MAX9949FCCB+ [MAXIM]

Dual Per-Pin Parametric Measurement Units; 双每个引脚参数测量单元
MAX9949FCCB+
型号: MAX9949FCCB+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Dual Per-Pin Parametric Measurement Units
双每个引脚参数测量单元

模拟IC 信号电路 信息通信管理
文件: 总23页 (文件大小:283K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-3014; Rev 2; 3/09  
Dual Per-Pin Parametric Measurement Units  
4/MAX950  
General Description  
Features  
The MAX9949/MAX9950 dual parametric measurement  
units (PMUs) feature a small package size, wide force  
and measurement range, and high accuracy, making the  
devices ideal for automatic test equipment (ATE) and  
other instrumentation that requires a PMU per pin or per  
site.  
o Force Voltage/Measure Current (FVMI)  
o Force Current/Measure Voltage (FIMV)  
o Force Voltage/Measure Voltage (FVMV)  
o Force Current/Measure Current (FIMI)  
o Force Nothing/Measure Voltage (FNMV)  
The MAX9949/MAX9950 force or measure voltages in  
the -2V to +7V through -7V to +13V ranges, dependent  
o Five Programmable Current Ranges  
upon the supply voltage (V  
and V ). The devices  
EE  
CC  
±±2µ  
handle supply voltages of up to +30V (V  
to V ) and  
EE  
CC  
±±ꢀ2µ  
±±ꢀꢀ2µ  
±±mµ  
a 20V device under test (DUT) voltage swing at full cur-  
rent. The MAX9949/MAX9950 also force or measure  
currents up to 25mA with a lowest full-scale range of  
2ꢀA. ꢁntegrated support circuitry facilitates use of an  
external buffer amplifier for current ranges greater than  
25mA.  
±±ꢁmµ  
o -±V to +7V Through -7V to +13V Input Voltage  
Range and Higher (Up to ±ꢀV Voltage Swing at  
Full Current)  
A voltage proportional to the measured output voltage  
or current is provided at the MSR_ output. ꢁntegrated  
comparators, with externally set voltage thresholds, pro-  
vide detection for both voltage and current levels. The  
MSR_ and comparator outputs can be placed in a high-  
Z state. ꢁntegrated voltage clamps limit the force output  
to levels set externally. The force-current or the mea-  
sure-current voltage can be offset -0.2V to +4.4V (ꢁOS).  
This feature allows for the centering of the control or  
measured signal within the external DAC or ADC range.  
o Force-Current/Measure-Current Voltage Offset  
(IOS)  
o Programmable Voltage Clamps for the Force  
Output  
o Low-Leakage, High-Z Measure State  
o 3-Wire Serial Interface  
o Low Power, 8mµ (max) per PMU  
The MAX9949D/MAX9950D feature an integrated 10kΩ  
force-sense resistor between FORCE_ and SENSE_.  
The MAX9949F/MAX9950F have no internal force-sense  
resistor. These devices are available in a 64-pin 10mm x  
10mm, 0.5mm pitch TQFP package with an exposed  
8mm x 8mm die pad on the top (MAX9949) or the bottom  
(MAX9950) of the package for efficient heat removal. The  
Ordering Information  
PµRT  
TEMP RµNGE  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
PIN-PµCKµGE  
64 TQFP-EPR*  
64 TQFP-EPR*  
64 TQFP-EP**  
64 TQFP-EP**  
MµX9949DCCB+  
MAX9949FCCB+  
MµX99ꢁꢀDCCB+  
MAX9950FCCB+  
exposed paddle is internally connected to V . The  
EE  
MAX9949/MAX9950 are specified over the commercial  
(0°C to +70°C) temperature range.  
+Denotes a lead(Pb)-free/RoHs-compliant part.  
*EPR = Exposed pad on top.  
**EP = Exposed pad on bottom.  
Note: Exposed pad is internally connected to VEE.  
Applications  
Memory Testers  
Selector Guide  
VLSꢁ Testers  
System-on-a-Chip Testers  
Structural Testers  
PµRT  
DESCRIPTION  
MAX9949DCCB+  
MAX9949FCCB+  
MAX9950DCCB+  
MAX9950FCCB+  
ꢁnternal 10kΩ force-sense resistor  
No internal force-sense resistor  
ꢁnternal 10kΩ force-sense resistor  
No internal force-sense resistor  
Pin Configurations appear at end of data sheet.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-6±9-464±, or visit Maxim’s website at www.maxim-ic.com.  
Dual Per-Pin Parametric Measurement Units  
µBSOLUTE MµXIMUM RµTINGS  
V
V
V
to AGND.......................................................................+20V  
to AGND.........................................................................-15V  
Continuous Power Dissipation (T = +70°C)  
A
CC  
EE  
CC  
64-Pin TQFP-EP (derate 43.5mW/°C above +70°C)....3478mW  
to V ...........................................................................+32V  
θ
θ
(Note 1) ................................................................+23.0°C/W  
(Note 1) .....................................................................+8°C/W  
EE  
JA  
JC  
V to AGND............................................................................+6V  
L
AGND to DGND.....................................................-0.5V to +0.5V  
Junction Temperature......................................................+150°C  
Storage Temperature Range.............................-65°C to +150°C  
Operating Temperature (commercial) Range ........0°C to +70°C  
Lead Temperature (soldering 10s) ..................................+300°C  
All Other Pins ...................................(V - 0.3V) to (V  
+ 0.3V)  
EE  
CC  
L
Digital ꢁnputs/Outputs ...................................-0.3V to (V + 0.3V)  
Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-  
layer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
DC ELECTRICµL CHµRµCTERISTICS  
(V = +12V, V = -7V, V = +3.3V, T = T  
to T  
, unless otherwise noted. T < +25°C guaranteed by design and characterization.  
CC  
EE  
L
A
MꢁN  
MAX A  
Typical values are at T = +25°C, unless otherwise specified.) (Note 2)  
A
4/MAX950  
PµRµMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MµX  
UNITS  
FORCE VOLTµGE (Note 3)  
V
V
_
V
3.5V  
+
V
3.5V  
-
CC  
ꢁN0 ,  
EE  
Force ꢁnput Voltage Range  
Forced Voltage  
V
_
ꢁN1  
V
V
= +12V, V = -7V  
EE  
-2  
-7  
+7  
CC  
CC  
DUT current at full  
scale  
= +18V, V = -  
EE  
+13  
V
DUT  
V
V
3.5V  
+
V
3.5V  
-
CC  
EE  
DUT current = 0  
ꢁnput Bias Current  
1
ꢀA  
Forced-Voltage Offset Error  
V
V
T
T
T
= +25°C  
-25  
-1  
+25  
+1  
mV  
FOS  
FGE  
A
A
A
Forced-Voltage Offset  
Temperature Coefficient  
100  
0.005  
10  
ꢀV/°C  
%
Forced-Voltage Gain Error  
= +25°C, nominal gain of +1  
Forced-Voltage Gain  
Temperature Coefficient  
ppm/°C  
= +25°C, gain and offset errors  
Forced-Voltage Linearity Error  
V
-0.02  
-1  
+0.02  
+1  
%FSR  
FLER  
calibrated out (Notes 4, 5)  
MEµSURE CURRENT (Note 3)  
Measure-Current Offset  
T
T
= +25°C (Note 4)  
= +25°C (Note 7)  
%FSR  
ppm/°C  
%
MOS  
A
A
Measure-Current Offset  
Temperature Coefficient  
20  
20  
Measure-Current Gain Error  
-1  
+1  
MGE  
Measure-Current Gain  
Temperature Coefficient  
ppm/°C  
T
= +25°C, gain, offset, and  
A
Ranges A–D -0.02  
+0.02  
+1  
%FSR  
nA  
Linearity Error  
common-mode errors  
calibrated out (Notes 4, 5, 6)  
MLER  
Range E  
-1  
V
V
= V  
-4  
0
+4  
8
ꢁOS  
ꢁOS  
DUTGND  
Measure Output Voltage Range  
over Full Current Range (Note 8)  
V
V
MSR  
= 4V + V  
DUTGND  
±
_______________________________________________________________________________________  
Dual Per-Pin Parametric Measurement Units  
4/MAX950  
DC ELECTRICµL CHµRµCTERISTICS (continued)  
(V = +12V, V = -7V, V = +3.3V, T = T  
to T , unless otherwise noted. T < +25°C guaranteed by design and characterization.  
MAX A  
CC  
EE  
L
A
MꢁN  
Typical values are at T = +25°C, unless otherwise specified.) (Note 2)  
A
PµRµMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MµX  
UNITS  
Current-Sense Amp Offset  
Voltage ꢁnput  
V
Relative to V  
-0.2  
+4.4  
V
ꢁOS  
DUTGND  
Rejection of Output Measure  
Error Due to Common-Mode  
Sense Voltage  
Specified as the percent of full-scale range  
change at the measure output per volt  
change in the DUT voltage  
CMVR  
0.001  
0.007 %FSR/V  
+2  
LER  
Range E, R_E = 1MΩ  
Range D, R_D = 100kΩ  
Range C, R_C = 10kΩ  
Range B, R_B = 1kΩ  
Range A, R_A = 80Ω  
-2  
-20  
-200  
-2  
ꢀA  
+20  
+200  
+2  
Measure Current Range  
mA  
-25  
+25  
FORCE CURRENT (Note 3)  
V
V
= V  
-4  
0
+4  
+8  
ꢁOS  
ꢁOS  
DUTGND  
ꢁnput Voltage Range for Setting  
Forced Current Over Full Range  
V
V
V
ꢁNꢁ  
= 4V + V  
DUTGND  
Current-Sense Amp Offset  
Voltage ꢁnput  
V
Relative to V  
-0.2  
+4.4  
ꢁOS  
DUTGND  
VꢁOS ꢁnput Bias Current  
Forced-Current Offset  
1
ꢀA  
T
= +25°C (Note 4)  
= +25°C (Note 7)  
-1  
+1  
%FSR  
FOS  
A
A
Forced-Current Offset  
Temperature Coefficient  
20  
ppm/°C  
%
Forced-Current Gain Error  
T
-1  
+1  
FGE  
Forced-Current Gain  
Temperature Coefficient  
20  
ppm/°C  
T
= +25°C, gain, offset, and  
A
Ranges A–D -0.02  
+0.02  
+1  
%FSR  
nA  
Forced-Current Linearity Error  
FLER  
common-mode errors  
calibrated out (Notes 4, 5, 6)  
Range E  
-1  
Specified as the percent of full-scale range  
change of the forced current per volt  
change in the DUT voltage  
Rejection of Output Error Due to  
Common-Mode Load Voltage  
CMRꢁ  
+0.001 +0.007 %FSR/V  
+2  
OER  
Range E, R_E = 1MΩ  
Range D, R_D = 100kΩ  
Range C, R_C = 10kΩ  
Range B, R_B = 1kΩ  
Range A, R_A = 80Ω  
-2  
-20  
-200  
-2  
+20  
+200  
+2  
ꢀA  
Forced-Current Range  
mA  
-25  
+25  
MEµSURE VOLTµGE (Note 3)  
Measure-Voltage Offset  
V
T
= +25°C  
-25  
-1  
+25  
+1  
mV  
ꢀV/°C  
%
MOS  
A
A
Measure-Voltage Offset  
Temperature Coefficient  
100  
0.005  
10  
Gain Error  
V
T
= +25°C, nominal gain of +1  
MGER  
Measure-Voltage Gain  
Temperature Coefficient  
ppm/°C  
_______________________________________________________________________________________  
3
Dual Per-Pin Parametric Measurement Units  
DC ELECTRICµL CHµRµCTERISTICS (continued)  
(V = +12V, V = -7V, V = +3.3V, T = T  
to T , unless otherwise noted. T < +25°C guaranteed by design and characterization.  
MAX A  
CC  
EE  
L
A
MꢁN  
Typical values are at T = +25°C, unless otherwise specified.) (Note 2)  
A
PµRµMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MµX  
UNITS  
T
= +25°C, gain and offset errors  
A
Measure-Voltage Linearity Error  
V
-0.02  
+0.02  
%FSR  
MLER  
calibrated out (Notes 4, 5, 6)  
V
V
= +12V, V = -7V  
EE  
-2  
-7  
+7  
CC  
CC  
DUT current at  
full scale  
= +18V, V = -12V  
EE  
+13  
Measure Output Voltage Range  
V
V
MSR  
over Full DUT Voltage (V  
)
DUT  
V
+
V
-
CC  
3.5V  
EE  
3.5V  
DUT current = 0V  
FORCE OUTPUT  
Off-State Leakage Current  
T
= +25°C  
-5  
+5  
-28  
nA  
mA  
kΩ  
A
-45  
+28  
7.8  
LꢁM-  
Short-Circuit Current Limit  
+45  
13.3  
LꢁM+  
Force-to-Sense Resistor  
R
D option only  
10  
FS  
4/MAX950  
SENSE INPUT  
V
3.5V  
+
V
3.5V  
-
CC  
EE  
ꢁnput Voltage Range  
V
Leakage Current  
-5  
+5  
nA  
COMPµRµTOR INPUTS  
V
3.5V  
+
V
3.5V  
-
CC  
EE  
ꢁnput Voltage Range  
V
Offset Voltage  
T
= +25°C  
-25  
+25  
mV  
ꢀA  
A
ꢁnput Bias Current  
VOLTµGE CLµMPS  
1
V
V
_,  
_
V
3.4V  
+
V
3.4V  
-
CC  
CLLO  
EE  
ꢁnput Control Voltage  
Clamp Voltage Range  
V
CLHꢁ  
V
3.5V  
+
V
3.5V  
-
CC  
EE  
V
Clamp Voltage Accuracy  
-100  
+100  
mV  
DIGITµL INPUTS  
5V logic  
+3.5  
+2.0  
+1.7  
ꢁnput High Voltage (Note 9)  
ꢁnput Low Voltage (Note 9)  
V
V
V
3.3V logic  
2.7V logic  
ꢁH  
5V and 3.3V logic  
2.5V logic  
+0.8  
+0.7  
V
ꢁL  
ꢁnput Current  
1
ꢀA  
pF  
ꢁN  
ꢁnput Capacitance  
C
3.0  
ꢁN  
COMPµRµTOR OUTPUTS (Note 9)  
Output High Voltage  
V
V = +2.375V to +5.5V, R  
= 1kΩ  
= 1kΩ  
V - 0.2  
L
V
V
OH  
L
PUP  
Output Low Voltage  
V
V = +2.375V to +5.5V, R  
+0.4  
OL  
L
PUP  
High-Z State Leakage Current  
High-Z State Output Capacitance  
1
ꢀA  
pF  
6.0  
4
_______________________________________________________________________________________  
Dual Per-Pin Parametric Measurement Units  
4/MAX950  
DC ELECTRICµL CHµRµCTERISTICS (continued)  
(V = +12V, V = -7V, V = +3.3V, T = T  
to T , unless otherwise noted. T < +25°C guaranteed by design and characterization.  
