GND  
100ms/div  
R = 16Ω  
L
R = 16Ω  
L
INPUT AC-COUPLED TO GND  
_______________________________________________________________________________________  
9
Stereo 3W Audio Power Amplifiers with  
Headphone Drive and Input Mux  
Typical Operating Characteristics (continued)  
(V  
= PV  
= 5V, T = +25°C, unless otherwise noted.)  
DD  
A
DD  
SUPPLY CURRENT vs. SUPPLY VOLTAGE  
(SPEAKER MODE)  
ENTERING POWER-DOWN  
(HEADPHONE MODE)  
MAX9760 toc41  
25  
20  
15  
10  
5
T
= +85°C  
A
V
2V/div  
DD  
T
= +25°C  
A
OUT_+  
1V/div  
T
= -40°C  
A
HP JACK  
200mV/div  
0
4.50  
4.75  
5.00  
5.25  
5.50  
100ms/div  
R = 16Ω  
L
SUPPLY VOLTAGE (V)  
INPUT AC-COUPLED TO GND  
SUPPLY CURRENT vs. SUPPLY VOLTAGE  
(HEADPHONE MODE)  
SHUTDOWN SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
12  
10  
8
20  
15  
10  
5
T
= +85°C  
A
T
= +85°C  
A
T
T
= +25°C  
A
6
T
= +25°C  
A
4
T
= -40°C  
A
= -40°C  
A
2
0
0
4.50  
4.75  
5.00  
5.25  
5.50  
4.50  
4.75  
5.00  
5.25  
5.50  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
POWER DISSIPATION vs. OUTPUT POWER  
(SPEAKER MODE)  
EXITING POWER-DOWN  
(SPEAKER MODE)  
MAX9760 toc46  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
V
DD  
2V/div  
OUT_+  
AND OUT_-  
1V/div  
OUT_+  
- OUT_-  
200mV/div  
R = 8Ω  
L
f = 1kHz  
0
0.25 0.50 0.75 1.00 1.25 1.50  
OUTPUT POWER (W)  
100ms/div  
R = 8Ω  
L
INPUT AC-COUPLED TO GND  
10 ______________________________________________________________________________________  
Stereo 3W Audio Power Amplifiers with  
Headphone Drive and Input Mux  
Pin Description  
PIN  
NAME  
FUNCTION  
MAX9760  
MAX9761  
MAX9762  
MAX9763  
QFN  
TSSOP  
26  
QFN  
TSSOP  
QFN  
TSSOP  
26  
QFN  
TSSOP  
1
2
3
3
1
2
3
3
SDA  
Bidirectional Serial Data I/O  
µC Interrupt Output  
Power Supply  
27  
27  
INT  
28  
28  
28  
28  
V
DD  
Standby Power Supply. Connect  
to a standby power supply that is  
always on, or connect to V  
DD  
4
1
4
1
4
1
4
1
SV  
DD  
through a Schottky diode and  
bypass with 220µF capacitor to  
GND. Short to V if clickless  
DD  
operation is not essential.  
Left-Channel Input 1  
Left-Channel Input 2  
5
6
7
8
2
3
4
5
5
6
7
8
2
3
4
5
5
6
7
8
2
3
4
5
5
6
7
8
2
3
4
5
INL1  
INL2  
GAINLA Left-Channel Gain Set A  
GAINLB Left-Channel Gain Set B  
9, 13,  
23, 27  
6, 10,  
20, 24  
9, 13, 6, 10, 20, 9, 23,  
6, 20, 24 9, 23, 27 6, 20, 24  
PGND  
Power Ground  
23, 27  
24  
27  
Left-Channel Bridged Aꢀplifier  
Positive Output. OUTL+ also  
serves as the left-channel  
10  
7
10  
7
10  
7
10  
7
OUTL+  
headphone aꢀplifier output.  
11, 25  
12  
8, 22  
9
11, 25  
12  
8, 22  
9
11, 25  
8, 22  
11, 25  
8, 22  
PV  
Output Aꢀplifier Power Supply  
DD  
Left-Channel Bridged Aꢀplifier  
Negative Output  
OUTL-  
Active-Low Shutdown. Connect  
14  
15  
11  
12  
14  
11  
14  
15  
11  
12  
14  
11  
SHDN  
SHDN to V  
for norꢀal operation.  
DD  
Address Select. A logic high sets  
the address LSB to 1, a logic low  
sets the address LSB to zero.  
ADD  
HPS  
Headphone Sense Input. A logic  
high configures the device as a  
single-ended headphone aꢀp. A  
logic low configures the device as  
a BTL speaker aꢀp.  
16  
13  
16  
13  
16  
13  
16  
13  
DC Bias Bypass. See BIAS  
Capacitor Selection section for  
capacitor selection. Connect  
17  
18  
14  
15  
17  
18  
14  
15  
17  
13  
14  
10  
17  
13  
14  
10  
BIAS  
GND  
C
froꢀ BIAS to GND.  
BIAS  
Ground  
______________________________________________________________________________________ 11  
Stereo 3W Audio Power Amplifiers with  
Headphone Drive and Input Mux  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
MAX9760  
MAX9761  
QFN TSSOP  
MAX9762  
MAX9763  
QFN  
TSSOP  
16  
QFN  
TSSOP  
16  
QFN  
TSSOP  
16  
19  
20  
21  
22  
19  
20  
21  
22  
16  
17  
18  
19  
19  
20  
21  
22  
19  
20  
21  
22  
INR1  
INR2  
Right-Channel Input 1  
Right-Channel Input 2  
17  
17  
17  
18  
18  
18  
GAINRA Right-Channel Gain Set A  
GAINRB Right-Channel Gain Set B  
19  
19  
19  
Right-Channel Bridged Aꢀplifier  
Positive Output. OUTR+ also  
serves as the right-channel  
24  
21  
24  
21  
24  
21  
24  
21  
OUTR+  
headphone aꢀplifier output.  
Right-Channel Bridged Aꢀplifier  
Negative Output  
26  
28  
23  
25  
26  
23  
26  
28  
12  
23  
25  
9
26  
12  
23  
9
OUTR-  
SCL  
N.C.  
Serial Clock Line  
No Connection. Not internally  
connected.  
18  
15  
18  
1
15  
26  
GAINM Mono Gain Set  
1
26  
MUTE  
Active-High Mute Input  
Headphone Enable. A logic high  
enables HPS. A logic low disables  
HPS and the device is always  
2
27  
2
27  
HPS_EN  
configured as a BTL speaker aꢀp.  
Gain Select. A logic low selects  
the gain set by GAIN_A. A logic  
high selects the gain set by  
GAIN_B.  
15  
28  
12  
25  
15  
28  
12  
25  
GAINA/B  
IN1/2  
Input Select. A logic low selects  
aꢀplifier input 1. A logic high  
selects aꢀplifier input 2.  
devices to operate froꢀ noisy digital supplies without  
the need for a linear regulator.  
Detailed Description  
The MAX9760MAX9763 feature 3W BTL speaker  
aꢀplifiers, 200ꢀW headphone aꢀplifiers, input ꢀulti-  
plexers, headphone sensing, and coꢀprehensive click-  
and-pop suppression. The MAX9760/ MAX9761 are  
stereo BTL/headphone aꢀplifiers. The MAX9762/  
MAX9763 are ꢀono BTL/stereo headphone aꢀplifiers.  
The MAX9760/MAX9762 are controlled through an I2C-  
coꢀpatible, 2-wire serial interface. The MAX9761/  
MAX9763 are controlled through five logic inputs:  
MUTE, SHDN, HPS_EN, GAINA/B, and IN1/2 (see  
Selector Guide). The MAX9760MAX9763 feature  
exceptional PSRR (100dB at 1kHz), allowing these  
The speaker aꢀplifiers use a BTL configuration. The  
signal path is coꢀposed of an input aꢀplifier and an  
output aꢀplifier. Resistor R sets the input aꢀplifiers  
IN  
gain, and resistor R sets the output aꢀplifiers gain.  
F
The output of these two aꢀplifiers serves as the input to  
a slave aꢀplifier configured as an inverting unity-gain  
follower. This results in two outputs, identical in ꢀagni-  
tude, but 180° out of phase. The overall gain of the  
speaker aꢀplifiers is twice the product of the two  
aꢀplifier gains (see Gain-Setting Resistor section). A  
feature of this architecture is that there is no phase  
inversion froꢀ input to output.  
12 ______________________________________________________________________________________  
Stereo 3W Audio Power Amplifiers with  
Headphone Drive and Input Mux  
