MAX9775_V01 [MAXIM]

2 x 1.5W, Stereo Class D Audio Subsystem with DirectDrive Headphone Amplifier;
MAX9775_V01
型号: MAX9775_V01
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

2 x 1.5W, Stereo Class D Audio Subsystem with DirectDrive Headphone Amplifier

文件: 总38页 (文件大小:658K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-0746; Rev 4; 8/08  
2 x 1.5W, Stereo Class D Audio Subsystem  
with DirectDrive Headphone Amplifier  
5/MAX976  
General Description  
Features  
Unique Spread-Spectrum Modulation and Active  
The MAX9775/MAX9776 combine a high-efficiency  
Class D, stereo/mono audio power amplifier with a  
mono DirectDrive® receiver amplifier and a stereo  
DirectDrive headphone amplifier.  
Emissions Limiting Significantly Reduces EMI  
3D Stereo Enhancement (MAX9775 Only)  
Up to 3 Stereo Inputs  
Maxim’s 3rd-generation, ultra-low-EMI, Class D audio  
power amplifiers provide Class AB performance with  
Class D efficiency. The MAX9775/MAX9776 deliver  
1.5W per channel into a 4Ω load from a 5V supply and  
offer efficiencies up to 79%. Active emissions limiting  
circuitry and spread-spectrum modulation greatly  
reduce EMI, eliminating the need for output filtering  
found in traditional Class D devices.  
1.5W Stereo Speaker Output (4Ω, V  
= 5V)  
DD  
50mW Mono Receiver/Stereo Headphone Outputs  
(32Ω, V = 3.3V)  
DD  
High PSRR (68dB at 217Hz)  
79% Efficiency (V  
= 3.3V, R = 8Ω, P  
=
DD  
L
OUT  
470mW)  
I2C Control—Input Configuration, Volume Control,  
Output Mode  
The MAX9775/MAX9776 utilize a fully differential archi-  
tecture, a full-bridged output, and comprehensive click-  
and-pop suppression. A 3D stereo enhancement  
function allows the MAX9775 to widen the stereo sound  
field immersing the listener in a cleaner, richer sound  
experience than typically found in portable applications.  
The devices utilize a flexible, user-defined mixer archi-  
tecture that includes an input mixer, volume control, and  
output mixer. All control is done through I2C.  
Click-and-Pop Suppression  
Low Total Harmonic Distortion (0.03% at 1kHz)  
Current-Limit and Thermal Protection  
Available in Space-Saving, 36-Bump WLP (3mm x  
3mm) and 32-Pin TQFN (5mm x 5mm) Packages  
Ordering Information  
CLASS D  
AMPLIFIER  
PART  
PIN-PACKAGE  
The mono receiver amplifier and stereo headphone  
amplifier use Maxim’s DirectDrive architecture that pro-  
duces a ground-referenced output from a single supply,  
eliminating the need for large DC-blocking capacitors,  
saving cost, space, and component height.  
MAX9775EBX+T  
MAX9776ETJ+  
MAX9776EBX+T  
36 WLP*  
Stereo  
Mono  
Mono  
32 TQFN-EP**  
36 WLP*  
The MAX9775 is available in a 36-bump WLP (3mm x  
3mm) package. The MAX9776 is available in a 32-pin  
TQFN (5mm x 5mm) or a 36-bump WLP (3mm x 3mm)  
package. Both devices are specified over the extended  
-40°C to +85°C temperature range.  
Applications  
Cell Phones  
Note: All devices are specified over the -40°C to +85°C oper-  
ating temperature range.  
+Denotes a lead-free/RoHS-compliant package.  
*Four center bumps depopulated.  
**EP = Exposed pad.  
Pin Configurations appear at end of data sheet.  
DirectDrive is a registered trademark of Maxim Integrated  
Products, Inc.  
Portable Multimedia Players  
Handheld Gaming Consoles  
Simplified Block Diagrams  
SINGLE SUPPLY 2.7V TO 5.5V  
SINGLE SUPPLY 2.7V TO 5.5V  
3D  
SOUND  
CONTROL  
GAIN  
CONTROL  
GAIN  
CONTROL  
MIXER/  
MUX  
MIXER/  
MUX  
2
2
I C  
I C  
INTERFACE  
INTERFACE  
MAX9775  
MAX9776  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,  
or visit Maxim’s website at www.maxim-ic.com.  
2 x 1.5W, Stereo Class D Audio Subsystem  
with DirectDrive Headphone Amplifier  
ABSOLUTE MAXIMUM RATINGS  
DD  
V
to GND..............................................................................6V  
Duration of Short Circuit Between  
PV  
CPV  
to PGND .........................................................................6V  
OUT_+ and OUT_- ..................................................Continuous  
Duration of HP_, OUT_ Short Circuit to  
DD  
to CPGND....................................................................6V  
DD  
CPV to CPGND.....................................................-6V to +0.3V  
GND or PV ..........................................................Continuous  
Continuous Power Dissipation (T = +70°C)  
A
SS  
DD  
V
SS  
to CPGND..........................................................-6V to +0.3V  
C1N.......................................(CPV - 0.3V) to (CPGND + 0.3V)  
36-Bump (3mm x 3mm) UCSP Multilayer Board  
(derate 17.0mW/°C above +70°C)...........................1360.5mW  
32-Pin (5mm x 5mm) TQFN Single-Layer Board  
SS  
C1P.......................................(CPGND - 0.3V) to (CPV  
+ 0.3V)  
+ 0.3V)  
DD  
HPL, HPR to GND...................(CPV - 0.3V) to (CPV  
SS  
DD  
GND to PGND and CPGND................................................±0.3V  
to PV and CPV ....................................................±0.3V  
(derate 21.3mW/°C above +70°C)...........................1702.1mW  
32-Pin TQFN Multilayer Board (derate 34.5mW/°C  
above +70°C)...........................................................275±.6mW  
Junction Temperature......................................................+150°C  
Operating Temperature Range ...........................-40°C to +±5°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
V
DD  
DD  
DD  
SDA, SCL to GND.....................................................-0.3V to +6V  
All other pins to GND..................................-0.3V to (V + 0.3V)  
DD  
Continuous Current In/Out of PV , PGND, CPV , CPGND,  
DD  
DD  
OUT__, HPR, and HPL..................................................±±00mA  
Continuous Input Current CPV ......................................260mA  
SS  
Continuous Input Current (all other pins) .........................±20mA  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
5/MAX976  
ELECTRICAL CHARACTERISTICS  
(V  
= PV  
= CPV  
= 3.3V, V  
= V  
= V  
= 0V, SHDN = V , I2C settings (INA gain = +20dB, INB gain = INC gain =  
DD  
DD  
DD  
GND  
PGND  
CPGND DD  
0dB, volume setting = 0dB, mono path gain = 0dB, SHDN = 1, SSM = 1). Speaker load resistors (R  
OUT_+ and OUT_-, headphone load resistors are terminated to GND, unless otherwise noted. C1 = C2 = C3 = 1µF. T = T  
) are terminated between  
LSP  
to  
A
MIN  
T
MAX  
, unless otherwise noted. Typical values are at T = +25°C.) (Note 1)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
GENERAL  
V
, P  
PVDD  
,
DD VDD  
C
Supply Voltage Range  
Inferred from PSRR test  
2.7  
5.5  
V
Output mode 1, 6, 11 (Rx mode)  
Output mode 4, 9, 14 (HP mode)  
Output mode 2, 7, 12 (SP mode)  
Output mode 3, ±, 13 (SP and HP mode)  
Output mode 1, 6, 11 (Rx mode)  
Output mode 4, 9, 14 (HP mode)  
Output mode 2, 7, 12 (SP mode)  
Output mode 3, ±, 13 (SP and HP mode)  
Current in mute (low power)  
6.3  
±
10  
12.6  
15  
Quiescent Current (Mono)  
Quiescent Current (Stereo)  
I
I
mA  
mA  
DD  
DD  
9.5  
12.9  
7
1±  
9
16.5  
20  
Mute Current  
I
4.7  
0.1  
10  
10  
mA  
µA  
MUTE  
Hard shutdown  
SHDN = GND  
2
Shutdown Current  
I
SHDN  
See the I C Interface  
section  
Soft shutdown  
±.5  
30  
2±  
15  
Time from shutdown or power-on to full  
operation  
Turn-On Time  
t
ms  
ON  
B and C pair inputs, T = +25°C,  
A
VOL = max  
17.5  
41.0  
kΩ  
Input Resistance  
R
IN  
A pair inputs, T = +25°C, +20dB  
3.5  
45  
5.5  
50  
±.0  
60  
kΩ  
dB  
V
A
Common-Mode Rejection Ratio  
Input DC Bias Voltage  
CMRR  
T = +25°C, f = 1kHz (Note 2)  
A IN  
V
IN_ inputs  
1.12  
1.25  
1.3±  
BIAS  
2
_______________________________________________________________________________________  
2 x 1.5W, Stereo Class D Audio Subsystem  
with DirectDrive Headphone Amplifier  
5/MAX976  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= PV  
= CPV  
= 3.3V, V  
= V  
= V  
= 0V, SHDN = V , I2C settings (INA gain = +20dB, INB gain = INC gain =  
DD  
DD  
DD  
GND  
PGND  
CPGND DD  
0dB, volume setting = 0dB, mono path gain = 0dB, SHDN = 1, SSM = 1). Speaker load resistors (R  
) are terminated between  
LSP  
OUT_+ and OUT_-, headphone load resistors are terminated to GND, unless otherwise noted. C1 = C2 = C3 = 1µF. T = T  
to  
A
MIN  
T
MAX  
, unless otherwise noted. Typical values are at T = +25°C.) (Note 1)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
SPEAKER AMPLIFIERS  
T
T
= +25°C  
±5.5  
±23.5  
±40  
A
Output Offset Voltage  
V
mV  
OS  
T T  
MAX  
MIN  
A
Peak voltage,  
T = +25°C,  
A-weighted, 32  
samples per second  
(Notes 2, 3)  
Into shutdown  
-62  
-60  
A
Out of shutdown  
Into mute  
Click-and-Pop Level  
K
CP  
dB  
-63  
-62  
70  
Out of mute  
V
= 2.7V to 5.5V  
4±  
DD  
f = 217Hz,  
100mV  
6±  
60  
50  
ripple  
ripple  
ripple  
P-P  
Power-Supply Rejection Ratio  
(Note 3)  
PSRR  
T = +25°C  
A
dB  
f = 1kHz,  
100mV  
P-P  
f = 20kHz,  
100mV  
P-P  
R = 4Ω, V  
= 5V  
1500  
450  
L
DD  
DD  
DD  
THD+N = 1%,  
= +25°C  
Output Power (Note 4)  
Current Limit  
P
R = ±Ω, V  
L
= 3.3V  
= 5V  
mW  
A
OUT  
T
A
R = ±Ω, V  
L
1115  
1.6  
R = ±Ω,  
L
0.03  
0.04  
P
= 125mW  
OUT  
Total Harmonic Distortion Plus  
Noise (Note 4)  
THD+N  
SNR  
f = 1kHz  
%
R = 4Ω,  
L
P
= 250mW  
OUT  
V
= 1.±V  
,
OUT  
RMS  
BW = 20Hz to 20kHz  
A-weighted  
±1  
±4  
Signal-to-Noise Ratio  
Output Frequency  
dB  
R = ±Ω, 3D not  
L
active (Note 3)  
Fixed-frequency modulation  
Spread-spectrum modulation  
1100  
f
kHz  
OSC  
1100 ±30  
P
= 470mW, f = 1kHz both channels  
OUT  
Efficiency  
Gain  
η
79  
12  
±1  
%
dB  
%
driven, L = 6±µH in series with ±Ω load  
A
V
Channel-to-Channel Gain  
Tracking (Note 5)  
T
= +25°C  
A
Used with 22nF and 2.2nF external  
capacitors  
3D Sound Resistors (Note 5)  
Crosstalk (Notes 4, 5)  
R
5
7
9
kΩ  
3D  
L to R, R to L, f = 10kHz, R = ±Ω,  
L
73  
dB  
V
= 300mV  
OUT  
RMS  
_______________________________________________________________________________________  
3
2 x 1.5W, Stereo Class D Audio Subsystem  
with DirectDrive Headphone Amplifier  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= PV  
= CPV  
= 3.3V, V  
= V  
= V  
= 0V, SHDN = V , I2C settings (INA gain = +20dB, INB gain = INC gain =  
DD  
DD  
DD  
GND  
PGND  
CPGND DD  
0dB, volume setting = 0dB, mono path gain = 0dB, SHDN = 1, SSM = 1). Speaker load resistors (R  
) are terminated between  
LSP  
OUT_+ and OUT_-, headphone load resistors are terminated to GND, unless otherwise noted. C1 = C2 = C3 = 1µF. T = T  
to  
A
MIN  
T
MAX  
, unless otherwise noted. Typical values are at T = +25°C.) (Note 1)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
RECEIVER AMPLIFIER  
Output Offset Voltage  
V
T
= +25°C  
A
±1.±  
-62  
-67  
-63  
-66  
±0  
±5.5  
mV  
OS  
Into shutdown  
Peak voltage, T  
+25°C, A-weighted,  
32 samples per  
=
A
Into mute  
Click-and-Pop Level  
K
dB  
dB  
CP  
Out of shutdown  
Out of mute  
second (Notes 3, 6)  
V
= 2.7V to 5.5V  
5±  
DD  
f = 217Hz,  
100mV  
±0  
70  
62  
ripple  
ripple  
ripple  
P-P  
Power-Supply Rejection Ratio  
(Note 3)  
PSRR  
T
T
= +25°C  
= +25°C,  
f = 1kHz,  
100mV  
A
A
5/MAX976  
P-P  
f = 20kHz,  
100mV  
P-P  
R = 16Ω  
L
60  
50  
Output Power  
Gain  
P
mW  
dB  
%
OUT  
THD+N = 1%  
R = 32Ω  
L
A
3
V
R = 16Ω (V  
= ±00mV  
= ±00mV  
, f = 1kHz)  
, f = 1kHz)  
0.03  
0.024  
±7  
L
OUT  
RMS  
Total Harmonic Distortion Plus  
Noise  
THD+N  
R = 32Ω (V  
L
OUT  
RMS  
BW = 20Hz to 20kHz  
A-weighted  
R = 16Ω, V  
±00mV  
=
L
OUT  
Signal-to-Noise Ratio  
SNR  
SR  
dB  
(Note 3)  
RMS  
±9  
Slew Rate  
0.3  
300  
V/µs  
pF  
Capacitive Drive  
C
L
HEADPHONE AMPLIFIERS  
Output Offset Voltage  
V
T
= +25°C  
A
±1.±  
-61  
-65  
-60  
-64  
±4  
±5.5  
mV  
dB  
OS  
Into shutdown  
Into mute  
Peak voltage, T  
+25°C, A-weighted,  
32 samples per  
=
A
Click-and-Pop Level  
ESD Protection  
K
CP  
Out of shutdown  
Out of mute  
Contact  
second (Notes 2, 4)  
HP_  
kV  
Air  
±±  
V
= 2.7V to 5.5V  
5±  
±0  
DD  
f = 217Hz,  
100mV  
±0  
70  
62  
ripple  
ripple  
ripple  
P-P  
Power-Supply Rejection Ratio  
(Note 3)  
PSRR  
T
= +25°C  
dB  
A
f = 1kHz,  
100mV  
P-P  
f = 20kHz,  
100mV  
P-P  
4
_______________________________________________________________________________________  
2 x 1.5W, Stereo Class D Audio Subsystem  
with DirectDrive Headphone Amplifier  
5/MAX976  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= PV  
= CPV  
= 3.3V, V  
= V  
= V  
= 0V, SHDN = V , I2C settings (INA gain = +20dB, INB gain = INC gain =  
DD  
DD  
DD  
GND  
PGND  
CPGND DD  
0dB, volume setting = 0dB, mono path gain = 0dB, SHDN = 1, SSM = 1). Speaker load resistors (R  
) are terminated between  
LSP  
OUT_+ and OUT_-, headphone load resistors are terminated to GND, unless otherwise noted. C1 = C2 = C3 = 1µF. T = T  
to  
A
MIN  
T
MAX  
, unless otherwise noted. Typical values are at T = +25°C.) (Note 1)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
R = 16Ω  
MIN  
TYP  
60  
MAX  
UNITS  
L
T
= +25°C,  
A
Output Power  
P
mW  
OUT  
THD+N = 1%  
R = 32Ω  
L
50  
Current Limit  
Gain  
170  
+3  
mA  
dB  
A
V
Channel-to-Channel Gain  
Tracking  
T
= +25°C  
±1  
%
%
A
R = 16Ω (V  
= ±00mV  
, f = 1kHz)  
0.03  
L
OUT  
RMS  
Total Harmonic Distortion Plus  
Noise  
THD+N  
R = 32Ω (V  
= ±00mV  
, f = 1kHz)  
0.024  
L
OUT  
RMS  
BW = 20Hz to  
20kHz  
92  
R = 16Ω,  
L
Signal-to-Noise Ratio  
SNR  
SR  
dB  
V
= ±00mV  
OUT  
RMS  
A-weighted  
93  
0.3  
300  
Slew Rate  
V/µs  
pF  
Capacitive Drive  
C
L
L to R, R to L, f = 10kHz, R = 16Ω,  
L
Crosstalk  
75  
dB  
V
= 160mV  
OUT  
RMS  
VOLUME CONTROL  
HP gain (max)  
SP gain (max)  
HP gain (min)  
SP gain (min)  
HP gain (max)  
SP gain (max)  
HP gain (min)  
SP gain (min)  
Mono+6dB = 0  
3
IN+6dB = 0  
(minimum gain  
setting)  
12  
-72  
-63  
9
Volume Control  
dB  
dB  
IN+6dB = 1  
(maximum gain  
setting)  
1±  
-61  
-57  
0
Mono Gain  
All outputs  
Mono+6dB = 1  
6
INA+20dB = 0 (minimum gain setting)  
INA+20dB = 1 (maximum gain setting)  
Set by IN+6dB  
20  
Input Pair A Control  
dB  
dB  
Mute Attenuation  
(Minimum Volume)  
V
= 1V  
±0  
IN  
RMS  
DIGITAL INPUTS (SHDN, SDA, SCL)  
Input-Voltage High  
V
1.4  
V
V
IH  
Input-Voltage Low  
V
0.4  
IL  
Input Hysteresis (SDA, SCL)  
V
200  
mV  
HYS  
_______________________________________________________________________________________  
5
2 x 1.5W, Stereo Class D Audio Subsystem  
with DirectDrive Headphone Amplifier  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= PV  
= CPV  
= 3.3V, V  
= V  
= V  
= 0V, SHDN = V , I2C settings (INA gain = +20dB, INB gain = INC gain =  
DD  
DD  
DD  
GND  
PGND  
CPGND DD  
0dB, volume setting = 0dB, mono path gain = 0dB, SHDN = 1, SSM = 1). Speaker load resistors (R  
) are terminated between  
LSP  
OUT_+ and OUT_-, headphone load resistors are terminated to GND, unless otherwise noted. C1 = C2 = C3 = 1µF. T = T  
to  
A
MIN  
T
MAX  
, unless otherwise noted. Typical values are at T = +25°C.) (Note 1)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
10  
MAX  
UNITS  
pF  
SDA, SCL Input Capacitance  
Input Leakage Current  
C
IN  
IN  
I
0.3  
50  
5.0  
µA  
Pulse Width of Spike Suppressed  
DIGITAL OUTPUTS (SDA Open Drain)  
t
SP  
ns  
Output Low Voltage SDA  
V
I
= 6mA  
SINK  
0.4  
V
OL  
V
to V  
bus capacitance =  
L(MAX)  
H(MIN)  
Output Fall Time SDA  
t
250  
ns  
OF  
10pF to 400pF, I  
= 3mA  
SINK  
2
I C INTERFACE TIMING (Note 7)  
Serial Clock Frequency  
f
DC  
1.3  
400  
kHz  
µs  
SCL  
Bus Free Time Between STOP  
and START Conditions  
5/MAX976  
t
BUF  
START Condition Hold  
STOP Condition Setup Time  
Clock Low Period  
t
0.6  
0.6  
1.3  
0.6  
100  
0
µs  
µs  
µs  
µs  
ns  
ns  
HD:STA  
t
SU:STA  
t
LOW  
Clock High Period  
Data Setup Time  
t
HIGH  
t
SU:DAT  
HD:DAT  
Data Hold Time  
t
900  
300  
Maximum Receive SCL/SDA Rise  
Time  
t
ns  
R
Maximum Receive SCL/SDA Fall  
Time  
t
300  
ns  
µs  
pF  
F
Setup Time for STOP Condition  
t
0.6  
SU:STO  
Capacitive Load for Each Bus  
Line  
C
400  
b
Note 1: All devices are 100% production tested at room temperature. All temperature limits are guaranteed by design.  
Note 2: Measured at headphone outputs.  
Note 3: Amplifier inputs AC-coupled to GND.  
Note 4: Testing performed with a resistive load in series with an inductor to simulate an actual speaker load. For R = ±Ω, L = 6±µH;  
L
for R = 4Ω, L = 47µH.  
L
Note 5: MAX9775 only.  
Note 6: Testing performed at room temperature with an ±Ω resistive load in series with a 6±µH inductive load connected across BTL  
outputs for speaker amplifier. Testing performed with a 32Ω resistive load connected between OUT_ and GND for head-  
phone amplifier. Testing performed with 32Ω resistive load connected between OUTRx and GND for mono receiver amplifi-  
2
er. Mode transitions are controlled by I C.  
Note 7: Guaranteed by design.  
6
_______________________________________________________________________________________  
2 x 1.5W, Stereo Class D Audio Subsystem  
with DirectDrive Headphone Amplifier  
5/MAX976  
Typical Operating Characteristics  
(V  
DD  
= PV  
= CPV  
= 3.3V, GND = PGND = CPGND = 0V, SHDN = V , I2C default gain settings (INA gain = +20dB, INB gain =  
DD DD  
DD  
INC gain = 0dB, volume setting = 0dB, mono path gain = 0dB, SHDN = 1, SSM = 1). Speaker load resistors (R  
) are terminated  
LSP  
between OUT_+ and OUT_-, headphone load resistors are terminated to GND, unless otherwise stated. C1 = C2 = C3 = 1µF. T  
+25°C, unless otherwise noted.)  
=
A
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY  
1
1
1
V
DD  
= 5V  
V
DD  
= 5V  
V
DD  
= 3.3V  
R = 4Ω  
L
R = 8Ω  
L
R = 4Ω  
L
P
= 400mW  
P
OUT  
= 150mW  
OUT  
P
OUT  
= 400mW  
0.1  
0.1  
0.1  
P
= 150mW  
OUT  
P
= 1000mW  
P
= 750mW  
OUT  
OUT  
0.01  
0.001  
0.01  
0.001  
0.01  
0.001  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
10  
100  
1k  
10k  
100k  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
FREQUENCY (Hz)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY  
100  
1
1
V
DD  
= 5V  
V
DD  
= 3.3V  
V
DD  
= 3.3V  
R = 4Ω  
L
R = 8Ω  
L
R = 8Ω  
L
P
OUT  
= 500mW  
10  
SSM  
P
OUT  
= 300mW  
0.1  
0.1  
1
f = 10kHz  
f = 1kHz  
0.1  
P
= 150mW  
OUT  
FFM  
0.01  
0.001  
0.01  
0.001  
0.01  
0.001  
f = 20Hz  
0
0.4  
0.8  
1.2  
1.6  
2.0  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
10  
100  
1k  
10k  
100k  
OUTPUT POWER (W)  
FREQUENCY (Hz)  
_______________________________________________________________________________________  
7
2 x 1.5W, Stereo Class D Audio Subsystem  
with DirectDrive Headphone Amplifier  
Typical Operating Characteristics (continued)  
(V  
DD  
= PV  
= CPV  
= 3.3V, GND = PGND = CPGND = 0V, SHDN = V , I2C default gain settings (INA gain = +20dB, INB gain =  
DD DD  
DD  
INC gain = 0dB, volume setting = 0dB, mono path gain = 0dB, SHDN = 1, SSM = 1). Speaker load resistors (R  
) are terminated  
LSP  
between OUT_+ and OUT_-, headphone load resistors are terminated to GND, unless otherwise stated. C1 = C2 = C3 = 1µF. T  
+25°C, unless otherwise noted.)  
=
A
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER  
100  
100  
100  
V
DD  
= 3.3V  
V
DD  
= 5V  
V
= 3.3V  
DD  
R = 4Ω  
R = 8Ω  
L
L
R = 8Ω  
L
f = 1kHz  
10  
10  
f = 1kHz  
10  
f = 1kHz  
1
1
1
f = 10kHz  
f = 10kHz  
f = 10kHz  
0.1  
0.1  
0.1  
0.01  
0.001  
0.01  
0.001  
0.01  
0.001  
f = 20Hz  
f = 20Hz  
f = 20Hz  
5/MAX976  
0
0.2  
0.4  
0.6  
0.8  
0
0.3  
0.6  
0.9  
1.2  
1.5  
0
0.2  
0.4  
0.6  
OUTPUT POWER (W)  
OUTPUT POWER (W)  
OUTPUT POWER (W)  
EFFICIENCY  
vs. OUTPUT POWER  
EFFICIENCY  
vs. OUTPUT POWER  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER  
100  
100  
100  
V
= 5V  
DD  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
R = 8Ω  
L
R = 8Ω  
L
R = 8Ω  
L
f = 1kHz  
10  
1
R = 4Ω  
L
SSM  
R = 4Ω  
L
0.1  
0.01  
0.001  
V
= 5V  
= 1kHz  
V
DD  
= 3.3V  
DD  
FFM  
f
f = 1kHz  
IN  
IN  
P
OUT  
= P  
OUTL  
+ P  
OUTR  
P
OUT  
= P  
+ P  
OUTL OUTR  
0
0.8  
1.6  
2.4  
3.2  
4.0  
0
0.4  
0.8  
1.2  
1.6  
2.0  
0
0.3  
0.6  
0.9  
1.2  
1.5  
OUTPUT POWER (W)  
OUTPUT POWER (W)  
OUTPUT POWER (W)  
8
_______________________________________________________________________________________  
2 x 1.5W, Stereo Class D Audio Subsystem  
with DirectDrive Headphone Amplifier  
5/MAX976  
Typical Operating Characteristics (continued)  
(V  
DD  
= PV  
= CPV  
= 3.3V, GND = PGND = CPGND = 0V, SHDN = V , I2C default gain settings (INA gain = +20dB, INB gain =  
DD DD  
DD  
INC gain = 0dB, volume setting = 0dB, mono path gain = 0dB, SHDN = 1, SSM = 1). Speaker load resistors (R  
) are terminated  
LSP  
between OUT_+ and OUT_-, headphone load resistors are terminated to GND, unless otherwise stated. C1 = C2 = C3 = 1µF. T  
+25°C, unless otherwise noted.)  
=
A
OUTPUT POWER  
vs. SUPPLY VOLTAGE  
OUTPUT POWER  
vs. SUPPLY VOLTAGE  
OUTPUT POWER  
vs. LOAD  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
2200  
2000  
1800  
1600  
1400  
1200  
1000  
800  
2.5  
2.0  
1.5  
1.0  
0.5  
0
R = 8Ω  
R = 4Ω  
L
L
V
= 5V  
DD  
f = 1kHz  
f = 1kHz  
f = 1kHz  
THD+N = 10%  
THD+N = 10%  
THD+N = 10%  
THD+N = 1%  
THD+N = 1%  
THD+N = 1%  
600  
400  
200  
0
2.7  
3.2  
3.7  
4.2  
4.7  
5.2  
2.7  
3.2  
3.7  
4.2  
4.7  
5.2  
1
10  
100  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
LOAD (Ω)  
OUTPUT POWER  
vs. LOAD  
POWER-SUPPLY REJECTION RATIO  
vs. FREQUENCY  
CROSSTALK vs. FREQUENCY  
1000  
800  
600  
400  
200  
0
0
0
-10  
V
= 3.3V  
V
= 3.3V  
DD  
DD  
OUT_ = 1V  
P-P  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
f = 1kHz  
V
= 100mV  
IN  
P-P  
R = 8Ω  
L
-20  
R = 8Ω  
L
-30  
THD+N = 10%  
OUTR  
OUTL  
-40  
RIGHT TO LEFT  
-50  
-60  
-70  
-80  
THD+N = 1%  
-90  
LEFT TO RIGHT  
-100  
-110  
-120  
1
10  
100  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
10  
100  
1k  
10k  
100k  
LOAD (Ω)  
FREQUENCY (Hz)  
_______________________________________________________________________________________  
9
2 x 1.5W, Stereo Class D Audio Subsystem  
with DirectDrive Headphone Amplifier  
Typical Operating Characteristics (continued)  
(V  
DD  
= PV  
= CPV  
= 3.3V, GND = PGND = CPGND = 0V, SHDN = V , I2C default gain settings (INA gain = +20dB, INB gain =  
DD DD  
DD  
INC gain = 0dB, volume setting = 0dB, mono path gain = 0dB, SHDN = 1, SSM = 1). Speaker load resistors (R  
) are terminated  
LSP  
between OUT_+ and OUT_-, headphone load resistors are terminated to GND, unless otherwise stated. C1 = C2 = C3 = 1µF. T  
+25°C, unless otherwise noted.)  
=
A
IN-BAND OUTPUT SPECTRUM  
IN-BAND OUTPUT SPECTRUM  
CROSSTALK vs. INPUT AMPLITUDE  
20  
0
20  
0
0
-10  
SSM MODE  
R = 8Ω  
FFM MODE  
R = 8Ω  
f