MAX A  
CC  
EE  
L
A
MꢁN  
Typical values are at T = +25°C, unless otherwise specified.) (Note 2)  
A
PµRµMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MµX  
UNITS  
DIGITµL OUTPUTS (Note 9)  
= 1mA, V = +2.375V to +5.5V, relative  
V -  
L
0.25  
OUT  
L
Output High Voltage  
Output Low Voltage  
V
V
V
OH  
to DGND  
= -1mA, V = +2.375V to +5.5V,  
OUT  
L
V
0.2  
OL  
relative to DGND  
POWER SUPPLY  
Positive Supply  
V
(Note 2)  
(Note 2)  
+10  
-15  
+12  
-7  
+18  
-5  
CC  
V
Negative Supply  
V
EE  
Total Supply Voltage  
Logic Supply  
V
- V  
+30  
+5.5  
16.0  
16.0  
1.2  
V
CC  
EE  
V
+2.375  
V
L
Positive Supply Current  
Negative Supply Current  
Logic Supply Current  
Analog Ground Current  
Digital Ground Current  
No load, clamps enabled  
mA  
mA  
mA  
mA  
mA  
CC  
No load, clamps enabled  
EE  
No load, all digital inputs at rails  
No load, clamps enabled  
L
0.9  
AGND  
DGND  
No load, all digital inputs at rails  
1MHz, measured at force output  
60Hz, measured at force output  
1.4  
20  
85  
Power-Supply Rejection Ratio  
PSRR  
dB  
µC ELECTRICµL CHµRµCTERISTICS  
(V  
= +12V, V = -7V, V = +3.3V, C  
= 120pF, C = 100pF, T = T  
to T , unless otherwise noted. T < +25°C guaranteed  
MAX A  
CC  
EE  
L
CM  
L
A
MꢁN  
by design and characterization. Typical values are at T = +25°C, unless otherwise specified.) (Note 2)  
A
PµRµMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MµX  
UNITS  
FORCE VOLTµGE (Notes 1ꢀ, 11)  
Range E, R_E = 1MΩ  
160  
35  
25  
20  
25  
Range D, R_D = 100kΩ  
Range C, R_C = 10kΩ  
Range B, R_B = 1kΩ  
Range A, R_A = 80Ω  
Settling Time  
30  
ꢀs  
Maximum Stable Load  
Capacitance  
2500  
pF  
FORCE VOLTµGE/MEµSURE CURRENT (Notes 1ꢀ, 11)  
Range E, R_E = 1MΩ  
480  
50  
35  
20  
25  
Range D, R_D = 100kΩ  
Range C, R_C = 10kΩ  
Range B, R_B = 1kΩ  
Range A, R_A = 80Ω  
Settling Time  
45  
ꢀs  
ꢀs  
ꢁn addition to force-voltage and measure-  
current settling times, range A to range B,  
R_A = 80Ω, R_B = 1kΩ  
Range Change Switching  
10  
_______________________________________________________________________________________  
Dual Per-Pin Parametric Measurement Units  
µC ELECTRICµL CHµRµCTERISTICS (continued)  
(V  
= +12V, V = -7V, V = +3.3V, C  
= 120pF, C = 100pF, T = T  
to T , unless otherwise noted. T < +25°C guaranteed  
MAX A  
CC  
EE  
L
CM  
L
A
MꢁN  
by design and characterization. Typical values are at T = +25°C, unless otherwise specified.) (Note 2)  
A
PµRµMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MµX  
UNITS  
FORCE CURRENT (Notes 1ꢀ, 11)  
Range E, R_E = 1MΩ  
300  
100  
40  
Range D, R_D = 100kΩ  
Range C, R_C = 10kΩ  
Range B, R_B = 1kΩ  
Range A, R_A = 80Ω  
Settling Time  
45  
ꢀs  
25  
25  
FORCE CURRENT/MEµSURE VOLTµGE (Notes 1ꢀ, 11, 1±)  
Range E, R_E = 1MΩ  
1600  
170  
40  
Range D, R_D = 100kΩ  
Range C, R_C = 10kΩ  
Range B, R_B = 1kΩ  
Range A, R_A = 80Ω  
Settling Time  
50  
ꢀs  
25  
4/MAX950  
25  
ꢁn addition to force-voltage and measure-  
current settling times, range A to range B,  
R_A = 80Ω, R_B = 1kΩ  
Range Change Switching  
12  
ꢀs  
ꢀs  
ns  
SENSE INPUT TO MEµSURE OUTPUT PµTH (Note 1±)  
Settling Time  
C
= 100pF  
0.2  
LMSR  
MEµSURE OUTPUT  
C
= 100pF, measured from 50% of  
LMSR  
HIZ_ or HIZMSR True (0) to  
High-Z  
digital input voltage to 10% of output  
voltage  
250  
5
C
= 100pF, measured from 50% of  
LMSR  
HIZ_ or HIZMSR False (1) to  
Active  
digital input voltage to 90% of output  
voltage  
ꢀs  
Maximum Stable Load  
Capacitance  
1000  
pF  
FORCE OUTPUT  
Measured from 50% of digital input voltage  
to 10% of output voltage  
HIZFORCE True (0) to High-Z  
2
2
ꢀs  
ꢀs  
Measured from 50% of digital input voltage  
to 90% of output voltage  
HIZFORCE False (1) to Active  
COMPµRµTORS  
50mV overdrive, 1V , C  
= 20pF,  
P-P LCOMP  
R
= 1kΩ measured from input-threshold  
PUP  
Propagation Delay  
75  
ns  
zero crossing to 50% of output voltage  
(Note 13)  
C
= 20pF, R  
= 1kΩ measured  
PUP  
LCOMP  
from input-threshold zero crossing to 50%  
of output voltage  
Rise Time  
Fall Time  
60  
5
ns  
ns  
C
= 20pF, R  
= 1kΩ, 20% to 80%  
PUP  
LCOMP  
6
_______________________________________________________________________________________  
Dual Per-Pin Parametric Measurement Units  
4/MAX950  
µC ELECTRICµL CHµRµCTERISTICS (continued)  
(V  
= +12V, V = -7V, V = +3.3V, C  
= 120pF, C = 100pF, T = T  
to T , unless otherwise noted. T < +25°C guaranteed  
MAX A  
CC  
EE  
L
CM  
L
A
MꢁN  
by design and characterization. Typical values are at T = +25°C, unless otherwise specified.) (Note 2)  
A
PµRµMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MµX  
UNITS  
C
= 20pF, measured from 50% of  
LCOMP  
DISABLE True (0) to High-Z  
digital input voltage to 10% of output  
voltage  
300  
ns  
C
= 20pF, measured from 50% of  
LCOMP  
DISABLE False (1) to Active  
digital input voltage to 90% of output  
voltage  
100  
ns  
SERIµL PORT (V = +3.ꢀV, C  
L
= 1ꢀpF)  
DOUT  
Serial Clock Frequency  
SCLK Pulse-Width High  
SCLK Pulse-Width Low  
SCLK Fall to DOUT Valid  
CS Low to SCLK High Setup  
SCLK High to CS High Hold  
SCLK High to CS Low Hold  
CS High to SCLK High Setup  
DꢁN to SCLK High Setup  
DꢁN to SCLK High Hold  
CS Pulse-Width High  
f
20  
22  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ꢀs  
SCLK  
t
12  
12  
CH  
t
CL  
t
DO  
t
10  
22  
0
CSS0  
CSH1  
CSH0  
t
t
t
5
CSS1  
t
10  
0
DS  
t
(Note 14)  
(Note 14)  
DH  
t
10  
10  
20  
CSWH  
CS Pulse-Width Low  
t
CSWL  
LOAD Pulse-Width Low  
t
LDW  
V
High to CS Low (Power-Up)  
500  
DD  
Note ±: The device operates properly with different supply voltages with equally different voltage swings.  
Note 3: Tested at V = +18V and V = -12V.  
CC  
EE  
Note 4: ꢁnterpret errors expressed in terms of %FSR (percent of full-scale range) as a percentage of the end-point to end-point  
range, i.e., for the 25mA range, the full-scale range = 50mA and a 1% error = 500ꢀA.  
Note ꢁ: Case must be maintained 5°C for linearity specifications.  
Note 6: Current linearity specifications are maintained to within 700mV of the clamp voltages when the clamps are enabled.  
Note 7: Tested in range C.  
Note 8: Linearity of the measured output is only guaranteed within the specified current range.  
Note 9: The digital interface accepts +5V, +3.3V, and +2.5V CMOS logic levels. The voltage at V adjusts the threshold.  
L
Note 1ꢀ: Settling times are to 0.1% of FSR. Cx = 47pF.  
Note 11: All settling times are specified using a single compensation capacitor (Cx) across all current-sense resistors. Use an indi-  
vidual capacitor across each sense resistor for better performance across all current ranges, particularly the lower ranges.  
Note 1±: The actual settling time of the measured voltage path (SENSE_ input to MSR_ output) is less than 1ꢀs. However, the R-C  
time constant of the sense resistor and the load capacitance causes a longer overall settling time of the DUT voltage. This  
settling time is a function of the current-range resistor used.  
Note 13: The propagation delay time is only guaranteed over the force-voltage output range. Propagation delay is measured by  
holding the SENSE_ input voltage steady and transitioning THMAX_ or THMꢁN_.  
Note 14: Guaranteed by design.  
_______________________________________________________________________________________  
7
Dual Per-Pin Parametric Measurement Units  
Typical Operating Characteristics  
(V = +12V, V = -7V, C = 100pF, R to +2.5V, range A: R_A = 80Ω, R = 180Ω; range B: R_B = 1kΩ, R = 2.25kΩ; range C: R_C =  
CC  
EE  
L
L
L
L
10kΩ, R = 22.5kΩ; range D: R_D = 100kΩ, R = 225kΩ; range E: R_E = 1MΩ, R = 2.25MΩ, T = +25°C.  
L
L
L
A
TRANSIENT RESPONSE FVMI MODE  
TRANSIENT RESPONSE FVMI MODE  
RANGE D  
TRANSIENT RESPONSE FVMI MODE  
RANGES A, B, C  
RANGE E  
MAX9949/50 toc01  
MAX9949/50 toc03  
MAX9949/50 toc02  
IN_  
5V/div  
IN_  
5V/div  
IN_  
5V/div  
0
0
0
0
0
FORCE_  
5V/div  
FORCE_  
5V/div  
FORCE_  
5V/div  
0
4/MAX950  
20µs/div  
1.0ms/div  
100µs/div  
TRANSIENT RESPONSE FVMV MODE  
TRANSIENT RESPONSE FIMI MODE  
TRANSIENT RESPONSE FIMI MODE  
RANGE C  
RANGES A, B, C  
RANGE D  
MAX9949/50 toc04  
MAX9949/50 toc05  
MAX9949/50 toc06  
IN_  
5V/div  
IN_  
5V/div  
IN_  
5V/div  
0
0
0
0
0
0
MSR_  
5V/div  
FORCE_  
5V/div  
FORCE_  
5V/div  
20µs/div  
20µs/div  
100µs/div  
TRANSIENT RESPONSE FIMI MODE  
RANGE E  
IOS vs. POWER SUPPLIES  
MAX9949/50 toc08  
MAX9949/50 toc07  
20  
15  
10  
5
V
CC  
11.2  
4.4  
IN_  
5V/div  
0
0
IOS (MAX)  
IOS (MIN)  
3.2  
1.8  
FORCE_  
5V/div  
0
-0.2  
-7  
-5  
V
EE  
-10  
-15  
1.0ms/div  
8
_______________________________________________________________________________________  
Dual Per-Pin Parametric Measurement Units  
4/MAX950  
Pin Description  
PIN  
NµME  
FUNCTION  
MµX99ꢁꢀ  
MµX9949  
1, 16,  
33, 48  
1, 16,  
33, 48  
V
Negative Analog Supply ꢁnput  
Positive Analog Supply ꢁnput  
EE  
2, 15,  
34, 47  
2, 15,  
34, 47  
V
CC  
PMU-B Range-Setting-Resistor Common Connection. Connect to one end of all the range-  
3
14  
RBCOM setting resistors (RB_) for PMU-B. Also serves as the input to an external current-range buffer  
for PMU-B.  
4
5
6
7
8
9
13  
12  
11  
10  
9
RBE  
RBD  
RBC  
RBB  
RBA  
PMU-B Range E Resistor Connection  
PMU-B Range D Resistor Connection  
PMU-B Range C Resistor Connection  
PMU-B Range B Resistor Connection  
PMU-B Range A Resistor Connection  
8
FORCEB PMU-B Driver Output. Forces a current or voltage to the DUT for PMU-B.  
PMU-B Sense ꢁnput. A Kelvin connection to the DUT. Provides the feedback signal in FVMꢁ  
mode and the measured signal in FꢁMV mode for PMU-B.  
10  
11  
12  
13  
7
6
5
4
SENSEB  
PMU-B Compensation Capacitor Connection 1. Provides compensation for the PMU-B main  
amplifier.  
CC1B  
PMU-B Compensation Capacitor Connection 2. Provides compensation for the PMU-B main  
amplifier.  
CC2B  
PMU-B Current-Range Sense-Resistor Connection. Connects to the external current-range  
sense resistor on the DUT side for PMU-B. See Figure 5.  
RXDB  
PMU-B Current-Range Sense-Resistor Connection. Connects to the external current-range  
sense resistor on the amplifier side for PMU-B. See Figure 5.  
14  
17  
18  
3
RXAB  
64  
63  
CS  
Chip-Select ꢁnput. Force CS low to enable communication with the serial port.  
Serial Port Load ꢁnput. A logic low asynchronously loads data from the input registers into the  
PMU registers.  
LOAD  
19  
20  
62  
61  
SCLK  
DꢁN  
Serial Clock ꢁnput  
Serial Data ꢁnput. Data loads into DꢁN MSB first.  
PMU-B Window-Comparator High-Comparator Output. A sense-B voltage above the V  
level forces the DUTHB output low. DUTHB is an open-drain output.  
THMAXB  
21  
22  
60  
59  
DUTHB  
DUTLB  
PMU-B Window-Comparator Low-Comparator Output. A sense-B voltage below the V  
THMꢁNB  
level forces the DUTLB output low. DUTLB is an open-drain output.  
23  
58  
EXTBSEL PMU-B External Current-Range Selector. Selects the external current range for PMU-B.  
DGND Digital Ground  
24, 27  
54, 57  
Serial Data Output. Provides data out from the shift register. Facilitates daisy-chaining to DꢁN  
of a downstream PMU. DOUT clocks out data MSB first.  
25  
56  
DOUT  
26  
28  
55  
53  
V
Logic Supply Voltage ꢁnput. The voltage applied at VL sets the upper logic-voltage level.  
L
EXTASEL PMU-A External Current-Range Selector. Selects the external current range for PMU-A.  
PMU-A Window-Comparator Low-Comparator Output. A sense-A voltage below the V  
level forces the DUTLA output low. DUTLA is an open-drain output.  
THMꢁNA  
29  
52  
DUTLA  
_______________________________________________________________________________________  
9
Dual Per-Pin Parametric Measurement Units  
Pin Description (continued)  
PIN  
NµME  
DUTHA  
HI-ZB  
FUNCTION  
MµX99ꢁꢀ  
MµX9949  
PMU-A Window-Comparator High-Comparator Output. A sense-A voltage above the V  
level forces the DUTHA output low. DUTHA is an open-drain output.  
THMAXA  
30  
51  
PMU-B MSRB Output State Control. A logic low places the MSRB output in a high-impedance  
state.  
31  
32  
35  
36  
37  
38  
39  
50  
49  
46  
45  
44  
43  
42  
PMU-A MSRA Output State Control. A logic low places the MSRA output in a high-impedance  
state.  
HI-ZA  
PMU-A Current-Range Sense-Resistor Connection. Connects to the external current-range  
sense resistor on the amplifier side for PMU-A. See Figure 5.  
RXAA  
PMU-A Current-Range Sense-Resistor Connection. Connects to the external current-range  
sense resistor on the DUT side for PMU-A. See Figure 5.  
RXDA  
PMU-A Compensation Capacitor Connection 2. Provides compensation for the PMU-A main  
amplifier.  
CC2A  
4/MAX950  
PMU-A Compensation Capacitor Connection 1. Provides compensation for the PMU-A main  
amplifier.  
CC1A  
PMU-A Sense ꢁnput. A Kelvin connection to the DUT. Provides the feedback signal in FVMꢁ  
mode and the measured signal in FꢁMV mode for PMU-A.  
SENSEA  
40  
41  
42  
43  
44  
45  
41  
40  
39  
38  
37  
36  
FORCEA PMU-A Driver Output. Forces a current or voltage to the DUT for PMU-A.  
RAA  
RAB  
RAC  
RAD  
RAE  
PMU-A Range A Resistor Connection  
PMU-A Range B Resistor Connection  
PMU-A Range C Resistor Connection  
PMU-A Range D Resistor Connection  
PMU-A Range E Resistor Connection  
PMU-A Range-Setting-Resistor Common Connection. Connect to one end of all range-setting  
resistors (RA_) for PMU-A. Also serves as the input to an external current range buffer for  
PMU-A.  
46  
35  
RACOM  
PMU-A Window-Comparator Upper Threshold Voltage ꢁnput. Sets the upper voltage threshold  
for the PMU-A window comparator.  
49  
50  
32  
31  
THMAXA  
THMꢁNA  
PMU-A Window-Comparator Lower Threshold Voltage ꢁnput. Sets the lower voltage threshold  
for the PMU-A window comparator.  
51  
52  
30  
29  
CLHꢁA PMU-A Upper Clamp Voltage ꢁnput. Sets the upper clamp voltage level for PMU-A.  
CLLOA PMU-A Lower Clamp Voltage ꢁnput. Sets the lower clamp voltage level for PMU-A.  
ꢁnput Voltage 0 for PMU-A. Sets the forced current in Fꢁ mode or the forced voltage in FV  
mode for PMU-A.  
53  
54  
28  
27  
ꢁN0A  
ꢁnput Voltage 1 for PMU-A. Sets the forced voltage in FV mode or the forced current in Fꢁ  
mode for PMU-A.  
ꢁN1A  
PMU-A Measurement Output. Provides a voltage equal to the SENSE voltage in FꢁMV mode  
MSRA and provides a voltage proportional to the DUT current in FVMꢁ mode for PMU-A. Force HI-ZA  
low to place MSRA in a high-impedance state.  
55  
56  
26  
25  
Offset Voltage ꢁnput. Sets an offset voltage for the internal current-sense amplifier for both  
ꢁOS  
PMU-A and -B.  
1ꢀ ______________________________________________________________________________________  
Dual Per-Pin Parametric Measurement Units  
4/MAX950  
Pin Description (continued)  
PIN  
NµME  
FUNCTION  
MµX99ꢁꢀ  
MµX9949  
57  
24  
AGND Analog Ground  
PMU-B Measurement Output. Provides a voltage equal to the SENSE voltage in FꢁMV mode  
MSRB and provides a voltage proportional to the DUT current in FVMꢁ mode for PMU-B. Force HI-ZB  
low to place MSRB in a high-impedance state.  
58  
23  
ꢁnput Voltage 1 for PMU-B. Sets the forced voltage in FV mode or the forced current in Fꢁ  
mode for PMU-B.  
59  
60  
22  
21  
ꢁN1B  
ꢁnput Voltage 0 for PMU-B. Sets the forced current in Fꢁ mode or the forced voltage in Fꢁ mode  
for PMU-B.  
ꢁN0B  
61  
62  
20  
19  
CLLOB PMU-B Lower-Clamp Voltage ꢁnput. Sets the lower clamp voltage level for PMU-B.  
CLHꢁB PMU-B Upper-Clamp Voltage ꢁnput. Sets the upper clamp voltage level for PMU-B.  
PMU-B Window-Comparator Lower Threshold Voltage ꢁnput. Sets the lower voltage threshold  
for the PMU-B window comparator.  
63  
64  
18  
17  
THMꢁNB  
PMU-B Window-Comparator Upper Threshold Voltage ꢁnput. Sets the upper voltage threshold  
for the PMU-B window comparator.  
THMAXB  
Once the input data register fills, the data becomes avail-  
Detailed Description  
able at DOUT MSB first. This data output allows for  
The MAX9949/MAX9950 force or measure voltages in  
the -2V to +7V through -7V to +13V ranges, dependent  
daisy-chaining multiple devices. Figures 1, 2, and 3  
show the serial interface timing diagrams.  
upon the supply voltage range (V  
and V ).  
EE  
CC  
However, the devices can handle supply voltages up to  
+30V (V to V ) and a 20V DUT voltage swing at full  
current. The MAX9949/MAX9950 PMU also force or  
measure currents up to 25mA, with a lowest full-scale  
range of 2ꢀA. Use an external buffer amplifier for cur-  
rent ranges greater than 25mA.  
Serial Port Speed  
CC  
EE  
The serial port timing specifications are measured at a  
logic supply voltage (V ) of +3.0V, ensuring operation  
L
of the serial port at rated speed for V from +3.0V to  
L
+5.5V.  
The serial interface has two ranks. Each PMU has an  
input register that loads from the serial port shift register.  
Each PMU also has a PMU register that loads from the  
input register. Data does not affect the PMU until it reach-  
es the PMU register. This register configuration permits  
loading of the PMU data into the input register at one time  
and then latching the input register data into the PMU  
register later, at which time the PMU function changes  
accordingly. The register configuration also provides the  
ability to change the state of the PMU asynchronously  
with respect to the loading of that PMU’s data into the ser-  
ial port. Thus, the PMU easily updates simultaneously with  
other PMUs or other devices.  
The MSR_ output presents a voltage proportional to the  
measured voltage or current. Place MSR_ in a low-leak-  
age, high-impedance state by pulling HI-Z_ low.  
ꢁntegrated comparators with externally programmable  
voltage thresholds provide “too low” (DUTL_) and “too  
high” (DUTH_) voltage-monitoring outputs. Each com-  
parator output features a selectable high-impedance  
state. The devices feature separate FORCE_ and  
SENSE_ connections and are fully protected against  
short circuits. The FORCE_ output has two voltage  
clamps, negative (CLLO_) and positive (CLHꢁ_), to limit  
the voltage to externally provided levels. Two control  
voltage inputs, selected independently of the PMU  
mode, allow for greater flexibility.  
Use the LOAD input to asynchronously load all input  
registers into the PMU registers. ꢁf LOAD remains low  
when data latches into an input register, the data also  
transfers to the PMU register.  
Serial Interface  
The MAX9949/MAX9950 use a standard 3-wire  
SPꢁ™/QSPꢁ™/MꢁCROWꢁRE™-compatible serial port.  
SPꢁ and QSPꢁ are trademarks of Motorola, ꢁnc.  
MꢁCROWꢁRE is a trademark of National Semiconductor, Corp.  
______________________________________________________________________________________ 11  
Dual Per-Pin Parametric Measurement Units  
Functional Diagram  
TO EXTERNAL CURRENT BOOSTER  
FOR HIGHEST RANGE  
RXA_  
RXD_  
C
RE  
X
RD  
EXTSEL_  
RC  
RB  
C
CM  
RA  
V
CC  
V
1
EE  
R_COM  
R_A R_B R_C R_D R_E  
IN1_  
IN0_  
RANGE RESISTOR SELECT  
FORCE_  
4/MAX950  
0
CL  
ENABLE_  
IN  
MODE_  
IOS  
RS0_  
RS1_  
RS2_  
CS  
SCLK  
LOAD  
DIN  
1
0
SERIAL  
INTERFACE  
10  
TO OTHER PMU CHANNEL  
F
MODE_  
MODE_  
DOUT  
V
L
M
R
FS*  
HI-Z_  
HI-ZMEAS_  
0
MSR_  
1
SENSE_  
THMAX_  
DISABLE_  
DUTH_  
MAX9949  
MAX9950  
DUTL_  
THMIN_  
AGND  
*RFS INTERNAL TO MAX9949D/MAX9950D ONLY  
DGND  
1± ______________________________________________________________________________________  
Dual Per-Pin Parametric Measurement Units  
4/MAX950  
CS  
INPUT  
REGISTER(S)  
UPDATED  
SCLK  
DIN  
D15  
D14  
Q15  
D13  
Q14  
D12  
Q13  
D11  
Q12  
D10  
Q11  
D9  
D8  
Q9  
D7  
Q8  
D6  
Q7  
D5  
Q6  
D4  
Q5  
D3  
Q4  
D2  
Q3  
D1  
Q2  
D0  
Q1  
DOUT  
Q10  
Q0  
LAST BIT FROM  
PREVIOUS WRITE  
FIRST BIT FROM  
PREVIOUS WRITE  
LOAD  
PMU REGISTERS  
UPDATED  
Figure 1. Serial Port Timing with Asynchronous Load  
CS  
INPUT AND PMU  
REGISTER(S)  
UPDATED  
SCLK  
DIN  
D15  
D14  
Q15  
D13  
Q14  
D12  
Q13  
D11  
Q12  
D10  
Q11  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Q1  
DOUT  
LOAD  
Q10  
Q9  
Q8  
Q7  
Q6  
Q5  
Q4  
Q3  
Q2  
Q0  
LAST BIT FROM  
PREVIOUS WRITE  
FIRST BIT FROM  
PREVIOUS WRITE  
LOAD = 0  
Figure 2. Serial Port Timing with Synchronous Load  
______________________________________________________________________________________ 13  
Dual Per-Pin Parametric Measurement Units  
t
CH  
SCLK  
t
CL  
t
CSSO  
t
CSS1  
t
CSH1  
t
CSHO  
CS  
t
t
CSWH  
DH  
t
DS  
4/MAX950  
D15  
D14  
D13  
D12  
D11  
D10  
D1  
D0  
DIN  
DOUT  
D15last  
D14last  
D13last  
D12last  
D11last  
DO  
D10last  
D1last  
D0last  
t
t
LDW  
LOAD  
Figure 3. Detailed Serial Port Timing Diagram  
CS  
SCLK  
DIN  
SHIFT REGISTER /16  
INPUT REGISTER A  
DOUT  
6
10  
CONTROL  
DECODE  
INPUT REGISTER B  
10  
10  
PMU REGISTER A  
PMU REGISTER B  
LOAD  
TO PMUA  
TO PMUB  
Figure 4. Dual PMU Serial Port Block Diagram  
14 ______________________________________________________________________________________  
Dual Per-Pin Parametric Measurement Units  
4/MAX950  
Table 1. Bit Order  
Table ±. µddress Bit  
BIT  
BIT NµME  
(BIT 3) (BIT ±)  
OPERµTION  
µ±  
µ1  
15 (MSB)  
ꢁN  
MODE  
14  
F
0
0
1
0
1
0
Do not update any input register (NOP).  
Only update input register A.  
MODE  
13  
M
MODE  
12  
RS2  
Only update input register B.  
11  
RS1  
Update both input registers with the same  
data.  
1
1
10  
RS0  
9
CL  
ENABLE  
Table 3. Control Bit  
8
HI-ZFORCE  
HI-ZMSR  
DISABLE  
Don’t care  
Don’t care  
A2  
7
(BIT 1) (BIT ꢀ)  
OPERµTION  
C±  
C1  
6
0
0
Data stays in input register.  
5
Transfer PMU-A input register to PMU  
register.  
4
0
1
1
1
0
1
3
Transfer PMU-B input register to PMU  
register.  
2
1
A1  
C2  
Transfer both input registers to the PMU  
registers.  
0 (LSB)  
C1  
Bit Order  
mits the latching of data into the PMU register at a later  
The MAX9949/MAX9950 use the bit order, MSB first in  
and first out, as shown in Table 1.  
time by the LOAD input or subsequent command.  
Table 4 summarizes the possible control and address  
bit combinations.  
PMU Control  
Programming both PMUs with the same data requires a  
16-bit word. Programming each PMU with separate  
data requires two 16-bit words.  
When asynchronously latching only one PMU’s data,  
the input register of the other PMU maintains the same  
data. Therefore, loading both PMU registers would  
update the one PMU with new data while the other PMU  
remains in its current state.  
The address bits specify which input registers the shift  
register loads. Table 2 describes the function of the  
address bits.  
Mode Selection  
Four bits from the control word select between the vari-  
ous modes of operation. ꢁNMODE selects between the  
two input analog control voltages. FMODE selects  
whether the PMU forces a voltage or a current. MMODE  
selects whether the DUT current or DUT voltage is  
directed to the MSR_ output. HI-ZFORCE places the  
driver amplifier in a high-output impedance state. Table  
5 describes the various force and measure modes of  
operation.  
Bits (C2, C1) specify how the data loads into the second  
rank PMU registers. These two control bits serve a similar  
function as the LOAD input. The specified actions occur  
when CS goes high, whereas the LOAD input loads the  
PMU register anytime. When either C2 or C1 is low, the  
corresponding PMU register is transparent. Table 3  
describes the function of the two control bits.  
The NOP operation requires A1 = A2 = C1 = C2 = 0. ꢁn  
this case, the data transfers through the shift register  
without changing the state of the MAX9949/MAX9950.  
Current-Range Selection  
Three bits from the control word, RS0, RS1, RS2, con-  
trol the full-scale current range for either Fꢁ (force cur-  
C1 = C2 = 0 allows for data transfer from the shift regis-  
ter to the input register without transferring data to the  
PMU register (unless the LOAD input is low). This per-  
______________________________________________________________________________________ 1ꢁ  
Dual Per-Pin Parametric Measurement Units  
Table 4. PMU Operation Using Control and µddress Bits  
BIT (3:±)  
BIT (1:ꢀ)  
PMU-B OPERµTION  
PMU-µ OPERµTION  
µ±  
µ1  
0
C±  
C1  
0
0
0
0
0
0
0
0
1
1
0
NOP: data just passes through.  
0
1
NOP.  
Load PMU register A from input register A.  
NOP.  
0
0
Load PMU register B from input register B.  
Load PMU register B from input register B.  
NOP.  
0
1
Load PMU register A from input register A.  
Load input register A from shift register.  
1
0
Load input register A and PMU register A  
from shift register.  
0
0
0
1
1
1
0
1
1
1
0
1
NOP.  
Load PMU register B from input register B.  
Load PMU register B from input register B.  
Load input register A from shift register.  
Load input register A and PMU register A  
from shift register.  
1
1
0
0
0
0
0
1
Load input register B from shift register.  
Load input register B from shift register.  
NOP.  
Load PMU register A from input register A.  
4/MAX950  
Load input register B and PMU register B  
from shift register.  
1
0
1
0
NOP.  
Load input register B and PMU register B  
from shift register.  
1
1
1
0
1
1
1
0
0
1
0
1
Load PMU register A from input register A.  
Load input register A from shift register.  
Load input register B from shift register.  
Load input register A and PMU register A  
from shift register.  
Load input register B from shift register.  
Load input register B and PMU register B  
from shift register.  
1
1
1
1
1
1
0
1
Load input register A from shift register.  
Load input register B and PMU register B  
from shift register.  
Load input register A and PMU register A  
from shift register.  
Table ꢁ. PMU Force/Measure Mode Selection  
(BIT 1ꢁ)  
IN MODE  
(BIT 14)  
F MODE  
(BIT 13)  
M MODE  
(BIT 8)  
HI-ZFORCE  
FORCE  
OUTPUT  
MEµSURE  
OUTPUT  
µCTIVE  
INPUT  
PMU MODE  
0
1
0
1
0
1
0
1
X
0
0
0
0
1
1
1
1
X
0
0
1
1
0
0
1
1
0
1
1
1
1
1
1
1
1
1
0
0
FVMꢁ  
FVMꢁ  
FVMV  
FVMV  
FꢁMꢁ  
Voltage  
Voltage  
Voltage  
Voltage  
Current  
Current  
Current  
Current  
V
V
V
V
V
V
V
V
DUT  
DUT  
ꢁN0  
ꢁN1  
ꢁN0  
ꢁN1  
ꢁN0  
ꢁN1  
ꢁN0  
ꢁN1  
V
V
DUT  
DUT  
DUT  
DUT  
FꢁMꢁ  
FꢁMV  
FꢁMV  
V
V
DUT  
DUT  
FNMꢁ—Meaningless mode  
Hꢁ-Z  
X
X
FNMV  
V
X
DUT  
16 ______________________________________________________________________________________  
Dual Per-Pin Parametric Measurement Units  
4/MAX950  
Table 6. Current Range Selection  
(BIT 1±) RS±  
(BIT 11) RS1  
(BIT 1ꢀ) RSꢀ  
RµNGE  
2ꢀA  
NOMINµL RESISTOR VµLUE  
R_E = 1MΩ  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
2ꢀA  
R_E = 1MΩ  
20ꢀA  
R_D = 100kΩ  
R_C = 10kΩ  
R_B = 1kΩ  
200ꢀA  
2mA  
25mA  
External  
25mA  
R_A = 80Ω  
R_A = 80Ω  
Table 7. Clamp Enable  
Table 8. MSR_ Output Truth Table  
CL  
MODE  
ENµBLE  
(BIT 7) HI-ZMSR  
HI-Z_  
MSR_ STµTE  
Measure output enabled  
High-Z  
1
0
Clamps enabled  
Clamps disabled  
1
0
1
0
1
1
0
0
High-Z  
rent) or Mꢁ (measure current). Table 6 describes the  
full-scale current-range control.  
High-Z  
serial data word 16.5 clock cycles later. This allows for  
daisy-chaining an additional device using DOUT and  
the same clock.  
Clamp Enable  
The CL  
bit enables the force-output voltage  
ENABLE  
clamps when high and disables the clamps when low.  
Table 7 depicts the various clamp mode options.  
“Quick Load” Using Chip Select  
ꢁf CS goes low and then returns high without any clock  
activity, the data from the input registers latch into the  
PMU registers. This extra function is not standard for  
SPꢁ/QSPꢁ/MꢁCROWꢁRE interfaces. The quick load mim-  
ics the function of LOAD without forcing LOAD low.  
Measure Output High-Impedance Control  
The MSR_ output attains a low-leakage, high-imped-  
ance state by using the HI-ZMSR control bit or the HI-Z_  
input. The 2 bits are logically ORed together to control  
the MSR_ output. The HI-Z_ input allows external multi-  
plexing among several PMU MSR_ outputs without  
using the serial interface. Table 8 explains the various  
output modes for the MSR_ output.  
Comparators  
Two comparators configured as a window comparator  
monitor the MSR_ output. THMAX_ and THMꢁN_ set the  
high and low thresholds that determine the window.  
Both outputs are open drain and share a single disable  
control that places the outputs in a high-Z, low-leakage  
state. Table 9 describes the comparator output states  
of the MAX9949/MAX9950.  
Digital Output (DOUT)  
The digital output follows the last output of the serial  
shift register and clocks out on the falling edge of the  
input clock. DOUT provides the first bit of the incoming  
Table 9. Comparator Truth Table  
(BIT 6) DISABLE  
CONDITION  
DUTH_  
DUTL_  
0
1
1
1
1
X
High-Z  
High-Z  
V
V
V
V
> V  
and V  
0
1
1
0
1
1
0
0
MSR  
THMAX  
THMꢁN  
> V  
THMꢁN  
> V  
THMAX  
THMAX  
THMꢁN  
MSR  
and V  
> V  
THMꢁN  
MSR  
> V  
> V  
*
MSR  
THMAX  
*V  
THMAX  
> V  
constitutes normal operation. This condition, however, has V  
> V and does not cause any problems with  
THMAX  
THMꢁN  
THMꢁN  
the operation of the comparators.  
______________________________________________________________________________________ 17  
Dual Per-Pin Parametric Measurement Units  
ing +4V to ꢁOS forces the voltage range that corre-  
sponds to full-scale current from 0 to +8V.  
Applications Information  
The following equations determine the minimum and  
ꢁn force-voltage (FV) mode, the output FORCE_ voltage  
maximum currents for each current range correspond-  
is directly proportional to the input control voltage. ꢁn  
ing to the input voltage or measure voltage:  
force-current (Fꢁ) mode, the current flowing out of the  
FORCE_ output is proportional to the input control volt-  
age. Positive current flows out of the PMU.  
V
= V  
= V  
+ 4V  
- 4V  
MAXCURRENT  
ꢁOS  
ꢁOS  
V
MꢁNCURRENT  
Choose ꢁOS so the limits of the MSR_ output do not go  
closer than 2.8V to either V or V . For example, with  
ꢁn force-nothing (FN) mode, the FORCE_ output is high  
impedance.  
EE  
CC  
supplies of +10V and -5V, limit the MSR_ output to -2.2V  
and +7.2V. Therefore, set ꢁOS between +1.8V and +3.2V.  
The MSR_ output could clip if ꢁOS is not within this range.  
Use these general equations for the limits on ꢁOS:  
ꢁn measure-current (Mꢁ) mode, the voltage at the MSR_  
output is directly proportional to the current exiting the  
FORCE_ output. Positive current flows out of the PMU.  
ꢁn measure-voltage (MV) mode, the voltage at the  
MSR_ output is directly proportional to the voltage at  
the SENSE_ input.  
Minimum V  
= V + 6.8V  
EE  
ꢁOS  
Maximum V  
= V  
- 6.8V  
ꢁOS  
CC  
Current Booster for Highest Current Range  
An external buffer amplifier can be used to provide a  
current range greater than the MAX9949/MAX9950  
maximum output current (Figure 5). This function oper-  
ates as follows.  
Current-Sense-Amplifier Offset  
Voltage Input  
4/MAX950  
ꢁOS is a buffered input to the current-sense amplifier.  
The current-sense amplifier converts the input control  
voltage (ꢁN0_ or ꢁN1_) to the forced DUT current (Fꢁ)  
AND converts the sensed DUT current to the MSR_ out-  
put voltage (Mꢁ). When ꢁOS equals zero relative to DUT-  
GND (the GND voltage at the DUT, which the  
level-setting DACs and the ADC are presumed to use  
as a ground reference), the nominal voltage range that  
corresponds to full-scale current is -4V to +4V. Any  
voltage applied to the ꢁOS input adds directly to this  
control input/measure output voltage range, i.e., apply-  
A digital output decoded from the range select bits,  
EXTSEL_, indicates when to activate the booster. The  
R_COM output serves as an input to an external buffer  
through a 50Ω current-limit series resistor. Each side of  
the external current-sense resistor feeds back to RXA_  
and RXD_. Ensure that the buffer circuit enters a high-Z  
output state when not selected. Any leakage in the  
buffer adds to the leakage of the PMU.  
Voltage Clamps  
The voltage clamps limit the FORCE_ output and oper-  
ate over the entire specified current range. Set the  
clamp voltages externally at CLHꢁ_ and CLLO_. The  
voltage at the FORCE_ output triggers the clamps inde-  
pendent of the voltage at the SENSE_ input. When  
enabled, the clamps function in both Fꢁ and FV modes.  
50Ω  
R
EXTBOOST  
FORCE_  
Current Limit  
The current-limiting circuitry on the FORCE_ output  
ensures a well-behaved MSR_ output for currents  
between the full current range and the current limits, i.e.,  
for currents greater than the full-scale current, the MSR_  
voltage is greater than +4V and for currents less than the  
full-scale current, the MSR_ voltage is less than -4V.  
R_COM  
EXTSEL_  
RXA_  
RXD_  
A
= +2  
V
Independent Control of the Feedback  
Switch and the Measure Switch  
Two single-pole-double-throw (SPDT) switches deter-  
mine the mode of operation of the PMU. One switch  
INTERNAL TO MAX9949/MAX9950  
Figure 5. External Current Boost  
18 ______________________________________________________________________________________  
Dual Per-Pin Parametric Measurement Units  
4/MAX950  
IN1_  
IN1_  
R
R
SENSE  
SENSE  
FORCE_  
SENSE_  
FORCE_  
DUT  
DUT  
A
= +2  
A = +2  
V
V
SENSE_  
DUTGND  
DUTGND  
MSR_  
MSR_  
Figure 6. Force-Voltage/Measure-Current Functional Diagram  
Figure 7. Force-Current/Measure-Voltage Functional Diagram  
determines whether the sensed DUT current or DUT  
voltage feeds back to the input (sensing), and thus  
determines whether the MAX9949/MAX9950 force cur-  
rent or voltage. The other switch determines whether the  
MSR_ output senses the DUT current or DUT voltage.  
input samples the voltage at the DUT and provides a  
buffered result at the MSR_ output.  
High-Z States  
The FORCE_, MSR_, and comparator outputs feature  
individual high-Z control that places them into a high-  
impedance, low-leakage state. The high-Z state allows  
busing of MSR_ and comparator outputs with other  
PMU measure and comparator outputs. The FORCE_  
output high-Z state allows for additional modes of oper-  
ation as described in Table 5 and can eliminate the  
need for a series relay in some applications.  
ꢁndependent control of these switches and the  
HI-ZFORCE state permits flexible modes of operation  
beyond the traditional force-voltage/measure-current  
(FVMꢁ) and force-current/measure-voltage (FꢁMV)  
modes. The MAX9949/MAX9950 support the following  
five modes:  
• FVMꢁ  
• FꢁMV  
• FVMV  
• FꢁMꢁ  
The FORCE_, MSR_, and comparator outputs power up  
in the high-Z state.  
Input Source Selection and Gating  
Either one of two input signals, ꢁN0_ or ꢁN1_, can control  
both the forced voltage and the forced current. ꢁn this  
case, the two input signals represent alternate forcing  
values that can be selected with the serial interface.  
Alternatively, each input signal can be dedicated to con-  
trol a single forcing function (i.e., voltage or current).  
• FNMV  
Figure 6 shows the internal path structure for force-volt-  
age/measure-current mode. ꢁn force-voltage/measure-  
current mode, the current across the appropriate  
external sense resistor (R_A to R_E) provides a voltage  
to the MSR_ output. The SENSE_ input samples the  
voltage at the DUT and feeds the buffered result back  
to the negative input of the voltage amplifier. The volt-  
age at MSR_ is proportional to the FORCE_ current in  
accordance with the following formula:  
Ground, DUT Ground, IOS  
The MAX9949/MAX9950 utilize two local grounds,  
AGND (analog ground) and DGND (digital ground).  
Connect AGND and DGND together on the PC board.  
ꢁn a typical ATE system, the PMU force voltage is rela-  
tive to the DUT ground. ꢁn this case, reference the input  
voltages ꢁN0_ and ꢁN1_ to the DUT ground. Similarly,  
reference ꢁOS to the DUT ground. ꢁf it is not desired to  
offset the current control and measure voltages, con-  
nect ꢁOS to the DUT ground potential.  
V _ = ꢁ  
MSR  
x R  
x 2  
SENSE  
FORCE_  
Figure 7 shows the internal path structure for the force-  
current/measure-voltage mode. ꢁn force-current/mea-  
sure-voltage mode, the appropriate external sense  
resistor (R_A to R_E) provides a feedback voltage to  
the inverting input of the voltage amplifier. The SENSE_  
Reference the MSR_ output to the DUT ground.  
______________________________________________________________________________________ 19  
Dual Per-Pin Parametric Measurement Units  
3) Variations in the power supplies—system implemen-  
V
DUT  
tation determines the variance  
V
V
- 3.5V  
- 5V  
EE  
EE  
4) Variation of DUT ground vs. PMU ground—system  
implementation determines the variance  
Neglecting the effects of the third and fourth items,  
Figure 8 demonstrates the force output capabilities  
of the PMU.  
I
DUT  
Figure 8 indicates that, for zero DUT current, the  
DUT voltage swings from (V  
+ 3.5V) to (V  
-
CC  
EE  
3.5V). For larger positive DUT currents, the positive  
swing drops off linearly until it reaches (V - 5V) at  
full current. Similarly, for larger negative DUT cur-  
rents, the negative voltage swing drops off linearly  
until it reaches (V + 5V) at full current.  
EE  
CC  
V
+ 5V  
EE  
V
+ 3.5V  
EE  
I
I
MIN  
MIN  
Settling Times and Compensation  
Capacitors  
Figure 8. PMU Force Output Capability  
The data in the Electrical Characteristics table reflects  
the circuit shown in the block diagram that includes a  
single compensation capacitor (Cx) effectively across all  
4/MAX950  
Short-Circuit Protection  
The FORCE_ output and SENSE_ input can withstand a  
short to any voltage between the supply rails.  
the sense resistors. Placing individual capacitors, C  
,
RA  
C
, C , C , and C  
directly across the sense  
RB  
RC  
RD  
RE  
resistors, R_A, R_B, R_C, R_D, and R_E, independently  
optimizes each range.  
Mode and Range Change Transients  
The MAX9949/MAX9950 feature make-before-break  
switching to minimize glitches. The integrated voltage  
clamps also reduce glitching on the output.  
The combination of the capacitance across the sense  
resistors (Cx or C , C , C , C , and C ) and the  
RA  
RB  
RC  
RD  
RE  
main amplifier compensation comparator, C , ensures  
CM  
DUT Voltage Swing vs. DUT Current and  
Power-Supply Voltages  
Several factors limit the actual DUT voltage that the  
PMU delivers:  
stability into the maximum expected load capacitance  
while optimizing settling time.  
Digital Inputs (SCLK, DIN, CS, LOAD)  
The digital inputs incorporate hysteresis to mitigate  
issues with noise, as well as provide for compatibility  
with opto-isolators that can have slow edges.  
1) The overhead required by the amplifiers and other  
integrated circuitry—this is typically 3.5V from each  
rail for no load current and 5V under full load  
2) The voltage drop across the current-range select  
resistor and internal circuitry in series with the sense  
resistor—at full current, the combined voltage drop is  
typically 2.75V  
Chip Information  
PROCESS: BiCMOS  
±ꢀ ______________________________________________________________________________________  
Dual Per-Pin Parametric Measurement Units  
4/MAX950  
MAX9949 Pin Configuration  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
+
1
2
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
V
V
V
EE  
EE  
V
CC  
CC  
3
RXAA  
RXDA  
CC2A  
CC1A  
SENSEA  
FORCEA  
RAA  
RXAB  
RXDB  
CC2B  
CC1B  
SENSEB  
FORCEB  
RBA  
4
5
6
7
8
MAX9949  
9
10  
11  
12  
13  
RAB  
RBB  
RAC  
RBC  
RAD  
RBD  
RAE  
RBE  
RACOM  
RBCOM 14  
V
V
15  
16  
CC  
CC  
V
V
EE  
EE  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
______________________________________________________________________________________ ±1  
Dual Per-Pin Parametric Measurement Units  
MAX9950 Pin Configuration  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
+
1
2
48  
47  
V
V
V
EE  
EE  
V
CC  
CC  
3
46 RACOM  
RBCOM  
RBE  
4
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
RAE  
5
RAD  
RBD  
6
RAC  
RBC  
7
RAB  
RBB  
4/MAX950  
8
RAA  
RBA  
MAX9950  
9
FORCEA  
SENSEA  
CC1A  
CC2A  
RXDA  
RXAA  
FORCEB  
SENSEB  
CC1B  
CC2B  
RXDB  
RXAB  
10  
11  
12  
13  
14  
15  
16  
V
V
CC  
CC  
V
V
EE  
EE  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
Package Information  
For the latest package outline information and land patterns, go  
to www.maxim-ic.com/packages.  
PµCKµGE TYPE PµCKµGE CODE DOCUMENT NO.  
64 TQFP-EPR  
64 TQFP-EP  
C64E-9R  
C64E-6  
±1-ꢀ16±  
±1-ꢀꢀ84  
±± ______________________________________________________________________________________  
Dual Per-Pin Parametric Measurement Units  
4/MAX950  
Revision History  
REVISION  
NUMBER  
REVISION  
DµTE  
PµGES  
CHµNGED  
DESCRIPTION  
2
3/09  
Corrected timing diagrams and changed to lead-free package.  
1, 13, 14  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ ±3  
© 2009 Maxim ꢁntegrated Products  
Maxim is a registered trademark of Maxim ꢁntegrated Products, ꢁnc.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY