MAX9788_V01 [MAXIM]

14VP-P,Class G Ceramic Speaker Driver;
MAX9788_V01
型号: MAX9788_V01
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

14VP-P,Class G Ceramic Speaker Driver

文件: 总13页 (文件大小:203K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-0710; Rev 3; 5/08  
14V ,Class G Ceramic Speaker Driver  
P-P  
MAX978  
General Description  
Features  
The MAX9788 features a mono Class G power amplifier  
with an integrated inverting charge-pump power supply  
specifically designed to drive the high capacitance of a  
ceramic loudspeaker. The charge pump can supply  
greater than 700mA of peak output current at 5.5VDC,  
Integrated Charge-Pump Power Supply—No  
Inductor Required  
14V  
Voltage Swing into Piezoelectric Speaker  
P-P  
2.7V to 5.5V Single-Supply Operation  
Clickless/Popless Operation  
guaranteeing an output of 14V  
.
P-P  
The MAX9788 maximizes battery life by offering high-  
performance efficiency. Maxim’s proprietary Class G  
output stage provides efficiency levels greater than  
Class AB devices without the EMI penalties commonly  
associated with Class D amplifiers.  
Small Thermally Efficient Packages  
4mm x 4mm 28-Pin TQFN  
2mm x 2.5mm 20-Bump WLP  
The MAX9788 is ideally suited to deliver the high out-  
put-voltage swing required to drive ceramic/piezoelec-  
tric speakers.  
Ordering Information  
The device utilizes fully differential inputs and outputs,  
comprehensive click-and-pop suppression, shutdown  
control, and soft-start circuitry. The MAX9788 is fully spec-  
ified over the -40°C to +85°C extended temperature range  
and is available in small lead-free 28-pin TQFN (4mm x  
4mm) or 20-bump WLP (2mm x 2.5mm) packages.  
PART  
PIN-PACKAGE  
TEMP RANGE  
-40°C to +85°C  
-40°C to +85°C  
MAX9788EWP+TG45 20 WLP  
MAX9788ETI+  
28 TQFN-EP*  
+Denotes a lead-free package.  
T = Tape and reel.  
G45 indicates protective die coating.  
*EP = Exposed pad.  
Applications  
Cell Phones  
Smartphones  
MP3 Players  
Personal Media Players  
Handheld Gaming  
Consoles  
Typical Application Circuit/Functional Diagram and Pin  
Configurations appear at end of data sheet.  
Notebook Computers  
Simplified Block Diagram  
2.7V TO 5.5V  
V
CC  
CPV  
DD  
FB+  
MAX9788  
R
FB+  
C
C
IN  
R
IN+  
IN+  
IN-  
OUT+  
OUT-  
CLASS G  
OUTPUT  
STAGE  
+
-
R
IN-  
IN  
R
FB-  
CHARGE  
PUMP  
FB-  
GND  
CPGND  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,  
or visit Maxim’s website at www.maxim-ic.com.  
14V ,Class G Ceramic Speaker Driver  
P-P  
ABSOLUTE MAXIMUM RATINGS  
(Voltages with respect to GND.)  
, CPV  
CPV , CPGND, C1P, C1N, PV .................................800mA  
DD SS  
Any Other Pin ..................................................................20mA  
V
CC  
.............................................................-0.3V to +6V  
DD  
PV , SV ...............................................................-6V to +0.3V  
CPGND..................................................................-0.3V to +0.3V  
Continuous Power Dissipation (T = +70°C)  
20-Bump WLP (derate 10.3mW/°C  
SS  
SS  
A
OUT+, OUT-...................................(SV - 0.3V) to (V  
IN+, IN-, FB+, FB- ......................................-0.3V to (V  
+ 0.3V)  
+ 0.3V)  
above +70°C) (Note 1)..................................................827mW  
28-Pin TQFN (derate 20.8mW/°C above +70°C) ........1667mW  
Operating Temperature Range ...........................-40°C to +85°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) ................................+300°C  
Bump Temperature (soldering) Reflow............................+235°C  
SS  
CC  
CC  
C1N .........................................(PV - 0.3V) to (CPGND + 0.3V)  
SS  
C1P ......................................(CPGND - 0.3V) to (CPV  
FS, SHDN ...................................................-0.3V to (V  
Continuous Current Into/Out of  
+ 0.3V)  
+ 0.3V)  
DD  
CC  
MAX978  
OUT+, OUT-, V , GND, SV .....................................800mA  
CC  
SS  
Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-  
layer board. For detailed information on package thermal considerations, see www.maxim-ic.com/thermal-tutorial.  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
= V  
= V  
= 3.6V, V  
= V  
= 0V, R  
= R = 10kΩ, R  
= R  
= 10kΩ, R = 100kΩ, C1 = 4.7µF, C2 =  
CC  
CPVDD  
SHDN  
GND  
CPGND  
IN+  
IN-  
FB+  
FB- FS  
10µF; load connected between OUT+ and OUT-, Z  
= 10Ω + 1µF, unless otherwise stated; T = T  
to T  
, unless otherwise  
LOAD  
A
MIN  
MAX  
noted. Typical values are at T = +25°C.) (Notes 2, 3)  
A
PARAMETER  
GENERAL  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Supply Voltage Range  
Quiescent Current  
Shutdown Current  
V
Inferred from PSRR test  
2.7  
5.5  
12  
5
V
CC  
I
8
mA  
µA  
CC  
I
SHDN = GND  
0.3  
SHDN  
Time from shutdown or power-on to full  
operation  
Turn-On Time  
t
50  
1.24  
83  
ms  
V
ON  
Input DC Bias Voltage  
V
IN_ inputs (Note 4)  
1.1  
55  
1.4  
BIAS  
I
I
= 0mA (slow mode)  
110  
LOAD  
LOAD  
Charge-Pump Oscillator  
Frequency  
f
kHz  
OSC  
> 100mA (normal mode)  
230  
1.4  
330  
470  
V
V
IH  
IL  
SHDN Input Threshold  
(Note 5)  
V
0.4  
1
SHDN Input Leakage Current  
µA  
SPEAKER AMPLIFIER  
T
T
= +25°C  
3
15  
20  
A
Output Offset Voltage  
V
V
mV  
OS  
T T  
MAX  
MIN  
A
Peak voltage into/out of shutdown  
A-weighted, 32 samples per second  
(Notes 6, 7)  
Click-and-Pop Level  
Voltage Gain  
-67  
dBV  
dB  
CP  
A
(Notes 4, 8)  
11.5  
12  
7.1  
5.9  
5.1  
4.2  
12.5  
V
V
V
V
V
= 5V  
CC  
CC  
CC  
CC  
= 4.2V  
= 3.6V  
= 3.0V  
Output Voltage  
V
f = 1kHz, 1% THD+N  
V
RMS  
OUT  
2
_______________________________________________________________________________________  
14V ,Class G Ceramic Speaker Driver  
P-P  
MAX978  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= V  
= V  
= 3.6V, V  
= V  
= 0V, R  
= R = 10kΩ, R  
= R  
= 10kΩ, R = 100kΩ, C1 = 4.7µF, C2 =  
CC  
CPVDD  
SHDN  
GND  
CPGND  
IN+  
IN-  
FB+  
FB- FS  
10µF; load connected between OUT+ and OUT-, Z  
noted. Typical values are at T = +25°C.) (Notes 2, 3)  
= 10Ω + 1µF, unless otherwise stated; T = T  
to T  
, unless otherwise  
LOAD  
A
MIN  
MAX  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
6.5  
MAX  
UNITS  
V
V
V
V
V
V
V
V
= 5V  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
= 4.2V  
= 3.6V  
= 3.0V  
= 5V  
5.4  
f = 10kHz, 1% THD+N,  
Z = 1µF + 10Ω, no load  
Output Voltage  
V
P
V
OUT  
OUT  
RMS  
W
L
4.7  
3.3  
2.4  
= 4.2V  
= 3.6V  
= 3.0V  
1.67  
1.25  
0.8  
1% THD+N, f = 1kHz,  
Continuous Output Power  
R = 8  
L
V
= 2.7V to 5.5V  
63  
77  
CC  
f = 217Hz, 200mV  
ripple  
77  
P-P  
Power-Supply Rejection Ratio  
(Note 4)  
PSRR  
dB  
%
f = 1kHz, 200mV  
ripple  
77  
P-P  
f = 20kHz, 200mV  
ripple  
58  
P-P  
Z = 1µF + 10Ω, V  
L
= 1kHz / 1.9V  
= 1kHz / 4.0V  
0.002  
0.08  
OUT  
OUT  
RMS  
Total Harmonic Distortion Plus  
Noise  
THD+N  
Z = 1µF + 10Ω, V  
L
RMS  
Signal-to-Noise Ratio  
SNR  
V
= 5.1V  
, A-weighted  
108  
dB  
dB  
OUT  
RMS  
Common-Mode Rejection Ratio  
CMRR  
f
= 1kHz (Note 9)  
68  
IN  
V
V
= 5V  
106  
105  
CC  
CC  
Dynamic Range  
DR  
A-weighted (Note 10)  
dB  
= 3.6V  
Note 2:  
Note 3:  
All devices are 100% production tested at room temperature. All temperature limits are guaranteed by design.  
Testing performed with resistive and capacitive loads to simulate an actual ceramic/piezoelectric speaker load,  
Z = 1µF + 10Ω.  
L
Note 4:  
Input DC bias voltage determines the maximum voltage swing of the input signal. Inputing a signal with a peak voltage  
of greater than the input DC bias voltage results in clipping.  
Note 5:  
Note 6:  
Note 7:  
1.8V logic compatible.  
Amplifier/inputs AC-coupled to GND.  
Testing performed at room temperature with 10Ω resistive load in series with 1µF capacitive load connected across the BTL  
output for speaker amplifier. Mode transitions are controlled by SHDN. V is the peak output transient expressed in dBV.  
CP  
Note 8:  
Note 9:  
Voltage gain is defined as: [V  
- V  
] / [V  
- V ].  
IN+ IN-  
OUT+  
OUT-  
PV is forced to -3.6V to simulate boosted rail.  
SS  
Note 10: Dynamic range is calculated by measuring the RMS voltage difference between a -60dBFS output signal and the noise  
floor, then adding 60dB. Full scale is defined as the output signal needed to achieve 1% THD+N.  
R
IN_  
and R  
have 0.5% tolerance. The Class G output stage has 12dB of gain. Any gain or attenuation at the input  
FB_  
stage will add to or subtract from the gain of the Class G output.  
_______________________________________________________________________________________  
3
14V ,Class G Ceramic Speaker Driver  
P-P  
Typical Operating Characteristics  
(V  
= V  
L
= V  
= 3.6V, V  
= V  
= 0V, R  
= R = 10kΩ, R  
= R  
= 10kΩ, R = 100kΩ, C1 = 4.7µF, C2 =  
CC  
CPVDD  
SHDN  
GND  
CPGND  
IN+  
IN-  
FB+  
FB- FS  
10µF, Z = 1µF + 10Ω; load terminated between OUT+ and OUT-, unless otherwise stated; T = T  
to T , unless otherwise noted.  
MAX  
A
MIN  
Typical values are at T = +25°C.) (Notes 1, 2)  
A
TOTAL HARMONIC DISTORTION PLUS  
NOISE vs. FREQUENCY  
TOTAL HARMONIC DISTORTION PLUS  
NOISE vs. FREQUENCY  
TOTAL HARMONIC DISTORTION PLUS  
NOISE vs. FREQUENCY  
10  
1
10  
1
10  
V
CC  
= 3.6V  
V
= 5V  
CC  
V
CC  
= 2.7V  
MAX978  
1
0.1  
V
= 4V  
RMS  
OUT  
V
= 5.9V  
RMS  
V
= 3V  
RMS  
OUT  
OUT  
0.1  
0.1  
0.01  
V
= 1.25V  
100  
OUT  
RMS  
0.01  
0.001  
V
= 1.9V  
0.01  
0.001  
OUT RMS  
V
= 3V  
RMS  
OUT  
0.001  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
10  
1k  
FREQUENCY (Hz)  
10k  
100k  
TOTAL HARMONIC DISTORTION PLUS  
NOISE vs. OUTPUT VOLTAGE  
TOTAL HARMONIC DISTORTION PLUS  
NOISE vs. OUTPUT VOLTAGE  
TOTAL HARMONIC DISTORTION PLUS  
NOISE vs. OUTPUT VOLTAGE  
10  
1
10  
1
10  
1
V
CC  
= 3.6V  
V
CC  
= 5V  
V
= 2.7V  
CC  
f = 10kHz  
IN  
f
IN  
= 10kHz  
f
IN  
= 10kHz  
f
= 1kHz  
IN  
f
= 1kHz  
IN  
f
= 1kHz  
IN  
0.1  
0.1  
0.1  
0.01  
0.001  
0.01  
0.001  
0.01  
0.001  
f
= 20Hz  
IN  
f
IN  
= 20Hz  
4
f
= 20Hz  
IN  
5
6
7
8
0
1
2
3
4
5
0
1
3
5
6
0
1
2
3
4
2
OUTPUT VOLTAGE (V  
OUTPUT VOLTAGE (V  
)
OUTPUT VOLTAGE (V  
)
RMS)  
RMS  
RMS  
POWER-SUPPLY REJECTION RATIO  
vs. FREQUENCY  
POWER CONSUMPTION  
vs. OUTPUT VOLTAGE  
POWER CONSUMPTION  
vs. OUTPUT VOLTAGE  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
100  
200  
175  
150  
125  
100  
75  
V
= 200mV  
P-P  
RIPPLE  
75  
50  
25  
0
50  
V
= 2.7V  
CC  
V
= 3.6V  
CC  
f
= 1kHz  
IN  
25  
f = 1kHz  
IN  
1% THD+N  
3
4
1% THD+N  
4
0
2
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
0
1
0
1
2
3
5
OUTPUT VOLTAGE (V  
)
OUTPUT VOLTAGE (V  
)
RMS  
RMS  
4
_______________________________________________________________________________________  
14V ,Class G Ceramic Speaker Driver  
P-P  
MAX978  
Typical Operating Characteristics (continued)  
(V  
= V  
L
= V  
= 3.6V, V  
= V  
= 0V, R  
= R = 10kΩ, R  
= R  
= 10kΩ, R = 100kΩ, C1 = 4.7µF, C2 =  
CC  
CPVDD  
SHDN  
GND  
CPGND  
IN+  
IN-  
FB+  
FB- FS  
10µF, Z = 1µF + 10Ω; load terminated between OUT+ and OUT-, unless otherwise stated; T = T  
to T , unless otherwise noted.  
MAX  
A
MIN  
Typical values are at T = +25°C.) (Notes 1, 2)  
A
POWER CONSUMPTION  
vs. OUTPUT VOLTAGE  
SHUTDOWN WAVEFORM  
STARTUP WAVEFORM  
MAX9788 toc12  
MAX9788 toc11  
350  
300  
250  
200  
150  
100  
SHDN  
5V/div  
SHDN  
5V/div  
OUT+ - OUT-  
500mV/div  
OUT+ - OUT-  
500mV/div  
V
= 5V  
= 1kHz  
CC  
50  
0
f
IN  
1% THD+N  
0
1
2
3
4
5
6
7
10ms/div  
10ms/div  
OUTPUT VOLTAGE (V  
)
RMS  
SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
CLASS G OUTPUT WAVEFORM  
MAX9788 toc13  
12  
10  
8
OUT+  
5V/div  
OUT-  
5V/div  
6
4
OUT+ - OUT-  
10V/div  
2
0
1% THD+N  
2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
SUPPLY VOLTAGE (V)  
200μs/div  
SHUTDOWN CURRENT  
vs. SUPPLY VOLTAGE  
SUPPLY CURRENT  
vs. OUTPUT VOLTAGE  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
70  
60  
50  
40  
30  
20  
10  
0
V
= 5V  
= 1kHz  
CC  
f
IN  
2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
SUPPLY VOLTAGE (V)  
0
1
2
3
4
5
6
7
OUTPUT VOLTAGE (V  
)
RMS  
_______________________________________________________________________________________  
5
14V ,Class G Ceramic Speaker Driver  
P-P  
Typical Operating Characteristics (continued)  
(V  
= V  
L
= V  
= 3.6V, V  
= V  
= 0V, R  
= R = 10kΩ, R  
= R  
= 10kΩ, R = 100kΩ, C1 = 4.7µF, C2 =  
CC  
CPVDD  
SHDN  
GND  
CPGND  
IN+  
IN-  
FB+  
FB- FS  
10µF, Z = 1µF + 10Ω; load terminated between OUT+ and OUT-, unless otherwise stated; T = T  
to T , unless otherwise noted.  
MAX  
A
MIN  
Typical values are at T = +25°C.) (Notes 1, 2)  
A
OUTPUT AMPLITUDE  
vs. FREQUENCY  
WLP PACKAGE THERMAL DISSIPATION  
FREQUENCY RESPONSE  
AND OUTPUT POWER vs. TEMPERATURE  
MAX9788 toc19  
8
20  
18  
16  
14  
12  
10  
8
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
= 2V  
RMS  
V
CC  
= 5V  
V
= 5V  
CC  
OUT  
7
6
5
4
3
2
1
0
MAX978  
V
= 3.6V  
CC  
OUTPUT POWER  
PACKAGE THERMAL  
DISSIPATION  
V
= 2.7V  
CC  
6
4
2
0
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
-40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
Pin Description  
PIN  
NAME  
SHDN  
N.C.  
FUNCTION  
TQFN  
WLP  
1
B2  
Shutdown  
2, 5, 6, 8, 11, 17,  
19, 23, 25, 28  
No Connection. No internal connection.  
Charge-Pump Flying Capacitor, Positive Terminal. Connect a 4.7µF  
capacitor between C1P and C1N.  
3
A2  
C1P  
4
7
A3  
A4  
A5  
B5  
B4  
CPV  
Charge-Pump Positive Supply  
Negative Amplifier Feedback  
Negative Amplifier Input  
DD  
FB-  
9
IN-  
IN+  
FB+  
10  
12  
Positive Amplifier Input  
Positive Amplifier Feedback  
Charge-Pump Frequency Set. Connect a 100kΩ resistor from FS to  
GND to set the charge-pump switching frequency.  
13  
C5  
FS  
14, 22  
15, 21  
16  
D1, D5  
C2, C4  
D4  
V
Supply Voltage. Bypass with a 10µF capacitor to GND.  
CC  
SV  
Amplifier Negative Power Supply. Connect to PV  
Negative Amplifier Output  
Ground  
.
SS  
SS  
OUT-  
GND  
18  
D3  
20  
D2  
OUT+  
Positive Amplifier Output  
Charge-Pump Output. Connect a 10µF capacitor between PV and  
SS  
CPGND.  
24  
26  
C1  
B1  
PV  
SS  
Charge-Pump Flying Capacitor, Negative Terminal. Connect a 4.7µF  
capacitor between C1N and C1P.  
C1N  
27  
EP  
A1  
CPGND  
EP  
Charge-Pump Ground. Connect to GND.  
Exposed Pad. Connect the TQFN EP to GND.  
6
_______________________________________________________________________________________  
14V ,Class G Ceramic Speaker Driver  
P-P  
MAX978  
As the output signal increases so a wider supply is need-  
Detailed Description  
ed, the device begins its transition to the higher supply  
The MAX9788 Class G power amplifier with inverting  
charge pump is the latest in linear amplifier technology.  
The Class G output stage offers improved performance  
over a Class AB amplifier while increasing efficiency to  
extend battery life. The integrated inverting charge  
pump generates a negative supply capable of deliver-  
ing greater than 700mA.  
range (V  
to SV ) for the large signals. To ensure a  
SS  
CC  
seamless transition between the low and high supply  
ranges, both of the lower transistors are on so that:  
I
= I + I  
N1 N2  
LOAD  
As the output signal continues to increase, the transi-  
tion to the high supply is complete. The device then  
operates in the higher supply range, where the opera-  
tion of the device is identical to a traditional dual-sup-  
ply Class AB amplifier where:  
The Class G output stage and the inverting charge  
pump allow the MAX9788 to deliver a 14V  
voltage  
P-P  
swing, up to two times greater than a traditional single-  
supply linear amplifier.  
I
= I  
N2  
LOAD  
During operation, the output common-mode voltage of  
the MAX9788 adjusts dynamically as the device transi-  
tions between supply ranges.  
Class G Operation  
The MAX9788 Class G amplifier is a linear amplifier that  
operates within a low (V  
to GND) and high (V  
to  
CC  
CC  
SV ) supply range. Figure 1 illustrates the transition  
Utilizing a Class G output stage with an inverting  
SS  
from the low to high supply range. For small signals,  
charge pump allows the MAX9788 to realize a 20V  
output swing with a 5V supply.  
P-P  
the device operates within the lower (V  
to GND) sup-  
CC  
ply range. In this range, the operation of the device  
is identical to a traditional single-supply Class AB  
amplifier where:  
I
= I  
LOAD  
N1  
BTL CLASS G SUPPLY TRANSITION  
V
CC  
V
CC  
V
CC  
I
P
I
P
I
P
ON  
P
ON  
P
ON  
P
Z
L
Z
L
Z
L
I
I
I
N1  
N1  
N1  
N2  
N1  
N2  
N1  
N2  
ON  
ON  
ON  
OFF  
I
N2  
N2  
OFF  
ON  
SV  
SS  
SV  
SS  
SV  
SS  
LOW SUPPLY RANGE OPERATION  
I = I  
SUPPLY TRANSITION  
I = I + I  
HIGH SUPPLY RANGE OPERATION  
I = I  
P
N1  
P
N1 N2  
P
N2  
Figure 1. Class G Supply Transition  
_______________________________________________________________________________________  
7
14V ,Class G Ceramic Speaker Driver  
P-P  
where A is the desired voltage gain in dB. R  
should  
Inverting Charge Pump  
The MAX9788 features an integrated charge pump with an  
inverted supply rail that can supply greater than 700mA  
over the positive 2.7V to 5.5V supply range. In the case of  
the MAX9788, the charge pump generates the negative  
V
IN+  
be equal to R , and R  
should be equal to R  
.
FB-  
IN-  
FB+  
The Class G output stage has a fixed gain of 4V/V  
(12dB). Any gain or attenuation set by the external  
input stage resistors will add to or subtract from this  
fixed gain. See Figure 2.  
supply rail (PV ) needed to create the higher supply  
SS  
range, which allows the output of the device to operate  
over a greater dynamic range as the battery supply col-  
lapses over time.  
In differential input configurations, the common-mode  
rejection ratio (CMRR) is primarily limited by the exter-  
nal resistor and capacitor matching. Ideally, to achieve  
the highest possible CMRR, the following external com-  
ponents should be selected where:  
MAX978  
Shutdown Mode  
The MAX9788 has a shutdown mode that reduces  
power consumption and extends battery life. Driving  
SHDN low places the MAX9788 in a low-power (0.3µA)  
R
R
R
FB  
FB+  
=
shutdown mode. Connect SHDN to V  
operation.  
for normal  
CC  
R
IN+  
IN−  
and  
Click-and-Pop Suppression  
The MAX9788 Class G amplifier features Maxim’s com-  
prehensive, industry-leading click-and-pop suppres-  
sion. During startup, the click-and-pop suppression  
circuitry eliminates any audible transient sources inter-  
nal to the device.  
C
= C  
IN+  
IN−  
Applications Information  
MAX9788  
FB+  
Differential Input Amplifier  
The MAX9788 features a differential input configuration,  
making the device compatible with many CODECs, and  
offering improved noise immunity over a single-ended  
input amplifier. In devices such as PCs, noisy digital  
signals can be picked up by the amplifier’s input  
traces. The signals appear at the amplifier’s inputs as  
common-mode noise. A differential input amplifier  
amplifies the difference of the two inputs and signals  
common to both inputs are canceled out. When config-  
ured for differential inputs, the voltage gain of the  
MAX9788 is set by:  
R
FB+  
C
IN+  
R
IN+  
IN+  
IN-  
+
-
CLASS G  
OUTPUT  
STAGE  
R
IN-  
C
IN-  
R
FB-  
FB-  
R
FB_  
A
= 20log 4 ×  
dB  
(
)
V
R
IN_  
Figure 2. Gain Setting  
8
_______________________________________________________________________________________  
14V ,Class G Ceramic Speaker Driver  
P-P  
MAX978  
Driving a Ceramic Speaker  
Applications that require thin cases, such as today’s  
mobile phones, demand that external components  
have a small form factor. Dynamic loudspeakers that  
use a cone and voice coil typically cannot conform to  
the height requirements. The option for these applica-  
tions is to use a ceramic/piezoelectric loudspeaker.  
Component Selection  
Input-Coupling Capacitor  
The AC-coupling capacitors (C ) and input resistors  
IN_  
(R ) form highpass filters that remove any DC bias  
IN_  
from an input signal (see the Functional Diagram/  
Typical Operating Circuit). C  
blocks DC voltages  
IN_  
from the amplifier input. The -3dB point of the highpass  
filter, assuming zero source impedance due to the  
input signal source, is given by:  
Ceramic speakers are much more capacitive than a con-  
ventional loudspeaker. Typical capacitance values for  
such a speaker can be greater than 1µF. High peak-to-  
peak voltage drive is required to achieve acceptable  
sound pressure levels. The high output voltage require-  
ment coupled with the capacitive nature of the speaker  
demand that the amplifier supply much more current at  
high frequencies than at lower frequencies. Above 10kHz,  
the typical speaker impedance can be less than 16Ω.  
The MAX9788 is ideal for driving a capacitive ceramic  
speaker. The high charge-pump current limit allows for a  
flat frequency response out to 20kHz while maintaining  
high output voltage swings. See the Frequency Response  
graph in the Typical Operating Characteristics. Figure 3  
shows a typical circuit for driving a ceramic speaker.  
1
f3dB  
=
Hz  
(
)
2π ×R  
× C  
IN_  
IN_  
Ceramic speakers generally perform best at frequen-  
cies greater than 1kHz. Low frequencies can deflect  
the piezoelectric speaker element so that high frequen-  
cies cannot be properly reproduced. This can cause  
distortion in the speaker’s usable frequency band.  
Select a C so the f  
closely matches the low fre-  
IN  
-3dB  
quency response of the ceramic speaker. Use capaci-  
tors with low-voltage coefficient dielectrics. Aluminum  
electrolytic, tantalum, or film dielectric capacitors are  
good choices for AC-coupling capacitors. Capacitors  
with high-voltage coefficients, such as ceramics (non-  
C0G dielectrics), can result in increased distortion at  
low frequencies.  
A 10Ω series resistance is recommended between the  
amplifier output and the ceramic speaker load to ensure  
the output of the amplifier sees some fixed resistance at  
high frequencies when the speaker is essentially an  
electrical short.  
Charge-Pump Capacitor Selection  
Use capacitors with an ESR less than 50mΩ for opti-  
mum performance. Low-ESR ceramic capacitors mini-  
mize the output resistance of the charge pump. For  
best performance over the extended temperature  
range, select capacitors with an X7R dielectric.  
MAX9788  
Flying Capacitor (C1)  
The value of the flying capacitor (C1) affects the load  
regulation and output resistance of the charge pump. A  
C1 value that is too small degrades the device’s ability  
to provide sufficient current drive. Increasing the value  
of C1 improves load regulation and reduces the charge-  
pump output resistance to an extent. Above 1µF, the on-  
resistance of the switches and the ESR of C1 and C2  
dominate. A 4.7µF capacitor is recommended.  
R
L
OUT+  
OUT-  
CLASS G  
OUTPUT  
STAGE  
Figure 3. Driving a Ceramic Speaker  
_______________________________________________________________________________________  
9
14V ,Class G Ceramic Speaker Driver  
P-P  
Hold Capacitor (C2)  
Series Load Resistor  
The capacitive nature of the ceramic speaker results in  
very low impedances at high frequencies. To prevent  
the ceramic speaker from shorting the MAX9788 output  
at high frequencies, a series load resistor must be  
used. The output load resistor and the ceramic speaker  
create a lowpass filter. To set the rolloff frequency of  
the output filter, the approximate capacitance of the  
speaker must be known. This information can be  
obtained from bench testing or from the ceramic  
speaker manufacturer. A series load resistor greater  
than 10Ω is recommended. Set the lowpass filter cutoff  
frequency with the following equation:  
The output capacitor value and ESR directly affect the  
ripple at PV . Increasing C2 reduces output ripple.  
SS  
Likewise, decreasing the ESR of C2 reduces both rip-  
ple and output resistance. A 10µF capacitor is recom-  
mended.  
Charge-Pump Frequency Set Resistor (R  
)
FS  
The charge pump operates in two modes. When the  
charge pump is loaded below 100mA, it operates in a  
slow mode where the oscillation frequency is reduced to  
1/4 of its normal operating frequency. Once loaded, the  
charge-pump oscillation frequency returns to normal  
operation. In applications where the design may be sen-  
sitive to the operating charge-pump oscillation frequen-  
MAX978  
1
cy, the value of the external resistor R can be changed  
FS  
f
=
Hz  
(
)
LP  
2π ×R × C  
to adjust the charge-pump oscillation frequency shown  
L
SPEAKER  
in Figure 4. A 100kΩ resistor is recommended.  
Ceramic Speaker Impedance  
Characteristics  
WLP Applications Information  
For the latest application details on WLP construction,  
dimensions, tape carrier information, PCB techniques,  
bump-pad layout, and recommended reflow tempera-  
ture profile, as well as the latest information on reliability  
testing results, go to the Maxim website at www.maxim-  
ic.com/ucsp for the application note, UCSP—A Wafer-  
Level Chip-Scale Package.  
A 1µF capacitor is a good model for the ceramic  
speaker as it best approximates the impedance of a  
ceramic speaker over the audio band. When selecting  
a capacitor to simulate a ceramic speaker, the voltage  
rating or the capacitor must be equal to or higher than  
the expected output voltage swing. See Figure 5.  
CHARGE-PUMP OSCILLATION  
IMPEDANCE vs. FREQUENCY  
FREQUENCY vs. R  
FS  
1M  
600  
550  
500  
450  
400  
350  
300  
250  
200  
I
> 100mA  
LOAD  
1μF CAPACITOR  
100k  
10k  
1k  
CERAMIC  
SPEAKER  
100  
10  
0.001  
0.01  
0.1  
1
10  
100  
50  
75  
100  
(kΩ)  
125  
150  
FREQUENCY (Hz)  
R
FS  
Figure 4. Charge-Pump Oscillation Frequency vs. R  
Figure 5. Ceramic Speaker and Capacitor Impedance  
FS  
10 ______________________________________________________________________________________  
14V ,Class G Ceramic Speaker Driver  
P-P  
MAX978  
Typical Application Circuit/Functional Diagram  
V
DD  
SHDN  
CONTROL  
SIGNAL  
0.1μF  
*
20kΩ  
14, 22  
(D1, D5)  
1 (B2)  
SHDN  
4 (A3)  
V
CPV  
DD  
CC  
12 (B4) FB+  
MAX9788  
R
FB+  
C
R
L
10Ω  
IN  
R
IN+  
10kΩ  
0.47μF  
10kΩ  
OUT+ 20 (D2)  
10 (B5) IN+  
9 (A5) IN-  
+
-
CLASS G  
OUTPUT  
STAGE  
OUT- 16 (D4)  
FS 13 (C5)  
R
IN-  
C
IN  
R
FB-  
10kΩ  
0.47μF  
10kΩ  
CHARGE  
PUMP  
7 (A4) FB-  
R
FS  
100kΩ  
GND CPGND  
18 (D3) 27 (A1)  
C1P PV  
SV  
C1N  
26 (B1)  
SS  
SS  
3 (A2)  
15, 21  
24 (C1)  
(C2, C4)  
C2  
10μF  
( ) WLP PACKAGE  
C1  
4.7μF  
DEVICE SHOWN WITH A = 12dB  
V
*SYSTEM-LEVEL REQUIREMENT TYPICALLY 10μF  
______________________________________________________________________________________ 11  
14V ,Class G Ceramic Speaker Driver  
P-P  
Pin Configurations  
TOP VIEW  
(BUMP SIDE DOWN)  
TOP VIEW  
MAX9788  
4
1
2
3
5
+
MAX978  
SHDN  
N.C.  
SV  
SS  
1
21  
20  
19  
18  
17  
16  
A
CPGND  
CPV  
DD  
FB-  
C1P  
IN-  
2
3
4
5
6
7
OUT+  
N.C.  
C1P  
B
C1N  
FB+  
SV  
SHDN  
IN+  
FS  
CPV  
DD  
GND  
N.C.  
MAX9788  
N.C.  
N.C.  
FB-  
C
PV  
SS  
SV  
SS  
SS  
OUT-  
EP*  
15 SV  
SS  
D
V
CC  
GND  
OUT-  
OUT+  
V
CC  
WLP  
THIN QFN  
*EXPOSED PAD.  
Package Information  
Chip Information  
For the latest package outline information and land patterns, go  
PROCESS: BiCMOS  
to www.maxim-ic.com/packages.  
PACKAGE TYPE PACKAGE CODE DOCUMENT NO.  
20 WLP  
W202A2+1  
T2844-1  
21-0059  
21-0139  
28 TQFN  
12 ______________________________________________________________________________________  
14V ,Class G Ceramic Speaker Driver  
P-P  
MAX978  
Revision History  
REVISION  
NUMBER  
REVISION  
DATE  
PAGES  
CHANGED  
DESCRIPTION  
0
1
12/06  
Initial release  
Include tape and reel note, edit Absolute Maximum Ratings, update TQFN  
package outline  
11/07  
1, 2,13, 14  
Replaced USCP with WLP package throughout data sheet including new  
WLP package outline, added new TOC 19 and Note 1  
1, 2, 3, 6, 10, 11, 12,  
15, 16  
2
3
2/08  
5/08  
Updated Typical Application Circuit and corrected stylistic errors  
1–6, 11  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 13  
© 2008 Maxim Integrated Products  
is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX9789

Windows Vista-Compliant, Stereo Class AB Speaker Amplifiers and DirectDrive Headphone Amplifiers
MAXIM

MAX9789A

Windows Vista-Compliant, Stereo Class AB Speaker Amplifiers and DirectDrive Headphone Amplifiers
MAXIM

MAX9789AETJ+

Windows Vista-Compliant, Stereo Class AB Speaker Amplifiers and DirectDrive Headphone Amplifiers
MAXIM

MAX9789AETJ+T

Audio Amplifier, 2W, 2 Channel(s), 1 Func, BICMOS, 5 X 5 MM, 0.80 MM HEIGHT, ROHS COMPLIANT, MO-220WHHD-2,TQFN-32
MAXIM

MAX9789AEVKIT

Integrated 120mA Low-Dropout Linear Regulator
MAXIM

MAX9789AEVKIT+

Integrated 120mA Low-Dropout Linear Regulator
MAXIM

MAX9789BETJ+

Windows Vista-Compliant, Stereo Class AB Speaker Amplifiers and DirectDrive Headphone Amplifiers
MAXIM

MAX9789BETJ+T

Audio Amplifier
MAXIM

MAX9789CETJ+

Windows Vista-Compliant, Stereo Class AB Speaker Amplifiers and DirectDrive Headphone Amplifiers
MAXIM

MAX9789_09

Windows Vista-Compliant, Stereo Class AB Speaker Amplifiers and DirectDrive Headphone Amplifiers
MAXIM

MAX978EEE

Single/Dual/Quad, SOT23, Single-Supply, High-Speed, Low-Power Comparators
MAXIM

MAX978EEE+

Comparator, 4 Func, 3000uV Offset-Max, 28ns Response Time, CMOS, PDSO16, QSOP-16
MAXIM