MAX9930_V01 [MAXIM]

2MHz to 1.6GHz 45dB RF-Detecting Controllers and RF Detector;
MAX9930_V01
型号: MAX9930_V01
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

2MHz to 1.6GHz 45dB RF-Detecting Controllers and RF Detector

文件: 总16页 (文件大小:2032K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EVALUATION KIT AVAILABLE  
MAX9930–MAX9933  
2MHz to 1.6GHz 45dB RF-Detecting  
Controllers and RF Detector  
General Description  
Features  
The MAX9930–MAX9933 low-cost, low-power logarithmic  
amplifiers are designed to control RF power amplifiers  
(PA) and transimpedance amplifiers (TIA), and to detect  
RF power levels. These devices are designed to operate  
in the 2MHz to 1.6GHz frequency range. A typical dynam-  
ic range of 45dB makes this family of logarithmic ampli-  
fiers useful in a variety of wireless and GPON fiber video  
applications such as transmitter power measurement, and  
RSSI for terminal devices. Logarithmic amplifiers provide  
much wider measurement range and superior accuracy to  
controllers based on diode detectors. Excellent tempera-  
ture stability is achieved over the full operating range of  
-40°C to +85°C.  
Complete RF-Detecting PA Controllers  
(MAX9930/MAX9931/MAX9932)  
Complete RF Detector (MAX9933)  
Variety of Input Ranges  
MAX9930/MAX9933: -58dBV to -13dBV  
(-45dBm to 0dBm for 50Ω Termination)  
MAX9931: -48dBV to -3dBV  
(-35dBm to +10dBm for 50Ω Termination)  
MAX9932: -43dBV to +2dBV  
(-30dBm to +15dBm for 50Ω Termination)  
2MHz to 1.6GHz Frequency Range  
Temperature Stable Linear-in-dB Response  
Fast Response: 70ns 10dB Step  
10mA Output Sourcing Capability  
Low Power: 17mW at 3V (typ)  
The choice of three different input voltage ranges elimi-  
nates the need for external attenuators, thus simplifying  
PA control-loop design. The logarithmic amplifier is a  
voltage-measuring device with a typical signal range of  
-58dBV to -13dBV for the MAX9930/MAX9933, -48dBV  
to -3dBV for the MAX9931, and -43dBV to +2dBV for the  
MAX9932.  
13μA (typ) Shutdown Current  
Available in a Small 8-Pin μMAX Package  
The MAX9930–MAX9933 require an external coupling  
capacitor in series with the RF input port. These devices  
feature a power-on delay when coming out of shutdown,  
holding OUT low for approximately 2.5μs to ensure  
glitch-free controller output.  
Ordering Information  
PART  
TEMP RANGE  
PIN-PACKAGE  
8 µMAX  
MAX9930EUA+T  
MAX9931EUA+T  
MAX9932EUA+T  
MAX9933EUA+T  
MAX9933BGUA+T  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +105°C  
8 µMAX  
The MAX9930–MAX9933 family is available in an 8-pin  
8 µMAX  
®
μMAX package. These devices consume 7mA with a  
8 µMAX  
5V supply, and when powered down, the typical shut-  
down current is 13μA.  
8 µMAX  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
T = Tape and reel.  
Applications  
RSSI for Fiber Modules, GPON-CATV Triplexors  
Low-Frequency RF OOK and ASK Applications  
Transmitter Power Measurement and Control  
TSI for Wireless Terminal Devices  
Pin Configurations  
TOP VIEW  
Cellular Handsets (TDMA, CDMA, GPRS, GSM)  
+
+
RFIN  
SHDN  
SET  
1
2
3
4
8
7
6
5
V
RFIN  
SHDN  
GND  
1
2
3
4
8
7
6
5
V
CC  
CC  
MAX9930  
MAX9931  
MAX9932  
OUT  
N.C.  
GND  
OUT  
N.C.  
GND  
MAX9933  
MAX9933B  
Block Diagram appears at end of data sheet.  
CLPF  
CLPF  
µMAX  
µMAX  
μMAX is a registered trademark of Maxim Integrated Products, Inc.  
19-0859; Rev 2; 3/15  
MAX9930–MAX9933  
2MHz to 1.6GHz 45dB RF-Detecting  
Controllers and RF Detector  
Absolute Maximum Ratings  
(Voltages referenced to GND.)  
OUT Short Circuit to GND.........................................Continuous  
V
..........................................................................-0.3V to +6V  
Continuous Power Dissipation (T = +70°C)  
CC  
A
OUT, SET, SHDN, CLPF.......................... -0.3V to (V  
+ 0.3V)  
8-Pin μMAX (derate 4.5mW/°C above +70°C)............362mW  
Operating Temperature Range........................... -40°C to +85°C  
Storage Temperature Range............................ -65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
CC  
RFIN  
MAX9930/MAX9933.....................................................+6dBm  
MAX9931....................................................................+16dBm  
MAX9932....................................................................+19dBm  
Equivalent Voltage  
MAX9930/MAX9933................................................0.45V  
MAX9931...................................................................1.4V  
MAX9932...................................................................2.0V  
RMS  
RMS  
RMS  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these  
or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect  
device reliability.  