= 1kHz  
IN  
L
R = 8Ω  
GAIN = +12dB  
L
V
L
V
-20  
= 3.3V  
= 3.3V  
DD  
DD  
-20  
-40  
-60  
-80  
-100  
-120  
-140  
-20  
-40  
-60  
-80  
-100  
-120  
-140  
-30  
f
= 1kHz  
f = 1kHz  
IN  
IN  
UNWEIGHTED  
UNWEIGHTED  
-40  
RIGHT TO LEFT  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
7
LEFT TO RIGHT  
0
5k  
10k  
15k  
20k  
0
5k  
10k  
15k  
20k  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
INPUT AMPLITUDE (V  
)
RMS  
WIDEBAND OUTPUT SPECTRUM  
FIXED-FREQUENCY MODE  
WIDEBAND OUTPUT SPECTRUM  
SPREAD-SPECTRUM MODE  
MAX9775 SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
20  
0
20  
0
25  
20  
15  
10  
SP MODE  
INPUTS AC GROUNDED  
OUTPUTS UNLOADED  
-20  
-40  
-60  
-80  
-100  
-120  
-140  
-20  
-40  
-60  
-80  
-100  
V
L
= 5V  
DD  
V
= 5V  
DD  
R = 8Ω  
INPUTS AC GROUNDED  
R = 8Ω  
INPUTS AC GROUNDED  
-120  
-140  
L
0.1  
1
10  
FREQUENCY (MHz)  
100  
1000  
0.1  
1
10  
FREQUENCY (MHz)  
100  
1000  
2.7  
3.2  
3.7  
4.2  
4.7  
5.2  
SUPPLY VOLTAGE (V)  
10 ______________________________________________________________________________________  
2 x 1.5W, Stereo Class D Audio Subsystem  
with DirectDrive Headphone Amplifier  
5/MAX976  
Typical Operating Characteristics (continued)  
(V  
DD  
= PV  
= CPV  
= 3.3V, GND = PGND = CPGND = 0V, SHDN = V , I2C default gain settings (INA gain = +20dB, INB gain =  
DD DD  
DD  
INC gain = 0dB, volume setting = 0dB, mono path gain = 0dB, SHDN = 1, SSM = 1). Speaker load resistors (R  
) are terminated  
LSP  
between OUT_+ and OUT_-, headphone load resistors are terminated to GND, unless otherwise stated. C1 = C2 = C3 = 1µF. T  
+25°C, unless otherwise noted.)  
=
A
MAX9776 SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
SHUTDOWN SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY  
16  
14  
12  
10  
8
1
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
DD  
= 5V  
SP MODE  
INPUTS AC GROUNDED  
OUTPUTS UNLOADED  
R = 32Ω  
L
0.1  
P
OUT  
= 20mW  
0.01  
0.001  
P
OUT  
= 40mW  
6
4
2.7  
3.2  
3.7  
4.2  
4.7  
5.2  
10  
100  
1k  
10k  
100k  
2.7  
3.2  
3.7  
4.2  
4.7  
5.2  
SUPPLY VOLTAGE (V)  
FREQUENCY (Hz)  
SUPPLY VOLTAGE (V)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER  
1
1
100  
10  
V
DD  
= 5V  
V
= 3.3V  
V
= 3.3V  
DD  
DD  
R = 32Ω  
L
R = 16Ω  
L
R = 32Ω  
L
f = 1kHz  
0.1  
0.1  
P
= 40mW  
OUT  
1
P
OUT  
= 40mW  
f = 10kHz  
0.1  
0.01  
0.001  
0.01  
0.001  
P
= 20mW  
OUT  
0.01  
0.001  
P
OUT  
= 10mW  
f = 20Hz  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
10  
100  
1k  
10k  
100k  
0
20  
40  
60  
80  
FREQUENCY (Hz)  
OUTPUT POWER (mW)  
______________________________________________________________________________________ 11  
2 x 1.5W, Stereo Class D Audio Subsystem  
with DirectDrive Headphone Amplifier  
Typical Operating Characteristics (continued)  
(V  
DD  
= PV  
= CPV  
= 3.3V, GND = PGND = CPGND = 0V, SHDN = V , I2C default gain settings (INA gain = +20dB, INB gain =  
DD DD  
DD  
INC gain = 0dB, volume setting = 0dB, mono path gain = 0dB, SHDN = 1, SSM = 1). Speaker load resistors (R  
) are terminated  
LSP  
between OUT_+ and OUT_-, headphone load resistors are terminated to GND, unless otherwise stated. C1 = C2 = C3 = 1µF. T  
+25°C, unless otherwise noted.)  
=
A
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. COMMON-MODE VOLTAGE  
100  
100  
10  
100  
V
DD  
= 3.3V  
V = 3.3V  
DD  
V
= 3.3V  
DD  
R = 32Ω  
L
f
= 1kHz  
R = 16Ω  
L
IN  
P
= 30mW  
10  
OUT  
10  
GAIN = +3dB  
f = 1kHz  
R = 32Ω  
L
f = 1kHz  
1
1
1
f = 10kHz  
f = 10kHz  
0.1  
0.1  
0.1  
0.01  
0.001  
0.01  
0.001  
0.01  
0.001  
5/MAX976  
f = 20Hz  
f = 20Hz  
0
30  
60  
90  
120  
0
20  
40  
60  
80  
0
0.5  
1.0  
1.5  
2.0  
2.5  
OUTPUT POWER (mW)  
OUTPUT POWER (mW)  
COMMON-MODE VOLTAGE (V)  
POWER DISSIPATION  
vs. OUTPUT POWER  
POWER DISSIPATION  
vs. OUTPUT POWER  
OUTPUT POWER  
vs. SUPPLY VOLTAGE  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
500  
65  
450  
400  
350  
300  
250  
200  
150  
100  
50  
60  
55  
50  
45  
40  
35  
30  
THD+N = 10%  
THD+N = 1%  
R = 16Ω  
L
R = 32Ω  
L
V
DD  
= 5V  
V
DD  
= 3.3V  
f = 1kHz  
f = 1kHz  
= P  
R = 32Ω  
L
R = 32Ω  
L
P
+ P  
OUTL  
P
OUT  
= P + P  
OUTR OUTL  
OUT  
OUTR  
f = 1kHz  
0
0
0
40  
80  
120  
160  
0
40  
80  
120  
2.7  
3.2  
3.7  
4.2  
4.7  
5.2  
TOTAL OUTPUT POWER (mW)  
TOTAL OUTPUT POWER (mW)  
SUPPLY VOLTAGE (V)  
12 ______________________________________________________________________________________  
2 x 1.5W, Stereo Class D Audio Subsystem  
with DirectDrive Headphone Amplifier  
5/MAX976  
Typical Operating Characteristics (continued)  
(V  
DD  
= PV  
= CPV  
= 3.3V, GND = PGND = CPGND = 0V, SHDN = V , I2C default gain settings (INA gain = +20dB, INB gain =  
DD DD  
DD  
INC gain = 0dB, volume setting = 0dB, mono path gain = 0dB, SHDN = 1, SSM = 1). Speaker load resistors (R  
) are terminated  
LSP  
between OUT_+ and OUT_-, headphone load resistors are terminated to GND, unless otherwise stated. C1 = C2 = C3 = 1µF. T  
+25°C, unless otherwise noted.)  
=
A
OUTPUT POWER  
vs. LOAD  
OUTPUT POWER  
vs. LOAD  
OUTPUT POWER vs. LOAD RESISTANCE  
AND CHARGE-PUMP CAPACITOR SIZE  
200  
180  
160  
140  
120  
100  
80  
200  
180  
160  
140  
120  
100  
80  
100  
80  
60  
40  
20  
0
V
= 3.3V  
V
DD  
= 3.3V  
DD  
f = 1kHz  
f = 1kHz  
THD+N = 1%  
C1 = C2 = 2.2μF  
C1 = C2 = 1μF  
THD+N = 10%  
THD+N = 10%  
60  
60  
40  
40  
V
= 5V  
DD  
20  
20  
THD+N = 1%  
THD+N = 1%  
f = 1kHz  
C1 = C2 = 0.68μF  
0
0
10  
100  
1000  
10  
100  
1000  
10  
100  
1000  
LOAD (Ω)  
LOAD (Ω)  
LOAD (Ω)  
POWER-SUPPLY REJECTION RATIO  
vs. FREQUENCY  
OUTPUT FREQUENCY SPECTRUM  
CROSSTALK vs. FREQUENCY  
20  
0
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
0
-10  
V
DD  
= 3.3V  
OUT_ = 1V  
V
DD  
= 3.3V  
P-P  
f = 1kHz  
R = 32Ω  
L
R = 32Ω  
V
= 100mV  
L
IN  
P-P  
-20  
R = 32Ω  
L
-20  
-40  
-60  
-80  
-100  
-120  
-140  
-30  
-40  
-50  
RIGHT TO LEFT  
-60  
-70  
HPR  
-80  
-90  
-100  
-110  
-120  
LEFT TO RIGHT  
HPL  
10k  
0
5k  
10k  
15k  
20k  
10  
100  
1k  
FREQUENCY (Hz)  
100k  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
FREQUENCY (Hz)  
______________________________________________________________________________________ 13  
2 x 1.5W, Stereo Class D Audio Subsystem  
with DirectDrive Headphone Amplifier  
Typical Operating Characteristics (continued)  
(V  
DD  
= PV  
= CPV  
= 3.3V, GND = PGND = CPGND = 0V, SHDN = V , I2C default gain settings (INA gain = +20dB, INB gain =  
DD DD  
DD  
INC gain = 0dB, volume setting = 0dB, mono path gain = 0dB, SHDN = 1, SSM = 1). Speaker load resistors (R  
) are terminated  
LSP  
between OUT_+ and OUT_-, headphone load resistors are terminated to GND, unless otherwise stated. C1 = C2 = C3 = 1µF. T  
+25°C, unless otherwise noted.)  
=
A
TURN-OFF RESPONSE  
TURN-ON RESPONSE  
CROSSTALK vs. INPUT AMPLITUDE  
MAX9775/76 toc45  
MAX9775/76 toc44  
0
-10  
SCL  
2V/div  
SCL  
2V/div  
f
= 1kHz  
IN  
L
R = 32Ω  
GAIN = +3dB  
-20  
-30  
-40  
-50  
SPEAKER  
OUTPUT  
50mA/div  
SPEAKER  
OUTPUT  
50mA/div  
RIGHT TO LEFT  
-60  
-70  
-80  
HEADPHONE  
OUTPUT  
2V/div  
-90  
HEADPHONE  
OUTPUT  
2V/div  
5/MAX976  
-100  
-110  
-120  
LEFT TO RIGHT  
0
0.4  
0.8  
RMS  
1.2  
10ms/div  
10ms/div  
INPUT AMPLITUDE (V  
)
MUTE-ON RESPONSE  
MUTE-OFF RESPONSE  
MAX9775/76 toc46  
MAX9775/76 toc47  
SCL  
2V/div  
SCL  
2V/div  
SPEAKER  
OUTPUT  
50mA/div  
SPEAKER  
OUTPUT  
50mA/div  
HEADPHONE  
OUTPUT  
2V/div  
HEADPHONE  
OUTPUT  
2V/div  
10ms/div  
10ms/div  
14 ______________________________________________________________________________________  
2 x 1.5W, Stereo Class D Audio Subsystem  
with DirectDrive Headphone Amplifier  
5/MAX976  
Pin Description—MAX9775  
PIN  
F1  
NAME  
PV  
FUNCTION  
Class D Power Supply  
DD  
E1  
OUTL-  
SCL  
Negative Left-Speaker Output  
D2  
D1, F3  
C1  
C2  
B1  
B2  
A1  
A2  
B3  
A3  
A4  
B4  
A5  
A6  
B5  
B6  
C5  
C6  
D6  
D5  
E6  
Serial Clock Input. Connect a 1kΩ pullup resistor from SCL to V  
.
DD  
PGND  
OUTL+  
SDA  
Power Ground  
Positive Left-Speaker Output  
Serial Data Input. Connect a 1kΩ pullup resistor from SDA to V  
3D External Capacitor 3. Connect a 2.2nF capacitor to GND.  
3D External Capacitor 4. Connect a 22nF capacitor to GND.  
Charge-Pump Power Supply  
.
DD  
CL_L  
CL_H  
CPV  
DD  
C1P  
Charge-Pump Flying Capacitor Positive Terminal  
Common-Mode Bias  
VBIAS  
CPGND  
C1N  
Charge-Pump GND  
Charge-Pump Flying Capacitor Negative Terminal  
Input C1. Left input or positive input (see Table 5a).  
INC1  
CPV  
Charge-Pump Output. Connect to V  
.
SS  
SS  
HPL  
Left Headphone Output  
V
Headphone Amplifier Negative Power Supply. Connect to CPV  
.
SS  
SS  
HPR  
INC2  
Right Headphone Output  
Input C2. Right input or negative input (see Table 5a).  
Mono Receiver Output  
OUTRx  
V
Analog Power Supply  
DD  
INB2  
CR_L  
INB1  
Input B2. Right input or negative input (see Table 5a).  
3D External Capacitor 1. Connect a 2.2nF capacitor to GND.  
Input B1. Left input or positive input (see Table 5a).  
Analog Ground  
E5  
F6  
GND  
F5  
CR_H  
INA2  
3D External Capacitor 2. Connect a 22nF capacitor to GND.  
Input A2. Right input or negative input (see Table 5a).  
Positive Right Speaker Output  
E4  
F4  
OUTR+  
INA1  
E3  
Input A1. Left input or positive input (see Table 5a).  
Negative Right Speaker Output  
F2  
OUTR-  
SHDN  
E2  
Active-Low Hardware Shutdown  
Exposed Pad. The external pad lowers the package’s thermal impedance by providing a  
direct heat conduction path from the die to the PCB. The exposed pad is internally  
connected to GND. Connect the exposed thermal pad to the GND plane.  
EP  
______________________________________________________________________________________ 15  
2 x 1.5W, Stereo Class D Audio Subsystem  
with DirectDrive Headphone Amplifier  
Pin Description—MAX9776  
PIN  
NAME  
PV  
FUNCTION  
TQFN  
UCSP  
F1  
1
Class D Power Supply  
DD  
2
3
E1  
OUT-  
SCL  
Negative Left-Speaker Output  
D2  
Serial Clock Input. Connect a 1kΩ pullup resistor from SCL to V  
.
DD  
4, 29  
5
D1, F3  
C1  
PGND  
OUT+  
SDA  
Power Ground  
Positive Left-Speaker Output  
6
C2  
Serial Data Input. Connect a 1kΩ pullup resistor from SDA to V  
.
DD  
B1, B2,  
E6, F2,  
F4, F5  
7, ±, 23,  
26, 2±, 31  
Internal Connection. Leave unconnected. This pin is internally connected to the signal path.  
Do not connect together or to any other pin.  
I.C.  
9
A1  
A2  
B3  
A3  
A4  
B4  
A5  
A6  
B5  
B6  
C5  
C6  
D6  
D5  
E5  
F6  
E4  
E3  
E2  
CPV  
Charge-Pump Power Supply  
DD  
10  
11  
12  
13  
14  
15  
16  
17  
1±  
19  
20  
21  
22  
24  
25  
27  
30  
32  
C1P  
VBIAS  
Charge-Pump Flying Capacitor Positive Terminal  
Common-Mode Bias  
5/MAX976  
CPGND Charge-Pump GND  
C1N  
Charge-Pump Flying Capacitor Negative Terminal  
Input C1. Left input or positive input (see Table 5a).  
INC1  
CPV  
Charge-Pump Output. Connect to V  
.
SS  
SS  
HPL  
Left Headphone Output  
V
Headphone Amplifier Negative Power Supply. Connect to CPV  
.
SS  
SS  
HPR  
INC2  
Right Headphone Output  
Input C2. Right input or negative input (see Table 5a).  
Mono Receiver Output  
OUTRx  
V
Analog Power Supply  
DD  
INB2  
INB1  
GND  
INA2  
INA1  
SHDN  
Input B2. Right input or negative input (see Table 5a).  
