MAX9778ETI+ [MAXIM]

Stereo 3W Audio Power Amplifiers with Headphone Drive and Input Mux;
MAX9778ETI+
型号: MAX9778ETI+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Stereo 3W Audio Power Amplifiers with Headphone Drive and Input Mux

文件: 总27页 (文件大小:1208K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
µ
19-0509; Rev 0; 4/06  
Stereo 3W Audio Power Amplifiers with  
Headphone Drive and Input Mux  
/MAX978  
General Description  
Features  
Industry-Leading, Ultra-High 100dB PSRR  
The MAX9777/MAX9778 combine a stereo 3W bridge-  
tied load (BTL) audio power amplifier, stereo single-  
ended (SE) headphone amplifier, headphone sensing,  
and a 2:1 input multiplexer all in a tiny 28-pin thin QFN  
package. These devices operate from a single 4.5V to  
5.5V supply and feature an industry-leading 100dB  
PSRR, allowing these devices to operate from noisy  
supplies without the addition of a linear regulator. An  
ultra-low 0.002% THD+N ensures clean, low-distortion  
amplification of the audio signal. Click-and-pop sup-  
pression minimizes audible transients on power and  
shutdown cycles. Power-saving features include low  
3W BTL Stereo Speaker Amplifier  
200mW Stereo Headphone Amplifier  
Low 0.002% THD+N  
Click-and-Pop Suppression  
ESD-Protected Outputs  
Low Quiescent Current: 13mA  
Low-Power Shutdown Mode: 10µA  
MUTE Function  
Headphone Sense Input  
Stereo 2:1 Input Multiplexer  
4mV V  
(minimizes DC current drain through the  
OS  
speakers), low 13mA supply current, and a 10µA shut-  
down mode. A MUTE function allows the outputs to be  
quickly enabled or disabled.  
2
Optional 2-Wire, I C-Compatible or Parallel  
Interface  
Tiny 28-Pin Thin QFN (5mm x 5mm x 0.8mm)  
A headphone sense input detects the presence of a  
headphone jack and automatically configures the  
amplifiers for either speaker or headphone mode. In  
speaker mode, the amplifiers can deliver up to 3W of  
continuous average power into a 3Ω load. In head-  
phone mode, the amplifier can deliver up to 200mW of  
continuous average power into a 16Ω load. The gain of  
the amplifiers is externally set, allowing maximum flexi-  
bility in optimizing output levels for a given load. The  
amplifiers also feature a 2:1 input multiplexer, allowing  
multiple audio sources to be selected. The multiplexer  
can also be used to compensate for limitations in the  
frequency response of the loud speakers by selecting  
an external equalizer network. The various functions are  
Package  
Ordering Information  
CONTROL  
INTERFACE  
PIN-  
PACKAGE  
PKG  
PART  
CODE  
2
MAX9777ETI+  
MAX9778ETI+  
I C Compatible 28 Thin QFN-EP* T2855-6  
Parallel 28 Thin QFN-EP* T2855-6  
Note: All devices are specified over the -40°C to +85°C operat-  
ing temperature range.  
+Denotes lead-free package.  
*EP = Exposed paddle.  
Pin Configurations and Functional Diagrams appear at end  
of data sheet.  
2
controlled by either an I C-compatible (MAX9777) or  
simple parallel control interface (MAX9778).  
The MAX9777/MAX9778 are available in a thermally  
efficient 28-pin thin QFN package (5mm x 5mm x  
0.8mm). These devices have thermal-overload protec-  
tion (OVP) and are specified over the extended -40°C  
to +85°C temperature range.  
Simplified Block Diagram  
SINGLE SUPPLY  
4.5V TO 5.5V  
LEFT IN1  
LEFT IN2  
Applications  
SE/  
BTL  
Notebooks  
PC Audio Peripherals  
Camcorders  
Portable DVD Players  
Tablet PCs  
RIGHT IN1  
RIGHT IN2  
Multimedia Monitor  
I2C-  
CONTROL  
COMPATIBLE  
MAX9777  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
Stereo 3W Audio Power Amplifiers with  
Headphone Drive and Input Mux  
ABSOLUTE MAXIMUM RATINGS  
DD  
V
to GND ...........................................................................+6V  
Continuous Power Dissipation (T = +7±°C)  
A
PV  
to V  
.......................................................................±±.ꢀV  
ꢁ8-Pin TQFN, Multilayer Board  
DD  
DD  
PGND to GND.....................................................................±±.ꢀV  
All Other Pins to GND.................................-±.ꢀV to (V + ±.ꢀV)  
Continuous Input Current (into any pin except power-supply  
and output pins) ...............................................................±±mA  
OUT__ Short Circuit to GND, V ..........................................1±s  
DD  
(derate ꢀ4.5mW/°C above +7±°C)..........................ꢁ758.6mW  
Operating Temperature Range ...........................-4±°C to +85°C  
Storage Temperature Range.............................-65°C to +15±°C  
Junction Temperature......................................................+15±°C  
Lead Temperature (soldering, 1±s) .................................+ꢀ±±°C  
DD  
Short Circuit Between OUT_+ and OUT_- .................Continuous  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
= PV  
= 5.±V, GND = PGND = ±V, V  
= 5V, C  
= 1µF, R = R = 15k, R = . T = T  
to T  
, unless otherwise  
MAX  
SHDN  
DD  
DD  
BIAS  
IN  
F
L
A
MIN  
noted. Typical values are at T = +ꢁ5°C.) (Note 1)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
Inferred from PSRR test  
BTL mode, HPS = ±V, MAX9777/MAX9778  
MIN  
TYP  
MAX  
UNITS  
/MAX978  
Supply Voltage Range  
V
/PV  
4.5  
5.5  
V
DD  
DD  
1ꢀ  
ꢀꢁ  
18  
5±  
Quiescent Supply Current  
I
mA  
DD  
(I  
+ I  
)
VDD  
PVDD  
Single-ended mode, HPS = V  
SHDN = GND  
7
1±  
DD  
Shutdown Current  
Switching Time  
I
µA  
µs  
SHDN  
t
Gain or input switching  
1±  
SW  
C
C
= 1µF  
ꢀ±±  
ꢀ±  
BIAS  
BIAS  
Turn-On Time  
t
ms  
ON  
= ±.1µF  
Thermal Shutdown Threshold  
Thermal Shutdown Hysteresis  
+16±  
15  
oC  
oC  
OUTPUT AMPLIFIERS (SPEAKER MODE, HPS = GND)  
Output Offset Voltage  
V
OUT_+ - OUT_-, A = 1V/V  
4
1±±  
8ꢁ  
ꢀꢁ  
mV  
dB  
OS  
V
V
= 4.5V to 5.5V  
75  
DD  
Power-Supply Rejection Ratio  
(Note ꢁ)  
PSRR  
f = 1kHz, V  
= ꢁ±±mV  
P-P  
RIPPLE  
f = ꢁ±kHz, V  
= ꢁ±±mV  
7±  
RIPPLE  
P-P  
R
R
R
= 8  
1.4  
ꢁ.6  
L
f
= 1kHz,  
IN  
Output Power  
P
THD+N < 1%,  
T
= 4Ω  
= ꢀΩ  
W
%
OUT  
L
= +ꢁ5°C  
A
L
P
P
= 1W, R = 8Ω  
±.±±5  
±.±1  
95  
OUT  
OUT  
L
Total Harmonic Distortion Plus  
Noise  
f
= 1kHz, BW =  
IN  
THD+N  
ꢁꢁHz to ꢁꢁkHz  
= ꢁW, R = 4Ω  
L
Signal-to-Noise Ratio  
Slew Rate  
SNR  
SR  
R
= 8, P  
= 1W, BW = ꢁꢁHz to ꢁꢁkHz  
OUT  
dB  
V/µs  
nF  
L
1.6  
1
Maximum Capacitive Load Drive  
Crosstalk  
C
No sustained oscillations  
= 1±kHz  
L
f
7ꢀ  
dB  
IN  
Peak voltage, A-weighted,  
ꢀꢁ samples per second  
(Notes ꢁ, 6)  
Into shutdown  
-5±  
-65  
Click/Pop Level  
K
dBV  
CP  
Out of shutdown  
2
_______________________________________________________________________________________  
Stereo 3W Audio Power Amplifiers with  
Headphone Drive and Input Mux  
/MAX978  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= PV  
= 5.±V, GND = PGND = ±V, V  
= 5V, C  
= 1µF, R = R = 15k, R = . T = T  
to T  
, unless otherwise  
MAX  
SHDN  
DD  
DD  
BIAS  
IN  
F
L
A
MIN  
noted. Typical values are at T = +ꢁ5°C.) (Note 1)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
OUTPUT AMPLIFIERS (HEADPHONE MODE, HPS = V  
)
DD  
V
= 4.5V to 5.5V  
75  
1±6  
88  
DD  
Power-Supply Rejection Ratio  
(Note ꢁ)  
PSRR  
f = 1kHz, V  
= ꢁ±±mV  
dB  
RIPPLE  
P-P  
f = ꢁ±kHz, V  
= ꢁ±±mV  
76  
RIPPLE  
P-P  
R
= ꢀꢁΩ  
= 16Ω  
88  
L
L
f
= 1kHz, THD+N <  
IN  
Output Power  
P
mW  
OUT  
1%, T = +ꢁ5°C  
A
R
ꢁ±±  
P
R
= 6±mW,  
= ꢀꢁΩ  
OUT  
±.±±ꢁ  
±.±±ꢁ  
9ꢁ  
L
Total Harmonic Distortion Plus  
Noise  
f
= 1kHz,  
IN  
THD+N  
%
BW = ꢁꢁHz to ꢁꢁkHz  
P
R
= 1ꢁ5mW,  
= 16Ω  
OUT  
L
R
V
= ꢀꢁ, BW = ꢁꢁHz to ꢁꢁkHz,  
L
Signal-to-Noise Ratio  
SNR  
SR  
dB  
= 1V  
OUT  
RMS  
Slew Rate  
1.8  
V/µs  
nF  
Maximum Capacitive Load Drive  
Crosstalk  
C
No sustained oscillations  
= 1±kHz  
L
f
78  
dB  
IN  
BIAS VOLTAGE (BIAS)  
BIAS Voltage  
V
R
ꢁ.ꢀ5  
ꢁ.5  
5±  
ꢁ.65  
V
BIAS  
Output Resistance  
kΩ  
BIAS  
1
DIGITAL INPUTS (MUTE, SHDN, HPS_EN, GAINA/B, IN /2)  
Input-Voltage High  
V
V
V
IH  
Input-Voltage Low  
V
±.8  
1
IL  
Input Leakage Current  
HEADPHONE SENSE INPUT (HPS)  
I
µA  
IN  
±.9 x  
Input-Voltage High  
V
V
IH  
V
DD  
±.7 x  
Input-Voltage Low  
V
V
IL  
V
DD  
Input Leakage Current  
I
1
µA  
IN  
Peak voltage, A-weighted,  
ꢀꢁ samples per second  
(Notes ꢁ, 4)  
Into shutdown  
-7±  
-5ꢁ  
Click/Pop Level  
K
dBV  
CP  
Out of shutdown  
_______________________________________________________________________________________  
3
Stereo 3W Audio Power Amplifiers with  
Headphone Drive and Input Mux  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= PV  
= 5.±V, GND = PGND = ±V, V  
= 5V, C  
= 1µF, R = R = 15k, R = . T = T  
to T  
, unless otherwise  
MAX  
SHDN  
DD  
DD  
BIAS  
IN  
F
L
A
MIN  
noted. Typical values are at T = +ꢁ5°C.) (Note 1)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
2-WIRE SERIAL INTERFACE (SCL, SDA, ADD, INT) (MAX9777)  
Input-Voltage High  
V
ꢁ.6  
V
V
IH  
Input-Voltage Low  
V
±.8  
IL  
Input Hysteresis  
±.ꢁ  
1±  
V
Input High Leakage Current  
Input Low Leakage Current  
Input Capacitance  
I
V
V
= 5V  
= ±V  
1
1
µA  
µA  
pF  
V
IH  
IN  
IN  
I
IL  
C
IN  
OL  
OH  
Output-Voltage Low  
Output Current High  
V
I
= ꢀmA  
±.4  
1
OL  
I
V
= 5V  
µA  
OH  
TIMING CHARACTERISTICS (MAX9777)  
Serial Clock Frequency  
f
4±±  
kHz  
µs  
SCL  
/MAX978  
Bus Free Time Between STOP  
and START Conditions  
t
1.ꢀ  
BUF  
START Condition Hold Time  
START Condition Setup Time  
Clock Period Low  
t
±.6  
±.6  
1.ꢀ  
±.6  
1±±  
±
µs  
µs  
µs  
µs  
ns  
µs  
HD:STA  
t
SU:STA  
t
LOW  
Clock Period High  
t
HIGH  
Data Setup Time  
t
SU:DAT  
HD:DAT  
Data Hold Time  
t
(Note ꢀ)  
(Note 4)  
±.9  
ꢁ± +  
Receive SCL/SDA Rise Time  
Receive SCL/SDA Fall Time  
Transmit SDA Fall Time  
t
r
t
f
t
f
ꢀ±±  
ns  
ns  
ns  
ns  
±.1C  
B
ꢁ± +  
±.1C  
(Note 4)  
(Note 4)  
(Note 5)  
ꢀ±±  
ꢁ5±  
B
ꢁ± +  
±.1C  
B
Pulse Width of Suppressed  
Spike  
t
5±  
SP  
Note 1: All devices are 1±±% production tested at +ꢁ5°C. All temperature limits are guaranteed by design.  
Note 2: Inputs AC-coupled to GND.  
Note 3: A master device must provide a hold time of at least ꢀ±±ns for the SDA signal to bridge the undefined region of SCL’s  
falling edge.  
Note 4: C = total capacitance of one of the bus lines in picofarads. Device tested with C = 4±±pF. 1kpullup resistors connected  
B
B
from SDA/SCL to V  
.
DD  
Note 5: Input filters on SDA, SCL, and ADD suppress noise spikes of less than 5±ns.  
Note 6: Headphone mode testing performed with ꢀꢁresistive load connected to GND. Speaker mode testing performed with 8Ω  
resistive load connected to GND. Mode transitions are controlled by SHDN. KCP level is calculated as ꢁ±log[(peak voltage  
during mode transition, no input signal)/1V  
]. Units are expressed in dBV.  
RMS  
4
_______________________________________________________________________________________  
Stereo 3W Audio Power Amplifiers with  
Headphone Drive and Input Mux  
/MAX978  
Typical Operating Characteristics  
(V  
DD  
= PV  
= 5V, GND = PGND = ±V, V  
= 5V, C  
= 1µF, T = +ꢁ5°C, unless otherwise noted.)  
BIAS  
A
DD  
SHDN  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY (SPEAKER MODE)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY (SPEAKER MODE)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY (SPEAKER MODE)  
1
1
1
R = 3  
L
R = 4Ω  
L
R = 3Ω  
L
A
= 4V/V  
A = 2V/V  
V
V
A
V
= 2V/V  
0.1  
0.1  
0.01  
0.1  
P
= 500mW  
= 1W  
P
OUT  
P
OUT  
P
= 500mW  
P
= 1W  
OUT  
OUT  
P
= 250mW  
P
OUT  
= 500mW  
OUT  
0.01  
0.01  
= 2.5W  
OUT  
P
= 2W  
100  
OUT  
P
= 2W  
P
= 2.5W  
1k  
OUT  
OUT  
P
= 2W  
OUT  
P
= 1W  
100  
OUT  
0.001  
0.001  
0.001  
10  
1k  
FREQUENCY (Hz)  
10k  
100k  
10  
1k  
FREQUENCY (Hz)  
10k  
100k  
10  
100  
10k  
100k  
FREQUENCY (Hz)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY (SPEAKER MODE)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY (SPEAKER MODE)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY (SPEAKER MODE)  
1
1
1
R = 8Ω  
L
R = 8Ω  
L
R = 4Ω  
L
A
= 2V/V  
A
= 4V/V  
A
= 4V/V  
V
V
V
0.1  
0.1  
0.01  
0.1  
P
= 250mW  
P
= 500mW  
OUT  
OUT  
P
= 250mW  
P
= 500mW  
OUT  
OUT  
P
= 250mW  
OUT  
P
= 500mW  
= 1.2W  
OUT  
P
0.01  
0.001  
0.01  
0.001  
P
= 2W  
OUT  
1k  
P
= 1W  
100  
OUT  
P
= 1.2W  
OUT  
1k  
P
= 1W  
OUT  
OUT  
P
= 1W  
OUT  
0.001  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
10  
10k  
100k  
10  
100  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER (SPEAKER MODE)  
100  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER (SPEAKER MODE)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER (SPEAKER MODE)  
100  
100  
A = 4V/V  
V
A
= 2V/V  
A
= 2V/V  
V
V
R = 3Ω  
L
R = 3Ω  
L
R = 4Ω  
L
10  
10  
10  
1
1
1
f = 10kHz  
f = 1kHz  
f = 10kHz  
f = 10kHz  
0.1  
0.1  
0.1  
f = 20Hz  
f = 1kHz  
1
f = 1kHz  
0.01  
0.001  
0.01  
0.001  
0.01  
0.001  
f = 20Hz  
f = 20Hz  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5  
OUTPUT POWER (W)  
0
2
3
4
0
1
2
OUTPUT POWER (W)  
3
4
OUTPUT POWER (W)  
_______________________________________________________________________________________  
5
Stereo 3W Audio Power Amplifiers with  
Headphone Drive and Input Mux  
Typical Operating Characteristics (continued)  
(V  
DD  
= PV  
= 5V, GND = PGND = ±V, V  
= 5V, C  
= 1µF, T = +ꢁ5°C, unless otherwise noted.)  
BIAS  
A
DD  
SHDN  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER (SPEAKER MODE)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER (SPEAKER MODE)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER (SPEAKER MODE)  
100  
100  
100  
A
= 4V/V  
A
= 2V/V  
V
A = 4V/V  
V
V
R = 4Ω  
L
R = 8Ω  
L
R = 8Ω  
L
10  
1
10  
10  
f = 10kHz  
1
1
f = 10kHz  
f = 1kHz  
f = 20Hz  
f = 10kHz  
0.1  
0.1  
0.1  
f = 1kHz  
f = 1kHz  
0.01  
0.001  
0.01  
0.001  
0.01  
0.001  
f = 20Hz  
0.5  
f = 20Hz  
0.5  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5  
OUTPUT POWER (W)  
0
1.0  
1.5  
2.0  
0
1.0  
1.5  
2.0  
/MAX978  
OUTPUT POWER (W)  
OUTPUT POWER (W)  
OUTPUT POWER vs. AMBIENT TEMPERATURE  
OUTPUT POWER vs. AMBIENT TEMPERATURE  
OUTPUT POWER vs. AMBIENT TEMPERATURE  
(SPEAKER MODE)  
(SPEAKER MODE)  
(SPEAKER MODE)  
4
4
2.0  
THD+N = 10%  
THD+N = 10%  
THD+N = 10%  
3
3
1.5  
1.0  
0.5  
0
THD+N = 1%  
THD+N = 1%  
2
THD+N = 1%  
2
1
1
f = 1kHz  
R = 4Ω  
L
f = 1kHz  
R = 3Ω  
L
f = 1kHz  
R = 8Ω  
L
0
0
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
POWER DISSIPATION vs. OUTPUT POWER  
(SPEAKER MODE)  
OUTPUT POWER vs. LOAD RESISTANCE  
(SPEAKER MODE)  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
5
4
3
2
1
0
f = 1kHz  
THD+N = 10%  
THD+N = 1%  
R = 4Ω  
f = 1kHz  
L
0
0.5  
1.0  
1.5  
2.0  
2.5  
1
10  
100  
1k  
10k  
100k  
OUTPUT POWER (W)  
LOAD RESISTANCE ()  
6
_______________________________________________________________________________________  
Stereo 3W Audio Power Amplifiers with  
Headphone Drive and Input Mux  
/MAX978  
Typical Operating Characteristics (continued)  
(V  
DD  
= PV  
= 5V, GND = PGND = ±V, V  
= 5V, C  
= 1µF, T = +ꢁ5°C, unless otherwise noted.)  
BIAS  
A
DD  
SHDN  
POWER-SUPPLY REJECTION RATIO  
vs. FREQUENCY (SPEAKER MODE)  
CROSSTALK vs. FREQUENCY  
(SPEAKER MODE)  
40  
50  
-40  
-50  
V
= 200mV  
P-P  
V
= 200mV  
P-P  
RIPPLE  
IN  
L
R = 8Ω  
-60  
60  
-70  
RIGHT TO LEFT  
70  
-80  
-90  
80  
-100  
-110  
-120  
LEFT TO RIGHT  
90  
100  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
ENTERING SHUTDOWN (SPEAKER MODE)  
EXITING SHUTDOWN (SPEAKER MODE)  
MAX9777/78 toc20  
MAX9777/78 toc21  
V
DD  
SHDN  
2V/div  
2V/div  
OUT_+ AND OUT_-  
1V/div  
OUT_+ AND OUT_-  
1V/div  
OUT_+ - OUT_-  
200mV/div  
OUT_+ - OUT_-  
500mV/div  
400ms/div  
100ms/div  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY (HEADPHONE MODE)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY (HEADPHONE MODE)  
1
1
R = 16Ω  
L
R = 16Ω  
L
A
= 1V/V  
A
= 2V/V  
V
V
0.1  
0.1  
P
= 25mW  
OUT  
P
= 50mW  
OUT  
P
= 25mW  
OUT  
P
= 50mW  
OUT  
0.01  
0.01  
P
= 100mW  
0.001  
0.0001  
0.001  
0.0001  
P
= 150mW  
10k  
OUT  
OUT  
P
= 100mW  
100  
OUT  
P
= 150mW  
10k  
OUT  
10  
1k  
FREQUENCY (Hz)  
100k  
10  
100  
1k  
FREQUENCY (Hz)  
100k  
_______________________________________________________________________________________  
7
Stereo 3W Audio Power Amplifiers with  
Headphone Drive and Input Mux  
Typical Operating Characteristics (continued)  
(V  
DD  
= PV  
= 5V, GND = PGND = ±V, V  
= 5V, C  
= 1µF, T = +ꢁ5°C, unless otherwise noted.)  
BIAS  
A
DD  
SHDN  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER (HEADPHONE MODE)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY (HEADPHONE MODE)  
1
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY (HEADPHONE MODE)  
100  
1
A
= 1V/V  
R = 32Ω  
L
V
R = 32Ω  
L
R = 16Ω  
L
A
= 2V/V  
A
= 1V/V  
V
V
10  
0.1  
0.1  
0.01  
1
P
= 25mW  
OUT  
P
P
= 50mW  
OUT  
OUT  
f = 20Hz  
P
P
= 25mW  
OUT  
f = 10kHz  
P
= 50mW  
OUT  
0.1  
0.01  
0.01  
0.001  
0.0001  
0.001  
0.001  
0.0001  
= 100mW  
P
= 150mW  
100  
OUT  
= 100mW  
100  
OUT  
P
= 150mW  
10k  
OUT  
f = 1kHz  
0.0001  
0
50  
100  
150  
200  
250  
300  
10  
1k  
100k  
10  
1k  
FREQUENCY (Hz)  
10k  
100k  
/MAX978  
OUTPUT POWER (mW)  
FREQUENCY (Hz)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER (HEADPHONE MODE)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER (HEADPHONE MODE)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER (HEADPHONE MODE)  
100  
100  
100  
A
= 1V/V  
A = 2V/V  
V
R = 32Ω  
L
A
= 2V/V  
V
L
V
L
R = 32Ω  
R = 16Ω  
10  
10  
10  
f = 1kHz  
1
1
1
f = 10kHz  
f = 10kHz  
f = 10kHz  
f = 20Hz  
0.1  
0.1  
0.1  
f = 20Hz  
f = 20Hz  
0.01  
0.001  
0.0001  
0.01  
0.001  
0.0001  
0.01  
0.001  
0.0001  
f = 1kHz  
f = 1kHz  
75  
OUTPUT POWER (mW)  
0
25  
50  
75  
100  
125  
0
50  
100  
150  
200  
250  
300  
0
25  
50  
100  
125  
OUTPUT POWER (mW)  
OUTPUT POWER (mW)  
OUTPUT POWER vs. AMBIENT TEMPERATURE  
(HEADPHONE MODE)  
150  
OUTPUT POWER vs. LOAD RESISTANCE  
(HEADPHONE MODE)  
OUTPUT POWER vs. AMBIENT TEMPERATURE  
(HEADPHONE MODE)  
300  
600  
500  
400  
300  
200  
100  
0
f = 1kHz  
THD+N = 10%  
THD+N = 1%  
125  
100  
75  
50  
25  
0
THD+N = 10%  
THD+N = 1%  
250  
200  
150  
100  
50  
THD+N = 10%  
THD+N = 1%  
f = 1kHz  
R = 32Ω  
L
f = 1kHz  
R = 16Ω  
L
0
-40  
-15  
10  
35  
60  
85  
1
10  
100  
1k  
10k  
-40  
-15  
10  
35  
60  
85  
AMBIENT TEMPERATURE (°C)  
LOAD RESISTANCE ()  
AMBIENT TEMPERATURE (°C)  
8
_______________________________________________________________________________________  
Stereo 3W Audio Power Amplifiers with  
Headphone Drive and Input Mux  
/MAX978  
Typical Operating Characteristics (continued)  
(V  
DD  
= PV  
= 5V, GND = PGND = ±V, V  
= 5V, C  
= 1µF, T = +ꢁ5°C, unless otherwise noted.)  
BIAS  
A
DD  
SHDN  
POWER DISSIPATION vs. OUTPUT POWER  
(HEADPHONE MODE)  
POWER-SUPPLY REJECTION RATIO  
vs. FREQUENCY (HEADPHONE MODE)  
POWER DISSIPATION vs. OUTPUT POWER  
(HEADPHONE MODE)  
70  
60  
50  
40  
30  
20  
10  
0
40  
50  
120  
V
= 200mV  
P-P  
RIPPLE  
100  
80  
60  
40  
20  
0
60  
70  
80  
90  
R = 32Ω  
f = 1kHz  
L
R = 16Ω  
f = 1kHz  
L
100  
0
20  
40  
60  
80  
100  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
0
50  
100  
150  
200  
OUTPUT POWER (mW)  
OUTPUT POWER (mW)  
CROSSTALK vs. FREQUENCY  
(HEADPHONE MODE)  
EXITING SHUTDOWN (HEADPHONE MODE)  
MAX9777/78 toc37  
-40  
-50  
V
= 200mV  
P-P  
IN  
L
R = 16Ω  
SHDN  
2V/div  
-60  
-70  
-80  
RIGHT TO LEFT  
OUT_+  
1V/div  
-90  
-100  
-110  
-120  
HP JACK  
200mV/div  
LEFT TO RIGHT  
10  
100  
1k  
10k  
100k  
100ms/div  
R = 16Ω  
L
FREQUENCY (Hz)  
INPUT AC-COUPLED TO GND  
SUPPLY CURRENT vs. SUPPLY VOLTAGE  
(SPEAKER MODE)  
ENTERING SHUTDOWN (HEADPHONE MODE)  
MAX9777/78 toc38  
25  
20  
15  
10  
5
T
= +85°C  
A
SHDN  
2V/div  
T
= +25°C  
A
OUT_+  
1V/div  
T
= -40°C  
A
HP JACK  
100mV/div  
0
4.50  
4.75  
5.00  
5.25  
5.50  
100ms/div  
SUPPLY VOLTAGE (V)  
_______________________________________________________________________________________  
9
Stereo 3W Audio Power Amplifiers with  
Headphone Drive and Input Mux  
Typical Operating Characteristics (continued)  
(V  
DD  
= PV  
= 5V, GND = PGND = ±V, V  
= 5V, C  
= 1µF, T = +ꢁ5°C, unless otherwise noted.)  
BIAS  
A
DD  
SHDN  
SUPPLY CURRENT vs. SUPPLY VOLTAGE  
(HEADPHONE MODE)  
SUPPLY CURRENT vs. SUPPLY VOLTAGE  
(HEADPHONE MODE)  
12  
12  
10  
8
10  
8
T
= +85°C  
T
= +85°C  
A
A
6
6
T
= +25°C  
T
A
= +25°C  
A
4
4
T
= -40°C  
T
= -40°C  
A
A
2
2
/MAX978  
0
0
4.50  
4.75  
5.00  
5.25  
5.50  
4.50  
4.75  
5.00  
5.25  
5.50  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
POWER DISSIPATION vs. OUTPUT POWER  
(SPEAKER MODE)  
EXITING POWER-DOWN  
(SPEAKER MODE)  
MAX9777/78 toc43  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
V
DD  
2V/div  
OUT_+ AND OUT_-  
1V/div  
R = 8Ω  
f = 1kHz  
L
OUT_+ - OUT_-  
1V/div  
0
0.25 0.50 0.75 1.00 1.25 1.50  
OUTPUT POWER (W)  
100ms/div  
10 ______________________________________________________________________________________  
Stereo 3W Audio Power Amplifiers with  
Headphone Drive and Input Mux  
/MAX978  
Pin Description  
PIN  
NAME  
FUNCTION  
MAX9777  
MAX9778  
1
SDA  
Serial Data I/O  
INT  
Interrupt Output  
ꢀ, 4  
ꢀ, 4  
V
Power-Supply Input  
Left-Channel Input 1  
Left-Channel Input ꢁ  
Left-Channel Gain Set A  
Left-Channel Gain Set B  
Power Ground. Connect to GND.  
DD  
5
5
INL1  
INLꢁ  
6
6
7
7
GAINLA  
GAINLB  
PGND  
8
8
9, 1ꢀ, ꢁꢀ, ꢁ7  
9, 1ꢀ, ꢁꢀ, ꢁ7  
Left-Channel Bridged Amplifier Positive Output. OUTL+ also serves as the  
left-channel headphone amplifier output.  
1±  
1±  
OUTL+  
11, ꢁ5  
1ꢁ  
11, ꢁ5  
1ꢁ  
PV  
Output Amplifier Power Supply  
DD  
OUTL-  
Left-Channel Bridged Amplifier Negative Output  
14  
15  
14  
SHDN  
Active-Low Shutdown Input. Connect SHDN to V  
for normal operation.  
DD  
Address Select. A logic-high sets the address LSB to 1, a logic-low sets the  
address LSB to zero.  
ADD  
HPS  
BIAS  
Headphone Sense Input. A logic-high configures the device as a single-  
ended headphone amp. A logic-low configures the device as a BTL  
speaker amp.  
16  
16  
DC Bias Bypass Terminal. See the BIAS Capacitor section for capacitor  
17  
17  
selection. Connect C  
from BIAS to GND.  
BIAS  
18  
19  
ꢁ±  
ꢁ1  
ꢁꢁ  
18  
19  
ꢁ±  
ꢁ1  
ꢁꢁ  
GND  
INR1  
Ground. Connect to PGND.  
Right-Channel Input 1  
INRꢁ  
Right-Channel Input ꢁ  
GAINRA  
GAINRB  
Right-Channel Gain Set A  
Right-Channel Gain Set B  
Right-Channel Bridged Amplifier Positive Output. OUTR+ also serves as the  
right-channel headphone amplifier output.  
ꢁ4  
ꢁ6  
ꢁ4  
ꢁ6  
OUTR+  
OUTR-  
Right-Channel Bridged Amplifier Negative Output  
ꢁ8  
1
SCL  
Serial Clock Line  
MUTE  
Active-High Mute Input  
Headphone Enable. A logic-high enables HPS. A logic-low disables HPS  
and the device is always configured as a BTL speaker amplifier.  
HPS_EN  
Gain Select. A logic-low selects the gain set by GAIN_A. A logic-high  
selects the gain set by GAIN_B.  
15  
GAINA/B  
Input Select. A logic-low selects amplifier input 1. A logic-high selects  
amplifier input ꢁ.  
ꢁ8  
EP  
IN1/ꢁ  
EP  
EP  
Exposed Paddle. Connect to GND.  
______________________________________________________________________________________ 11  
Stereo 3W Audio Power Amplifiers with  
Headphone Drive and Input Mux  
Input Multiplexer  
Detailed Description  
Each amplifier features a ꢁ:1 input multiplexer, allowing  
input selection between two stereo sources. Both multi-  
plexers are controlled by bit 1 in the control register  
(MAX9777) or by the IN1/ꢁ pin (MAX9778). A logic-low  
selects input IN_1 and a logic-high selects input IN_ꢁ.  
The MAX9777/MAX9778 feature ꢀW BTL speaker  
amplifiers, ꢁ±±mW headphone amplifiers, input multi-  
plexers, headphone sensing, and comprehensive click-  
and-pop suppression. The MAX9777/MAX9778 are  
stereo BTL/headphone amplifiers. The MAX9777 is  
The input multiplexer can also be used to further  
expand the number of gain options available from the  
MAX9777/MAX9778 family. Connecting the audio  
source to the device through two different input resis-  
tors (Figure 1) increases the number of gain options  
from two to four. Additionally, the input multiplexer  
allows a speaker equalization network to be switched  
into the speaker signal path. This is typically useful in  
optimizing acoustic response from speakers with small  
physical dimensions.  
controlled through an I C-compatible, ꢁ-wire serial  
interface. The MAX9778 is controlled through five logic  
inputs: MUTE, SHDN, HPS_EN, GAINA/B, and IN1/ꢁ  
(see the Selector Guide). The MAX9777/MAX97778 fea-  
ture exceptional PSRR (1±±dB at 1kHz), allowing these  
devices to operate from noisy digital supplies without  
the need for a linear regulator.  
The speaker amplifiers use a BTL configuration. The  
signal path is composed of an input amplifier and an  
output amplifier. Resistor R sets the input amplifier’s  
IN  
gain, and resistor R sets the output amplifier’s gain.  
F
Headphone Sense Enable  
The HPS input is enabled by HPS_EN (MAX9778) or the  
HPS_D bit (MAX9777). HPS_D or HPS_EN determines  
whether the device is in automatic detection mode or  
fixed-mode operation (see Tables 1a and 1b).  
The output of these two amplifiers serves as the input to  
a slave amplifier configured as an inverting unity-gain  
follower. This results in two outputs, identical in magni-  
/MAX978  
°
tude, but 18± out of phase. The overall gain of the  
speaker amplifiers is twice the product of the two  
amplifier gains (see the Gain-Setting Resistors section).  
A feature of this architecture is that there is no phase  
inversion from input to output.  
MAX9777  
MAX9778  
IN_1  
15k  
30kΩ  
When configured as a headphone (single-ended) ampli-  
fier, the slave amplifier is disabled, muting the speaker  
and the main amplifier drives the headphone. The  
MAX9777/MAX9778 can deliver ꢀW of continuous power  
into a ꢀload with less than 1% THD+N in speaker  
mode, and ꢁ±±mW of continuous average power into a  
16load with less than 1% THD+N in headphone mode.  
These devices also feature thermal-overload protection.  
AUDIO  
INPUT  
IN_2  
Figure 1. Using the Input Multiplexer for Gain Setting  
BIAS  
These devices operate from a single 5V supply, and fea-  
ture an internally generated, power-supply independent,  
common-mode bias voltage of ꢁ.5V referenced to GND.  
BIAS provides both click-and-pop suppression and sets  
the DC bias level for the audio outputs. BIAS is internally  
connected to the noninverting input of each speaker  
amplifier (see the Typical Application Circuits and  
Functional Diagrams). Choose the value of the bypass  
capacitor as described in the BIAS Capacitor section.  
No external load should be applied to BIAS. Any load  
lowers the BIAS voltage, affecting the overall perfor-  
mance of the device.  
Table 1a. MAX9777 HPS Setting  
INPUTS  
GAIN  
PATH*  
MODE  
HPS_D  
BIT  
SPKR/HP  
BIT  
HPS  
±
±
1
1
±
1
X
X
X
X
±
1
BTL  
SE  
A
B
BTL  
SE  
A or B  
A or B  
*Note:  
A—GAINA path selected  
B—GAINB path selected  
A or B—Gain path selected by GAINAB control bit in register  
±ꢁh  
12 ______________________________________________________________________________________  
Stereo 3W Audio Power Amplifiers with  
Headphone Drive and Input Mux  
/MAX978  
Table 1b. MAX9778 HPS Setting  
V
DD  
INPUTS  
HPS_EN  
R1  
680kΩ  
MODE  
GAIN PATH*  
HPS  
R3  
47kΩ  
MAX9777  
MAX9778  
0
1
1
X
0
1
BTL  
BTL  
SE  
A or B  
A or B  
A or B  
HPS  
OUTL+  
OUTR+  
*Note:  
A or B—Gain path selected by external GAINAB  
R2  
R2  
10kΩ 10kΩ  
Headphone Sense Input (HPS)  
With headphone sense enabled, a voltage on HPS less  
than 0.7 x V  
sets the device to speaker mode. A volt-  
DD  
Figure 2. HPS Configuration Circuit  
age greater than 0.9 x V  
disables the inverting  
DD  
bridge amplifier (OUT_-), which mutes the speaker  
amplifier and sets the device into headphone mode.  
device. The digital section of the MAX9777 remains  
active when the device is shut down through the inter-  
face. All devices feature a logic-low on the SHDN input.  
For automatic headphone detection, enable headphone  
sense and connect HPS to the control pin of a 3-wire  
headphone jack as shown in Figure 2. With no head-  
phone present, the resistive voltage-divider created by  
R1 and R2 sets the voltage on HPS to be less than 0.7 x  
MUTE  
The MAX9777/MAX9778 feature a mute mode. When  
the device is muted, the input is disconnected from the  
amplifiers. MUTE does not shut down the device.  
V , setting the device to speaker mode and the gain  
DD  
setting defaults to GAINA (MAX9777). When a head-  
phone plug is inserted into the jack, the control pin is dis-  
MAX9777 MUTE  
The MAX9777 MUTE mode is selected by writing to the  
MUTE register (see the Mute Register section). The left  
and right channels can be independently muted.  
connected from the tip contact, and HPS is pulled to V  
DD  
through R1, setting the device into headphone mode and  
the gain-setting defaults to GAINB (MAX9777) (see the  
Gain Select section). Place a resistor in series with the  
control pin and HPS (R3) to prevent any audio signal from  
coupling into HPS when the device is in speaker mode.  
MAX9778 MUTE  
The MAX9778 features an active-high MUTE input that  
mutes all channels.  
Shutdown  
The MAX9777/MAX9778 feature a 10µA, low-power  
shutdown mode that reduces quiescent current con-  
sumption and extends battery life. The drive amplifiers  
and bias circuitry are disabled, the amplifier outputs  
(OUT_) go high impedance, and BIAS is driven to  
GND. Driving SHDN low places the devices into shut-  
down mode, disables the interface, and resets the I2C  
registers to a default state. A logic-high on SHDN  
enables the devices.  
Click-and-Pop Suppression  
The MAX9777/MAX9778 feature Maxim’s comprehen-  
sive click-and-pop suppression. When entering or exit-  
ing shutdown, the common-mode bias voltage of the  
amplifiers is slowly ramped to and from the DC bias  
point using an S-shaped waveform. In headphone  
mode, this waveform shapes the frequency spectrum,  
minimizing the amount of audible components present  
at the headphone. In speaker mode, the BTL amplifiers  
start up in the same fashion as in headphone mode.  
When entering shutdown, both amplifier outputs ramp  
to GND quickly and simultaneously. To maximize click-  
and-pop suppression, drive SHDN to 0V before power-  
up or power-down transitions.  
MAX9777 Software Shutdown  
A logic-high on bit 0 of the SHDN register places the  
MAX9777 in shutdown mode. A logic-low enables the  
______________________________________________________________________________________ 13  
Stereo 3W Audio Power Amplifiers with  
Headphone Drive and Input Mux  
devices from high-voltage spikes on the bus lines, and  
minimize crosstalk and undershoot of the bus signals.  
Digital Interface  
The MAX9777 features an I C/SMBus™-compatible ꢁ-  
wire serial interface consisting of a serial data line  
(SDA) and a serial clock line (SCL). SDA and SCL facili-  
tate bidirectional communication between the  
MAX9777 and the master at clock rates up to 4±±kHz.  
Figure ꢀ shows the ꢁ-wire interface timing diagram. The  
MAX9777 is a transmit/receive slave-only device, rely-  
ing upon a master to generate a clock signal. The mas-  
ter (typically a microcontroller) initiates data transfer on  
the bus and generates SCL to permit that transfer.  
Bit Transfer  
One data bit is transferred during each SCL clock  
cycle. The data on SDA must remain stable during the  
high period of the SCL clock pulse. Changes in SDA  
while SCL is high are control signals (see the START  
and STOP Conditions section). SDA and SCL idle high  
when the I C bus is not busy.  
START and STOP Conditions  
When the serial interface is inactive, SDA and SCL idle  
high. A master device initiates communication by issu-  
ing a START condition. A START condition is a high-to-  
low transition on SDA with SCL high. A STOP condition  
is a low-to-high transition on SDA while SCL is high  
(Figure 4). A START condition from the master signals  
the beginning of a transmission to the MAX9777. The  
master terminates transmission by issuing the STOP  
condition; this frees the bus. If a REPEATED START  
condition is generated instead of a STOP condition, the  
bus remains active.  
A master device communicates to the MAX9777 by  
transmitting the proper address followed by a com-  
mand and/or data words. Each transmit sequence is  
framed by a START (S) or REPEATED START (S ) con-  
r
dition and a STOP (P) condition. Each word transmitted  
over the bus is 8 bits long and is always followed by an  
acknowledge clock pulse.  
/MAX978  
SDA and SCL are open-drain outputs requiring a pullup  
resistor (5±±or greater) to generate a logic-high volt-  
age. Series resistors in line with SDA and SCL are option-  
al. These series resistors protect the input stages of the  
SMBus is a trademark of Intel Corp.  
SDA  
t
BUF  
t
t
HD, STA  
SU, DAT  
t
t
SP  
HD, STA  
t
SU, STO  
t
t
HD, DAT  
LOW  
SCL  
t
HIGH  
t
HD, STA  
t
R
t
F
START  
CONDITION  
REPEATED  
START  
STOP  
CONDITION  
START  
CONDITION  
CONDITION  
Figure ꢀ. ꢁ-Wire Serial-Interface Timing Diagram  
S
S
r
P
SCL  
SDA  
Figure 4. START/STOP Conditions  
14 ______________________________________________________________________________________  
Stereo 3W Audio Power Amplifiers with  
Headphone Drive and Input Mux  
/MAX978  
Early STOP Conditions  
The MAX9777 recognizes a STOP condition at any  
point during the transmission except if a STOP condi-  
tion occurs in the same high pulse as a START condi-  
Acknowledge Bit (ACK)  
The acknowledge bit (ACK) is the ninth bit attached to  
any 8-bit data word. The receiving device always gen-  
erates ACK. The MAX9777 generates an ACK when  
receiving an address or data by pulling SDA low during  
the night clock period. When transmitting data, the  
MAX9777 waits for the receiving device to generate an  
ACK. Monitoring ACK allows for detection of unsuc-  
cessful data transfers. An unsuccessful data transfer  
occurs if a receiving device is busy or if a system fault  
has occurred. In the event of an unsuccessful data  
transfer, the bus master should reattempt communica-  
tion at a later time.  
tion (Figure 5). This condition is not a legal I C format;  
at least one clock pulse must separate any START and  
STOP condition.  
REPEATED START Conditions  
A REPEATED START (S ) condition may indicate a  
r
change of data direction on the bus. Such a change  
occurs when a command word is required to initiate a  
read operation. S may also be used when the bus  
r
master is writing to several I C devices and does not  
want to relinquish control of the bus. The MAX9777 ser-  
ial interface supports continuous write operations with  
Slave Address  
The bus master initiates communication with a slave  
device by issuing a START condition followed by a 7-bit  
slave address (Figure 6). When idle, the MAX9777  
waits for a START condition followed by its slave  
address. The LSB of the address word is the  
Read/Write (R/W) bit. R/W indicates whether the master  
is writing to or reading from the MAX9777 (R/W = ±  
selects the write condition, R/W = 1 selects the read  
condition). After receiving the proper address, the  
MAX9777 issues an ACK by pulling SDA low for one  
clock cycle.  
or without an S condition separating them. Continuous  
r
read operations require S conditions because of the  
r
change in direction of data flow.  
SCL  
SDA  
The MAX9777 has a factory-/user-programmed  
address. Address bits A6–Aꢁ are preset, while A± and  
A1 is set by ADD. Connect ADD to either V , GND,  
DD  
SCL, or SDA to change the last ꢁ bits of the slave  
address (Table ꢁ).  
STOP  
START  
LEGAL STOP CONDITION  
SCL  
SDA  
S
A6  
A5  
A4  
A3  
A2  
A1  
A0  
R/W  
Figure 6. Slave Address Byte Definition  
2
Table 2. MAX9777 I C Slave Addresses  
I2C ADDRESS  
START  
ILLEGAL  
STOP  
ADD CONNECTION  
GND  
1±± 1±±±  
ILLEGAL EARLY STOP CONDITION  
V
1±± 1±±1  
DD  
SDA  
SCL  
1±± 1±1±  
Figure 5. Early STOP Condition  
1±± 1±11  
______________________________________________________________________________________ 15  
Stereo 3W Audio Power Amplifiers with  
Headphone Drive and Input Mux  
Write Data Format  
There are three registers that configure the MAX9777:  
the MUTE register, SHDN register, and control register.  
In write data mode (R/W = ±), the register address and  
data byte follow the device address (Figure 7).  
in bit ± of the SHDN register shuts down the device; a  
logic-low turns on the device. A logic-high is required in  
bits ꢁ to 7 to reset all registers to their default settings.  
Control Register  
The control register (±ꢀhex) is a read/write register that  
determines the device configuration. Bit 1 (IN1/INꢁ) con-  
trols the input multiplexer, a logic-high selects input 1; a  
logic-low selects input ꢁ. Bit ꢁ (HPS_D) controls the  
headphone sensing. A logic-low configures the device in  
automatic headphone detection mode. A logic-high dis-  
ables the HPS input. Bit ꢀ (GAINA/B) controls the gain-  
select multiplexer. A logic-low selects GAINA. A logic-  
high selects GAINB. GAINA/B is ignored when HPS_D =  
±. Bit 4 (SPKR/HP) selects the amplifier operating mode  
when HPS_D = 1. A logic-high selects speaker mode,  
and a logic-low selects headphone mode.  
MUTE Register  
The MUTE register (±1hex) is a read/write register that  
sets the MUTE status of the device. Bit ꢀ (MUTEL) of  
the MUTE register controls the left channel; bit 4  
(MUTER) controls the right channel. A logic-high mutes  
the respective channel; a logic-low brings the channel  
out of mute.  
SHDN Register  
The SHDN register (±ꢁhex) is a read/write register that  
controls the power-up state of the device. A logic-high  
S
ADDRESS  
7 BITS  
WR ACK  
COMMAND  
8 BITS  
ACK  
DATA  
ACK  
P
1
/MAX978  
8 BITS  
2
I C SLAVE ADDRESS.  
SELECTS DEVICE.  
REGISTER ADDRESS.  
SELECTS REGISTER TO BE  
WRITTEN TO.  
REGISTER DATA  
S
ADDRESS  
7 BITS  
WR ACK  
COMMAND  
8 BITS  
ACK  
S
ADDRESS  
WR ACK  
DATA  
P
1
7 BITS  
2
8 BITS  
2
I C SLAVE ADDRESS.  
SELECTS DEVICE.  
REGISTER ADDRESS.  
SELECTS REGISTER  
TO BE READ.  
I C SLAVE ADDRESS.  
SELECTS DEVICE.  
DATA FROM  
SELECTED REGISTER  
Figure 7. Write/Read Data Format Example  
Table 4. MAX9777 SHDN Register Format  
Table 3. MAX9777 MUTE Register Format  
REGISTER  
0000 0001  
ADDRESS  
REGISTER ADDRESS  
0000 0010  
DESCRIPTION  
BIT  
NAME  
VALUE  
±*  
Reset device  
BIT  
7
NAME  
VALUE  
Don’t Care  
Don’t Care  
Don’t Care  
±*  
DESCRIPTION  
7
RESET  
1
±*  
X
X
X
6
6
5
4
RESET  
RESET  
RESET  
RESET  
1
Reset device  
Reset device  
5
±*  
1
Unmute right channel  
4
MUTER  
MUTEL  
1
Mute right channel  
±*  
±*  
Unmute left channel  
1
±*  
Reset device  
1
Mute left channel  
1
Reset device  
Reset device  
1
±
X
X
X
Don’t Care  
Don’t Care  
Don’t Care  
±*  
1
1
±
RESET  
X
Don’t Care  
*Default state.  
±*  
1
Normal operation  
Shutdown  
SHDN  
*Default state.  
16 ______________________________________________________________________________________  
Stereo 3W Audio Power Amplifiers with  
Headphone Drive and Input Mux  
/MAX978  
Read Data Format  
Table 5. MAX9777 Control Register Format  
In read mode (R/W = 1), the MAX9777 writes the con-  
tents of the selected register to the bus. The direction of  
the data flow reverses following the address acknowl-  
edge by the MAX9777. The master device reads the  
contents of all registers, including the read-only status  
register. Table 6 shows the status register format.  
REGISTER ADDRESS  
0000 0011  
BIT  
7
NAME  
VALUE  
Don’t Care  
Don’t Care  
Don’t Care  
±*  
DESCRIPTION  
X
X
X
6
5
Interrupt Output (INT)  
The MAX9777 includes an interrupt output (INT) that  
can indicate to a master device that an event has  
occurred. INT is triggered when the state of HPS  
changes. During normal operation, INT idles high. If a  
headphone is inserted/removed from the jack and that  
action is detected by HPS, INT pulls the line low. INT  
remains low until a read data operation is executed.  
Speaker mode selected  
4
SPKR/HP  
GAINA/B  
Headphone mode  
selected  
1
±*  
1
Gain-setting A selected  
Gain-setting B selected  
Automatic headphone  
detection enabled  
±*  
2
I C Compatibility  
1
HPS_D  
Automatic headphone  
detection disabled  
(HPS ignored)  
The MAX9777 is compatible with existing I C systems.  
1
SCL and SDA are high-impedance inputs; SDA has an  
open drain that pulls the data line low during the ninth  
clock pulse. The communication protocol supports the  
±*  
1
Input 1 selected  
Input ꢁ selected  
IN1/INꢁ  
X
standard I C 8-bit communications. The general call  
address is ignored. The MAX9777 slave addresses are  
±
Don’t Care  
compatible with the 7-bit I C addressing protocol only.  
*Default  
Table 6. MAX9777 Status Register Format  
REGISTER ADDRESS  
0000 0000  
BIT  
NAME  
VALUE  
DESCRIPTION  
±
Device temperature below thermal limit  
Device temperature exceeding thermal limit  
OUTR- current below current limit  
OUTR- current exceeding current limit  
OUTR+ current below current limit  
OUTR+ current exceeding current limit  
OUTL- current below current limit  
OUTL- current exceeding current limit  
OUTL+ current below current limit  
OUTL+ current exceeding current limit  
Device in speaker mode  
7
THRM  
1
±
6
5
4
AMPR-  
AMPR+  
AMPL-  
AMPL+  
HPSTS  
1
±
1
±
1
±
1
±
1
Device in headphone mode  
1
±
X
X
Don’t Care  
Don’t Care  
______________________________________________________________________________________ 17  
Stereo 3W Audio Power Amplifiers with  
Headphone Drive and Input Mux  
Single-Ended Headphone Amplifier  
Applications Information  
The MAX9777/MAX9778 can be configured as single-  
ended headphone amplifiers through software or by  
sensing the presence of a headphone plug (HPS). In  
headphone mode, the inverting output of the BTL  
amplifier is disabled, muting the speaker. The gain is  
1/ꢁ that of the device in speaker mode, and the output  
power is reduced by a factor of 4.  
BTL Speaker Amplifiers  
The MAX9777/MAX9778 feature speaker amplifiers  
designed to drive a load differentially, a configuration  
referred to as bridge-tied load (BTL). The BTL configu-  
ration (Figure 8) offers advantages over the single-  
ended configuration, where one side of the load is  
connected to ground. Driving the load differentially  
doubles the output voltage compared to a single-  
ended amplifier under similar conditions. Thus, the  
devices’ differential gain is twice the closed-loop gain  
of the input amplifier. The effective gain is given by:  
In headphone mode, the load must be capacitively  
coupled to the device, blocking the DC bias voltage  
from the load (see the Typical Application Circuits).  
Power Dissipation and Heat Sinking  
Under normal operating conditions, the MAX9777/  
MAX9778 can dissipate a significant amount of power.  
The maximum power dissipation for each package is  
given in the Absolute Maximum Ratings section under  
Continuous Power Dissipation or can be calculated by  
the following equation:  
R
F
A
= ×  
VD  
R
IN  
Substituting ꢁ x V  
for V  
into the follow-  
OUT(P-P)  
OUT(P-P)  
ing equations yields four times the output power due to  
doubling of the output voltage:  
/MAX978  
T
T  
A
J(MAX)  
P
=
DISSPKG(MAX)  
V
θ
OUT(PP)  
JA  
V
=
=
RMS  
ꢁ ꢁ  
where T  
is +15±°C, T is the ambient tempera-  
A
J(MAX)  
V
ture, and θ is the reciprocal of the derating factor in  
JA  
RMS  
P
OUT  
°C/W as specified in the Absolute Maximum Ratings  
R
L
section. For example, θ  
of the TQFN package is  
JA  
Since the differential outputs are biased at midsupply,  
there is no net DC voltage across the load. This elimi-  
nates the need for DC-blocking capacitors required for  
single-ended amplifiers. These capacitors can be large  
and expensive, consume board space, and degrade  
low-frequency performance.  
+ꢁ9°C/W.  
The increase in power delivered by the BTL configura-  
tion directly results in an increase in internal power dis-  
sipation over the single-ended configuration. The  
maximum power dissipation for a given V  
given by the following equation:  
and load is  
DD  
When the MAX9777 is configured to automatically detect  
the presence of a headphone jack, the device defaults to  
gain setting A when the device is in speaker mode.  
ꢁV  
DD  
P
=
DISS(MAX)  
π R  
L
If the power dissipation for a given application exceeds  
the maximum allowed for a given package, either reduce  
V
, increase load impedance, decrease the ambient  
DD  
V
+1  
OUT(P-P)  
temperature, or add heatsinking to the device. Large  
output, supply, and ground PC board traces improve the  
maximum power dissipation in the package.  
2 x V  
OUT(P-P)  
Thermal-overload protection limits total power dissipa-  
tion in these devices. When the junction temperature  
exceeds +16±°C, the thermal-protection circuitry dis-  
ables the amplifier output stage. The amplifiers are  
enabled once the junction temperature cools by 15°C.  
This results in a pulsing output under continuous ther-  
mal-overload conditions as the device heats and cools.  
V
-1  
OUT(P-P)  
Figure 8. Bridge-Tied Load Configuration  
18 ______________________________________________________________________________________  
Stereo 3W Audio Power Amplifiers with  
Headphone Drive and Input Mux  
/MAX978  
the load impedance form a highpass filter with a -ꢀdB  
point determined by:  
Component Selection  
Gain-Setting Resistors  
1
External feedback components set the gain of the  
f
=
ꢀdB  
MAX9777/MAX9778. Resistor R sets the gain of the  
IN  
πR C  
L
OUT  
input amplifier (A ), and resistor R sets the gain of  
VIN  
F
the second stage amplifier (A  
):  
VOUT  
As with the input capacitor, choose C  
such that  
OUT  
f
is well below the lowest frequency of interest.  
-ꢀdB  
1±kΩ  
R
F
1±kΩ  
Setting f  
too high affects the amplifier‘s low-fre-  
-ꢀdB  
A
= −  
, A  
= −  
VOUT  
VIN  
quency response.  
R
IN  
Load impedance is a concern when choosing C  
.
OUT  
Combining A  
and A  
, R and R set the single-  
VIN  
VOUT IN  
F
Load impedance can vary, changing the -ꢀdB point of  
the output filter. A lower impedance increases the cor-  
ner frequency, degrading low-frequency response.  
ended gain of the device as follows:  
1±kΩ  
R
1±kΩ  
R
F
Select C  
such that the worst-case load/C  
com-  
F
OUT  
OUT  
A
= A  
× A = −  
VOUT  
× −  
= +  
V
VIN  
bination yields an adequate response. Select capaci-  
tors with low ESR to minimize resistive losses and  
optimize power transfer to the load.  
R
R
IN  
IN  
As shown, the two-stage amplifier architecture results  
in a noninverting gain configuration, preserving  
absolute phase through the MAX9777/MAX9778. The  
gain of the device in BTL mode is twice that of the sin-  
If layout constraints require a physically smaller output-  
coupling capacitor, decrease the value of C  
and add  
OUT  
series resistance to the output of the MAX9777/MAX9778  
(see Figure 9). With the added series resistance at the  
output, the cutoff frequency of the highpass filter is:  
gle-ended mode. Choose R between 1±kand 15kΩ  
IN  
and R between 15kand 1±±k.  
F
1
Input Filter  
The input capacitor (C ), in conjunction with R , forms  
a highpass filter that removes the DC bias from an  
incoming signal. The AC-coupling capacitor allows the  
amplifier to bias the signal to an optimum DC level.  
Assuming zero-source impedance, the -ꢀdB point of  
the highpass filter is given by:  
fꢀdB  
=
π R +R  
C
(
)
IN  
IN  
L
SERIES OUT  
Since the cutoff frequency of the output highpass filter  
is inversely proportional to the product of the total load  
resistance seen by the outputs (R + R  
) and  
SERIES  
L
C
, increase the total resistance seen by the  
OUT  
MAX9777/MAX9778 outputs by the same amount C  
OUT  
1
f
=
ꢀdB  
is decreased to maintain low-frequency performance.  
Since the added series resistance forms a voltage-  
divider with the headphone speaker resistance for fre-  
quencies within the passband of the highpass filter,  
there is a loss in voltage gain. To compensate for this  
loss, increase the voltage gain setting by an amount  
equal to the attenuation due to the added series resis-  
tance. Use the following equation to approximate the  
required voltage gain compensation:  
πR C  
IN IN  
Choose R according to the Gain-Setting Resistors sec-  
IN  
tion. Choose the C such that f  
lowest frequency of interest. Setting f  
is well below the  
-ꢀdB  
IN  
too high affects  
-ꢀdB  
the amplifier’s low-frequency response. Use capacitors  
whose dielectrics have low-voltage coefficients, such as  
tantalum or aluminum electrolytic. Capacitors with high-  
voltage coefficients, such as ceramics, may result in an  
increased distortion at low frequencies.  
R +R  
L
SERIES  
A
= ꢁ±log  
Other considerations when designing the input filter  
include the constraints of the overall system,  
the actual frequency band of interest, and click-and-  
pop suppression.  
V _COMP  
R
L
C
R
OUT  
SERIES  
OUT_+  
Output-Coupling Capacitor  
The MAX9777/MAX9778 require output-coupling  
capacitors to operate in single-ended (headphone)  
mode. The output-coupling capacitor blocks the DC  
component of the amplifier output, preventing DC cur-  
rent from flowing to the load. The output capacitor and  
R
L
Figure 9. Reducing C  
by Adding R  
SERIES  
OUT  
______________________________________________________________________________________ 19  
Stereo 3W Audio Power Amplifiers with  
Headphone Drive and Input Mux  
BIAS Capacitor  
where the impedance, C begins to decrease, and at  
F,  
BIAS is the output of the internally generated ꢁ.5VDC  
high frequencies, the C is a short circuit. Here the  
F
bias voltage. The BIAS bypass capacitor, C  
,
impedance of the feedback loop is:  
BIAS  
improves PSRR and THD+N by reducing power supply  
and other noise sources at the common-mode bias  
node, and also generates the clickless/popless, start-  
up/shutdown DC bias waveforms for the speaker ampli-  
fiers. Bypass BIAS with a 1µF capacitor to GND.  
R
× R  
+ R  
F1  
Fꢁ  
Fꢁ  
R
=
F(EFF)  
R
F1  
Assuming R = R , then R  
at low frequencies is  
F1  
Fꢁ  
F(EFF)  
F(EFF)  
twice that of R  
at high frequencies (Figure 11).  
Supply Bypassing  
Proper power-supply bypassing ensures low-noise, low-  
distortion performance. Place a ±.1µF ceramic capacitor  
Thus, the amplifier has more gain at lower frequencies,  
boosting the system’s bass response. Set the gain roll-  
off frequency based upon the response of the speaker  
and enclosure.  
from V  
to GND. Add additional bulk capacitance as  
DD  
required by the application, typically 1±±µF. Bypass  
PV with a 1±±µF capacitor to GND. Locate bypass  
To minimize distortion at low frequencies, use capaci-  
tors with low-voltage coefficient dielectrics when select-  
ing C . Film or C±G dielectric capacitors are good  
choices for C . Capacitors with high-voltage coeffi-  
cients, such as ceramics (non-C±G dielectrics), can  
result in increased distortion at low frequencies.  
DD  
capacitors as close to the device as possible.  
F
Gain Select  
F
The MAX9777/MAX9778 feature multiple gain settings on  
each channel, making available different gain and feed-  
/MAX978  
back configurations. The gain-setting resistor (R ) is con-  
F
Layout and Grounding  
Good PC board layout is essential for optimizing perfor-  
mance. Use large traces for the power-supply inputs  
and amplifier outputs to minimize losses due to para-  
sitic trace resistance, as well as route heat away from  
the device. Good grounding improves audio perfor-  
mance, minimizes crosstalk between channels, and  
prevents any digital switching noise from coupling into  
the audio signal. If digital signal lines must cross over  
or under audio signal lines, ensure that they cross per-  
pendicular to each other.  
nected between the amplifier output (OUT_+) and the  
gain set point (GAIN_). An internal multiplexer switches  
between the different feedback resistors depending on  
the status of the gain control input. The stereo  
MAX9777/MAX9778 feature two gain options per chan-  
nel. See Tables 1a and 1b for the gain-setting options.  
Bass Boost Circuit  
Headphones typically have a poor low-frequency  
response due to speaker and enclosure size limitations.  
A bass boost circuit compensates the poor low-frequen-  
cy response (Figure 1±). At low frequencies, the capaci-  
The MAX9777/MAX9778 TQFN package features an  
exposed thermal pad. This pad lowers the package’s  
thermal resistance by providing a direct heat conduc-  
tion path from the die to the PC board. Connect the pad  
to signal ground (±V) by using a large pad or multiple  
vias to the ground plane.  
tor C is an open circuit, and the effective impedance in  
F
the feedback loop (R  
) is R = R .  
F(EFF) F(EFF) F1  
At the frequency:  
1
πR  
C
F
Fꢁ  
GAIN  
R
R
F1  
C
F
R
F2  
IN  
R
F1  
R
IN  
R
F1  
R
F2  
R
IN  
FREQUENCY  
1
V
BIAS  
2π R  
C
F
F2  
Figure 11. Bass Boost Response  
Figure 1±. Bass Boost Circuit  
20 ______________________________________________________________________________________  
Stereo 3W Audio Power Amplifiers with  
Headphone Drive and Input Mux  
/MAX978  
Typical Application Circuits  
4.5V TO 5.5V  
100µF  
0.1µF  
3, 4  
11, 25  
DD  
V
PV  
DD  
17  
0.047µF  
BIAS  
27.4kΩ  
1µF  
33.2kΩ  
15kΩ  
8
GAINLB  
220µF  
10kΩ  
7
GAINLA  
OUTL+  
10  
15kΩ  
5
6
INL1  
INL2  
INR1  
INR2  
0.68µF  
12  
OUTL-  
0.68µF  
0.68µF  
0.68µF  
15kΩ  
15kΩ  
15kΩ  
HPF  
CODEC  
MAX9777  
19  
26  
24  
OUTR-  
20  
HPF  
OUTR+  
4.5V TO 5.5V  
220µF  
15kΩ  
21  
22  
4.5V TO 5.5V  
GAINRA  
GAINRB  
33.2kΩ  
27.4kΩ  
1kΩ  
1kΩ  
10kΩ  
10kΩ  
680kΩ  
28  
SCL  
SDA  
ADD  
INT  
1
15  
2
0.047µF  
47kΩ  
16  
HPS  
MICROCONTROLLER  
14  
SHDN  
GND  
18  
PGND  
9, 13, 23, 27  
______________________________________________________________________________________ 21  
Stereo 3W Audio Power Amplifiers with  
Headphone Drive and Input Mux  
Typical Application Circuits (continued)  
4.5V TO 5.5V  
100µF  
0.1µF  
3, 4  
11, 25  
DD  
V
PV  
DD  
17  
0.047µF  
BIAS  
27.4kΩ  
1µF  
33.2kΩ  
15kΩ  
8
GAINLB  
220µF  
10kΩ  
7
GAINLA  
OUTL+  
10  
15kΩ  
5
6
INL1  
INL2  
INR1  
INR2  
0.68µF  
12  
/MAX978  
OUTL-  
0.68µF  
0.68µF  
0.68µF  
15kΩ  
15kΩ  
15kΩ  
HPF  
CODEC  
MAX9778  
19  
26  
24  
OUTR-  
20  
HPF  
OUTR+  
220µF  
15kΩ  
21  
22  
4.5V TO 5.5V  
GAINRA  
GAINRB  
33.2kΩ  
27.4kΩ  
10kΩ  
680kΩ  
28  
IN1/2  
1
15  
2
0.047µF  
MUTE  
47kΩ  
16  
HPS  
MICROCONTROLLER  
GAINA/B  
HPS_EN  
SHDN  
14  
GND  
18  
PGND  
9, 13, 23, 27  
22 ______________________________________________________________________________________  
Stereo 3W Audio Power Amplifiers with  
Headphone Drive and Input Mux  
/MAX978  
Functional Diagrams  
4.5V TO 5.5V  
100µF  
0.1µF  
11, 25  
3, 4  
PV  
V
DD  
DD  
8
GAINLB  
GAIN  
SET  
MUX  
10kΩ  
0.047µF  
27.4kΩ  
GAINLA 7  
0.68µF 15kΩ  
0.68µF 15kΩ  
1µF  
AUDIO  
INPUT  
AUDIO  
INPUT  
33.2kΩ  
5
6
INL1  
INL2  
2:1  
INPUT  
MUX  
15kΩ  
10kΩ  
10kΩ  
OUTL+ 10  
220µF  
10kΩ  
17 BIAS  
BIAS  
10kΩ  
OUTL- 12  
GAINRB  
GAINRA  
22  
21  
GAIN  
SET  
MUX  
10kΩ  
0.047µF  
27.4kΩ  
0.68µF  
15kΩ  
33.2kΩ  
AUDIO  
INPUT  
AUDIO  
INPUT  
19 INR1  
20 INR2  
2:1  
INPUT  
MUX  
10kΩ  
15kΩ  
10kΩ  
OUTR+  
24  
0.68µF 15kΩ  
4.5V TO 5.5V  
220µF  
10kΩ  
1kΩ  
1kΩ  
10kΩ  
10kΩ  
14 SHDN  
28 SCL  
OUTR- 26  
TO  
1
15  
2
SDA  
ADD  
INT  
LOGIC  
µCONTROLLER  
HPS  
16  
HPS  
MAX9777  
GND  
18  
PGND  
9, 13, 23, 27  
______________________________________________________________________________________ 23  
Stereo 3W Audio Power Amplifiers with  
Headphone Drive and Input Mux  
Functional Diagrams (continued)  
4.5V TO 5.5V  
100µF  
0.1µF  
11, 25  
3, 4  
PV  
V
DD  
DD  
8
GAINLB  
GAIN  
SET  
MUX  
10kΩ  
0.047µF  
27.4kΩ  
GAINLA 7  
0.68µF 15kΩ  
0.68µF 15kΩ  
1µF  
AUDIO  
INPUT  
AUDIO  
INPUT  
33.2kΩ  
5
6
INL1  
INL2  
2:1  
INPUT  
MUX  
15kΩ  
10kΩ  
10kΩ  
OUTL+ 10  
220µF  
10kΩ  
17 BIAS  
BIAS  
10kΩ  
/MAX978  
OUTL- 12  
GAINRB  
GAINRA  
22  
21  
GAIN  
SET  
MUX  
10kΩ  
0.047µF  
27.4kΩ  
0.68µF  
15kΩ  
33.2kΩ  
AUDIO  
INPUT  
AUDIO  
INPUT  
19 INR1  
20 INR2  
2:1  
INPUT  
MUX  
10kΩ  
15kΩ  
10kΩ  
OUTR+  
24  
0.68µF 15kΩ  
4.5V TO 5.5V  
220µF  
10kΩ  
1kΩ  
1kΩ  
10kΩ  
10kΩ  
14  
28  
1
15  
2
OUTR- 26  
SHDN  
IN1/2  
MUTE  
GAINA/B  
HPS_EN  
TO  
LOGIC  
µCONTROLLER  
HPS  
16  
HPS  
MAX9778  
GND  
18  
PGND  
9, 13, 23, 27  
24 ______________________________________________________________________________________  
Stereo 3W Audio Power Amplifiers with  
Headphone Drive and Input Mux  
/MAX978  
Pin Configurations  
TOP VIEW  
TOP VIEW  
21 20 19 18 17 16 15  
21 20 19 18 17 16 15  
14  
13  
14  
13  
GAINRB 22  
PGND 23  
SHDN  
PGND  
GAINRB 22  
PGND 23  
SHDN  
PGND  
12 OUTL-  
12 OUTL-  
24  
25  
26  
27  
28  
24  
25  
26  
27  
28  
OUTR+  
PV  
OUTR+  
PV  
PV  
PV  
DD  
11  
10  
9
11  
10  
9
DD  
DD  
DD  
MAX9777  
MAX9778  
OUTR-  
PGND  
SCL  
OUTL+  
PGND  
OUTR-  
PGND  
IN1/2  
OUTL+  
PGND  
+
+
8
8
GAINLB  
GAINLB  
1
2
3
4
5
6
7
1
2
3
4
5
6
7
THIN QFN  
THIN QFN  
______________________________________________________________________________________ 25  
Stereo 3W Audio Power Amplifiers with  
Headphone Drive and Input Mux  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
/MAX978  
26 ______________________________________________________________________________________  
Stereo 3W Audio Power Amplifiers with  
Headphone Drive and Input Mux  
/MAX978  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 27  
© ꢁ±±6 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX9778ETI+T

Audio Amplifier, 3W, 2 Channel(s), 1 Func, 5 X 5 MM, 0.80 MM HEIGHT, ROHS COMPLIANT, MO-220WHHD-1, TQFN-28
MAXIM

MAX9779

2.6W Stereo Audio Power Amplifier and DirectDrive Headphone Amplifier
MAXIM

MAX9779ETI+

2.6W Stereo Audio Power Amplifier and DirectDrive Headphone Amplifier
MAXIM

MAX9779ETI+T

Audio Amplifier, 2.6W, 2 Channel(s), 1 Func, BICMOS, 5 X 5 MM, 0.80 MM HEIGHT, LEAD FREE, MO-220WHHD-1, TQFN-28
MAXIM

MAX977EEE

Single/Dual, +3V/+5V Dual-Speed Comparators with Auto-Standby
MAXIM

MAX977EEE+

Comparator, 2 Func, 3000uV Offset-Max, 28ns Response Time, CMOS, PDSO16, 0.150 INCH, 0.025 INCH PITCH, QSOP-16
MAXIM

MAX977EEE-T

Comparator, 2 Func, 3000uV Offset-Max, 28ns Response Time, CMOS, PDSO16, 0.150 INCH, 0.025 INCH PITCH, MO-137AB, QSOP-16
MAXIM

MAX977ESD

Single/Dual, +3V/+5V Dual-Speed Comparators with Auto-Standby
MAXIM

MAX977ESD+

Comparator, 2 Func, 3000uV Offset-Max, 28ns Response Time, CMOS, PDSO14, SOP-14
MAXIM

MAX977ESD+T

Comparator, 2 Func, 3000uV Offset-Max, 28ns Response Time, CMOS, PDSO14, SOP-14
MAXIM

MAX977ESD-T

Comparator, 2 Func, 3000uV Offset-Max, 28ns Response Time, CMOS, PDSO14, SOP-14
MAXIM

MAX978

Single/Dual/Quad, SOT23, Single-Supply, High-Speed, Low-Power Comparators
MAXIM