DC Electrical Characteristics  
(V  
= 3V, SHDN = 1.8V, T = -40°C to +85°C, C  
= 100nF, unless otherwise noted. Typical values are at T = +25°C.) (Notes 1 and 6)  
CLPF A  
CC  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
5.25  
12  
UNITS  
V
Supply Voltage  
V
2.70  
CC  
CC  
CC  
Supply Current  
I
I
V
= 5.25V  
7
13  
1
mA  
µA  
mV  
V
CC  
Shutdown Supply Current  
Shutdown Output Voltage  
Logic-High Threshold Voltage  
Logic-Low Threshold Voltage  
SHDN = 0.8V, V = 5V  
CC  
V
SHDN = 0.8V  
OUT  
V
1.8  
H
V
0.8  
30  
V
L
SHDN = 3V  
SHDN = 0V  
5
SHDN Input Current  
I
µA  
SHDN  
-1  
-0.01  
MAIN OUTPUT (MAX9930/MAX9931/MAX9932)  
High, I  
= 10mA  
2.65  
2.75  
0.15  
8
SOURCE  
Voltage Range  
V
OUT  
V
Low, I  
= 350µA  
SINK  
Output-Referred Noise  
Small-Signal Bandwidth  
Slew Rate  
From CLPF  
From CLPF  
nV/√Hz  
MHz  
BW  
20  
8
V
= 0.2V to 2.6V from CLPF  
V/µs  
OUT  
SET INPUT (MAX9930/MAX9931/MAX9932)  
Voltage Range (Note 2)  
Input Resistance  
V
Corresponding to central 40dB span  
0.35  
1.45  
V
SET  
R
30  
16  
MΩ  
V/µs  
IN  
Slew Rate (Note 3)  
DETECTOR OUTPUT (MAX9933/MAX9933B)  
RFIN = 0dBm  
1.45  
0.36  
4.5  
5
Voltage Range  
V
V
OUT  
RFIN = -45dBm  
Small-Signal Bandwidth  
Slew Rate  
BW  
C
= 150pF  
MHz  
V/µs  
CLPF  
V
= 0.36V to 1.45V, C  
= 150pF  
OUT  
CLPF  
Maxim Integrated  
2  
www.maximintegrated.com  
MAX9930–MAX9933  
2MHz to 1.6GHz 45dB RF-Detecting  
Controllers and RF Detector  
AC Electrical Characteristics  
(V  
= 3V, SHDN = 1.8V, f  
= 2MHz to 1.6GHz, T = -40°C to +85°C, C  
= 100nF, unless otherwise noted. Typical values are  
CC  
RF  
A
CLPF  
at T = +25°C.) (Notes 1 and 6)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
2
TYP  
MAX  
1600  
-13  
-3  
UNITS  
RF Input Frequency Range  
f
MHz  
RF  
MAX9930/MAX9933/MAX9933B  
MAX9931  
-58  
-48  
-43  
-45  
-35  
-30  
25  
RF Input Voltage Range  
(Note 4)  
V
dBV  
dBm  
RF  
RF  
MAX9932  
+2  
MAX9930/MAX9933/MAX9933B  
MAX9931  
0
Equivalent Power Range  
(50Ω Termination) (Note 4)  
P
+10  
+15  
29  
MAX9932  
f
f
f
f
f
= 2MHz, T = +25°C  
A
27  
27  
RF  
RF  
RF  
RF  
RF  
= 2MHz  
24  
30  
Logarithmic Slope  
V
23.5  
22.5  
25.5  
25.5  
27  
27.5  
28.5  
mV/dB  
= 900MHz, T = +25°C  
S
A
= 900MHz  
= 1600MHz  
MAX9930/MAX9933/MAX9933B  
-61  
-51  
-46  
-63  
-53  
-48  
-62  
-53  
-49  
-64  
-55  
-51  
-56  
-46  
-41  
-56  
-46  
-41  
-59  
-50  
-45  
-59  
-50  
-45  
-62  
-52  
-47  
-52  
-42  
-37  
-50  
-40  
-35  
-53  
-44  
-40  
-51  
-42  
-38  
f
= 2MHz,  
RF  
MAX9931  
T = +25°C  
A
MAX9932  
MAX9930/MAX9933/MAX9933B  
MAX9931  
f
f
= 2MHz  
RF  
MAX9932  
MAX9930/MAX9933/MAX9933B  
MAX9931  
= 900MHz,  
RF  
Logarithmic Intercept  
P
dBm  
X
T = +25°C  
A
MAX9932  
MAX9930/MAX9933/MAX9933B  
MAX9931  
f
f
= 900MHz  
RF  
RF  
MAX9932  
MAX9930/MAX9933/MAX9933B  
= 1600MHz MAX9931  
MAX9932  
RF INPUT INTERFACE  
DC Resistance  
R
Connected to V  
2
kΩ  
DC  
CC  
Inband Capacitance  
C
Internally DC-coupled (Note 5)  
0.5  
pF  
IB  
Note 1: All devices are 100% production tested at T = +25°C and are guaranteed by design for T = -40°C to +85°C as specified.  
A
A
Note 2: Typical value only, set-point input voltage range determined by logarithmic slope and logarithmic intercept.  
Note 3: Set-point slew rate is the rate at which the reference level voltage, applied to the inverting input of the g stage, responds  
m
to a voltage step at the SET pin (see Figure 1).  
Note 4: Typical min/max range for detector.  
Note 5: Pin capacitance to ground.  
Note 6: MAX9933B is 100% production tested at T = +25°C and is guaranteed by design for T = -40°C to +105°C as specified.  
A
A
Maxim Integrated  
3  
www.maximintegrated.com  
MAX9930–MAX9933  
2MHz to 1.6GHz 45dB RF-Detecting  
Controllers and RF Detector  
Typical Operating Characteristics  
(V  
= 3V, SHDN = V , T = +25°C, all log conformance plots are normalized to their respective temperatures, T = +25°C, unless  
CC  
CC  
A
A
otherwise noted.)  