Input B1. Left input or positive input (see Table 5a).  
Analog Ground  
Input A2. Right input or negative input (see Table 5a).  
Input A1. Left input or positive input (see Table 5a).  
Active-Low Hardware Shutdown  
Exposed Pad. The external pad lowers the package’s thermal impedance by providing a  
direct heat conduction path from the die to the PCB. The exposed pad is internally connected  
to GND. Connect the exposed thermal pad to the GND plane.  
EP  
EP  
16 ______________________________________________________________________________________  
2 x 1.5W, Stereo Class D Audio Subsystem  
with DirectDrive Headphone Amplifier  
5/MAX976  
Typical Application Circuits  
V
DD  
V
DD  
C2  
1μF  
1μF  
0.1μF  
1μF  
CPV  
V
SS  
V
DD  
PV  
DD  
SS  
15 (A5) 17 (B5)  
21 (D6)  
1 (F1)  
C1N 13 (A4)  
CPGND 12 (A3)  
C1P 10 (A2)  
C1  
1μF  
10kΩ  
CHARGE  
PUMP  
V
DD  
DirectDrive  
3dB  
CPV  
9 (A1)  
DD  
16 (A6) HPL  
18 (B6) HPR  
20 (C6) OUTRx  
C3  
1μF  
RIGHT  
VOLUME  
1μF  
30 (E3)  
27 (E4)  
INA1  
INA2  
3dB  
3dB  
INPUT A: 0dB,  
6dB, OR 20dB  
1μF  
1μF  
LEFT  
VOLUME  
OUTPUT  
MIXER  
24 (E5)  
22 (D5)  
INB1  
INB2  
INPUT B: 0dB  
OR 6dB  
INPUT  
MIXER  
12dB  
CLASS D  
5 (C1) OUTL+  
2 (E1) OUTL-  
1μF  
1μF  
MONO  
VOLUME  
AMPLIFIER  
14 (B4)  
19 (C5)  
INC1  
INC2  
MAXIM 3D  
SOUND  
INPUT C: 0dB  
OR 6dB  
12dB  
28 (F4) OUTR+  
31 (F2) OUTR-  
CLASS D  
AMPLIFIER  
1μF  
VBIAS  
11 (B3)  
1μF  
6 (C2)  
3 (D2)  
32 (E2)  
SDA  
SCL  
MAX9775  
2
I C CONTROL  
3D CIRCUIT  
SHDN  
25 (F6)  
GND  
4 (D1) 29 (F3)  
23 (E6)  
26 (F5)  
7 (B1)  
8 (B2)  
PGND  
PGND  
CR_L  
2.2nF  
CR_H  
22nF  
CL_L  
2.2nF  
CL_H  
22nF  
______________________________________________________________________________________ 17  
2 x 1.5W, Stereo Class D Audio Subsystem  
with DirectDrive Headphone Amplifier  
Typical Application Circuits (continued)  
V
DD  
V
DD  
C2  
1μF  
1μF  
0.1μF  
1μF  
CPV  
V
SS  
V
DD  
PV  
DD  
SS  
15 (A5) 17 (B5)  
21 (D6)  
1 (F1)  
C1N 13 (A4)  
CPGND 12 (A3)  
C1P 10 (A2)  
C1  
1μF  
10kΩ  
CHARGE  
PUMP  
V
DD  
CPV  
9 (A1)  
DD  
DirectDrive  
3dB  
5/MAX976  
C3  
1μF  
16 (A6) HPL  
RIGHT  
1μF  
VOLUME  
INA1  
INA2  
30 (E3)  
27 (E4)  
INPUT A: 0dB,  
6dB, OR 20dB  
18 (B6) HPR  
3dB  
3dB  
1μF  
1μF  
LEFT  
VOLUME  
20 (C6) OUTRx  
OUTPUT  
MIXER  
24 (E5)  
22 (D5)  
INB1  
INB2  
INPUT B: 0dB  
OR 6dB  
INPUT  
MIXER  
12dB  
1μF  
1μF  
MONO  
VOLUME  
5 (C1) OUT+  
2 (E1) OUT-  
CLASS D  
AMPLIFIER  
14 (B4)  
19 (C5)  
INC1  
INC2  
INPUT C: 0dB  
OR 6dB  
1μF  
VBIAS  
11 (B3)  
1μF  
6 (C2)  
3 (D2)  
32 (E2)  
SDA  
SCL  
MAX9776  
2
I C CONTROL  
SHDN  
25 (F6)  
GND  
4 (D1) 29 (F3)  
PGND  
PGND  
18 ______________________________________________________________________________________  
2 x 1.5W, Stereo Class D Audio Subsystem  
with DirectDrive Headphone Amplifier  
5/MAX976  
DirectDrive allows the headphone and mono receiver  
Detailed Description  
amplifiers to output ground-referenced signals from a  
The MAX9775/MAX9776 ultra-low-EMI, filterless, Class D  
single supply, eliminating the need for large DC-block-  
audio power amplifiers feature several improvements to  
ing capacitors. Comprehensive click-and-pop suppres-  
switch-mode amplifier technology. The MAX9775/  
sion minimizes audible transients during the turn-on  
MAX9776 feature active emissions limiting circuitry to  
and turn-off of amplifiers.  
reduce EMI. Zero dead-time technology maintains state-  
of-the-art efficiency and THD+N performance by allowing  
the output FETs to switch simultaneously without cross-  
conduction. A unique filterless modulation scheme and  
spread-spectrum modulation create compact, flexible,  
low-noise, efficient audio power amplifiers while  
occupying minimal board space. The differential input  
architecture reduces common-mode noise pickup with or  
without the use of input-coupling capacitors. The  
MAX9775/MAX9776 can also be configured as single-  
ended input amplifiers without performance degradation.  
Class D Speaker Amplifier  
Comparators monitor the audio inputs and compare the  
complementary input voltages to a sawtooth waveform.  
The comparators trip when the input magnitude of the  
sawtooth exceeds their corresponding input voltage. The  
active emissions limiting circuitry slightly reduces the  
turn-on rate of the output H-bridge by slew-rate limiting  
the comparator output pulse. Both comparators reset at  
a fixed time after the rising edge of the second compara-  
tor trip point, generating a minimum-width pulse  
(t  
,100ns typ) at the output of the second com-  
ON(MIN)  
The MAX9775/MAX9776 feature three fully differential  
input pairs (INA_, INB_, INC_) that can be configured  
as stereo single-ended or mono differential inputs. I2C  
provides control for input configuration, volume level,  
and mixer configuration. The MAX9775’s 3D enhance-  
ment feature widens the stereo sound field to improve  
stereo imaging when stereo speakers are placed in  
close proximity.  
parator (Figure 1). As the input voltage increases or  
decreases, the duration of the pulse at one output  
increases while the other output pulse duration remains  
the same. This causes the net voltage across the speak-  
er (V  
- V  
) to change. The minimum-width pulse  
OUT+  
OUT-  
helps the devices to achieve high levels of linearity.  
t
SW  
V
IN-  
V
IN+  
OUT-  
OUT+  
t
ON(MIN)  
V
- V  
OUT-  
OUT+  
Figure 1. Outputs with an Input Signal Applied  
______________________________________________________________________________________ 19  
2 x 1.5W, Stereo Class D Audio Subsystem  
with DirectDrive Headphone Amplifier  
cycle-to-cycle variation of the switching period does not  
degrade audio reproduction or efficiency (see the  
Typical Operating Characteristics). Select spread-spec-  
trum modulation mode through the I2C interface (Table  
2). In spread-spectrum modulation mode, the switching  
frequency varies randomly by ±±30Hz around the center  
frequency (1.16MHz). The modulation scheme remains  
the same, but the period of the sawtooth waveform  
changes from cycle to cycle (Figure 2). Instead of a  
large amount of spectral energy present at multiples of  
the switching frequency, the energy is now spread over  
a bandwidth that increases with frequency. Above a few  
megahertz, the wideband spectrum loo0s li0e white  
noise for EMI purposes (see Figure ±).  
Operating Modes  
Fixed-Frequency Modulation  
The MAX9775/MAX9776 feature a fixed-frequency  
modulation mode with a 1.1MHz switching frequency,  
set through the I2C interface (Table 2). In fixed-frequen-  
cy modulation mode, the frequency spectrum of the  
Class D output consists of the fundamental switching  
frequency and its associated harmonics (see the  
Wideband Output Spectrum Fixed-Frequency Mode  
graph in the Typical Operating Characteristics).  
Spread-Spectrum Modulation  
The MAX9775/MAX9776 feature a unique spread-spec-  
trum modulation that flattens the wideband spectral com-  
ponents. Proprietary techniques ensure that the  
t
t
t
t
SW  
5/MAX976  
SW  
SW  
SW  
V
IN-  
V
IN+  
OUT-  
OUT+  
t
ON(MIN)  
V
OUT+  
- V  
OUT-  
Figure 2. Output with an Input Signal Applied (Spread-Spectrum Modulation Mode)  
20 ______________________________________________________________________________________  
2 x 1.5W, Stereo Class D Audio Subsystem  
with DirectDrive Headphone Amplifier  
5/MAX976  
40.0  
35.0  
30.0  
EN55022B LIMIT  
25.0  
20.0  
15.0  
10.0  
5.0  
30.0  
60.0  
80.0  
100.0  
120.0  
140.0  
160.0  
180.0  
200.0  
220.0  
240.0  
260.0  
280.0  
300.0  
FREQUENCY (MHz)  
Figure 3. EMI with 76mm of Speaker Cable  
______________________________________________________________________________________ 21  
2 x 1.5W, Stereo Class D Audio Subsystem  
with DirectDrive Headphone Amplifier  
Filterless Modulation/Common-Mode Idle  
The MAX9775/MAX9776 use Maxim’s unique modula-  
tion scheme that eliminates the LC filter required by tra-  
ditional Class D amplifiers, improving efficiency,  
V
= 0V  
IN  
reducing component count, conserving board space  
and system cost. Conventional Class D amplifiers out-  
put a 50% duty-cycle square wave when no signal is  
present. With no filter, the square wave appears across  
the load as a DC voltage, resulting in finite load current,  
increasing power consumption, especially when idling.  
When no signal is present at the input of the  
MAX9775/MAX9776, the outputs switch as shown in  
Figure 4. Because the MAX9775/MAX9776 drive the  
speaker differentially, the two outputs cancel each  
other, resulting in no net idle mode voltage across the  
speaker, minimizing power consumption.  
OUT-  
OUT+  
DirectDrive  
Traditional single-supply headphone amplifiers have  
outputs biased at a nominal DC voltage (typically half  
the supply) for maximum dynamic range. Large cou-  
pling capacitors are needed to block this DC bias from  
the headphone. Without these capacitors, a significant  
amount of DC current flows to the headphone, resulting  
in unnecessary power dissipation and possible dam-  
age to both headphone and headphone amplifier.  
5/MAX976  
V
- V = 0V  
OUT+ OUT-  
Figure 4. Outputs with No Input Signal  
In addition to the cost and size disadvantages of the  
DC-blocking capacitors required by conventional head-  
phone amplifiers, these capacitors limit the amplifier’s  
low-frequency response and can distort the audio sig-  
nal. Previous attempts at eliminating the output-cou-  
pling capacitors involved biasing the headphone return  
(sleeve) to the DC bias voltage of the headphone  
amplifiers. This method raises some issues:  
Maxim’s DirectDrive architecture uses a charge pump to  
create an internal negative supply voltage. This allows the  
headphone outputs of the MAX9775/MAX9776 to be  
biased at GND, almost doubling dynamic range while  
operating from a single supply. With no DC component,  
there is no need for the large DC-blocking capacitors.  
Instead of two large (220µF, typ) tantalum capacitors, the  
MAX9775/MAX9776 charge pump requires two small  
ceramic capacitors, conserving board space, reducing  
cost, and improving the frequency response of the head-  
phone amplifier. See the Output Power vs. Load  
Resistance and Charge-Pump Capacitor Size graph in  
the Typical Operating Characteristics for details of the  
possible capacitor sizes. There is a low DC voltage on  
the amplifier outputs due to amplifier offset. However, the  
offset of the MAX9775/MAX9776 is typically 1.4mV,  
which, when combined with a 32Ω load, results in less  
than 44nA of DC current flow to the headphones.  
1) The sleeve is typically grounded to the chassis.  
Using the midrail biasing approach, the sleeve must  
be isolated from system ground, complicating prod-  
uct design.  
2) During an ESD strike, the driver’s ESD structures are  
the only path to system ground. Thus, the amplifier  
must be able to withstand the full ESD strike.  
3) When using the headphone jack as a lineout to  
other equipment, the bias voltage on the sleeve may  
conflict with the ground potential from other equip-  
ment, resulting in possible damage to the amplifiers.  
22 ______________________________________________________________________________________  
2 x 1.5W, Stereo Class D Audio Subsystem  
with DirectDrive Headphone Amplifier  
5/MAX976  
Q
R
RIGHT  
V
DD  
RIGHT  
LISTENER  
LEFT  
+
+
I
L
d
V
DD  
/ 2  
V
OUT  
I
R
GND  
LEFT  
Q
L
CONVENTIONAL DRIVER-BIASING SCHEME  
Figure 6. MAX9775 3D Stereo Enhancement  
+V  
DD  
With Maxim’s 3D stereo enhancement, it is possible to  
emulate stereo sound in situations where the speakers  
must be positioned close together. As shown in Figure  
6, wave interference can be used to cancel the left  
channel in the vicinity of the listener’s right ear and vice  
versa. This technique can yield an apparent separation  
between the speakers that is a factor of four or greater  
than the actual physical separation.  
V
OUT  
GND  
-V  
DD  
The external capacitors CL_L, CL_H, CR_L, and CR_H  
set the starting and stopping range of the 3D effect.  
CL_H and CR_H are for the lower limit (in the MAX9775  
Typical Application Circuit, it is 1kHz), CR_L and CL_L  
are for the higher limit (10kHz). The internal resistor is  
typically 7kΩ and the frequencies are calculated as:  
DirectDrive BIASING SCHEME  
Figure 5. Traditional Amplifier Output vs. MAX9775/MAX9776  
DirectDrive Output  
Charge Pump  
The MAX9775/MAX9776 feature a low-noise charge  
pump. The switching frequency of the charge pump is  
half the switching frequency of the Class D amplifier,  
regardless of the operating mode. The nominal switch-  
ing frequency is well beyond the audio range, and thus  
does not interfere with the audio signals, resulting in an  
SNR of 93dB. Although not typically required, addition-  
al high-frequency noise attenuation can be achieved by  
increasing the size of C2 (see the Typical Application  
Circuits). The charge pump is active in both speaker  
and headphone modes.  
1
3D_START =  
2πRC  
where R = 7kΩ and C = CR_H and CL_H.  
1
3D_STOP =  
2πRC  
where R = 7kΩ and C = CR_L and CL_L.  
For example, with CR_L = CL_L = 2.2nF and CR_H =  
CL_H = 22nF, the 3D start frequency is 1kHz and the  
3D stop frequency is 10kHz.  
3D Enhancement  
The MAX9775 features a 3D stereo enhancement func-  
tion, allowing the MAX9775 to widen the stereo sound field  
and immerse the listener in a cleaner, richer sound experi-  
ence. Note the MAX9776, mono Class D speaker amplifier  
does not feature 3D stereo enhancement.  
Enabling the 3D sound effect results in an apparent 6dB  
gain because the internal left and right signals are mixed  
together. This gain can be nulled by volume adjusting  
the left and right signals. The volume control can be pro-  
grammed through the I2C-compatible interface to com-  
pensate for the extra 6dB increase in gain. For example,  
As stereo speaker applications become more compact,  
the quality of stereophonic sound is jeopardized.  
______________________________________________________________________________________ 23  
2 x 1.5W, Stereo Class D Audio Subsystem  
with DirectDrive Headphone Amplifier  
if the right and left volume controls are set for a maxi-  
mum gain 0dB (11111 in Table 7, IN+6dB = 0 from Table  
10) before the 3D effect is activated, the volume control  
should be programmed to -6dB (11001 in Table 7)  
immediately after the 3D effect has been activated.  
in the Input Mixer to create the internal signals L, R,  
and M.  
In the second stage of amplification, the internal L, R,  
and M signals are independently volume adjusted.  
Finally, each output amplifier has its own internal gain.  
The speaker, headphone, and mono receiver amplifiers  
have fixed gains of 12dB, 3dB, and 3dB, respectively.  
Signal Path  
The audio inputs of the MAX9775/MAX9776—INA, INB,  
and INC—are preamplified and then mixed by the input  
mixer to create three internal signals: Left (L), Right (R),  
and Mono (M). Tables 5a and 5b show how the inputs  
are mixed to create L, R, and M. These signals are then  
independently volume adjusted by the L, R, and M vol-  
ume control and routed to the output mixer. The output  
mixer mixes the internal L, R, and M signals to create a  
variety of audio mixes that are output to the headphone  
speaker and mono receiver amplifiers. Figure 6 shows  
the signal path that the audio signals take.  
Current-Limit and Thermal Protection  
The MAX9775/MAX9776 feature current limiting and  
thermal protection to protect the device from short cir-  
cuits and overcurrent conditions. The headphone  
amplifier pulses in the event of an overcurrent condition  
with a pulse every 100µs as long as the condition is  
present. Should the current still be high, the above  
cycle is repeated. The speaker amplifier current-limit  
protection clamps the output current without shutting  
down the output. This can result in a distorted output.  
Current is limited to 1.6A in the speaker amplifiers and  
170mA in the headphone and mono receiver amplifiers.  
Signal amplification takes place in three stages. In the  
first stage, the inputs (INA, INB, and INC) are pre-  
amplified. The amount by which each input is amplified  
is determined by the bits INA+20dB (B4 in the Input  
Mode Control Register) and IN+6dB (B3 in the Global  
Control Register). After preamplification, they are mixed  
5/MAX976  
The MAX9775/MAX9776 have thermal protection that  
disables the device at +150°C until the temperature  
decreases to +120°C.  
-75dB TO 0dB  
12dB  
3dB  
SPEAKER  
RVOL  
PREAMPLIFIER  
INPUT  
-75dB TO 0dB  
HEADPHONE  
INPUT  
OUTPUT  
MIXER  
MIXER  
LVOL  
INPUT A:  
0dB, 6dB, 20dB  
0dB TO 6dB  
-75dB TO 0dB  
MVOL  
3dB  
INPUT B AND C:  
0dB, 6dB  
RECEIVER  
MONO  
MONO+6dB  
Figure 7. Signal Path  
24 ______________________________________________________________________________________  
2 x 1.5W, Stereo Class D Audio Subsystem  
with DirectDrive Headphone Amplifier  
5/MAX976  
2
Click-and-Pop Suppression  
In conventional single-supply headphone amplifiers, the  
output-coupling capacitor is a major contributor of audi-  
ble clicks and pops. Upon startup, the amplifier charges  
the coupling capacitor to its bias voltage, typically half the  
supply. Likewise, during shutdown, the capacitor is dis-  
charged to GND. This results in a DC shift across the  
capacitor, which, in turn, appears as an audible transient  
at the speaker. Since the MAX9775/MAX9776 headphone  
amplifier does not require output-coupling capacitors, this  
problem does not arise.  
I C Interface  
The MAX9775/MAX9776 feature an I2C 2-wire serial  
interface consisting of a serial data line (SDA) and a  
serial clock line (SCL). SDA and SCL facilitate commu-  
nication between the MAX9775/MAX9776 and the mas-  
ter at clock rates up to 400kHz. Figure ± shows the  
2-wire interface timing diagram. The MAX9775/  
MAX9776 are receive-only slave devices relying on the  
master to generate the SCL signal. The master, typical-  
ly a microcontroller, generates SCL and initiates data  
transfer on the bus. The MAX9775/MAX9776 cannot  
write to the SDA bus except to acknowledge the receipt  
of data from the master. The MAX9775/MAX9776 will  
not acknowledge a read command from the master.  
In most applications, the output of the preamplifier dri-  
ving the MAX9775/MAX9776 has a DC bias of typically  
half the supply. During startup, the input-coupling  
capacitor is charged to the preamplifier’s DC bias volt-  
age, resulting in a DC shift across the capacitor and an  
audible click/pop. An internal delay of 30ms eliminates  
the click/pop caused by the input filter.  
A master device communicates to the MAX9775/  
MAX9776 by transmitting the proper address followed  
by the data word. Each transmit sequence is framed by  
a START (S) or REPEATED START (Sr) condition and a  
STOP (P) condition. Each word transmitted over the  
bus is ± bits long and is always followed by an  
acknowledge clock pulse.  
Shutdown  
The MAX9775/MAX9776 feature a 0.1µA hard shutdown  
mode that reduces power consumption to extend battery  
life and a soft shutdown where current consumption is  
typically ±.5µA. Hard shutdown is controlled by connect-  
ing the SHDN pin to GND, disabling the amplifiers, bias  
circuitry, charge pump, and I2C. In shutdown, the head-  
phone amplifier output impedance is 1.4kΩ and the  
speaker output impedance is 300kΩ. Similarly, the  
MAX9775/MAX9776 enter soft-shutdown when the SHDN  
bit = 0 (see Table 2). The I2C interface is active and the  
contents of the command register are not affected when  
in soft-shutdown. This allows the master to write to the  
MAX9775/MAX9776 while in shutdown. The I2C interface  
is completely disabled in hardware shutdown. When the  
MAX9775/MAX9776 are re-enabled the default settings  
are applied (see Table 3).  
The MAX9775/MAX9776 SDA line operates as both an  
input and an open-drain output. A pullup resistor,  
greater than 500Ω, is required on the SDA bus. The  
MAX9775/MAX9776 SCL line operates as an input only.  
A pullup resistor (greater than 500Ω) is required on  
SCL if there are multiple masters on the bus or if the  
master in a single-master system has an open-drain  
SCL output. Series resistors in line with SDA and SCL  
are optional. Series resistors protect the digital inputs of  
the MAX9775/MAX9776 from high-voltage spikes on  
the bus lines, and minimize crosstalk and undershoot of  
the bus signals.  
SDA  
t
BUF  
t
t
SU, STA  
SU, DAT  
t
t
SP  
HD, STA  
t
SU, STO  
t
t
HD, DAT  
LOW  
SCL  
t
HIGH  
t
HD, STA  
t
R
t
F
START  
CONDITION  
REPEATED  
START  
STOP  
CONDITION  
START  
CONDITION  
CONDITION  
Figure ±. 2-Wire Serial-Interface Timing Diagram  
______________________________________________________________________________________ 25  
2 x 1.5W, Stereo Class D Audio Subsystem  
with DirectDrive Headphone Amplifier  
Bit Transfer  
One data bit is transferred during each SCL cycle. The  
data on SDA must remain stable during the high period  
of the SCL pulse. Changes in SDA while SCL is high  
are control signals (see the START and STOP  
Conditions section). SDA and SCL idle high when the  
I2C bus is not busy.  
the seven most significant bits (MSBs) followed by the  
Read/Write bit. The address is the first byte of informa-  
tion sent to the MAX9775/MAX9776 after the START  
condition. The MAX9775/MAX9776 are slave devices  
only capable of being written to. The Read/Write bit  
should be a zero when configuring the MAX9775/  
MAX9776.  
START and STOP Conditions  
A master device initiates communication by issuing a  
START condition. A START condition is a high-to-low  
transition on SDA with SCL high. A STOP condition is a  
low-to-high transition on SDA while SCL is high (Figure  
9). A START (S) condition from the master signals the  
beginning of a transmission to the MAX9775/MAX9776.  
The master terminates transmission, and frees the bus,  
by issuing a STOP (P) condition. The bus remains active  
if a REPEATED START (Sr) condition is generated  
instead of a STOP condition.  
Acknowledge  
The acknowledge bit (ACK) is a clocked 9th bit that the  
MAX9775/MAX9776 use to handshake receipt of each  
byte of data (see Figure 10). The MAX9775/MAX9776  
pull down SDA during the master-generated 9th clock  
pulse. Monitoring ACK allows for detection of unsuc-  
cessful data transfers. An unsuccessful data transfer  
occurs if a receiving device is busy or if a system fault  
has occurred. In the event of an unsuccessful data  
transfer, the bus master may reattempt communications.  
5/MAX976  
Early STOP Conditions  
The MAX9775/MAX9776 recognize a STOP condition at  
any point during data transmission except if the STOP  
condition occurs in the same high pulse as a START  
condition.  
Table 1. MAX9775/MAX9776 Address Map  
SLAVE ADDRESS  
PART  
A6  
1
A5  
0
A4  
0
A3  
1
A2  
1
A1  
0
A0 R/W  
MAX9775  
MAX9776  
0
1
0
0
Slave Address  
The MAX9775/MAX9776 are available with one preset  
slave address (see Table 1). The address is defined as  
1
0
0
1
1
0
S
Sr  
P
CLOCK PULSE FOR  
ACKNOWLEDGMENT  
START  
CONDITION  
SCL  
SDA  
SCL  
1
2
8
9
NOT ACKNOWLEDGE  
SDA  
ACKNOWLEDGE  
Figure 10. Acknowledge  
Figure 9. START, STOP, and REPEATED START Conditions  
26 ______________________________________________________________________________________  
2 x 1.5W, Stereo Class D Audio Subsystem  
with DirectDrive Headphone Amplifier  
5/MAX976  
The MAX9775/MAX9776 only accept write data, but  
COMMAND BYTE IS STORED ON  
RECEIPT OF STOP CONDITION  
they acknowledge the receipt of the address byte with  
the R/W bit set high. The MAX9775/MAX9776 do not  
write to the SDA bus in the event that the R/W bit is set  
high. Subsequently, the master reads all 1’s from the  
MAX9775/MAX9776. Always set the R/W bit to zero to  
avoid this situation.  
B7 B6 B5 B4 B3 B2 B1 B0  
ACKNOWLEDGE FROM  
MAX9775/MAX9776  
S
SLAVE ADDRESS  
0
ACK COMMAND BYTE ACK P  
ACKNOWLEDGE  
FROM MAX9775/MAX9776  
R/W  
Programming the MAX9775/MAX9776  
The MAX9775/MAX9776 are programmed through 6  
control registers. Each register is addressed by the 3  
MSBs (B5–B7) followed by 5 configure bits (B0–B4) as  
shown in Table 2. Correct programming of the  
MAX9775/MAX9776 requires writing to all 6 control reg-  
isters. Upon power-on, their default settings are as list-  
ed in Table 3.  
Figure 11. Write Data Format Example  
Write Data Format  
A write to the MAX9775/MAX9776 includes transmis-  
sion of a START condition, the slave address with the  
R/W bit set to 0 (Table 1), one byte of data to configure  
the Command Register, and a STOP condition. Figure  
11 illustrates the proper format for one frame.  
Table 2. Control Registers  
B7  
B6  
B5  
B4  
B3  
B2  
DATA  
B1  
B0  
FUNCTION  
COMMAND  
Input Mode Control  
Mono Volume Control  
Left Volume Control  
Right Volume Control  
Output Mode Control  
Global Control Register  
0
0
0
0
1
1
0
0
1
1
0
0
0
1
0
1
0
1
INA+20dB  
INMODE (Tables 5a and 5b)  
MVOL (Table 7)  
LVOL (Table 7)  
RVOL (Table 7)  
MONO+6dB  
OUTMODE (Table 9)  
SHDN  
IN+6dB  
MUTE  
SSM  
3D/MONO  
Table 3. Power-On Reset Conditions  
COMMAND  
Input Mode (000)  
DATA  
10000  
11111  
11111  
11111  
01000  
00011  
DESCRIPTION  
Input A gain = +20dB; input A, B, and C singled-ended stereo inputs  
Maximum volume  
Mono Volume (001)  
Left Volume (010)  
Maximum volume  
Right Volume (011)  
Output Mode (100)  
Global Control Register (101)  
Maximum volume  
0dB of extra mono gain, mode ±: stereo headphone, stereo speaker  
Powered-off, input B/C gain = 0dB, MUTE off, SSM on, 3D/MONO on  
______________________________________________________________________________________ 27  
2 x 1.5W, Stereo Class D Audio Subsystem  
with DirectDrive Headphone Amplifier  
Input Mode Control  
Table 4. Input Mode Control Register  
REGISTER  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
Input Mode Control  
0
0
0
INA+20dB  
INMODE (Tables 5a and 5b )  
The MAX9775/MAX9776 have three flexible inputs that  
can be configured as single-ended stereo inputs or dif-  
ferential mono inputs. All input signals are summed into  
three unique signals—Left (L), Right (R), and Mono  
(M)—which are routed to the output amplifiers. The bit  
INA+20dB allows the option of boosting low-level sig-  
nals on INA. INA+20dB can be set as follows:  
1 = Input A’s gain +20dB for low-level signals such as  
FM receivers.  
0 = Input A’s gain is either 0dB or +6dB as set by  
IN+6dB (bit B3 of the Control Register).  
Tables 5a and 5b show how the inputs—INA, INB, and  
INC—are mixed to create the internal signals Left (L),  
Right (R), and Mono (M).  
Table 5a. Input Mode  
PROGRAMMING MODE  
INPUT CONFIGURATION  
INMODE  
INA1  
INA2  
INB1  
INB2  
INC1  
INC2  
5/MAX976  
B3  
0
0
0
0
0
0
0
0
1
1
1
1
B2  
0
0
0
0
1
1
1
1
0
0
0
0
B1  
0
0
1
1
0
0
1
1
0
0
1
1
B0  
0
1
0
1
0
1
0
1
0
1
0
1
L
L
L
R
R
R
L
R
R
L
R
M-  
R
L
M+  
L
M+  
M+  
R+  
L+  
L
M-  
M-  
R-  
L-  
R
L
R
M+  
L+  
R+  
L
M-  
L-  
R-  
R
L
L
R
R
M+  
M+  
M+  
M+  
M+  
M+  
M-  
M-  
M-  
M-  
M-  
M-  
L
R
M+  
L
M-  
R
M+  
M+  
R+  
L+  
M-  
M-  
R-  
L-  
M+  
L+  
R+  
M-  
L-  
R-  
Table 5b. Internal Signals L, R, and M  
PROGRAMMING MODE  
INMODE  
INTERNAL SIGNALS LEFT (L), RIGHT (R), AND MONO (M)  
R
L
M
B3  
0
B2  
0
B1  
0
B0  
0
INA1 + INB1 + INC1  
INA1 + INB1  
INA1 + INC1  
INA1  
INA2 + INB2 + INC2  
INA2 + INB2  
INA2 + INC2  
INA2  
0
0
0
1
INC1 - INC2  
INB1 - INB2  
0
0
1
0
0
0
1
1
(INB1 - INB2) + (INC1 - INC2)  
0
0
1
1
0
0
0
1
INA1 + (INC1 - INC2)  
INA1 + (INB1 - INB2)  
INB1 + INC1  
INB1  
INA2 + (INB1 - INB2)  
INA2 + (INC1 - INC2)  
INB2 + INC2  
INB2  
0
1
1
0
INA1 - INA2  
0
1
1
0
1
0
1
0
(INA1 - INA2) + (INC1 - INC2)  
(INA1 - INA2) + (INB1 - INB2)  
INC1  
INC2  
(INA1 - INA2) + (INB1 - INB2)  
+ (INC1 - INC2)  
1
0
0
1
1
1
0
0
1
1
0
1
INC1 - INC2  
INB1 - INB2  
INB1 - INB2  
INC1 - INC2  
INA1 - INA2  
INA1 - INA2  
28 ______________________________________________________________________________________  
2 x 1.5W, Stereo Class D Audio Subsystem  
with DirectDrive Headphone Amplifier  
5/MAX976  
Mono/Left/Right Volume Control  
Table 6. Mono/Left/Right Volume Control Registers  
REGISTER  
Mono Volume Control  
B7  
0
B6  
0
B5  
1
B4  
B3  
B2  
B1  
B0  
MVOL  
LVOL  
RVOL  
Left Volume Control  
Right Volume Control  
0
1
0
0
1
1
The MAX9775/MAX9776 have separate volume controls  
for each of the internal signals: Left (L), Right (R), and  
Mono (M). The final gain of each signal is determined  
by the way the following bits are set: MVOL, LVOL,  
RVOL, INA+20dB, IN+6dB, and MONO+6dB. Table 7  
shows how to configure the L, R, and M amplifiers for  
specific gains.  
Table 7. Volume Control Settings  
MVOL/LVOL/RVOL  
GAIN (dB)  
MVOL/LVOL/RVOL  
GAIN (dB)  
B4  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
B3  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
B2  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
B1  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
B0  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
B4  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
B3  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
B2  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
B1  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
B0  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
Mute  
-75  
-71  
-67  
-63  
-59  
-55  
-51  
-47  
-44  
-41  
-3±  
-35  
-32  
-29  
-26  
-23  
-21  
-19  
-17  
-15  
-13  
-11  
-9  
-7  
-6  
-5  
-4  
-3  
-2  
-1  
0
______________________________________________________________________________________ 29  
2 x 1.5W, Stereo Class D Audio Subsystem  
with DirectDrive Headphone Amplifier  
Output Mode Control  
Table 8. Output Mode Control Register  
REGISTER  
Output Mode Control  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
1
0
0
MONO+6dB  
OUTMODE (Table 9)  
MONO+6dB in the Output Mode Control register allows  
an extra 6dB of gain on the internal mono signal:  
amplifier, and a stereo Class D amplifier. The MAX9776  
has four output amplifiers: a mono receiver amplifier, a  
stereo DirectDrive headphone amplifier, and a mono  
Class D amplifier.  
1 = Additional 6dB of gain is applied to the internal  
Mono (M) signal path.  
Table 9 shows how each of the three internal signals—  
Left (L), Right (R), and Mono (M)—are mixed and rout-  
ed to the various outputs.  
0 = No additional gain is applied to the Internal Mono  
(M) signal path.  
The MAX9775 has five output amplifiers: a mono  
receiver amplifier, a stereo DirectDrive headphone  
Table 9. Output Modes  
5/MAX976  
OUTMODE  
MAX9775  
MAX9776  
MODE  
RECEIVER  
LEFT HP  
RIGHT HP  
RIGHT  
B3  
0
B2  
0
B1  
0
B0  
0
LEFT SPK  
SPK  
0
1
2
3
4
5
M
M
M
M
M
0
0
0
1
0
0
1
0
M
0
0
1
1
M
M
M
0
1
0
0
M
M
0
1
0
1
1
6
0
1
1
0
/ (L + R)  
2
7
±
0
1
1
1
1
0
0
0
1
0
0
1
1
0
1
0
1
L
R
L
L
R
R
L + R  
L + R  
9
L
R
10  
11  
1
0
1
1
M + / (L + R)  
2
12  
13  
14  
15  
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
L + M  
L + M  
R + M  
R + M  
L + R + 2M  
L + R + 2M  
L + M  
L + M  
MUTE  
R + M  
R + M  
MUTE  
MUTE  
MUTE  
MUTE  
MUTE  
— = Amplifier off.  
L = Left signal.  
R = Right signal.  
M = Mono signal.  
30 ______________________________________________________________________________________  
2 x 1.5W, Stereo Class D Audio Subsystem  
with DirectDrive Headphone Amplifier  
5/MAX976  
Global Control Register  
Table 10. Global Control Register  
REGISTER  
Global Control Register  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
1
0
1
SHDN  
IN+6dB  
MUTE  
SSM  
3D/MONO  
The Global Control Register is used for global configu-  
rations, those affecting all inputs and outputs. The bits  
in the control register are shown in Table 11.  
Table 11. Global Control Register Configurations  
BIT  
NAME  
FUNCTION  
1 = Normal operation  
B4  
SHDN  
0 = Low-power shutdown mode. I2C settings are saved.  
1 = All input signals are boosted by 6dB.  
0 = All input signals are passed un-amplified.  
This bit does not affect INA if the INA+20dB bit (B4 of the Input Mode Control Register) is set to  
1, in which case INA is boosted by 20dB.  
B3  
IN+6dB  
1 = Mute all outputs.  
0 = All outputs are active.  
B2  
B1  
MUTE  
SSM  
1 = Spread-spectrum Class D modulation.  
0 = Fixed-frequency Class D modulation.  
MAX9775:  
1 = 3D Enhancement is on.  
B0  
3D/MONO  
0 = 3D Enhancement is off.  
1 = Speakers will output L+R in modes 7, ±, 12, and 13 (see Table 9).  
0 = Speakers will output L in modes 7, ±, 12, and 13 (see Table 9).  
of most speakers, voice coil movement due to the  
Applications Information  
square-wave frequency is very small. Although this move-  
ment is small, a speaker not designed to handle the addi-  
tional power may be damaged. For optimum results use a  
speaker with a series inductance > 10µH. Typical ±Ω  
speakers, for portable audio applications, exhibit series  
inductances in the 20µH to 100µH range.  
Class D Filterless Operation  
Traditional Class D amplifiers require an output filter to  
recover the audio signal from the amplifier’s PWM out-  
put. The filters add cost, increase the solution size of  
the amplifier, and can decrease efficiency. The tradi-  
tional PWM scheme uses large differential output  
Input Amplifier  
swings (2 x V  
) and causes large ripple currents.  
DD(P-P)  
Any parasitic resistance in the filter components results  
in a loss of power, lowering the efficiency.  
Differential Input  
The MAX9775/MAX9776 feature a programmable differ-  
ential input structure, making it compatible with many  
CODECs, and offering improved noise immunity over a  
single-ended input amplifier. In devices such as cell  
phones, high-frequency signals from the RF transmitter  
can be picked up by the amplifier’s input traces. The  
signals appear at the amplifier’s inputs as common-  
mode noise. A differential input amplifier amplifies the  
difference of the two inputs and any signal common to  
both is cancelled.  
The MAX9775/MAX9776 do not require an output filter.  
The device relies on the inherent inductance of the  
speaker coil and the natural filtering of both the speak-  
er and the human ear to recover the audio component  
of the square-wave output. Eliminating the output filter  
results in a smaller, less costly, more efficient solution.  
Because the switching frequency of the MAX9775/  
MAX9776 speaker output is well beyond the bandwidth  
______________________________________________________________________________________ 31  
2 x 1.5W, Stereo Class D Audio Subsystem  
with DirectDrive Headphone Amplifier  
Single-Ended Input  
The MAX9775/MAX9776 can be configured as a single-  
ended input amplifier by appropriately configuring the  
Input Control Register (see Tables 5a and 5b).  
cally 300Hz to 3.5kHz). In addition, speakers used in  
portable devices typically have a poor response below  
300Hz. Taking these two factors into consideration, the  
input filter may not need to be designed for a 20Hz to  
20kHz response, saving both board space and cost  
due to the use of smaller capacitors.  
DC-Coupled Input  
The input amplifier can accept DC-coupled inputs that  
are biased to the amplifier’s bias voltage. DC-coupling  
eliminates the input-coupling capacitors; reducing com-  
ponent count to potentially six external components  
(see the Typical Application Circuits). However, the  
highpass filtering effect of the capacitors is lost, allow-  
ing low-frequency signals to feed through to the load.  
Class D Output Filter  
The MAX9775/MAX9776 do not require a Class D out-  
put filter. The devices pass EN55022B emission stan-  
dards with 152mm of unshielded speaker cables.  
However, output filtering can be used if a design is fail-  
ing radiated emissions due to board layout or cable  
length, or the circuit is near EMI-sensitive devices. Use  
a ferrite bead filter when radiated frequencies above  
10MHz are of concern. Use an LC filter when radiated  
frequencies below 10MHz are of concern, or when long  
leads (> 152mm) connect the amplifier to the speaker.  
Figure 12 shows optional speaker amplifier output filters.  
Unused Inputs  
Connect any unused input pin directly to VBIAS. This  
saves input capacitors on unused inputs and provides  
the highest noise immunity on the input.  
Component Selection  
5/MAX976  
External Component Selection  
Input Filter  
An input capacitor (C ) in conjunction with the input  
IN  
BIAS Capacitor  
impedance of the MAX9775/MAX9776 form a highpass  
filter that removes the DC bias from the incoming signal.  
The AC-coupling capacitor allows the amplifiers to auto-  
matically bias the signal to an optimum DC level.  
Assuming zero source impedance, the -3dB point of the  
highpass filter is given by:  
V
is the output of the internally generated DC bias  
BIAS  
voltage. The V  
bypass capacitor, C  
improves  
BIAS  
VBIAS  
PSRR and THD+N by reducing power supply and other  
noise sources at the common-mode bias node, and  
also generates the clickless/popless, startup/shutdown  
DC bias waveforms for the speaker amplifiers. Bypass  
V
BIAS  
with a 1µF capacitor to GND.  
1
f3dB  
Choose C so that f  
=
2πR C  
IN IN  
22Ω  
is well below the lowest fre-  
-3dB  
IN  
quency of interest. Use capacitors whose dielectrics  
have low-voltage coefficients, such as tantalum or alu-  
minum electrolytic. Capacitors with high-voltage coeffi-  
cients, such as ceramics, may result in increased  
distortion at low frequencies.  
0.033μF  
0.033μF  
0.1μF  
33μH  
OUT_+  
OUT_-  
0.47μF  
0.1μF  
Other considerations when designing the input filter  
include the constraints of the overall system and the  
actual frequency band of interest. Although high-fidelity  
audio calls for a flat-gain response between 20Hz and  
20kHz, portable voice-reproduction devices such as cell  
phones and two-way radios need only concentrate on  
the frequency range of the spoken human voice (typi-  
33μH  
22Ω  
Figure 12. Speaker Amplifier Output Filter  
32 ______________________________________________________________________________________  
2 x 1.5W, Stereo Class D Audio Subsystem  
with DirectDrive Headphone Amplifier  
5/MAX976  
Charge-Pump Capacitor Selection  
Use capacitors with an ESR less than 100mΩ for opti-  
mum performance. Low-ESR ceramic capacitors mini-  
mize the output resistance of the charge pump. Most  
surface-mount ceramic capacitors satisfy the ESR  
requirement. For best performance over the extended  
temperature range, select capacitors with an X7R dielec-  
tric or better. Table 12 lists suggested manufacturers.  
Connect all of the power-supply inputs (CPV , V  
,
DD  
DD  
and PV ) together. Bypass CPV  
with a 1µF capaci-  
DD  
DD  
tor to CPGND. Bypass V  
Bypass PV  
with 1µF capacitor to GND.  
with a 1µF capacitor in parallel with a  
DD  
DD  
0.1µF capacitor to PGND. Place the bypass capacitors  
as close to the MAX9775/MAX9776 as possible. Place  
a bulk capacitor between PV  
and PGND if needed.  
DD  
Use large, low-resistance output traces. Current drawn  
from the outputs increases as load impedance  
decreases. High output trace resistance decreases the  
power delivered to the load. Large output, supply, and  
GND traces also allow more heat to move from the  
MAX9775/MAX9776 to the PCB, decreasing the thermal  
impedance of the circuit.  
Flying Capacitor (C1)  
The value of the flying capacitor (C1) affects the output  
resistance of the charge pump. A C1 value that is too  
small degrades the device’s ability to provide sufficient  
current drive, which leads to a loss of output voltage.  
Increasing the value of C1 reduces the charge-pump out-  
put resistance to an extent. Above 1µF, the on-resistance  
of the switches and the ESR of C1 and C2 dominate.  
TQFN Applications Information  
The MAX9776 TQFN-EP package features an exposed  
thermal pad on its underside. This pad lowers the  
package’s thermal impedance by providing a direct  
heat conduction path from the die to the PCB. The  
exposed pad is internally connected to GND. Connect  
the exposed thermal pad to the PCB GND plane.  
Output Capacitor (C2)  
The output capacitor value and ESR directly affect the  
ripple at CPV . Increasing the value of C2 reduces  
SS  
output ripple. Likewise, decreasing the ESR of C2  
reduces both ripple and output resistance. Lower  
capacitance values can be used in systems with low  
maximum output power levels. See the Output Power  
vs. Load Resistance and Charge-Pump Capacitor Size  
graph in the Typical Operating Characteristics.  
WLP Applications Information  
For the latest application details on WLP construction,  
dimensions, tape carrier information, PCB techniques,  
bump-pad layout, and recommended reflow tempera-  
ture profile, as well as the latest information of reliability  
testing results, refer to Application Note 1±91:  
Understanding the Basics of the Wafer-Level Chip-  
Scale Package (WL-CSP) available on Maxim’s website  
at www.maxim-ic.com/ucsp.  
CPV  
Bypass Capacitor (C3)  
DD  
The CPV  
bypass capacitor (C3) lowers the output  
DD  
impedance of the power supply and reduces the  
impact of the MAX9775/MAX9776’s charge-pump  
switching transients. Bypass CPV  
and place it physically close to the CPV  
Use a value for C3 that is equal to C1.  
with C3 to PGND  
DD  
and PGND.  
DD  
WLP Thermal Consideration  
When operating at maximum output power, the WLP  
thermal dissipation can become a limiting factor. The  
WLP package does not dissipate as much power as a  
TQFN and as a result will operate at a higher tempera-  
ture. At peak output power into a 4Ω load, the  
MAX9775/MAX9776 can exceed its thermal limit, trig-  
gering thermal protection. As a result, do not choose  
the WLP package when maximum output power into 4Ω  
is required.  
Supply Bypassing, Layout, and Grounding  
Proper layout and grounding are essential for optimum  
performance. Use large traces for the power-supply  
inputs and amplifier outputs to minimize losses due to  
parasitic trace resistance. Large traces also aid in mov-  
ing heat away from the package. Proper grounding  
improves audio performance, minimizes crosstalk  
between channels, and prevents any switching noise  
from coupling into the audio signal. Connect PGND and  
GND together at a single point on the PCB. Route all  
traces that carry switching transients away from GND  
and the traces/components in the audio signal path.  
Table 12. Suggested Capacitor Manufacturers  
SUPPLIER  
Taiyo Yuden  
TDK  
PHONE  
FAX  
WEBSITE  
www.t-yuden.com  
www.component.tdk.com  
±00-34±-2496  
±07-±03-6100  
±47-925-0±99  
±47-390-4405  
______________________________________________________________________________________ 33  
2 x 1.5W, Stereo Class D Audio Subsystem  
with DirectDrive Headphone Amplifier  
Pin Configurations  
TOP VIEW  
(BUMPS ON BOTTOM)  
1
2
3
4
5
6
1
2
3
4
5
6
CPV  
C1P  
CPGND  
CPV  
SS  
C1N  
HPL  
CPV  
C1P  
CPGND  
CPV  
DD  
C1N  
HPL  
DD  
SS  
A
B
A
B
I.C.  
I.C.  
SDA  
VBIAS  
V
INC1  
HPR  
CL_L  
OUTL+  
PGND  
OUTL-  
CL_H  
SDA  
VBIAS  
V
SS  
INC1  
HPR  
SS  
OUT+  
PGND  
OUT-  
INC2  
INB2  
INB1  
OUTRx  
INC2  
INB2  
INB1  
OUTRx  
C
D
E
C
D
E
MAX9776  
MAX9775  
SCL  
V
DD  
SCL  
V
DD  
SHDN  
INA1  
INA2  
I.C.  
I.C.  
SHDN  
INA1  
INA2  
CR_L  
GND  
5/MAX976  
PV  
DD  
I.C.  
PGND  
I.C.  
GND  
PV  
DD  
OUTR-  
PGND  
OUTR+  
CR_H  
F
F
WLP  
WLP  
TOP VIEW  
32 31 30 29 28 27 26 25  
PV  
1
2
3
4
5
6
7
8
24 INB1  
DD  
I.C.  
OUT-  
SCL  
23  
+
*EP  
22 INB2  
PGND  
OUT+  
SDA  
I.C.  
21 V  
DD  
20 OUTRx  
19 INC2  
18 HPR  
MAX9776  
I.C.  
17 V  
SS  
9
10 11 12 13 14 15 16  
TQFN-EP*  
Chip Information  
PROCESS: BiCMOS  
34 ______________________________________________________________________________________  
2 x 1.5W, Stereo Class D Audio Subsystem  
with DirectDrive Headphone Amplifier  
5/MAX976  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
______________________________________________________________________________________ 35  
2 x 1.5W, Stereo Class D Audio Subsystem  
with DirectDrive Headphone Amplifier  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
5/MAX976  
36 ______________________________________________________________________________________  
2 x 1.5W, Stereo Class D Audio Subsystem  
with DirectDrive Headphone Amplifier  
5/MAX976  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
PACKAGE TYPE PACKAGE CODE DOCUMENT NO.  
36 WLP  
W363A3+3  
T3255-4  
21-0024  
21-0140  
32 TQFN-EP  
______________________________________________________________________________________ 37  
2 x 1.5W, Stereo Class D Audio Subsystem  
with DirectDrive Headphone Amplifier  
Revision History  
REVISION REVISION  
PAGES  
CHANGED  
DESCRIPTION  
NUMBER  
DATE  
0
1
3/07  
7/07  
Initial release  
Initial release of MAX9776 UCSP package and updated Tables 3 and 5b  
1, 7, 27, 2±  
Initial release of MAX9775 UCSP and removal of MAX9775 TQFN, updated Pin  
Description and Table 9  
2
9/07  
1, 12, 15, 30, 33, 34  
3
4
1/0±  
±/0±  
Updated the Typical Application Circuits  
17, 1±  
Changed package code and drawing  
1, 33, 34, 37  
5/MAX976  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
38 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 200± Maxim Integrated Products  
is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX9776

2 x 1.5W, Stereo Class D Audio Subsystem with DirectDrive Headphone Amplifier
MAXIM

MAX9776EBX+T

2 x 1.5W, Stereo Class D Audio Subsystem with DirectDrive Headphone Amplifier
MAXIM

MAX9776EBX+TG45

Volume Control Circuit
MAXIM

MAX9776ETJ+

2 x 1.5W, Stereo Class D Audio Subsystem with DirectDrive Headphone Amplifier
MAXIM

MAX9776ETJ+T

Volume Control Circuit, 1 Channel(s), BICMOS, 5 X 5 MM, 0.80 MM HEIGHT, ROHS COMPLIANT, MO-220WHHD-2, TQFN-32
MAXIM

MAX9776EVKIT

Highly Programmable Input and Output Modes
MAXIM

MAX9776EVKIT+

Highly Programmable Input and Output Modes
MAXIM

MAX9777

Stereo 3W Audio Power Amplifiers with Headphone Drive and Input Mux
MAXIM

MAX9777ETI+

Stereo 3W Audio Power Amplifiers with Headphone Drive and Input Mux
MAXIM

MAX9778

Stereo 3W Audio Power Amplifiers with Headphone Drive and Input Mux
MAXIM

MAX9778ETI+

3W, 2 CHANNEL, AUDIO AMPLIFIER, QCC28, 5 X 5 MM, 0.80 MM HEIGHT, LEAD FREE, MO-220WHHD-1, TQFN-28
ROCHESTER

MAX9778ETI+

Stereo 3W Audio Power Amplifiers with Headphone Drive and Input Mux
MAXIM