Input Multiplexer  
Each aꢀplifier features a 2:1 input ꢀultiplexer, allowing  
input selection between two stereo sources. Both ꢀulti-  
MAX9760  
plexers are controlled by bit 1 in the control register  
(MAX9760/MAX9762) or by the IN1/2 pin (MAX9761/  
MAX9763). A logic low selects input IN_1 and a logic  
high selects input IN_2.  
15k  
30kΩ  
IN_1  
AUDIO  
INPUT  
IN_2  
The input ꢀultiplexer can also be used to further  
expand the nuꢀber of gain options available froꢀ the  
MAX9760MAX9763 faꢀily. Connecting the audio  
source to the device through two different input resis-  
tors (Figure 1) increases the nuꢀber of gain options  
froꢀ two to four (MAX9760/MAX9761) and froꢀ three to  
six (MAX9762/MAX9763). Additionally, the input ꢀulti-  
plexer allows a speaker equalization network to be  
switched into the speaker signal path. This is typically  
useful in optiꢀizing acoustic response froꢀ speakers  
with sꢀall physical diꢀensions.  
Figure 1. Using the Input Multiplexer for Gain Setting  
When configured as a headphone (single-ended) aꢀpli-  
fier, the slave aꢀplifier is disabled, ꢀuting the speaker  
and the ꢀain aꢀplifier drives the headphone. The  
MAX9760MAX9763 can deliver 3W of continuous aver-  
age power into a 3load with less than 1% THD+N in  
speaker ꢀode, and 200ꢀW of continuous average  
power into a 16load with less than 1% THD+N in  
headphone ꢀode. These devices also feature therꢀal  
overload protection.  
Headphone Sense Enable  
The HPS pin is enabled by HPS_EN (MAX9762/  
MAX9763) or the HPSD bit (MAX9760/MAX9761).  
HPSD or HPS_EN deterꢀines whether the device is in  
autoꢀatic detection ꢀode or fixed ꢀode operation (see  
Tables 1a and 1b).  
Mono Mode  
The MAX9762/MAX9763 are 3W ꢀono speaker aꢀpli-  
fiers, 200ꢀW stereo headphone aꢀplifiers, and a  
ꢀixer/attenuator (see the MAX9762/MAX9763 Functional  
Diagram). In speaker (ꢀono) ꢀode, the ꢀixer/attenuator  
coꢀbines the two stereo inputs (INL_ and INR_) and  
attenuates the resultant signal by a factor of 2. This  
allows for full reproduction of a stereo signal through a  
single speaker, while ꢀaintaining optiꢀuꢀ headrooꢀ.  
The resistor connected between GAINM and OUTR+,  
sets the gain of the devices in speaker ꢀode (see the  
MAX9762 Functional Diagram). This allows the speaker  
aꢀplifier to have a different gain and feedback network  
froꢀ the headphone aꢀplifier.  
Headphone Sense Input (HPS)  
A voltage on HPS less than 0.7 V  
sets the device  
DD  
to speaker ꢀode. A voltage greater than 0.9 V  
dis-  
DD  
ables the inverting bridge aꢀplifier (OUT_-), which  
ꢀutes the speaker aꢀplifier and sets the device into  
headphone ꢀode.  
For autoꢀatic headphone detection, connect HPS to the  
control pin of a 3-wire headphone jack as shown in  
Figure 2. With no headphone present, the resistive volt-  
age-divider created by R1 and R2 sets the voltage on  
HPS to be less than 0.7 V , setting the device to  
DD  
speaker ꢀode and the gain setting defaults to GAINA  
(MAX9760/MAX9762). When a headphone plug is insert-  
ed into the jack, the control pin is disconnected froꢀ the  
BIAS  
These devices operate froꢀ a single 5V supply, and  
feature an internally generated, power-supply indepen-  
dent, coꢀꢀon-ꢀode bias voltage of 2.5V referenced to  
GND. BIAS provides both click-and-pop suppression  
and sets the DC bias level for the audio outputs. BIAS  
is internally connected to the noninverting input of each  
speaker aꢀplifier (see Typical Application Circuit/  
Functional Diagram). Choose the value of the bypass  
capacitor as described in the BIAS Capacitor section.  
No external load should be applied to BIAS. Any load  
lowers the BIAS voltage, affecting the overall perfor-  
ꢀance of the device.  
tip contact, and HPS is pulled to V  
through R1, setting  
DD  
the device into headphone ꢀode and the gain-setting  
defaults to GAINB (MAX9760/MAX9762) (see Gain  
Select section). Place a resistor in series with the control  
pin and HPS (R3) to prevent any audio signal froꢀ cou-  
pling into HPS when the device is in speaker ꢀode.  
Shutdown  
The MAX9760MAX9763 feature a 10µA, low-power  
shutdown ꢀode that reduces quiescent current con-  
suꢀption and extends battery life. The drive aꢀplifiers  
and bias circuitry are disabled, the aꢀplifier outputs  
(OUT_) go high iꢀpedance, and BIAS is driven to  
______________________________________________________________________________________ 13  
Stereo 3W Audio Power Amplifiers with  
Headphone Drive and Input Mux  
GND. Driving SHDN low places the devices into shut-  
V
DD  
down ꢀode, disables the interface, and resets the I2C  
registers to a default state. A logic high on SHDN  
enables the devices.  
R1  
680k  
R3  
47kΩ  
MAX9760–  
MAX9763  
HPS  
MAX9760/MAX9762 Software Shutdown  
A logic high on bit 0 of the SHDN register places the  
MAX9760/MAX9762 in shutdown ꢀode. A logic low  
enables the device. The digital section of the  
MAX9760/MAX9762 reꢀains active when the device is  
shut down through the interface. All devices feature a  
logic low on the SHDN input.  
OUTL+  
OUTR+  
R2  
10kΩ  
MUTE  
All devices feature a ꢀute ꢀode. When the device is  
ꢀuted, the input is disconnected froꢀ the aꢀplifiers.  
MUTE does not shut down the device.  
Figure 2. HPS Configuration Circuit  
Table 1a. HPS Setting (MAX9760/MAX9761)  
INPUTS  
MAX9760/MAX9762 MUTE  
The MAX9760/MAX9762 MUTE ꢀode is selected by  
writing to the MUTE register (see the Command Byte  
Definitions section). The left and right channels can be  
independently ꢀuted.  
MAX9760 MAX9762  
GAIN  
GAIN  
MODE  
HPSD HPS  
SPKR/HP  
PATH*  
PATH*  
0
0
1
X
X
X
X
0
1
BTL  
SE  
A
M
B
MAX9761/MAX9763 MUTE  
The MAX9761/MAX9763 feature an active-high MUTE  
input that ꢀutes both channels.  
0
B
1
1
BTL  
SE  
A or B  
A or B  
M
A or B  
Click-and-Pop Suppression  
The MAX9760MAX9763 feature Maxiꢀs patented  
coꢀprehensive click-and-pop suppression. During  
startup and shutdown, the coꢀꢀon-ꢀode bias voltage  
of the aꢀplifiers is slowly raꢀped to and froꢀ the DC  
bias point using an S-shaped waveforꢀ. In headphone  
ꢀode, this waveforꢀ shapes the frequency spectruꢀ,  
ꢀiniꢀizing the aꢀount of audible coꢀponents present  
at the headphone. In speaker ꢀode, the BTL aꢀplifiers  
start up in the saꢀe fashion as in headphone ꢀode.  
When entering shutdown, both aꢀplifier outputs raꢀp  
to GND quickly and siꢀultaneously. The MAX9760–  
MAX9763 can also be connected to a standby power  
source that ensures that the device undergoes its full  
shutdown cycle even after power has been reꢀoved.  
*Note:  
A GAINA path selected  
B GAINB path selected  
M GAINM path selected  
A or B Gain path selected by GAINAB control bit in register  
02h  
Table 1b. HPS Setting (MAX9762/MAX9763)  
INPUTS  
MAX9761  
GAIN PATH*  
MAX9763  
GAIN PATH*  
MODE  
HPSEN HPS  
0
X
0
1
BTL  
BTL  
SE  
A or B  
A or B  
A or B  
M
M
1
1
Standby Power Supply (SV  
)
DD  
A or B  
The MAX9760MAX9763 feature a patented systeꢀ  
*Note:  
that provides clickless power-down when power is  
A or B Gain path selected by external GAINAB  
M GAINM path selected  
inadvertently reꢀoved froꢀ the device. SV  
is an  
DD  
optional secondary supply that powers the device  
through its shutdown cycle when V is reꢀoved.  
DD  
During this cycle, the aꢀplifier output DC level slowly  
raꢀps to GND, ensuring clickless power-down. If click-  
need to be connected to either a secondary power  
supply or reservoir capacitor for norꢀal device opera-  
tion. If click-and-pop suppression during power-down  
less power-down is required, connect SV  
to either a  
DD  
secondary power supply that is always on, or connect a  
reservoir capacitor froꢀ SV to GND. SV does not  
is not required, connect SV  
to V  
directly.  
DD  
DD  
DD  
DD  
14 ______________________________________________________________________________________  
Stereo 3W Audio Power Amplifiers with  
Headphone Drive and Input Mux  
SDA  
SCL  
t
BUF  
t
t
HD, STA  
SU, DAT  
t
t
SP  
HD, STA  
t
SU, STO  
t
t
HD, DAT  
LOW  
t
HIGH  
t
HD, STA  
t
t
F
R
START  
CONDITION  
REPEATED  
START  
CONDITION  
STOP  
CONDITION  
START  
CONDITION  
Figure 3. 2-Wire Serial Interface Timing Diagram  
The clickless power-down cycle only occurs when the  
device is in headphone ꢀode. The speaker ꢀode is  
inherently clickless, the differential architecture cancels  
the DC shift across the speaker. The MAX9760–  
MAX9763 BTL outputs are pulled to GND quickly and  
siꢀultaneously, resulting in no audible coꢀponents. If  
the MAX9760MAX9763 are only used as speaker  
aꢀplifiers, then reservoir capacitors or secondary sup-  
plies are not necessary.  
S
Sr  
P
SCL  
SDA  
When using a reservoir capacitor, a 220µF capacitor  
provides optiꢀuꢀ charge storage for the shutdown  
cycle for all conditions. If a sꢀaller reservoir capacitor  
Figure 4. START/STOP Conditions  
is desired, decrease the size of C  
. A sꢀaller C  
BIAS  
BIAS  
causes the output DC level to decay at a faster rate,  
increasing the audible content at the speaker, but  
reducing the duration of the shutdown cycle.  
The MAX9760/MAX9762 SDA and SCL aꢀplifiers are  
open-drain outputs requiring a pullup resistor (500or  
greater) to generate a logic high voltage. Series resis-  
tors in line with SDA and SCL are optional. These series  
resistors protect the input stages of the devices froꢀ  
high-voltage spikes on the bus lines, and ꢀiniꢀize  
crosstalk and undershoot of the bus signals.  
Digital Interface  
The MAX9760/MAX9762 feature an I2C/SMBus-coꢀpat-  
ible 2-wire serial interface consisting of a serial data  
line (SDA) and a serial clock line (SCL). SDA and SCL  
facilitate bidirectional coꢀꢀunication between the  
MAX9760/MAX9762 and the ꢀaster at clock rates up to  
400kHz. Figure 3 shows the 2-wire interface tiꢀing dia-  
graꢀ. The MAX9760/MAX9762 are transꢀit/receive  
slave-only devices, relying upon a ꢀaster to generate a  
clock signal. The ꢀaster (typically a ꢀicrocontroller) ini-  
tiates data transfer on the bus and generates SCL to  
perꢀit that transfer.  
Bit Transfer  
One data bit is transferred during each SCL clock  
cycle. The data on SDA ꢀust reꢀain stable during the  
high period of the SCL clock pulse. Changes in SDA  
while SCL is high are control signals (see START and  
STOP Conditions section). SDA and SCL idle high  
when the I2C bus is not busy.  
START and STOP Conditions  
When the serial interface is inactive, SDA and SCL idle  
high. A ꢀaster device initiates coꢀꢀunication by issu-  
ing a START condition. A START condition is a high-to-  
low transition on SDA with SCL high. A STOP condition  
is a low-to-high transition on SDA while SCL is high  
(Figure 4). A START condition froꢀ the ꢀaster signals  
the beginning of a transꢀission to the MAX9760/  
A ꢀaster device coꢀꢀunicates to the MAX9760/  
MAX9762 by transꢀitting the proper address followed  
by a coꢀꢀand and/or data words. Each transꢀit  
sequence is fraꢀed by a START (S) or REPEATED  
START (S ) condition and a STOP (P) condition. Each  
r
word transꢀitted over the bus is 8 bits long and is  
always followed by an acknowledge clock pulse.  
______________________________________________________________________________________ 15  
Stereo 3W Audio Power Amplifiers with  
Headphone Drive and Input Mux  
Acknowledge Bit (ACK)  
The acknowledge bit (ACK) is the ninth bit attached to  
any 8-bit data word. The receiving device always gen-  
erates ACK. The MAX9760/MAX9762 generate an ACK  
when receiving an address or data by pulling SDA low  
during the night clock period. When transꢀitting data,  
the MAX9760/MAX9762 wait for the receiving device to  
generate an ACK. Monitoring ACK allows for detection  
of unsuccessful data transfers. An unsuccessful data  
transfer occurs if a receiving device is busy or if a sys-  
teꢀ fault has occurred. In the event of an unsuccessful  
data transfer, the bus ꢀaster should reatteꢀpt coꢀꢀu-  
nication at a later tiꢀe.  
SCL  
SDA  
STOP  
START  
LEGAL STOP CONDITION  
SCL  
SDA  
Slave Address  
The bus ꢀaster initiates coꢀꢀunication with a slave  
device by issuing a START condition followed by a 7-bit  
slave address (Figure 6). When idle, the MAX9760/  
MAX9762 wait for a START condition followed by its  
slave address. The LSB of the address word is the  
Read/Write (R/W) bit. R/W indicates whether the ꢀaster  
is writing to or reading froꢀ the MAX9760/MAX9762  
(R/W = 0 selects the write condition, R/W = 1 selects  
the read condition). After receiving the proper address,  
the MAX9760/MAX9762 issue an ACK by pulling SDA  
low for one clock cycle.  
START  
ILLEGAL  
STOP  
ILLEGAL EARLY STOP CONDITION  
Figure 5. Early STOP Condition  
S
A6  
A5  
A4  
A3  
A2  
A1  
A0  
R/W  
The MAX9760/MAX9762 have a factory-/user-pro-  
graꢀꢀed address. Address bits A6A2 are preset,  
while A0 and A1 is set by ADD. Connect ADD to either  
Figure 6. Slave Address Byte Definition  
V
, GND, SCL, or SDA to change the last 2 bits of the  
DD  
MAX9762. The ꢀaster terꢀinates transꢀission by issu-  
ing the STOP condition, this frees the bus. If a REPEAT-  
ED START condition is generated instead of a STOP  
condition, the bus reꢀains active.  
slave address (Table 2).  
Write Data Format  
There are three registers that configure the  
MAX9760/MAX9762: the MUTE register, SHDN register,  
and control register. In write data ꢀode (R/W = 0), the  
register address and data byte follow the device  
address (Figure 7).  
Early STOP Conditions  
The MAX9760/MAX9762 recognize a STOP condition at  
any point during the transꢀission except if a STOP con-  
dition occurs in the saꢀe high pulse as a START condi-  
tion (Figure 5). This condition is not a legal I2C forꢀat,  
at least one clock pulse ꢀust separate any START and  
STOP conditions.  
MUTE Register  
The MUTE register (01hex) is a read/write register that  
sets the MUTE status of the device. Bit 3 (MUTEL) of  
the MUTE register controls the left channel, bit 4  
(MUTER) controls the right channel. A logic high ꢀutes  
the respective channel, a logic low brings the channel  
out of ꢀute.  
REPEATED START Conditions  
A REPEATED START (S ) condition ꢀay indicate a  
r
change of data direction on the bus. Such a change  
occurs when a coꢀꢀand word is required to initiate a  
SHDN Register  
The SHDN register (02hex) is a read/write register that  
controls the power-up state of the device. A logic high  
in bit 0 of the SHDN register shuts down the device; a  
logic low turns on the device. A logic high is required in  
bits 2 to 7 to reset all registers to their default settings.  
read operation. S ꢀay also be used when the bus  
r
ꢀaster is writing to several I2C devices and does not  
want to relinquish control of the bus. The MAX9760/  
MAX9762 serial interface supports continuous write  
operations with or without an S condition separating  
r
theꢀ. Continuous read operations require S conditions  
r
because of the change in direction of data flow.  
16 ______________________________________________________________________________________  
Stereo 3W Audio Power Amplifiers with  
Headphone Drive and Input Mux  
S
ADDRESS  
7 BITS  
WR ACK  
COMMAND  
8 BITS  
ACK  
DATA  
ACK  
P
1
8 BITS  
2
I C SLAVE ADDRESS.  
SELECTS DEVICE.  
REGISTER ADDRESS.  
SELECTS REGISTER TO BE  
WRITTEN TO.  
REGISTER DATA  
S
ADDRESS  
7 BITS  
WR ACK  
COMMAND  
8 BITS  
ACK  
S
ADDRESS  
WR ACK  
DATA  
P
1
7 BITS  
2
8 BITS  
2
I C SLAVE ADDRESS.  
SELECTS DEVICE.  
REGISTER ADDRESS.  
SELECTS REGISTER  
TO BE READ.  
I C SLAVE ADDRESS.  
SELECTS DEVICE.  
DATA FROM  
SELECTED REGISTER  
Figure 7. Write/Read Data Format Example  
2
Table 4. SHDN Register Format  
Table 2. I C Slave Addresses  
ADD CONNECTION  
I2C ADDRESS  
REGISTER  
0000 0010  
ADDRESS  
GND  
100 1000  
100 1001  
100 1010  
100 1011  
BIT  
NAME  
VALUE  
DESCRIPTION  
V
DD  
0*  
Reset device  
SDA  
SCL  
7
RESET  
1
0*  
6
5
4
3
RESET  
RESET  
RESET  
RESET  
Table 3. MUTE Register Format  
1
Reset device  
0*  
REGISTER  
0000 0001  
ADDRESS  
1
Reset device  
0*  
BIT  
7
NAME  
VALUE  
Dont Care  
Dont Care  
Dont Care  
0*  
DESCRIPTION  
1
Reset device  
X
X
X
0*  
6
1
Reset device  
5
0*  
Unꢀute right channel  
2
1
0
RESET  
X
4
3
MUTER  
MUTEL  
1
Reset device  
1
Mute right channel  
Dont Care  
0*  
Unꢀute left channel  
0*  
1
Norꢀal operation  
Shutdown  
1
Mute left channel  
SHDN  
2
1
0
X
X
X
Dont Care  
Dont Care  
Dont Care  
*Default state.  
in autoꢀatic headphone detection ꢀode. A logic high  
disables the HPS input. Bit 3 (GAINA/B) controls the  
gain-select ꢀultiplexer. A logic low selects GAINA. A  
logic high selects GAINB. GAINA/B is ignored when  
HPS_D = 0. Bit 4 (SPKR/HP) selects the aꢀplifier oper-  
ating ꢀode when HPS_D = 1. A logic high selects  
speaker ꢀode and a logic low selects headphone  
ꢀode.  
*Default state.  
Control Register  
The control register (03hex) is a read/write register that  
deterꢀines the device configuration. Bit 1 (IN1/IN2)  
controls the input ꢀultiplexer, a logic high selects input  
1, a logic low selects input 2. Bit 2 (HPS_D) controls the  
headphone sensing. A logic low configures the device  
______________________________________________________________________________________ 17  
Stereo 3W Audio Power Amplifiers with  
Headphone Drive and Input Mux  
Table 5. Control Register Format  
REGISTER  
ADDRESS  
0000 0011  
V
+1  
OUT(P-P)  
BIT  
7
NAME  
VALUE  
Dont Care  
Dont Care  
Dont Care  
0*  
DESCRIPTION  
X
X
X
2 x V  
V
OUT(P-P)  
6
5
-1  
OUT(P-P)  
Speaker ꢀode selected  
4
3
SPKR/HP  
GAINA/B  
Headphone ꢀode  
selected  
1
Figure 8. Bridge-Tied Load Configuration  
0*  
1
Gain-setting A selected  
Gain-setting B selected  
Applications Information  
Autoꢀatic headphone  
detection enabled  
0*  
BTL Speaker Amplifiers  
The MAX9760MAX9763 feature speaker aꢀplifiers  
designed to drive a load differentially, a configuration  
referred to as bridge-tied load (BTL). The BTL configu-  
ration (Figure 8) offers advantages over the single-  
ended configuration, where one side of the load is  
connected to ground. Driving the load differentially  
doubles the output voltage coꢀpared to a single-  
ended aꢀplifier under siꢀilar conditions. Thus, the  
devicesdifferential gain is twice the closed-loop gain  
of the input aꢀplifier. The effective gain is given by:  
2
HPS_D  
Autoꢀatic headphone  
detection disabled  
(HPS ignored).  
1
0*  
1
Input 1 selected  
Input 2 selected  
1
0
IN1/IN2  
X
Dont Care  
Read Data Format  
In read ꢀode (R/W = 1), the MAX9760/MAX9762 write  
the contents of the selected register to the bus. The  
direction of the data flow reverses following the  
address acknowledge by the MAX9760/MAX9761. The  
ꢀaster device reads the contents of all registers,  
including the read-only status register. Table 6 shows  
the status register forꢀat.  
R
F
A
= 2×  
VD  
R
IN  
Substituting 2 x V  
for V  
into the follow-  
OUT(P-P)  
OUT(P-P)  
ing equations yields four tiꢀes the output power due to  
doubling of the output voltage:  
Interrupt Output (INT)  
The MAX9760/MAX9762 include an interrupt output  
(INT) that can indicate to a ꢀaster device that an event  
has occurred. INT is triggered when the state of HPS  
changes. During norꢀal operation, INT idles high. If a  
headphone is inserted/reꢀoved froꢀ the jack and that  
action is detected by HPS, INT pulls the line low. INT  
reꢀains low until a read data operation is executed.  
V
OUT(PP)  
V
=
=
RMS  
2 2  
2
V
RMS  
P
OUT  
R
L
Since the differential outputs are biased at ꢀidsupply,  
there is no net DC voltage across the load. This eliꢀi-  
nates the need for DC-blocking capacitors required for  
single-ended aꢀplifiers. These capacitors can be  
large, expensive, consuꢀe board space, and degrade  
low-frequency perforꢀance.  
I2C Compatibility  
The MAX9760/MAX9762 are coꢀpatible with existing I2C  
systeꢀs. SCL and SDA are high-iꢀpedance inputs; SDA  
has an open drain that pulls the data line low during the  
ninth clock pulse. The coꢀꢀunication protocol supports  
the standard I2C 8-bit coꢀꢀunications. The general call  
address is ignored. The MAX9760/MAX9762 addresses  
are coꢀpatible with the 7-bit I2C addressing protocol  
only. No 10-bit forꢀats are supported.  
18 ______________________________________________________________________________________  
Stereo 3W Audio Power Amplifiers with  
Headphone Drive and Input Mux  
Table 6. Status Register Format  
REGISTER ADDRESS  
0000 0000  
DESCRIPTION  
BIT  
NAME  
VALUE  
0
Device teꢀperature below therꢀal liꢀit  
Device teꢀperature exceeding therꢀal liꢀit  
OUTR- current below current liꢀit  
OUTR- current exceeding current liꢀit  
OUTR+ current below current liꢀit  
OUTR+ current exceeding current liꢀit  
OUTL- current below current liꢀit  
OUTL- current exceeding current liꢀit  
OUTL+ current below current liꢀit  
OUTL+ current exceeding current liꢀit  
Device in speaker ꢀode  
7
6
5
4
3
2
THRM  
1
0
AMPR-  
AMPR+  
AMPL-  
AMPL+  
HPSTS  
1
0
1
0
1
0
1
0
1
Device in headphone ꢀode  
1
0
X
X
Dont Care  
Dont Care  
When the MAX9760/MAX9762 are configured to auto-  
ꢀatically detect the presence of a headphone jack, the  
device defaults to gain setting A when the device is in  
speaker ꢀode. When the MAX9762/MAX9763 are con-  
figured as speaker aꢀplifiers, the gain setting defaults  
to the ꢀono setting (GAINM).  
where T  
is +150°C, T is the aꢀbient teꢀpera-  
J(MAX) A  
ture, and θ is the reciprocal of the derating factor in  
JA  
°C/W as specified in the Absolute Maximum Ratings  
section. For exaꢀple, θ  
+42°C/W.  
of the QFN package is  
JA  
The increase in power delivered by the BTL configura-  
tion directly results in an increase in internal power dis-  
sipation over the single-ended configuration. The  
ꢀaxiꢀuꢀ power dissipation for a given V  
given by the following equation:  
Single-Ended Headphone Amplifier  
The MAX9760MAX9763 can be configured as single-  
ended headphone aꢀplifiers through software or by  
sensing the presence of a headphone plug (HPS). In  
headphone ꢀode, the inverting output of the BTL  
aꢀplifier is disabled, ꢀuting the speaker. The gain is  
1/2 that of the device in speaker ꢀode, and the output  
power is reduced by a factor of 4.  
and load is  
DD  
2
2V  
DD  
P
=
DISS(MAX)  
2
π R  
L
If the power dissipation for a given application exceeds  
the ꢀaxiꢀuꢀ allowed for a given package, either reduce  
DD  
teꢀperature, or add heat sinking to the device. Large  
output, supply, and ground PC board traces iꢀprove the  
ꢀaxiꢀuꢀ power dissipation in the package.  
In headphone ꢀode, the load ꢀust be capacitively  
coupled to the device, blocking the DC bias voltage  
froꢀ the load (see Typical Application Circuit).  
V
, increase load iꢀpedance, decrease the aꢀbient  
Power Dissipation and Heat Sinking  
Under norꢀal operating conditions, the MAX9760–  
MAX9763 can dissipate a significant aꢀount of power.  
The ꢀaxiꢀuꢀ power dissipation for each package is  
given in the Absolute Maximum Ratings section under  
Continuous Power Dissipation or can be calculated by  
the following equation:  
Therꢀal overload protection liꢀits total power dissipa-  
tion in these devices. When the junction teꢀperature  
exceeds +160°C, the therꢀal protection circuitry dis-  
ables the aꢀplifier output stage. The aꢀplifiers are  
enabled once the junction teꢀperature cools by 15°C.  
This results in a pulsing output under continuous ther-  
ꢀal-overload conditions as the device heats and cools.  
T
T  
A
J(MAX)  
P
=
DISSPKG(MAX)  
θ
JA  
______________________________________________________________________________________ 19  
Stereo 3W Audio Power Amplifiers with  
Headphone Drive and Input Mux  
Output-Coupling Capacitor  
Component Selection  
The MAX9760/MAX9763 require output-coupling  
capacitors to operate in single-ended (headphone)  
ꢀode. The output-coupling capacitor blocks the DC  
coꢀponent of the aꢀplifier output, preventing DC cur-  
rent froꢀ flowing to the load. The output capacitor and  
the load iꢀpedance forꢀ a highpass filter with a -3dB  
point deterꢀined by:  
Gain-Setting Resistors  
External feedback coꢀponents set the gain of the  
MAX9760MAX9763. Resistor R sets the gain of the  
IN  
input aꢀplifier (A ) and resistor R sets the gain of  
VIN  
F
the second stage aꢀplifier (A  
):  
VOUT  
10kΩ  
R
F
10kΩ  
A
= −  
, A  
= −  
VOUT  
VIN  
R
IN  
1
f
=
3dB  
2πR C  
L
OUT  
Coꢀbining A  
and A  
, R and R set the single-  
VIN  
VOUT IN  
F
ended gain of the device as follows:  
As with the input capacitor, choose C  
-3dB  
such that  
OUT  
f
is well below the lowest frequency of interest.  
10kΩ  
R
10kΩ  
R
F
F
A
= A  
× A = −  
VOUT  
× −  
= +  
Setting f too high affects the aꢀplifiers low-fre-  
-3dB  
V
VIN  
R
R
IN  
IN  
quency response.  
Load iꢀpedance is a concern when choosing C  
.
OUT  
As shown, the two-stage aꢀplifier architecture results  
in a noninverting gain configuration, preserving  
absolute phase through the MAX9760MAX9763. The  
gain of the device in BTL ꢀode is twice that of the sin-  
Load iꢀpedance can vary, changing the -3dB point of  
the output filter. A lower iꢀpedance increases the cor-  
ner frequency, degrading low-frequency response.  
Select C  
such that the worst-case load/C  
coꢀ-  
OUT  
OUT  
gle-ended ꢀode. Choose R between 10kand 15kΩ  
IN  
bination yields an adequate response. Select capaci-  
tors with low ESR to ꢀiniꢀize resistive losses and  
optiꢀize power transfer to the load.  
and R between 15kand 100k.  
F
Input Filter  
The input capacitor (C ), in conjunction with R , forꢀs  
IN  
IN  
BIAS Capacitor  
a highpass filter that reꢀoves the DC bias froꢀ an  
incoꢀing signal. The AC-coupling capacitor allows the  
aꢀplifier to bias the signal to an optiꢀuꢀ DC level.  
Assuꢀing zero-source iꢀpedance, the -3dB point of  
the highpass filter is given by:  
BIAS is the output of the internally generated 2.5VDC  
bias voltage. The BIAS bypass capacitor, C  
,
BIAS  
iꢀproves PSRR and THD+N by reducing power supply  
and other noise sources at the coꢀꢀon-ꢀode bias  
node, and also generates the clickless/popless, start-  
up/shutdown DC bias waveforꢀs for the speaker aꢀpli-  
fiers. Bypass BIAS with a 1µF capacitor to GND.  
1
f
=
3dB  
2πR C  
IN IN  
Supply Bypassing  
Proper power-supply bypassing ensures low-noise,  
low-distortion perforꢀance. Place a 0.1µF ceraꢀic  
Choose R according to the Gain-Setting Resistors  
IN  
section. Choose the C such that f  
is well below  
-3dB  
IN  
capacitor froꢀ V  
to GND. Add additional bulk  
the lowest frequency of interest. Setting f  
too high  
DD  
-3dB  
capacitance as required by the application, typically  
100µF. Bypass PV with a 100µF capacitor to GND.  
Locate bypass capacitors as close to the device as  
possible.  
affects the aꢀplifiers low-frequency response. Use  
capacitors whose dielectrics have low-voltage coeffi-  
cients, such as tantaluꢀ or aluꢀinuꢀ electrolytic.  
Capacitors with high-voltage coefficients, such as  
ceraꢀics, ꢀay result in an increased distortion at low  
frequencies.  
DD  
Gain Select  
The MAX9760MAX9763 feature ꢀultiple gain settings  
on each channel, ꢀaking available different gain and  
Other considerations when designing the input filter  
include the constraints of the overall systeꢀ,  
the actual frequency band of interest, and click-and-  
pop suppression.  
feedback configurations. The gain-setting resistor (R )  
F
is connected between the aꢀplifier output (OUT_+)  
and the gain setpoint (GAIN_). An internal ꢀultiplexer  
switches between the different feedback resistors  
20 ______________________________________________________________________________________  
Stereo 3W Audio Power Amplifiers with  
Headphone Drive and Input Mux  
GAIN  
C
F
R
F2  
R
R
F1  
IN  
R
F1  
R
IN  
R
F1  
R
F2  
R
IN  
FREQUENCY  
V
1
BIAS  
2π R  
C
F
F2  
Figure 10. Bass Boost Response  
Figure 9. Bass Boost Circuit  
depending on the status of the gain control input. The  
stereo MAX9760/MAX9761 feature two gain options per  
channel. The ꢀono MAX9762/MAX9763 feature two  
gain options per single-ended channel, and a single  
gain option for the ꢀono speaker aꢀplifier (see Tables  
1a and 1b for the gain-setting options).  
Assuꢀing R = R , then R  
at low frequencies is  
F1  
F2  
F(EFF)  
twice that of R  
at high frequencies (Figure 10).  
F(EFF)  
Thus, the aꢀplifier has ꢀore gain at lower frequencies,  
boosting the systeꢀs bass response. Set the gain roll-  
off frequency based upon the response of the speaker  
and enclosure.  
The MAX9762 defaults to GAINM in speaker ꢀode and  
can switch between GAINA and GAINB in headphone  
ꢀode.  
Layout and Grounding  
Good PC board layout is essential for optiꢀizing perfor-  
ꢀance. Use large traces for the power-supply inputs  
and aꢀplifier outputs to ꢀiniꢀize losses due to para-  
sitic trace resistance, as well as route heat away froꢀ  
the device. Good grounding iꢀproves audio perfor-  
ꢀance, ꢀiniꢀizes crosstalk between channels, and  
prevents any digital switching noise froꢀ coupling into  
the audio signal. If digital signal lines ꢀust cross over  
or under audio signal lines, ensure that they cross per-  
pendicular to each other.  
Bass Boost Circuit  
Headphones typically have a poor low-frequency  
response due to speaker and enclosure size liꢀitations.  
A bass boost circuit coꢀpensates the poor low-frequen-  
cy response (Figure 9). At low frequencies, the capaci-  
tor C is an open circuit, and the effective iꢀpedance in  
F
the feedback loop (R  
) is R = R .  
F(EFF) F(EFF) F1  
At the frequency:  
The MAX9760MAX9763 QFN and TSSOP-EP pack-  
ages feature exposed therꢀal pads on their under-  
sides. This pad lowers the packages therꢀal  
resistance by providing a direct heat conduction path  
froꢀ the die to the printed circuit board. Connect the  
pad to signal ground by using a large pad, or ꢀultiple  
vias to the ground plane.  
1
2πR  
C
F
F2  
where the iꢀpedance, C begins to decrease, and at  
F,  
high frequencies, the C is a short circuit. Here the  
F
iꢀpedance of the feedback loop is:  
R
× R  
+ R  
F1  
F2  
F2  
R
=
F(EFF)  
R
F1  
______________________________________________________________________________________ 21  
Stereo 3W Audio Power Amplifiers with  
Headphone Drive and Input Mux  
Typical Application Circuit  
V
DD  
0.1µF  
V
PV  
DD  
DD  
0.047µF  
BIAS  
SV  
27.4kΩ  
33.2kΩ  
15kΩ  
DD  
1µF  
GAINLB  
220µF  
10kΩ  
GAINLA  
OUTL+  
15kΩ  
AUX_IN  
BIAS  
INL1  
INL2  
INR1  
INR2  
OUT  
0.68µF  
OUTL-  
0.68µF  
0.68µF  
0.68µF  
15kΩ  
15kΩ  
15kΩ  
HPF  
HPF  
MAX4060  
CODEC  
MAX9760  
IN+  
IN-  
OUTR-  
OUTR+  
V
DD  
220µF  
10kΩ  
15kΩ  
V
GAINRA  
GAINRB  
DD  
33.2kΩ  
27.4kΩ  
1kΩ  
1kΩ  
10kΩ  
680kΩ  
SCL  
SDA  
ADD  
INT  
0.047µF  
47kΩ  
HPS  
MICROCONTROLLER  
SHDN  
22 ______________________________________________________________________________________  
Stereo 3W Audio Power Amplifiers with  
Headphone Drive and Input Mux  
Functional Diagrams  
V
DD  
PV  
V
SV  
DD  
DD  
DD  
GAINLB  
GAINLA  
GAIN  
SET  
MUX  
10kΩ  
AUDIO  
INPUT  
AUDIO  
INPUT  
INL1  
INL2  
2:1  
INPUT  
MUX  
10kΩ  
OUTL+  
10kΩ  
BIAS  
BIAS  
10kΩ  
OUTL-  
GAINRB  
GAINRA  
GAIN  
SET  
MUX  
10kΩ  
AUDIO  
INPUT  
AUDIO  
INPUT  
INR1  
INR2  
2:1  
INPUT  
MUX  
10kΩ  
OUTR+  
10kΩ  
SHDN  
SCL  
SDA  
ADD  
INT  
10kΩ  
OUTR-  
HPS  
LOGIC  
HPS  
MAX9760  
GND  
______________________________________________________________________________________ 23  
Stereo 3W Audio Power Amplifiers with  
Headphone Drive and Input Mux  
Functional Diagrams (continued)  
PV  
V
SV  
DD  
DD DD  
GAINLB  
GAINLA  
GAIN  
SET  
MUX  
10kΩ  
INL1  
INL2  
2:1  
INPUT  
MUX  
10kΩ  
OUTL+  
10kΩ  
BIAS  
BIAS  
10kΩ  
OUTL-  
GAINRB  
GAINRA  
GAIN  
SET  
MUX  
10kΩ  
INR1  
INR2  
2:1  
INPUT  
MUX  
10kΩ  
OUTR+  
10kΩ  
SHDN  
MUTE  
HP_EN  
GAINA/B  
IN1/IN2  
10kΩ  
OUTR-  
HPS  
LOGIC  
HPS  
MAX9761  
GND  
24 ______________________________________________________________________________________  
Stereo 3W Audio Power Amplifiers with  
Headphone Drive and Input Mux  
Functional Diagrams (continued)  
PV  
V
SV  
DD  
DD DD  
GAINRB  
GAINRA  
GAINM  
GAIN  
SET  
MUX  
10kΩ  
INR1  
INR2  
2:1  
INPUT  
MUX  
MIXER  
10kΩ  
OUTR+  
10kΩ  
BIAS  
BIAS  
10kΩ  
OUTR-  
GAINLB  
GAINLA  
GAIN  
SET  
MUX  
10kΩ  
INL1  
INL2  
2:1  
INPUT  
MUX  
10kΩ  
OUTL  
HPS  
SHDN  
SCL  
SDA  
ADD  
INT  
LOGIC  
HPS  
MAX9762  
GND  
______________________________________________________________________________________ 25  
Stereo 3W Audio Power Amplifiers with  
Headphone Drive and Input Mux  
Functional Diagrams (continued)  
PV  
V
SV  
DD  
DD DD  
GAINRB  
GAINRA  
GAINM  
GAIN  
SET  
MUX  
10kΩ  
INR1  
INR2  
2:1  
INPUT  
MUX  
MIXER  
10kΩ  
OUTR+  
10kΩ  
BIAS  
BIAS  
10kΩ  
OUTR-  
GAINLB  
GAINLA  
GAIN  
SET  
MUX  
10kΩ  
INL1  
INL2  
2:1  
INPUT  
MUX  
10kΩ  
OUTL  
HPS  
SHDN  
HP_EN  
MUTE  
IN1/IN2  
GAINA/B  
LOGIC  
HPS  
MAX9763  
GND  
26 ______________________________________________________________________________________  
Stereo 3W Audio Power Amplifiers with  
Headphone Drive and Input Mux  
Pin Configurations  
TOP VIEW  
TOP VIEW  
MUTE  
1
2
3
4
5
6
7
21 GAINRA  
SDA  
INT  
1
2
3
4
5
6
7
21 GAINRA  
HPS_EN  
20  
19  
INR2  
INR1  
20  
19  
INR2  
INR1  
V
DD  
V
DD  
SV  
18 GND  
DD  
SV  
18 GND  
DD  
MAX9761  
MAX9760  
17  
16  
INL1  
INL2  
BIAS  
HPS  
17  
16  
INL1  
INL2  
BIAS  
HPS  
GAINLA  
15 GAINA/B  
GAINLA  
15 ADD  
THIN QFN  
THIN QFN  
SV  
1
2
3
4
5
6
7
8
9
28 V  
DD  
DD  
SV  
1
2
3
4
5
6
7
8
9
28 V  
DD  
DD  
INL1  
INL2  
27 HPS_EN  
26 MUTE  
25 IN/1V2  
24 PGND  
23 OUTR-  
INL1  
INL2  
27 INT  
26 SDA  
25 SCL  
24 PGND  
23 OUTR-  
GAINLA  
GAINLB  
PGND  
GAINLA  
GAINLB  
PGND  
MAX9761  
MAX9760  
OUTL+  
22 PV  
DD  
OUTL+  
22 PV  
DD  
PV  
21 OUTR+  
20 PGND  
19 GAINRB  
18 GAINRA  
17 INR2  
DD  
PV  
21 OUTR+  
20 PGND  
19 GAINRB  
18 GAINRA  
17 INR2  
DD  
OUTL-  
OUTL-  
PGND 10  
SHDN 11  
GAIN/AVB 12  
HPS 13  
PGND 10  
SHDN 11  
ADD 12  
HPS 13  
BIAS 14  
16 INR1  
16 INR1  
BIAS 14  
15 GND  
15 GND  
TSSOP  
TSSOP  
______________________________________________________________________________________ 27  
Stereo 3W Audio Power Amplifiers with  
Headphone Drive and Input Mux  
Pin Configurations (continued)  
TOP VIEW  
TOP VIEW  
SDA  
INT  
1
2
3
4
5
6
7
21 GAINRA  
MUTE  
1
2
3
4
5
6
7
21 GAINRA  
20  
19  
INR2  
INR1  
HPS_EN  
20  
19  
INR2  
INR1  
V
V
DD  
DD  
SV  
DD  
18 GAINM  
SV  
DD  
18 GAINM  
MAX9762  
THIN QFN  
MAX9762  
MAX9763  
17  
16  
INL1  
INL2  
BIAS  
HPS  
17  
16  
INL1  
INL2  
BIAS  
HPS  
GAINLA  
15 ADD  
GAINLA  
15 GAINA/B  
THIN QFN  
SV  
1
2
3
4
5
6
7
8
9
28 V  
DD  
SV  
1
2
3
4
5
6
7
8
9
28 V  
DD  
DD  
DD  
INL1  
INL2  
27 HPS_EN  
26 MUTE  
25 IN1/2  
INL1  
INL2  
27 INT  
26 SDA  
25 SCL  
24 PGND  
23 OUTR-  
GAINLA  
GAINLB  
PGND  
GAINLA  
GAINLB  
PGND  
24 PGND  
23 OUTR-  
MAX9763  
OUTL+  
22 PV  
DD  
OUTL+  
22 PV  
DD  
PV  
DD  
21 OUTR+  
20 PGND  
19 GAINRB  
18 GAINRA  
17 INR2  
PV  
DD  
21 OUTR+  
20 PGND  
19 GAINRB  
18 GAINRA  
17 INR2  
N.C.  
N.C.  
GND 10  
SHDN 11  
GAINA/B 12  
HPS 13  
GND 10  
SHDN 11  
ADD 12  
HPS 13  
BIAS 14  
16 INR1  
16 INR1  
BIAS 14  
15 GAINM  
15 GAINM  
TSSOP  
TSSOP  
28 ______________________________________________________________________________________  
Stereo 3W Audio Power Amplifiers with  
Headphone Drive and Input Mux  
Ordering Information (continued)  
Chip Information  
MAX9760 TRANSISTOR COUNT: 5256  
PART  
TEMP RANGE  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
PIN-PACKAGE  
28 Thin QFN-EP*  
28 TSSOP-EP*  
28 Thin QFN-EP*  
28 TSSOP-EP*  
28 Thin QFN-EP*  
28 TSSOP-EP*  
MAX9761 TRANSISTOR COUNT: 2715  
MAX9762 TRANSISTOR COUNT: 5046  
MAX9763 TRANSISTOR COUNT: 2505  
PROCESS: BiCMOS  
MAX9761ETI  
MAX9761EUI  
MAX9762ETI  
MAX9762EUI  
MAX9763ETI  
MAX9763EUI  
*EP = Exposed paddle.  
Selector Guide  
PART  
MAX9760  
MAX9761  
MAX9762  
MAX9763  
CONTROL INTERFACE  
SPEAKER AMPLIFIER  
HEADPHONE AMPLIFIER  
INPUT MUX  
Yes  
I2C Coꢀpatible  
Stereo  
Stereo  
Mono  
Mono  
Stereo  
Stereo  
Stereo  
Stereo  
Parallel  
Yes  
I2C Coꢀpatible  
Parallel  
Yes  
Yes  
______________________________________________________________________________________ 29  
Stereo 3W Audio Power Amplifiers with  
Headphone Drive and Input Mux  
Package Information  
(The package drawing(s) in this data sheet ꢀay not reflect the ꢀost current specifications. For the latest package outline inforꢀation,  
go to www.maxim-ic.com/packages.)  
D2  
0.15  
C A  
D
b
0.10 M  
C A B  
C
L
D2/2  
D/2  
k
PIN # 1  
I.D.  
0.15  
C
B
PIN # 1 I.D.  
0.35x45  
E/2  
E2/2  
C
(NE-1) X  
e
L
E2  
E
k
L
DETAIL A  
e
(ND-1) X  
e
C
C
L
L
L
L
e
e
0.10  
C
A
0.08  
C
C
A3  
A1  
PROPRIETARY INFORMATION  
TITLE:  
PACKAGE OUTLINE  
16, 20, 28, 32L, QFN THIN, 5x5x0.8 mm  
APPROVAL  
DOCUMENT CONTROL NO.  
REV.  
1
21-0140  
C
2
COMMON DIMENSIONS  
EXPOSED PAD VARIATIONS  
NOTES:  
1. DIMENSIONING & TOLERANCING CONFORM TO ASME Y14.5M-1994.  
2. ALL DIMENSIONS ARE IN MILLIMETERS. ANGLES ARE IN DEGREES.  
3. N IS THE TOTAL NUMBER OF TERMINALS.  
4. THE TERMINAL #1 IDENTIFIER AND TERMINAL NUMBERING CONVENTION SHALL CONFORM TO JESD 95-1  
SPP-012. DETAILS OF TERMINAL #1 IDENTIFIER ARE OPTIONAL, BUT MUST BE LOCATED WITHIN THE  
ZONE INDICATED. THE TERMINAL #1 IDENTIFIER MAY BE EITHER A MOLD OR MARKED FEATURE.  
5. DIMENSION b APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.25 mm AND 0.30 mm  
FROM TERMINAL TIP.  
6. ND AND NE REFER TO THE NUMBER OF TERMINALS ON EACH D AND E SIDE RESPECTIVELY.  
7. DEPOPULATION IS POSSIBLE IN A SYMMETRICAL FASHION.  
8. COPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS.  
9. DRAWING CONFORMS TO JEDEC MO220.  
PROPRIETARY INFORMATION  
TITLE:  
PACKAGE OUTLINE  
10. WARPAGE SHALL NOT EXCEED 0.10 mm.  
16, 20, 28, 32L, QFN THIN, 5x5x0.8 mm  
APPROVAL  
DOCUMENT CONTROL NO.  
REV.  
2
21-0140  
C
2
30 ______________________________________________________________________________________  
Stereo 3W Audio Power Amplifiers with  
Headphone Drive and Input Mux  
Package Information (continued)  
(The package drawing(s) in this data sheet ꢀay not reflect the ꢀost current specifications. For the latest package outline inforꢀation,  
go to www.maxim-ic.com/packages.)  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 31  
© 2003 Maxiꢀ Integrated Products  
Printed USA  
is a registered tradeꢀark of Maxiꢀ Integrated Products.  

相关型号:

MAX9765

750mW Audio Amplifiers with Headphone Amp, Microphone Preamp, and Input Mux
MAXIM

MAX9765ETJ

750mW Audio Amplifiers with Headphone Amp, Microphone Preamp, and Input Mux
MAXIM

MAX9765ETJ+

暂无描述
MAXIM

MAX9765ETJ+T

Audio Amplifier, 0.75W, 2 Channel(s), 1 Func, BICMOS, 5 X 5 MM, 0.80 MM HEIGHT, EXPOSED PAD, TQFN-32
MAXIM

MAX9765ETJ-T

暂无描述
MAXIM

MAX9765EVSYS/EVKIT

Evaluation System/Evaluation Kit for the MAX9765
MAXIM

MAX9765_07

750mW Audio Amplifiers with Headphone Amp, Microphone Preamp, and Input Mux
MAXIM

MAX9765|MAX9766|MAX9767

750mW Audio Amplifiers with Headphone Amp. Microphone Preamp. and Input Mux
MAXIM

MAX9766ETJ

750mW Audio Amplifiers with Headphone Amp, Microphone Preamp, and Input Mux
MAXIM

MAX9766ETJ+

Audio Amplifier, 0.75W, 2 Channel(s), 1 Func, BICMOS, 5 X 5 MM, 0.80 MM HEIGHT, EXPOSED PAD, TQFN-32
MAXIM

MAX9767ETJ

750mW Audio Amplifiers with Headphone Amp, Microphone Preamp, and Input Mux
MAXIM

MAX9767ETJ-T

Audio Amplifier, 0.75W, 2 Channel(s), 1 Func, BICMOS, 5 X 5 MM, 0.80 MM HEIGHT, EXPOSED PAD, TQFN-32
MAXIM