MAX9930  
MAX9930  
SET vs. INPUT POWER  
MAX9930  
SET AND LOG CONFORMANCE  
vs. INPUT POWER AT 2MHz  
LOG CONFORMANCE vs. INPUT POWER  
MAX9930 toc03  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
4
3
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
4
2MHz  
3
900MHz  
50MHz  
2
2
1.6GHz  
900MHz  
1
1
0
0
1.6GHz  
-1  
-2  
-3  
-4  
-1  
-2  
-3  
-4  
50MHz  
2MHz  
T
= -40°C  
A
T
= +25°C  
= +85°C  
A
T
A
-60 -50 -40 -30 -20 -10  
INPUT POWER (dBm)  
0
10  
-60 -50 -40 -30 -20 -10  
INPUT POWER (dBm)  
0
10  
-60 -50 -40 -30 -20 -10  
INPUT POWER (dBm)  
0
10  
MAX9930  
MAX9930  
MAX9930  
SET AND LOG CONFORMANCE  
vs. INPUT POWER AT 50MHz  
SET AND LOG CONFORMANCE  
vs. INPUT POWER AT 900MHz  
SET AND LOG CONFORMANCE  
vs. INPUT POWER AT 1.6GHz  
MAX9930 toc06  
MAX9930 toc04  
MAX9930 toc05  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
4
4
4
3
3
3
2
2
2
1
1
1
0
0
0
-1  
-2  
-3  
-4  
-1  
-2  
-3  
-4  
T
= -40°C  
= +25°C  
-1  
-2  
-3  
-4  
A
T
= -40°C  
T = -40°C  
A
A
T
A
T
A
= +25°C  
T
A
= +25°C  
T
A
= +85°C  
T = +85°C  
A
T
= +85°C  
A
-60 -50 -40 -30 -20 -10  
INPUT POWER (dBm)  
0
10  
-60 -50 -40 -30 -20 -10  
INPUT POWER (dBm)  
0
10  
-60 -50 -40 -30 -20 -10  
INPUT POWER (dBm)  
0
10  
MAX9930  
MAX9930  
MAX9930  
LOG SLOPE vs. FREQUENCY  
LOG SLOPE vs. V  
LOG INTERCEPT vs. FREQUENCY  
CC  
27  
26  
25  
24  
23  
22  
21  
29  
28  
27  
26  
25  
24  
23  
22  
-60  
-62  
-64  
-66  
-68  
T
= +25°C  
A
T
= +25°C  
A
T
= -40°C  
A
2MHz  
1.6GHz  
T
= +85°C  
A
50MHz  
5.0  
T
= +85°C  
600  
A
900MHz  
T
= -40°C  
A
0
300  
900 1200 1500 1800  
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.5  
0
400  
800  
1200  
1600  
FREQUENCY (MHz)  
V
CC  
FREQUENCY (MHz)  
Maxim Integrated  
4
www.maximintegrated.com  
MAX9930–MAX9933  
2MHz to 1.6GHz 45dB RF-Detecting  
Controllers and RF Detector  
Typical Operating Characteristics (continued)  
(V  
= 3V, SHDN = V , T = +25°C, all log conformance plots are normalized to their respective temperatures, T = +25°C, unless  
CC  
CC  
A
A
otherwise noted.)  
MAX9930  
MAX9930  
MAX9931  
LOG INTERCEPT vs. V  
LOG CONFORMANCE vs. TEMPERATURE  
SET vs. INPUT POWER  
CC  
-57  
-59  
-61  
-63  
-65  
-67  
-69  
-71  
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.6  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
INPUT POWER = -22dBm  
f
RF  
= 50MHz  
2MHz  
1.6GHz  
50MHz  
2MHz  
50MHz  
900MHz  
900MHz  
1.6GHz  
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
5.5  
-50  
-25  
0
25  
50  
75  
100  
-50 -40 -30 -20 -10  
0
10  
20  
V
TEMPERATURE (°C)  
INPUT POWER (dBm)  
CC  
MAX9931  
MAX9931  
MAX9931  
SET AND LOG CONFORMANCE  
vs. INPUT POWER AT 2MHz  
SET AND LOG CONFORMANCE  
vs. INPUT POWER AT 50MHz  
LOG CONFORMANCE vs. INPUT POWER  
MAX9930 toc14  
MAX9930 toc15  
4
3
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
4
4
2MHz  
3
3
2
2
2
900MHz  
50MHz  
1
1
1
0
0
0
1.6GHz  
-1  
-2  
-3  
-4  
-1  
-2  
-3  
-4  
-1  
-2  
-3  
-4  
T
= -40°C  
A
T
T
= -40°C  
= +25°C  
A
T
A
= +25°C  
= +85°C  
A
T
A
T
A
= +85°C  
-50 -40 -30 -20 -10  
0
10  
20  
-50 -40 -30 -20 -10  
0
10  
20  
-50 -40 -30 -20 -10  
0
10  
20  
INPUT POWER (dBm)  
INPUT POWER (dBm)  
INPUT POWER (dBm)  
MAX9931  
SET AND LOG CONFORMANCE  
vs. INPUT POWER AT 900MHz  
MAX9931  
SET AND LOG CONFORMANCE  
vs. INPUT POWER AT 1.6GHz  
MAX9931  
LOG SLOPE vs. FREQUENCY  
MAX9930 toc16  
MAX9930 toc17  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
29  
28  
27  
26  
25  
24  
23  
4
4
3
3
T
= +85°C  
A
2
2
T
A
= +25°C  
1
1
0
0
-1  
-2  
-3  
-4  
-1  
-2  
-3  
-4  
T
= -40°C  
= +25°C  
= +85°C  
T
= -40°C  
A
A
T
= -40°C  
A
T
A
T
A
= +25°C  
= +85°C  
T
A
T
A
-50 -40 -30 -20 -10  
0
10  
20  
-50 -40 -30 -20 -10  
0
10  
20  
0
300  
600  
900 1200 1500 1800  
INPUT POWER (dBm)  
INPUT POWER (dBm)  
FREQUENCY (MHz)  
Maxim Integrated  
5  
www.maximintegrated.com  
MAX9930–MAX9933  
2MHz to 1.6GHz 45dB RF-Detecting  
Controllers and RF Detector  
Typical Operating Characteristics (continued)  
(V  
= 3V, SHDN = V , T = +25°C, all log conformance plots are normalized to their respective temperatures, T = +25°C, unless  
CC  
CC  
A
A
otherwise noted.)  
MAX9931  
MAX9931  
MAX9931  
LOG SLOPE vs. V  
LOG INTERCEPT vs. FREQUENCY  
LOG INTERCEPT vs. V  
CC  
CC  
29  
28  
27  
26  
25  
24  
23  
22  
-48  
-50  
-52  
-54  
-56  
-58  
-60  
-62  
-46  
-48  
-50  
-52  
-54  
2MHz  
T
= -40°C  
2MHz  
A
1.6GHz  
900MHz  
50MHz  
T
= +85°C  
A
1.6GHz  
T
A
= +25°C  
800  
50MHz  
5.0  
900MHz  
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.5  
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
5.5  
0
400  
1200  
1600  
V
CC  
V
FREQUENCY (MHz)  
CC  
MAX9931  
MAX9932  
MAX9932  
LOG CONFORMANCE vs. TEMPERATURE  
SET vs. INPUT POWER  
LOG CONFORMANCE vs. INPUT POWER  
0.2  
0.1  
0
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
4
3
INPUT POWER = -12dBm  
50MHz  
f
= 50MHz  
RF  
900MHz  
2
1.6GHz  
2MHz  
1
-0.1  
-0.2  
-0.3  
-0.4  
0
50MHz  
900MHz  
-1  
-2  
-3  
-4  
1.6GHz  
2MHz  
-50  
-25  
0
25  
50  
75  
100  
-40  
-30  
-20  
-10  
0
10  
20  
-40  
-30  
-20  
-10  
0
10  
20  
TEMPERATURE (°C)  
INPUT POWER (dBm)  
INPUT POWER (dBm)  
MAX9932  
MAX9932  
MAX9932  
SET AND LOG CONFORMANCE  
vs. INPUT POWER AT 900MHz  
MAX9930 toc27  
SET AND LOG CONFORMANCE  
vs. INPUT POWER AT 2MHz  
SET AND LOG CONFORMANCE  
vs. INPUT POWER AT 50MHz  
MAX9930 toc25  
MAX9930 toc26  
4
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
4
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
4
T
A
= +85°C  
3
3
3
T
= +25°C  
= -40°C  
A
2
2
2
T
A
1
1
1
0
0
0
T
= -40°C  
= +25°C  
T
A
= +85°C  
A
-1  
-2  
-3  
-4  
-1  
-2  
-3  
-4  
-1  
-2  
-3  
-4  
T
A
T
A
= +25°C  
T
A
= +85°C  
T
A
= -40°C  
-40  
-30  
-20  
-10  
0
10  
20  
-40  
-30  
-20  
-10  
0
10  
20  
-40  
-30  
-20  
-10  
0
10  
20  
INPUT POWER (dBm)  
INPUT POWER (dBm)  
INPUT POWER (dBm)  
Maxim Integrated  
6
www.maximintegrated.com  
MAX9930–MAX9933  
2MHz to 1.6GHz 45dB RF-Detecting  
Controllers and RF Detector  
Typical Operating Characteristics (continued)  
(V  
= 3V, SHDN = V , T = +25°C, all log conformance plots are normalized to their respective temperatures, T = +25°C, unless  
CC  
CC  
A
A
otherwise noted.)  
MAX9932  
SET AND LOG CONFORMANCE  
vs. INPUT POWER AT 1.6GHz  
MAX9932  
LOG SLOPE vs. FREQUENCY  
MAX9932  
LOG SLOPE vs. V  
CC  
MAX9930 toc28  
29  
28  
27  
26  
25  
24  
23  
22  
4
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
29  
28  
27  
26  
25  
24  
23  
3
T
A
= +85°C  
2
2MHz  
1
1.6GHz  
T
= +25°C  
A
0
50MHz  
-1  
-2  
-3  
-4  
T
= +85°C  
= +25°C  
A
T
= -40°C  
A
900MHz  
T
A
T
A
= -40°C  
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
5.5  
-40  
-30  
-20  
-10  
0
10  
20  
0
300  
600  
900 1200 1500 1800  
V
INPUT POWER (dBm)  
FREQUENCY (MHz)  
CC  
MAX9932  
MAX9932  
MAX9932  
LOG INTERCEPT vs. FREQUENCY  
LOG INTERCEPT vs. V  
LOG CONFORMANCE vs. TEMPERATURE  
CC  
-41  
-43  
-45  
-47  
-49  
-51  
-53  
-55  
-40  
-42  
-44  
-46  
-48  
0.1  
0
INPUT POWER = -10dBm  
f
RF  
= 50MHz  
50MHz  
T
= -40°C  
A
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
T
= +85°C  
A
2MHz  
900MHz  
T
= +25°C  
A
1.6GHz  
4.0  
2.5  
3.0  
3.5  
4.5  
5.0  
5.5  
0
400  
800  
1200  
1600  
-50  
-25  
0
25  
50  
75  
100  
V
CC  
(V)  
FREQUENCY (MHz)  
TEMPERATURE (°C)  
MAX9933B  
OUTPUT AND LOG CONFORMANCE  
vs. INPUT POWER AT 2MHz  
MAX9933  
OUT vs. INPUT POWER  
MAX9933  
LOG CONFORMANCE vs. INPUT POWER  
toc36  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
4
3
1.8  
1.6  
1.4  
1.2  
1
4
2MHz  
3
1.6GHz  
2
2
900MHz  
50MHz  
1
1
0
0
900MHz  
0.8  
0.6  
0.4  
0.2  
-1  
-2  
-3  
-4  
-1  
-2  
-3  
-4  
50MHz  
2MHz  
1.6GHz  
TA = +105°C  
TA = +85°C  
TA = +25°C  
TA = -40°C  
-60  
-50  
-40  
-30  
-20  
-10  
0
10  
-60 -50 -40 -30 -20 -10  
INPUT POWER (dBm)  
0
10  
-60 -50 -40 -30 -20 -10  
INPUT POWER (dBm)  
0
10  
INPUT POWER (dBm)  
Maxim Integrated  
7
www.maximintegrated.com  
MAX9930–MAX9933  
2MHz to 1.6GHz 45dB RF-Detecting  
Controllers and RF Detector  
Typical Operating Characteristics (continued)  
(V  
= 3V, SHDN = V , T = +25°C, all log conformance plots are normalized to their respective temperatures, T = +25°C, unless  
CC  
CC  
A
A
otherwise noted.)  
MAX9933B  
MAX9933B  
MAX9933B  
OUTPUT AND LOG CONFORMANCE  
vs. INPUT POWER AT 50MHz  
OUTPUT AND LOG CONFORMANCE  
vs. INPUT POWER AT 900MHz  
OUTPUT AND LOG CONFORMANCE  
vs. INPUT POWER AT 1.6GHz  
toc37  
toc38  
toc39  
1.8  
1.6  
1.4  
1.2  
1
4
1.8  
1.6  
1.4  
1.2  
1
4
1.8  
1.6  
1.4  
1.2  
1
4
3
3
3
2
2
2
1
1
1
0
0
0
TA = +105°C  
TA = +85°C  
TA = +105°C  
TA = +85°C  
TA = +25°C  
TA = -40°C  
0.8  
0.6  
0.4  
0.2  
-1  
-2  
-3  
-4  
0.8  
0.6  
0.4  
0.2  
-1  
-2  
-3  
-4  
0.8  
0.6  
0.4  
0.2  
-1  
-2  
-3  
-4  
TA = +105°C  
TA = +85°C  
TA = +25°C  
TA = -40°C  
TA = +25°C  
TA = -40°C  
-60  
-50  
-40  
-30  
-20  
-10  
0
10  
-60  
-50  
-40  
-30  
-20  
-10  
0
10  
-60  
-50  
-40  
-30  
-20  
-10  
0
10  
INPUT POWER (dBm)  
INPUT POWER (dBm)  
INPUT POWER (dBm)  
MAX9933  
LOG SLOPE vs. V  
MAX9933B  
LOG SLOPE vs. FREQUENCY  
MAX9933B  
LOG INTERCEPT vs. FREQUENCY  
CC  
toc40  
toc42  
29  
28  
27  
26  
25  
24  
23  
29  
28  
27  
26  
25  
24  
23  
22  
-52  
-54  
-56  
-58  
-60  
-62  
-64  
1.6GHz  
TA = +105°C  
TA = +85°C  
TA = -40°C  
TA = +25°C  
50MHz  
900MHz  
TA = +25°C  
TA = -40°C  
2MHz  
TA = +85°C  
TA = +105°C  
0
300  
600  
900  
1200 1500 1800  
0
300  
600  
900  
1200 1500 1800  
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
5.5  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
V
CC  
MAX9933B  
LOG CONFORMANCE vs. TEMPERATURE  
MAX9933  
LOG INTERCEPT vs. V  
SUPPLY CURRENT  
vs. SHDN VOLTAGE  
CC  
toc44  
0.2  
0.1  
0
-52  
-54  
-56  
-58  
-60  
-62  
-64  
-66  
8
7
INPUT POWER = -22dBm  
fRF = 50MHz  
V
= 5.25V  
CC  
2MHz  
6
5
4
50MHz  
3
-0.1  
-0.2  
-0.3  
2
900MHz  
1
1.6GHz  
0
-1  
-50  
-25  
0
25  
50  
75  
100 125  
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
5.5  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
SHDN (V)  
TEMPERATURE (°C)  
V
CC  
Maxim Integrated  
8  
www.maximintegrated.com  
MAX9930–MAX9933  
2MHz to 1.6GHz 45dB RF-Detecting  
Controllers and RF Detector  
Typical Operating Characteristics (continued)  
(V  
= 3V, SHDN = V , T = +25°C, all log conformance plots are normalized to their respective temperatures, T = +25°C, unless  
CC A A  
CC  
otherwise noted.)  
SHDN POWER-ON DELAY  
RESPONSE TIME  
SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
MAX9930 toc47  
8.0  
C
CLPF  
= 150pF  
7.8  
7.6  
7.4  
7.2  
7.0  
6.8  
6.6  
6.4  
6.2  
6.0  
SHDN  
500mV/div  
0V  
0V  
OUT  
1V/div  
2µs/div  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
SUPPLY VOLTAGE (V)  
MAXIMUM OUT VOLTAGE  
SHDN RESPONSE TIME  
MAIN OUTPUT NOISE-SPECTRAL DENSITY  
vs. V BY LOAD CURRENT  
CC  
MAX9930 toc48  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
10,000  
CLPF = 150pF  
MAX9933  
CLPF = 220pF  
SHDN  
1V/div  
0mA  
0V  
0V  
1000  
10mA  
5mA  
OUT  
00mV/div  
100  
2µs/div  
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
5.5  
100  
1k  
10k  
100k  
1M  
10M  
V
FREQUENCY (Hz)  
CC  
LARGE-SIGNAL  
SMALL-SIGNAL  
PULSE RESPONSE  
PULSE RESPONSE  
MAX9930 toc51  
MAX9930 toc52  
C
CLPF  
= 10,000pF  
C
CLPF  
= 150pF  
OUT  
500mV/div  
OUT  
75mV/div  
900mV  
0V  
f
= 50MHz  
f
RF  
= 50MHz  
RF  
RFIN  
RFIN  
250mV/div  
25mV/div  
-42dBm  
-24dBm  
-2dBm  
-18dBm  
10µs/div  
1µs/div  
Maxim Integrated  
9
www.maximintegrated.com  
MAX9930–MAX9933  
2MHz to 1.6GHz 45dB RF-Detecting  
Controllers and RF Detector  
Pin Description  
PIN  
MAX9930/  
MAX9931/  
MAX9932  
NAME  
FUNCTION  
MAX9933  
1
2
3
1
2
RFIN  
SHDN  
SET  
RF Input  
Shutdown. Connect to V  
Set-Point Input  
for normal operation.  
CC  
Lowpass Filter Connection. Connect external capacitor between CLPF and GND to set  
control-loop bandwidth.  
4
4
CLPF  
5
6
7
8
3, 5  
6
GND  
N.C.  
OUT  
Ground  
No Connection. Not internally connected.  
PA Gain-Control Output  
7
8
V
Supply Voltage. Bypass to GND with a 0.1µF capacitor.  
CC  
SHDN  
OUTPUT-  
ENABLED  
DELAY  
V
CC  
g
m
OUT  
X1  
DET  
DET  
DET  
DET  
DET  
CLPF  
RFIN  
10dB  
10dB  
10dB  
10dB  
SET  
V-I*  
OFFSET  
COMP  
REFERENCE  
CURRENT  
MAX9930  
MAX9931  
MAX9932  
GND  
SHDN  
OUTPUT-  
ENABLED  
DELAY  
V
CC  
g
m
OUT  
X1  
DET  
DET  
DET  
DET  
DET  
CLPF  
RFIN  
GND  
10dB  
10dB  
10dB  
10dB  
V-I*  
OFFSET  
COMP  
REFERENCE  
CURRENT  
MAX9933  
*INVERTING VOLTAGE TO CURRENT CONVERTER  
Figure 1. Functional Diagram  
Maxim Integrated  
10  
www.maximintegrated.com  
MAX9930–MAX9933  
2MHz to 1.6GHz 45dB RF-Detecting  
Controllers and RF Detector  
Extrapolating a straight-line fit of the graph of SET vs.  
RFIN provides the logarithmic intercept. Logarithmic  
slope, the amount SET changes for each dB change of  
RF input, is generally independent of waveform or termi-  
nation impedance. The MAX9930/MAX9931/MAX9932  
slope at low frequencies is about 25mV/dB.  
Detailed Description  
The MAX9930–MAX9933 family of logarithmic ampli-  
fiers (log amps) comprises four main amplifier/limiter  
stages each with a small-signal gain of 10dB. The output  
stage of each amplifier is applied to a full-wave rectifier  
(detector). A detector stage also precedes the first gain  
stage. In total, five detectors, each separated by 10dB,  
comprise the log amp strip. Figure 1 shows the functional  
diagram of the log amps.  
Variance in temperature and supply voltage does not alter  
the slope significantly as shown in the Typical Operating  
Characteristics.  
The MAX9930/MAX9931/MAX9932 are specifically  
designed for use in PA control applications. In a control  
loop, the output starts at approximately 2.9V (with supply  
voltage of 3V) for the minimum input signal and falls to a  
value close to ground at the maximum input. With a por-  
tion of the PA output power coupled to RFIN, apply a volt-  
age to SET (for the MAX9930/MAX9931/MAX9932) and  
connect OUT to the gain-control pin of the PA to control its  
output power. An external capacitor from CLPF to ground  
sets the bandwidth of the PA control loop.  
A portion of the PA output power is coupled to RFIN of the  
logarithmic amplifier controller/detector, and is applied to  
the logarithmic amplifier strip. Each detector cell outputs  
a rectified current and all cell currents are summed and  
form a logarithmic output. The detected output is applied  
to a high-gain g stage, which is buffered and then  
m
applied to OUT. For the MAX9930/MAX9931/MAX9932,  
OUT is applied to the gain-control input of the PA to  
close the control loop. The voltage applied to SET deter-  
mines the output power of the PA in the control loop. The  
voltage applied to SET relates to an input power level  
determined by the log amp detector characteristics. For  
the MAX9933, OUT is applied to an ADC typically found  
in a baseband IC which, in turn, controls the PA biasing  
with the output (Figure 2).  
Transfer Function  
Logarithmic slope and intercept determine the trans-  
fer function of the MAX9930–MAX9933 family of log  
amps. The change in SET voltage (OUT voltage for the  
MAX9933) per dB change in RF input defines the logarith-  
mic slope. Therefore, a 10dB change in RF input results  
in a 250mV change at SET (OUT for the MAX9933). The  
Log Conformance vs. Input Power plots (see Typical  
Operating Characteristics) show the dynamic range of the  
log amp family. Dynamic range is the range for which the  
error remains within a band of ±1dB.  
PA  
TRANSMITTER  
XX  
DAC  
The intercept is defined as the point where the linear  
response, when extrapolated, intersects the y-axis of  
the Log Conformance vs. Input Power plot. Using these  
parameters, the input power can be calculated at any SET  
voltage level (OUT voltage level for the MAX9933) within  
the specified input range with the following equations:  
V
50  
CC  
C
C
BASEBAND  
IC  
RFIN  
V
CC  
0.01µF  
MAX9933  
50Ω  
SHDN  
ADC  
OUT  
N.C.  
RFIN = (SET / SLOPE) + IP  
GND  
(MAX9930/MAX9931/MAX9932)  
CLPF  
GND  
RFIN = (OUT / SLOPE) + IP  
(MAX9933)  
C
CLPF  
where SET is the set-point voltage, OUT is the output  
voltage for the MAX9933, SLOPE is the logarithmic slope  
(V/dB), RFIN is in either dBm or dBV and IP is the loga-  
rithmic intercept point utilizing the same units as RFIN.  
Figure 2. MAX9933 Typical Application Circuit  
Maxim Integrated  
11  
www.maximintegrated.com  
MAX9930–MAX9933  
2MHz to 1.6GHz 45dB RF-Detecting  
Controllers and RF Detector  
voltage can range from 150mV to within 250mV of the  
positive supply rail while sourcing 10mA. Use a suitable  
load resistor between OUT and GND for PA control inputs  
that source current. The Typical Operating Characteristics  
Applications Information  
Controller Mode  
(MAX9930/MAX9931/MAX9932)  
Figure 3 provides a circuit example of the MAX9930/  
MAX9931/MAX9932 configured as a controller. The  
MAX9930/MAX9931/MAX9932 require a 2.7V to 5.25V  
supply voltage. Place a 0.1μF low-ESR, surface-mount  
has the Maximum Out Voltage vs. V  
By Load Current  
CC  
graph that shows the sourcing capabilities and output  
swing of OUT.  
SHDN and Power-On  
ceramic capacitor close to V  
to decouple the supply.  
CC  
The MAX9930–MAX9933 can be placed in shutdown  
by pulling SHDN to ground. Shutdown reduces supply  
current to typically 13μA. A graph of SHDN Response  
Time is included in the Typical Operating Characteristics.  
Electrically isolate the RF input from other pins (espe-  
cially SET) to maximize performance at high frequencies  
(especially at the high-power levels of the MAX9932).  
The MAX9930/MAX9931/MAX9932 require external  
AC-coupling. Achieve 50Ω input matching by connecting  
a 50Ω resistor between the AC-coupling capacitor of RFIN  
and ground.  
Connect SHDN and V  
operation.  
together for continuous on  
CC  
Power Convention  
The MAX9930/MAX9931/MAX9932 logarithmic amplifiers  
function as both the detector and controller in power-  
control loops. Use a directional coupler to couple a portion  
of the PA’s output power to the log amp’s RF input. For  
applications requiring dual-mode operation and where  
there are two PAs and two directional couplers, passively  
combine the outputs of the directional couplers before  
applying to the log amp. Apply a set-point voltage to SET  
from a controlling source (usually a DAC). OUT, which  
drives the automatic gain-control input of the PA, cor-  
rects any inequality between the RF input level and the  
corresponding set-point level. This is valid assuming the  
gain control of the variable gain element is positive, such  
that increasing OUT voltage increases gain. The OUT  
Expressing power in dBm, decibels above 1mW, is the  
most common convention in RF systems. Log amp input  
levels specified in terms of power are a result of the fol-  
lowing common convention. Note that input power does  
not refer to power, but rather to input voltage relative to  
a 50Ω impedance. Use of dBV, decibels with respect  
to a 1V  
sine wave, yields a less ambiguous result.  
RMS  
The dBV convention has its own pit-falls in that log amp  
response is also dependent on waveform. A complex  
input, such as CDMA, does not have the exact same  
output response as the sinusoidal signal. The MAX9930–  
MAX9933 performance specifications are in both dBV  
and dBm, with equivalent dBm levels for a 50Ω environ-  
ment. To convert dBV values into dBm in a 50Ω network,  
add 13dB. For CATV applications, to convert dBV values  
to dBm in a 75Ω network, add 11.25dB. Table 1 shows the  
different input power ranges in different conventions for  
the MAX9930–MAX9933.  
ANTENNA  
POWER AMPLIFIER  
RF INPUT  
XX  
Table 1. Power Ranges of the MAX9930–  
MAX9933  
C
C
50  
RFIN  
V
V
CC  
CC  
INPUT POWER RANGE  
MAX9930  
MAX9931  
MAX9932  
0.1µF  
PART  
dBm IN A 50Ω  
dBm IN A 75Ω  
dBV  
NETWORK  
NETWORK  
SHDN  
SET  
OUT  
N.C.  
DAC  
MAX9930 -58 to -13  
-45 to 0  
-35 to +10  
-30 to +15  
-45 to 0  
-46.75 to -1.75  
-36.75 to +8.25  
-31.75 to +13.25  
-46.75 to -1.75  
MAX9931  
MAX9932  
-48 to -3  
-43 to +2  
CLPF  
GND  
C
CLPF  
MAX9933 -58 to -13  
Figure 3. Control Mode Application Circuit Block  
Maxim Integrated  
12  
www.maximintegrated.com  
MAX9930–MAX9933  
2MHz to 1.6GHz 45dB RF-Detecting  
Controllers and RF Detector  
attenuation. A broadband resistive match is implement-  
ed by connecting a resistor to ground at the external  
AC-coupling capacitor at RFIN as shown in Figure 5. A  
50Ω resistor (use other values for different input imped-  
ances) in this configuration, in parallel with the input  
impedance of the MAX9930–MAX9933, presents an input  
impedance of approximately 50Ω. These devices require  
an additional external coupling capacitor in series with  
the RF input. As the operating frequency increases over  
2GHz, input impedance is reduced, resulting in the need  
for a larger-valued shunt resistor. Use a Smith Chart for  
calculating the ideal shunt resistor value. Refer to the  
MAX4000/MAX4001/MAX4002 data sheet for narrow-  
band reactive and series attenuation input coupling.  
Filter Capacitor and Transient Response  
In general, for the MAX9930/MAX9931/MAX9932, the  
choice of filter capacitor only partially determines the  
time-domain response of a PA control loop. However,  
some simple conventions can be applied to affect tran-  
sient response. A large filter capacitor, C  
, dominates  
CLPF  
time-domain response, but the loop bandwidth remains  
a factor of the PA gain-control range. The bandwidth is  
maximized at power outputs near the center of the PA’s  
range, and minimized at the low and high power levels,  
where the slope of the gain-control curve is lowest.  
A smaller valued C  
results in an increased loop  
CLPF  
bandwidth inversely proportional to the capacitor value.  
Inherent phase lag in the PA’s control path, usually caused  
by parasitics at OUT, ultimately results in the addition of  
complex poles in the AC loop equation. To avoid this sec-  
ondary effect, experimentally determine the lowest usable  
MAX9930  
MAX9931  
MAX9932  
C
for the power amplifier of interest. This requires full  
CLPF  
50 SOURCE  
consideration to the intricacies of the PA control function.  
The worst-case condition, where the PA output is small-  
est (gain function is steepest) should be used because  
the PA control function is typically nonlinear. An additional  
zero can be added to improve loop dynamics by placing  
MAX9933  
C
C
50  
RFIN  
R
50Ω  
S
C
IN  
R
IN  
a resistor in series with C  
. See Figure 4 for the gain  
CLPF  
and phase response for different C  
values.  
CLPF  
V
CC  
Additional Input Coupling  
There are three common methods for input coupling:  
broadband resistive, narrowband reactive, and series  
Figure 5. Broadband Resistive Matching  
GAIN AND PHASE vs. FREQUENCY  
SMALL-SIGNAL BANDWIDTH vs. C  
CLPF  
MAX9930 fig04  
80  
60  
180  
135  
90  
10  
GAIN  
C
CLPF  
= 2000pF  
40  
C
= 200pF  
CLPF  
20  
45  
1
0.1  
C
= 200pF  
CLPF  
0
0
-20  
-40  
-60  
-80  
-100  
-45  
-90  
-135  
-180  
-225  
C
= 2000pF  
CLPF  
PHASE  
0.01  
10 100 1k 10k 100k 1M 10M 100M  
100  
1000  
10,000  
(pF)  
100,000  
FREQUENCY (Hz)  
C
CLPF  
Figure 4. Gain and Phase vs. Frequency  
Maxim Integrated  
13  
www.maximintegrated.com  
MAX9930–MAX9933  
2MHz to 1.6GHz 45dB RF-Detecting  
Controllers and RF Detector  
Waveform Considerations  
Block Diagram  
The MAX9930–MAX9933 family of logarithmic amplifiers  
respond to voltage, not power, even though input levels  
are specified in dBm. It is important to realize that input  
signals with identical RMS power but unique waveforms  
result in different log amp outputs. Differing signal wave-  
forms result in either an upward or downward shift in  
the logarithmic intercept. However, the logarithmic slope  
remains the same; it is possible to compensate for known  
waveform shapes by baseband process.  
OUTPUT-  
ENABLE  
DELAY  
SHDN  
V
CC  
LOG  
DETECTOR  
RFIN  
SET  
g
m
x1  
OUT  
BLOCK  
V-I*  
BUFFER  
It must also be noted that the output waveform is gener-  
ated by first rectifying and then averaging the input signal.  
This method should not be confused with RMS or peak-  
detection methods.  
MAX9930  
MAX9931  
MAX9932  
C
CLPF  
GND  
Layout Considerations  
As with any RF circuit, the layout of the MAX9930–  
MAX9933 circuits affects performance. Use a short 50Ω  
line at the input with multiple ground vias along the length  
of the line. The input capacitor and resistor should both  
OUTPUT-  
ENABLE  
DELAY  
SHDN  
V
CC  
LOG  
DETECTOR  
RFIN  
be placed as close as possible to the IC. V  
should be  
CC  
g
bypassed as close as possible to the IC with multiple vias  
connecting the capacitor to the ground plane. It is recom-  
mended that good RF components be chosen for the  
desired operating frequency range. Electrically isolate  
RF input from other pins (especially SET) to maximize  
performance at high frequencies (especially at the  
high power levels of the MAX9932).  
m
x1  
OUT  
BLOCK  
BUFFER  
MAX9933  
V-I*  
C
CLPF  
GND  
*INVERTING VOLTAGE TO CURRENT CONVERTER.  
Chip Information  
PROCESS: High-Frequency Bipolar  
Maxim Integrated  
14  
www.maximintegrated.com  
MAX9930–MAX9933  
2MHz to 1.6GHz 45dB RF-Detecting  
Controllers and RF Detector  
Package Information  
For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a “+”,  
“#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing  
pertains to the package regardless of RoHS status.  
PACKAGE TYPE  
PACKAGE CODE  
OUTLINE NO.  
21-0036  
LAND PATTERN NO.  
90-0092  
8 μMAX  
U8-1  
Maxim Integrated  
15  
www.maximintegrated.com  
MAX9930–MAX9933  
2MHz to 1.6GHz 45dB RF-Detecting  
Controllers and RF Detector  
Revision History  
REVISION REVISION  
PAGES  
CHANGED  
DESCRIPTION  
NUMBER  
DATE  
8/07  
3/09  
3/15  
0
1
2
Initial release  
Added TOC46 to Typical Operating Characteristics  
Added information for the MAX9933B. Revised Typical Operating Characteristics.  
9
1–3, 7, 8, 15  
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated’s website at www.maximintegrated.com.  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses  
are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits)  
shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
©
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  
2015 Maxim Integrated Products, Inc.  
16  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY