MAX9930EVKIT [MAXIM]

On-Board Quasi-Measurement Mode Circuitry;
MAX9930EVKIT
型号: MAX9930EVKIT
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

On-Board Quasi-Measurement Mode Circuitry

文件: 总6页 (文件大小:138K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-0962; Rev 0; 8/07  
MAX9930 Evaluation Kit  
Evluates:0–MAX93  
General Description  
Features  
2.7V to 5.25V Single-Supply Operation  
50Ω SMA Connector on RF Input  
The MAX9930 evaluation kit (EV kit) is a fully assembled  
and tested surface-mount printed-circuit board (PCB)  
that evaluates the MAX9930 RF-detecting controller.  
The MAX9930 EV kit includes on-board shutdown con-  
trol, as well as quasi-measurement mode circuitry to  
provide an easy method to evaluate the MAX9930. The  
RF input utilizes a 50Ω SMA connector for convenient  
connection to test equipment.  
On-Board Quasi-Measurement Mode Circuitry  
On-Board Shutdown Control  
Fully Assembled and Tested Surface-Mount PCB  
Ordering Information  
The MAX9930 EV kit comes with the MAX9930EUA+  
installed, but can also be used to evaluate the  
MAX9931/MAX9932 RF-detecting controllers and the  
MAX9933 RF detector. To evaluate the MAX9931,  
MAX9932, or MAX9933, request a MAX9931EUA+, a  
MAX9932EUA+, or a MAX9933EUA+ free sample with  
the MAX9930 EV kit.  
PART  
TEMP RANGE  
IC PACKAGE  
8 µMAX®  
MAX9930EVKIT+  
0°C to +70°C*  
+Denotes a lead-free and RoHS-compliant EV kit.  
*This limited temperature range applies to the EV kit PCB only.  
The MAX9930 IC temperature range is -40°C to +85°C.  
Component List  
DESIGNATION QTY  
DESCRIPTION  
DESIGNATION QTY  
DESCRIPTION  
3-pin headers  
JU1, JU2  
JU3  
2
1
1
1
0
3
1
1
1
1
33pF 5%, 50V C0G ceramic  
capacitor (0402)  
TDK C1005C0G1H330J  
Taiyo Yuden UMK105CG330JV  
2-pin header  
C1  
C2, C4  
C3  
1
2
1
R1  
52.3Ω 1% resistor (0402)  
0Ω 5% resistor (0402)  
R2  
100pF 5%, 50V C0G ceramic  
capacitors (0402)  
TDK C1005COG1H101J  
Taiyo Yuden UMK105CG101JW  
R3  
Not installed, resistor (0402)  
10kΩ 1% resistors (0402)  
100Ω 1% resistor (0402)  
14kΩ 1% resistor (0402)  
SMA connector (PC edge mount)  
MAX9930EUA+ (8-pin µMAX)  
R4, R5, R8  
R6  
R7  
2200pF 10%, 50V X7R ceramic  
capacitor (0402)  
TDK C1005X7R1H222K  
RFIN  
U1  
Taiyo Yuden UMK105BJ222KW  
Maxim high-output drive op amp  
MAX4412EXK+ (5-pin SC70)  
U2  
1
0.1µF 10%, 10V X5R ceramic  
capacitors (0402)  
TDK C1005X5R1A104K  
Taiyo Yuden LMK105BJ104KV  
3
1
Shunts  
C5, C7, C8  
3
0
1
PCB: MAX9930 Evaluation Kit+  
C6  
C9  
Not installed, capacitor (0402)  
Component Suppliers  
22nF 10%, 16V X7R ceramic  
capacitor (0402)  
TDK C1005X7R1C223K  
Taiyo Yuden EMK105BJ223KV  
SUPPLIER  
Taiyo Yuden  
TDK Corp.  
PHONE  
WEBSITE  
800-348-2496 www.t-yuden.com  
847-803-6100 www.component.tdk.com  
Note: Indicate that you are using the MAX9930 when contact-  
ing these component suppliers.  
µMAX is a registered trademark of Maxim Integrated Products, Inc.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,  
or visit Maxim’s website at www.maxim-ic.com.  
MAX9930 Evaluation Kit  
__________________________Quick Start  
Recommended Equipment  
Before beginning, the following equipment is needed:  
Detailed Description  
The MAX9930 EV kit is a fully assembled and tested sur-  
face-mount PCB that evaluates the MAX9930 RF-detect-  
ing controller. The MAX9930 EV kit can also be used to  
evaluate the MAX9931/MAX9932 RF-detecting con-  
trollers and the MAX9933 RF detector. The MAX9930 EV  
kit includes on-board shutdown control, as well as quasi-  
measurement mode circuitry to provide an easy method  
to evaluate the MAX9930, MAX9931, and MAX9932. The  
RF input utilizes a 50Ω SMA connector for convenient  
connection to test equipment.  
One variable DC power supply capable of supplying  
between 2.7V and 5.25V at 50mA  
One signal generator capable of delivering -45dBm  
to +0dBm at frequencies between 2MHz and 1.6GHz  
One voltmeter  
Procedure  
The MAX9930 EV kit is fully assembled and tested.  
Follow the steps below to verify board operation.  
Caution: Do not turn on the power supply until all  
connections are completed.  
For operation in controller mode, both JU2 and JU3  
should be removed. Use a DAC or external precision  
voltage supply to apply the set-point voltage to the SET  
pad. RFIN is connected to the RF source—power ampli-  
fier (PA) output through a directional coupler—and the  
OUT pad is connected to the gain-control pin of the PA.  
When used in controller mode, a capacitor must be  
installed in C3 for loop stability (see the Filter Capacitor  
Selection section).  
1) Set the variable DC power supply to 3V.  
2) Ensure that the variable DC power supply is  
turned off.  
3) Connect the positive terminal of the variable DC  
power supply to the pad marked VCC. Connect the  
ground return of the variable DC power supply to  
the pad marked GND.  
To simulate an automatic gain-control (AGC) loop, a  
quasi-measurement mode can be implemented where  
the MAX9930 delivers an output voltage that is  
proportional to the log of the input signal (see the  
Quasi-Measurement Mode section). To establish the  
transfer function of the log amp, the RF input power  
level should be swept while the voltage at the SET pad  
is measured. This is the simplest method to validate  
operation of the evaluation board.  
4) Set the signal generator to produce an output  
signal of 0dBm at a frequency of 50MHz.  
5) Ensure that the signal generator is turned off.  
6) Connect the signal generator to the edge-mount  
SMA connector marked RFIN.  
Evluates:0–MAX93  
7) Connect the positive terminal of the voltmeter to  
the pad marked SET. Connect the ground return of  
the voltmeter to the pad marked GND.  
Shutdown Control  
Jumper JU1 controls the CMOS-compatible shutdown  
pin (SHDN) of the MAX9930, which disables the  
MAX9930. Removing the shunt from JU1 allows the  
SHDN pin to be driven with an external signal source  
connected to the SHDN pad (see Table 1 for shutdown  
shunt positions).  
8) Ensure that a shunt is installed across pins 1-2 of  
jumper JU1.  
9) Ensure that a shunt is installed across pins 2-3 of  
jumper JU2.  
Table 1. Shutdown Selection  
10) Ensure that a shunt is installed across jumper JU3.  
11) Turn on the variable DC power supply.  
JUMPER SHUNT POSITION  
DESCRIPTION  
MAX9930 enabled  
1-2*  
12) Turn on/enable the output of the signal generator.  
2-3  
MAX9930 disabled  
13) Verify with the voltmeter that an output voltage of  
approximately 1.4V is produced between the SET  
pad and the GND pad.  
JU1  
SHDN pin driven by an  
external signal source  
Not installed  
*Default position.  
2
_______________________________________________________________________________________  
MAX9930 Evaluation Kit  
Evluates:0–MAX93  
bandwidth. Refer to the Gain and Phase vs. Frequency  
graph in the Applications Information section of the  
MAX9930/MAX9931/MAX9932 IC data sheet for  
alternative capacitor values.  
Quasi-Measurement Mode  
Enabling the quasi-measurement mode changes the  
MAX9930 EV kit function from a PA controller to a log  
detector. This mode allows for easy measurement of  
RFIN versus the SET voltage and these measurements  
can then be used to find the intercept and slope  
required for the given application.  
Evaluating the MAX9931/MAX9932  
The MAX9930 can be replaced with the MAX9931 to  
allow an input range of -35dBm to +10dBm into 50Ω, or  
with the MAX9932 to allow an input range of -30dBm to  
+15dBm into 50Ω. Replace U1 with a MAX9931EUA+  
or MAX9932EUA+.  
Place a shunt on pins 2-3 of JU2 and install a shunt  
across JU3 to enable the quasi-measurement mode. This  
configuration connects the OUT voltage through an  
inverting op amp to the SET pin. The quasi-measurement  
mode yields a nominal relationship between RFIN  
and SET. See Table 2 for quasi-measurement mode  
shunt positions.  
Evaluating the MAX9933  
The MAX9930 can be replaced with the MAX9933 to  
allow an input range of -45dBm to +0dBm into 50Ω.  
Replace U1 with a MAX9933EUA+. Once a MAX9933  
IC is installed on U1, remove the shunt on JU3 to dis-  
connect the quasi-measurement mode circuitry. Place  
the shunt on pins 1-2 of JU2 to connect pin 3 of the  
MAX9933 to ground. The voltage on the OUT pad  
reflects the power level of the RF input signal.  
Table 2. Quasi-Measurement Mode  
Selection  
SHUNT POSITION  
QUASI-MEASUREMENT MODE  
JU2  
JU3  
1-2  
2-3*  
X
Installed*  
Not installed  
X
Disabled  
Enabled  
Disabled  
Disabled  
Layout Considerations  
A good PCB layout is an essential part of RF  
circuit design. The MAX9930EV kit PCB can serve  
as a guide for laying out a board using the  
MAX9930–MAX9933. Keep traces carrying RF signals  
as short as possible to minimize radiation and insertion  
X
Not installed  
*Default position.  
X = a “don’t care” position.  
loss due to the PCB. Each V  
node on the PCB should  
CC  
have its own decoupling capacitor. This minimizes sup-  
ply coupling from one section of the PCB to another.  
Using a star topology for the supply layout, in which  
Filter Capacitor Selection  
When functioning as a PA controller, the MAX9930  
requires some capacitance to maintain loop stability.  
Global Satellite Mobile (GSM) applications require a  
control-loop bandwidth of at least 150kHz. A 2200pF  
capacitor (C4) is installed to obtain this control-loop  
each V  
node in the circuit has a separate connection  
CC  
to the central V  
node, can further minimize coupling  
CC  
between sections of the PCB.  
_______________________________________________________________________________________  
3
MAX9930 Evaluation Kit  
C9  
22nF  
RFIN  
VCC  
R1  
52.3Ω  
1%  
VCC  
GND  
1
2
3
4
8
RFIN  
V
CC  
U1  
C4  
100pF  
C5  
0.1μF  
C1  
33pF  
SHDN  
SET  
MAX9930  
SHDN  
SET*  
CLPF  
OUT  
VCC  
7
6
5
OUT  
N.C.  
GND  
2
3
1
C6  
OPEN  
R2  
0Ω  
JU1  
R3  
OPEN  
C2  
100pF  
C3  
2200pF  
2
3
1
JU2  
R4  
10kΩ  
1%  
R5  
10kΩ  
1%  
JU3  
VCC  
VCC  
C8  
0.1μF  
R6  
4
5
100Ω  
1%  
R7  
14kΩ  
1%  
U2  
1
MAX4412  
3
2
Evluates:0–MAX93  
C7  
0.1μF  
R8  
10kΩ  
1%  
*MAX9933 PIN 3 = GND  
Figure 1. MAX9930 EV Kit Schematic  
4
_______________________________________________________________________________________  
MAX9930 Evaluation Kit  
Evluates:0–MAX93  
Figure 2. MAX9930 EV Kit Component Placement Guide—  
Component Side  
Figure 3. MAX9930 EV Kit PCB Layout—Component Side  
Figure 4. MAX9930 EV Kit PCB Layout—Ground Plane on  
Layer 2  
Figure 5. MAX9930 EV Kit PCB Layout—Ground Plane on  
Layer 3  
_______________________________________________________________________________________  
5
MAX9930 Evaluation Kit  
Figure 6. MAX9930 EV Kit PCB Layout—Solder Side  
Evluates:0–MAX93  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
6 _________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2007 Maxim Integrated Products  
is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY